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Abstract

This paper introduces a novel method for monitoring behavioral changes in univer-
sity students by constructing spatiotemporal graphs from smartphone sensor data.
Utilizing the StudentLife dataset, which collects multimodal data from smartphone
sensors over a 10-week period, we capture detailed aspects of student behavior,
including location, physical activity, and self-reported stress. By representing this
data as spatiotemporal graphs, we model behavioral evolution across both tempo-
ral and spatial dimensions, employing a Spatiotemporal Graph Neural Network
(STGNN) to detect patterns associated with stress, sleep quality, and academic
performance. This method enables a dynamic, high-resolution analysis of student
well-being, offering a more comprehensive understanding of behavior over time.

1 Introduction

University students often experience various stressors due to academic pressures, social interactions,
and lifestyle changes. Monitoring these factors can provide insights into their mental health and help
predict behavioural trends affecting their well-being. Mobile sensing technologies now enable contin-
uous data collection from students’ smartphones, presenting new opportunities to track behaviours in
real time. This paper introduces a novel approach to monitor behavioral changes in university students
using spatiotemporal graphs based on the StudentLife dataset [Wang et al., 2014], which collects data
on physical activity, phone usage, and self-reported stress and sleep quality. By structuring this data
as an evolving spatiotemporal graph, we capture both spatial aspects (students’ behavior at specific
times and locations) and temporal aspects (behavioral changes over time), enabling early diagnostic
insights into mental health.

Graph representation learning has shown strong performance across various deep learning tasks and
applications [Sun et al., 2021, 2022, 2023a,b, Harit et al., 2024, Wynn et al., 2024]. We employ a
Spatiotemporal Graph Neural Network (STGNN) [Yu et al., 2017], integrating Graph Convolutional
Networks (GCNs) [Kipf and Welling, 2016] to capture spatial relationships and Recurrent Neural
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Networks (RNNs) [Elman, 2002] to model temporal changes in behavior over time. This hybrid
model uniquely combines spatial dependencies such as behavioral similarities across students with
temporal dynamics to provide a comprehensive analysis of behavior trends and predictive insights
into future stress levels. Unlike models like MFDS-STGCN [Zhou et al., 2024], which primarily
apply spatiotemporal modeling to static datasets, our approach adapts dynamically to evolving student
data and incorporates clustering to detect group patterns in stress and activity. This additional layer
allows for more responsive monitoring of well being over time. This work contributes to the field in
three key ways:

1. Spatiotemporal graph modelling: We create dynamic graphs to capture relationships
between students’ behaviours over time.

2. Graph-based deep learning: By applying STGNN, we model complex behavioural patterns
and predict mental health trends.

3. Behavioral clustering for early detection:We identify groups of students with similar
behavioural trends, allowing for early detection of stress and mental health issues.

1.1 Related work

Mobile sensing has revolutionized behavioural analysis, particularly in mental health monitoring.
[Wang et al., 2014] introduced the StudentLife dataset, showcasing the potential of smartphone
sensors in tracking student behaviour, but early approaches treated this data as an independent time
series, missing the critical spatial dynamics and evolving nature of behaviours.

The introduction of Spatiotemporal Graph Neural Networks (STGNNs) by [Yu et al., 2017] bridged
this gap by integrating spatial and temporal dimensions, but their application in student behaviour
monitoring remains unexplored. Existing models struggle with continuous, high-dimensional smart-
phone data and often overlook the spatial correlations critical for understanding shared environments
and behaviour patterns.

Our approach leverages STGNNs to model the StudentLife dataset [Wang et al., 2014], combining
graph convolutional networks (GCNs) for spatial recognition with recurrent neural networks (RNNs)
for temporal trends. This enables us to capture complex behaviours across multiple dimensions
physical activity, phone usage, sleep quality, and stress levels while predicting future behaviours and
identifying early signs of mental health issues. By addressing limitations in existing models, our
work provides a scalable, real-time solution for comprehensive mental health monitoring, offering
crucial insights into evolving student well-being.

