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Abstract

Neural Architecture Search (NAS) has become a crucial research direction for automating
the design of neural networks. The introduction of weight sharing has significantly reduced
the computational and time costs of NAS. Recent approaches enable the simultaneous train-
ing of numerous sub-networks without the need for retraining; however, these methods are
primarily limited to the Size Search Space (SSS), which provides limited architecture di-
versity. To date, methods based on the more diverse Topology Search Space (TSS) remain
unexplored. TSS has greater potential for hardware-aware architecture search. In this work,
we propose a novel NAS method that operates on TSS, while maintainting high efficiency.
To do so, we introduce Kshot-Hypernet, that extends in-place distillation to TSS, signifi-
cantly improving supernetwork training. Experiments on NASBench-201 show that, once
the supernet is trained, most sub-networks can match or even exceed the performance of
those trained from scratch. Furthermore, our method achieves 80.7% top-1 accuracy on
ImageNet with only 8.7M parameters.

1 Introduction

Supernet Training  Search Deploy(No Retrain)

Figure 1: TSS-based Supernetwork Training and Deployment Workflow. Different colored arrows represent
different operations, and the nodes denote inputs and outputs.

Neural Architecture Search (NAS) has gained attention as an alternative to manual network design, which
is time-consuming and requires detailed expert knowledge. The primary goal of NAS is to automatically
discover high-performing architectures for specific tasks. Early works Zoph & Le (2017); Real et al. (2019);
Zoph et al. (2018) demonstrated the effectiveness of NAS, but at the cost of substantial computational
resources, as they required training numerous candidate architectures from scratch for evaluation.

The introduction of weight sharing by Efficient NAS (ENAS) greatly improved the efficiency and reduced the
resource consumption of NAS (Pham et al., 2018). With the increasing demand for deploying neural networks
across diverse platforms and devices, NAS objectives have expanded to include the design of architectures
tailored for various hardware. Due to platform-specific characteristics, the same architecture may exhibit
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vastly different performance on different devices (Wu et al., 2019). Consequently, efficient deployment often
necessitates repeated architecture searches for each target platform. If each discovered architecture must be
trained from scratch, the computational cost becomes prohibitive.

To address this, recent works Cai et al. (2020); Yu et al. (2020a) have proposed training a single large super-
network using weight sharing, from which all subnetworks’ weights can be directly sampled and subsequently
used for different platforms. This approach enables rapid validation and deployment of architectures without
the need for retraining from scratch, significantly reducing the overall NAS cost.

However, most current methods for multi-deploy NAS without retrain are based on the Size Search Space
(SSS), where different sizes of network components are explored, such as the MobileNet search space (Howard
et al., 2019). Although SSS can cover a large number of candidate architectures and is effective for device-
aware search, it suffers from limited structural diversity and hardware adaptability. In SSS, subnet variations
are mainly achieved by adjusting parameters such as network width (number of channels), depth (number
of layers), and convolution kernel size, while the overall network structure remains fixed (e.g., all using
MobileNet blocks). All candidate networks are essentially variants of existing architectures, restricting the
discovery of novel structures. Consequently, performance differences among subnets are primarily determined
by parameter count and FLOPS, rather than by architectural innovation.

The Topology Search Space (TSS) utilized by earlier NAS approaches (Zoph & Le, 2017; Real et al., 2019;
Zoph et al., 2018) is different from SSS. Its architectures are represented as directed acyclic graphs (DAGs)
composed of diverse operators.

TSS defines the search space by specifying the number of nodes in a DAG, the connections between nodes,
and the set of candidate operations, forming so-called search blocks. Networks are constructed by stacking
these search blocks, which can either share the same architecture or be individually designed. Unlike SSS,
TSS allows for substantial architectural diversity among subnets, as the operations within each search block
can be entirely different. This flexibility enables the discovery of architectures better suited to specific hard-
ware accelerators, making NAS more meaningful for hardware-aware optimization. However, the increased
diversity and complexity of TSS also make supernetwork training significantly more challenging. As a result,
most existing TSS-based works (e.g. Su et al. (2021); Zhao et al. (2021); Hu et al. (2020)) focus on improving
the ranking of subnets within the supernetwork, but still require retraining the discovered architectures from
scratch to achieve high performance.

In this work, we tackle the persistent challenge that topology search space TSS-based NAS methods typi-
cally require retraining to achieve deployable performance. To address this limitation, we propose a novel
supernetwork training framework that integrates multiple advanced techniques. The main contributions of
this paper are as follows:

• We introduce Kshot-Hypernet, an enhanced version of Hypernet (Su et al., 2021), which incor-
porates KshotNAS (Zhao et al., 2021) to improve the capacity of supernetworks in TSS.

• We develop Focus-Fair Sampling and a customized distillation strategy to facilitate more effective
supernetwork training.

• We achieve competitive results on NAS-Bench-201 and ImageNet, enabling direct deployment with-
out retraining.

For NAS-Bench-201 (Dong & Yang, 2020), our approach achieves an average accuracy of 87.12% across
all subnets (compared to 87.06% when trained from scratch), with the best subnet reaching 92.47% (vs.
94.37% from scratch) on CIFAR-10. On CIFAR-100, the average accuracy is 61.03% (vs. 61.41%), and the
best is 71.98% (vs. 73.51%). On ImageNet, our method attains a top-1 accuracy of 80.7% with only 8.7M
parameters, matching the SOTA performance.
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2 Related Work

The enormous computational resources and time consumption required by conventional NAS (Zoph & Le,
2017; Real et al., 2019; Zoph et al., 2018; Liu et al., 2018) hinders the widespread adoption of NAS. The
introduction of weight sharing (Pham et al., 2018), where a supernetwork encompassing all architectures
in the search space is trained only once and subnetworks are obtained by sampling its weights during
searching, greatly reduces both computational and time costs up to 1000× compared to conventional NAS.
Differentiable Architecture Search (DARTS) (Liu et al., 2019) assigns coefficients to each path, making
the output of each node a weighted sum of all paths. This technique enables differentiable search, allowing
optimal architectures to be found via gradient descent. ProxylessNAS (Cai et al., 2019) introduces additional
architectural parameters during training and uses binary encoding to activate only one path at a time, further
improving search efficiency.

2.1 Subnetwork Sampling

The subnetwork sampling strategy plays a crucial role in determining the final performance of the super-
network. OneShot-NAS (Bender et al., 2018) adopts path dropout during training, with the dropout rate
increasing over time. Single Path One-Shot (SPOS) (Guo et al., 2020) compresses the search space so that
all subnetworks are single-path, randomly selecting one path per iteration, thus treating the supernetwork
as a framework rather than fully training it. FairNAS (Chu et al., 2021) introduces a fair sampling strat-
egy and aggregates gradients for simultaneous updates, addressing the subnetwork iteration order issue in
SPOS and reducing the optimization gap between subnetworks. DFairNAS (Meng & Chen, 2023) further
improves upon FairNAS by scoring all operations based on subnetwork performance, encouraging the combi-
nation of high-scoring operations. Inspired by these works, we propose a novel FocusFair sampling method,
which increases the probability of sampling high-performing subnetworks while minimizing the impact on
the remaining subnetworks.

2.2 Size Search Space based NAS

Single-Path NAS (Stamoulis et al., 2019) utilizes the MobileNet search space and introduces convolutional
kernel sharing, where smaller kernels inherit properties from larger ones. MobileNetV3 (Howard et al.,
2019) applies NAS to search for networks of various sizes, setting a foundation for subsequent SSS-based
NAS methods. Once-for-All (OFA) (Cai et al., 2020) employs progressive shrinkage and fine-tuning on a
fully trained supernetwork, enabling direct deployment of subnetworks without retraining. BigNAS (Yu
et al., 2020a) incorporates several training techniques, such as the sandwich rule (Yu & Huang, 2019), in-
place distillation (Yu & Huang, 2019), and exponentially decaying with constant ending, to achieve results
comparable to OFA.