2 Methodology

Our methodology leverages spatiotemporal graph modelling to analyze student behaviour dynamics
using the StudentLife dataset. We construct a Spatiotemporal Graph Neural Network (STGNN)
to capture both spatial dependencies (behavioural similarities among students at the same time)
and temporal dependencies (how behaviours evolve). By integrating graph convolutional networks
(GCNs) [Kipf and Welling, 2016] for spatial relationships and recurrent neural networks (RNNs) [Sun
et al., 2023a] for temporal changes, we provide a comprehensive model for monitoring and predicting
behavioural patterns. The following sections outline data preprocessing, graph construction, and the
detailed architecture of the STGNN. For data preprocessing, we drew inspiration from [Bonafonte
et al., 2023], adapting their techniques to structure the multimodal sensor data for our analysis.

2.1 Dataset Description

The StudentLife dataset [Wang et al., 2014] comprises sensor-based smartphone data from 48
Dartmouth College students over a 10-week term. It includes GPS-based location data to track
movement, activity data from accelerometers and gyroscopes to monitor physical activities, and
phone usage records, such as app usage, call logs, and messaging. Additionally, students provided
self-reported data through surveys on stress, sleep quality, and mood. The data is discretized into
daily time slots, we extract features such as location, activity levels, phone usage, and survey results.
PHQ-9 scores [Kroenke et al., 2001] ranging from 0 to 27 are used as the target variable for the
depression prediction task.
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2.2 Spatiotemporal Graph Construction

We represent the StudentLife data as a spatiotemporal graph G = (V,E), where:

1. Nodes (V) represent students at specific time steps.
2. Edges (E) capture behavioural similarities (spatial edges) or temporal continuity (temporal

edges).

Spatial edges connect students at the same time step based on behavioural similarity. The similarity
between two students i and j at time t, denoted St

ij , is computed as:

St
ij = exp

(
−
∥∥xt

i − xt
j

∥∥2
2

σ2

)

where xt
i is the feature vector for student i at time t, and σ controls sensitivity. If St

ij exceeds a
threshold δ, an edge is created between vi and vj .

Temporal edges link nodes across consecutive time steps for the same student, modelling the temporal
evolution of behaviours. For each student i, an edge connects vti and vt+1

i , indicating how the
student’s behaviour changes over time.

2.3 Feature Representation

Each node vti is associated with a feature vector xt
i = [lti , a

t
i, p

t
i, s

t
i], where:

1. lti : Location data (latitude and longitude),
2. ati : Activity data (e.g., steps or sedentary time),
3. pti : Phone usage data (e.g., screen time),
4. sti : Self-reported stress, sleep quality, mood and PHQ-9 score Kroenke et al. [2001](for

depression).

These features are normalized across all students to account for variations in behaviour.

2.4 Spatiotemporal Graph Neural Network

We apply a Spatiotemporal Graph Neural Network (STGNN) to learn from the spatiotemporal graph.

1. Graph Convolution for Spatial Dependencies: For a graph at time t, we update node
embeddings ht

i using graph convolution:

ht
i = σ

 ∑
j∈N (i)

wt
ij · ht

j +Wht
i


where N (i) represents neighboring nodes of i, wt

ij is the edge weight, W is a learnable
weight matrix, and σ is the activation function (e.g., ReLU).

2. Recurrent Layers for Temporal Dependencies: To capture behavioural changes over time,
we apply recurrent layers (e.g., LSTM [Hochreiter, 1997] or GRU[Chung et al., 2014]) to
the node embeddings ht

i :
ht+1
i = RNN

(
ht
i, h

t+1
i

)
The RNN captures how each student’s behaviour evolves from time t to t+ 1.

2.5 Clustering and Behavioral Analysis

Once we have learned the node representations, we apply clustering (e.g., K-means or spectral
clustering) to group students based on behavioural similarities. The clustering objective is to minimize
the within-cluster variance:

min

K∑
k=1

∑
ht
i∈Ck

∥∥ht
i − µt

k

∥∥2
2
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where Ck is the set of nodes in cluster k, and µt
k is the cluster centroid at time t. This helps us identify

groups of students exhibiting similar stress patterns or activity levels.

3 Results and Discussions

In this study, we evaluate the Spatiotemporal Graph Neural Network (STGNN) against baseline
models, including Graph Convolutional Networks (GCN) [Kipf and Welling, 2016], Long Short-Term
Memory (LSTM) networks [Hochreiter, 1997], and MFDS-STGCN [Zhou et al., 2024]. The main
tasks are stress level classification (evaluated with accuracy and F1 score) and depression score
prediction (using RMSE). Each model was trained using all 125 features, as well as individual feature
groups (WiFi, GPS, Phone Log, Activity, and Academic), to assess the impact of each data type.

To gain additional insights into behavioral patterns, we applied K-means clustering to the STGNN
embeddings, identifying group-level trends: high mobility patterns correlated with lower stress, while
sedentary behaviors were associated with higher stress levels. These clustering results highlight the
model’s ability to uncover meaningful behavioral profiles that could support targeted interventions.
For robustness, we conducted 50 rounds of training and testing with different random initializations,
reporting the mean and standard deviation for each metric.

3.1 Clustering and Behavioral Analysis Results

To identify distinct behavioral patterns, we applied K-means clustering on STGNN embeddings,
which capture spatial and temporal dimensions of student behavior (e.g., mobility, stress, phone usage,
activity levels). We determined k = 2 clusters based on the optimal silhouette score, maximizing
intra-cluster cohesion and inter-cluster separation. Clustering was performed using normalized feature
vectors to maintain equal weighting across behavioral metrics.

Table 1: Clustering and Behavioral Analysis Results
Cluster Students Mobility Score Stress Score Phone Usage (hrs/day) Activity Level

Cluster 1 25 8.5 ± 1.2 3.2 ± 0.8 4.1 ± 0.9 High
Cluster 2 30 2.4 ± 0.9 7.1 ± 1.1 6.5 ± 1.2 Low

The analysis identified two distinct clusters in Table 1: Cluster 1 (high mobility, moderate phone
usage, low stress) suggests an active lifestyle correlated with reduced stress, while Cluster 2 (low
mobility, high phone usage, high stress) reflects a sedentary profile, potentially linked to isolation or
academic pressures. These insights indicate a correlation between behavior patterns and stress levels,
suggesting that targeted interventions may benefit high-stress, low-mobility students.

3.2 Stress Level Classification Results

The accuracy and F1 score for stress level classification are summarized in Table 2. Across all feature
sets, the STGNN outperforms both GCN [Kipf and Welling, 2016] and LSTM [Hochreiter, 1997].
With all features combined, STGNN achieved the highest performance with an F1 score of 65.4±
3.1 and an accuracy of 67.1± 2.7. The MFDS-STGCN model also performed well, achieving an F1
score of 63.2± 3.2 and an accuracy of 64.0± 2.9, though slightly below STGNN. In comparison,
the GCN and LSTM models showed lower performance, with F1 scores of 61.5± 3.0 and 60.4± 3.5,
respectively. The superior performance of STGNN highlights the importance of incorporating both
spatial and temporal dependencies, as this approach provides a more comprehensive understanding
of student behaviors, which is crucial for accurate stress prediction.
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Table 2: Stress Level Classification Results (F1 and Accuracy)
Model Metric All Features WiFi GPS Phone Log Activity Academic

STGNN F1 Score 65.4 ± 3.1 62.7 ± 3.5 58.3 ± 3.4 59.9 ± 3.8 60.1 ± 3.1 57.2 ± 3.0
Accuracy 67.1 ± 2.7 64.5 ± 2.9 60.9 ± 3.2 61.3 ± 3.7 61.4 ± 3.0 58.7 ± 2.9

MFDS-STGCN F1 Score 63.2 ± 3.2 61.0 ± 3.4 57.0 ± 3.1 58.2 ± 3.6 58.5 ± 3.2 56.3 ± 3.0
Accuracy 64.0 ± 2.9 62.1 ± 3.1 59.0 ± 3.0 59.5 ± 3.5 59.0 ± 3.1 57.0 ± 2.9