However, as outlined above, these methods are based on a limited search space and do not explore truely novel
architectures; all discovered networks are essentially MobileNet variants. Nevertheless, the techniques pro-
posed, such as in-place distillation and the transformation matrix for convolutional kernels in OFA, are highly
valuable. We extend in-place distillation to TSS, significantly improving supernetwork training. The trans-
formation matrix aims to prevent complete weight sharing among subnetworks, enhancing the supernetwork’s
representation capacity, which aligns with our use of Hypernetwork. In addition, Autoformer (Chen et al.,
2021) introduces the concept of weight entanglement and extends it from CNNs to transformers. Other re-
lated works that enable deployment without retraining include Hardware-Aware Transformers (HAT) (Wang
et al., 2020), Focusformer (Liu et al., 2022b), AttentiveNAS (Wang et al., 2021), NASVIT (Gong et al.,
2022), and ShiftNAS (Zhang et al., 2023).

2.3 Rank Correlation

The effectiveness of weight sharing in NAS has not been theoretically proven and relies on the assumption
that the ranking of subnetworks evaluated using the supernetwork is consistent with that obtained by training
each subnetwork from scratch. Many studies have focused on verifying or improving the correlation between
these two rankings. For example, Hu et al. (2020) proposed an angle-based method to shrink the search
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space and enhance ranking correlation. Zhang et al. (2020b) demonstrated that ranking correlation based
on weight sharing can be unstable due to interference among subnetworks. Their research on group sharing
indicates that grouping subnetworks by architectural similarity can reduce the number of subnetworks while
improving ranking correlation. FewShot-NAS (Zhao et al., 2021) extended OneShot-NAS to use multiple
supernetworks, showing that increasing the number of supernetworks leads to better ranking correlation,
consistent with the findings of Zhang et al. (2020b). Liu et al. (2022a) further improved FewShot-NAS
by gradually increasing the number of groups. KShot-NAS (Su et al., 2021) assigns K weights to each
convolutional layer and uses a simplexnet to encode the architecture and output K weight coefficients, which
are then combined to form the final network weights. In contrast, our method enables all subnetworks to be
trained to a directly deployable state, making ranking correlation less critical.

2.4 Hypernetwork based NAS

Two notable works (Brock et al., 2017; Zhang et al., 2020a) employ Hypernetworks (Ha et al., 2016) in
a manner similar to ours to generate network weights. SMASH (Brock et al., 2017) encodes the network
architecture as a 3D tensor and uses a 26-layer DenseNet (Huang et al., 2018) to generate all network
weights in a single forward pass. Graph HyperNetworks (GHN) (Zhang et al., 2020a) represent the network
architecture as a computational graph to generate weights. The key advantage of Hypernetworks in NAS
is their ability to generate weights conditioned on the architecture encoding, thus avoiding complete weight
sharing and potentially improving the achievable performance of subnetworks.

3 Method

Unlike the previous methods without retraining, we make it possible to perform multiple searches and
deployments after training the supernetwork based on TSS once. Our method consists of two main parts:

• We adapt Hypernetwork for NAS and integrate it with KshotNAS, enhancing the expressiveness of
Hypernetwork. This allows the weights of architectures in the search space to be less shared, thus
achieving higher architecture diversity.

• We propose a novel supernetwork training process based on the TSS, incorporating distillation and
Focus-Fair sampling methods.

We first describe the combination of Hypernetwork and KshotNAS in Section 3.1, followed by the distillation
and sampling method, employed in Kshot-Hypernet.

3.1 Kshot-Hypernet

Hypernetwork

DenseConv

Figure 2: Hypernetwork as proposed in Ha et al. (2016). The convolutional layer receives a feature vector
z ∈ Rh as input, which is utilized by the hypernetwork to generate the corresponding convolutional weights.