GCN F1 Score 61.5 ± 3.0 60.2 ± 3.2 55.4 ± 3.1 56.5 ± 3.5 56.7 ± 3.4 55.1 ± 3.2
Accuracy 62.4 ± 2.7 60.4 ± 3.0 58.0 ± 2.9 58.7 ± 3.3 58.8 ± 2.8 56.2 ± 2.7

LSTM F1 Score 60.4 ± 3.5 57.8 ± 3.0 54.1 ± 3.3 55.7 ± 3.4 55.5 ± 3.1 54.6 ± 3.5
Accuracy 61.0 ± 3.1 58.3 ± 3.2 56.2 ± 3.1 57.0 ± 3.5 56.8 ± 3.0 55.0 ± 3.2

WiFi and Phone Log features contributed the most to model performance among individual feature
groups. The WiFi feature group, which captures student mobility patterns, resulted in an F1 score
of 62.7± 3.5 for STGNN. This indicates that mobility patterns, particularly time spent at different
locations, are closely linked to students’ stress levels.

3.3 Depression Score Prediction Results

Table 3 reports the RMSE for the depression score prediction task using PHQ-9 as the target variable.
The STGNN model achieved the lowest RMSE with all features (3.5 ± 3.1) and showed strong
performance with only WiFi data (3.5 ± 3.4), highlighting mobility as a key predictor of depression.
The MFDS-STGCN model followed closely with an RMSE of 3.6 ± 3.2 using all features but did not
surpass STGNN. The GCN and LSTM models had higher RMSE values across most feature sets,
emphasizing the effectiveness of spatial and temporal modeling in STGNN and MFDS-STGCN.

Table 3: Root Mean Square Error (RMSE) for the regression of PHQ-9 Depression Score
Model Mean RMSE All Features WiFi GPS Phone Log Activity Academic

STGNN 3.5 ± 3.1 3.5 ± 3.4 3.9 ± 3.5 3.7 ± 3.3 3.6 ± 3.1 3.7 ± 3.2 3.7 ± 3.2
MFDS-STGCN 3.6 ± 3.2 3.6 ± 3.4 4.1 ± 3.3 4.0 ± 3.4 3.9 ± 3.3 3.8 ± 3.4 3.9 ± 3.3
GCN 3.8 ± 3.4 3.7 ± 3.5 4.0 ± 3.4 4.2 ± 3.5 4.1 ± 3.6 4.0 ± 3.5 4.1 ± 3.6
LSTM 4.1 ± 3.2 4.0 ± 3.3 4.3 ± 3.4 4.1 ± 3.2 4.2 ± 3.3 4.3 ± 3.4 4.2 ± 3.5

3.4 Discussions

Our results demonstrate STGNN’s superiority over GCN, LSTM, and MFDS-STGCN in both stress
detection and depression prediction, achieving an F1 score of 65.4% and an accuracy of 67.1% in
stress classification. By integrating spatial relationships and temporal dynamics, STGNN offers a
more comprehensive model of student behavior.

WiFi and Phone Log data emerged as the most predictive features, with WiFi mobility patterns
particularly effective for identifying mental health trends. Notably, WiFi features alone outperformed
the full feature set for depression prediction, suggesting the potential for focused, efficient mental
health monitoring. While MFDS-STGCN performed well, it did not reach the predictive accuracy of
STGNN, indicating the added value of STGNN’s enhanced spatiotemporal integration.

Our approach builds upon previous StudentLife dataset studies by enhancing scalability through
passive data collection, which supports real-world applicability. Although GCN, LSTM, and MFDS-
STGCN capture certain behavioral patterns, they lack STGNN’s effective integration of spatiotempo-
ral information, essential for nuanced mental health predictions. This is ongoing work, and we plan
to extend the model to include additional behavioral features and improve predictive accuracy, aiming
for a robust, scalable solution for mental health monitoring across diverse student populations.
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