Kshot-Hypernet combines Hypernetwork (Ha et al., 2016) with KshotNAS (Su et al., 2021). The core concept
of Hypernetwork is weight decomposition: the weights of convolutional layers are generated by a shared
Hypernetwork, which significantly reduces the number of parameters. Specifically, consider a convolutional
neural network with d layers. The weight of the i-th layer, W i ∈ RCi

in×Ci
out×Ki×Ki , where Ci

in and Ci
out
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Figure 3: Kshot-Hypernet. The convolutional layer is implemented with two fully connected layers, which
take both architecture features and coefficients as input to generate the convolutional weights.
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Figure 4: Coefficient Attention Block.

denote the input and output channels and Ki is the kernel size, is generated as:

W i = g(zi) , (1)

where zi ∈ Rh is a learnable feature vector of size h for each layer, and g is a generative function implemented
by two fully connected layers (see Figure 2). The weight dimensions of these layers are h × (Ci

in · h) and
h × (Ci

out · Ki · Ki), respectively. Since the input and output channels of each convolutional layer may differ,
the Hypernetwork output is fixed to a unit convolution kernel, such as 16 × 16 × 3 × 3, and multiple unit
kernels are stacked to construct the final weights.

Although the original Hypernetwork significantly reduces the number of parameters, its impact on network
performance remains non-negligible. To better balance parameter efficiency and model performance, we
assign each convolutional layer an independent weight generation network. While the original method shares
the weight generation network and uses independent feature vectors for each unit convolution kernel, our
approach adopts layer-specific weight generation networks but shares the feature vectors across layers. This
design is partially inspired by Li et al. (2021), though in their method, feature vectors are derived from
the previous layer’s output and are not shared. In our framework, feature vectors are generated from the
architecture encoding using a dedicated lightweight feedforward network, which is more suitable for NAS.
This feedforward network consists of several MLPMixer layers (Tolstikhin et al., 2021). To further reduce
parameter count, we increase the size of the shared component (architecture features) and decrease the size
of the independent component (weight generation network). The resulting weights are given by W i = gi(z),
analogous to equation 1, but where z ∈ Rh×h is the feature vector generated by the architecture encoding,
and the weight dimensions of the two fully connected layers of gi are h × Ci

in and h × Ci
out · Ki · Ki,

respectively. However, even with these improvements, the expressive power of the Hypernetwork remains
limited. To further enhance its capacity, we integrate the KshotNAS approach with weight decomposition.

3.2 Weight decomposition for KshotNAS

In KshotNAS, increasing the number of weights N in the weight dictionary leads to a rapid growth in
parameters, making network training challenging (Su et al., 2021). A key advantage of Hypernetwork is
its parameter efficiency. By combining both methods, we can employ a larger N to improve expressiveness
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without significantly increasing the training complexity. In our approach, the parameter increment mainly
comes from the first fully connected layer of the weight generation network, i.e., h × Ci

in · N . The weight
dictionary is defined as:

ΘW i = [wi
1, ..., wi

N ] = gi(z) , (2)

where wi
n ∈ RCi

out×Ci
in×Ki×Ki . Assume a convolutional layer with input and output channels Cin and Cout

both set to 256, kernel size K = 3, hidden dimension h = 64, and number of generated weights N = 64.
Under these settings, the original method requires Cout · Cout · K2 · N = 37.75M parameters, whereas
our method only needs Cin · h · N + Cout · K2 = 1.05M , reducing the parameter count by nearly 35×.
Additionally, K-shot employs SimplexNet to generate weight coefficients, which is conceptually similar to
the shared component in our network. By combining these approaches, we simultaneously generate both
weight coefficients and architecture features. This enables the generation of distinct weight dictionaries and
corresponding coefficients for different architectures, significantly enhancing the expressiveness of the weight
dictionary. The final weights are computed as:

W i =
N∑

n=1
λnwi

n , (3)

λ = softmax(f(α)) , (4)

where λ ∈ RN denotes the weight coefficients, α is the architecture encoding, and f is a multi-layer MLP-
Mixer. To further boost network performance, we insert a modified channel attention module (CAM) (Woo
et al., 2018) before the softmax operation, which was originally proposed for self-attention on the channel
dimension in convolutional neural networks. We refer to this as the Coefficient Attention Block (CAB) (see
Figure 4).

3.3 Supernetwork Training on Topology Search Spaces

Distillation

Search Block

Search Block

Search Block

stem

tail

Update
Weights

Training 

Use  as the sampling weight of Fair
sampling and train with soft labels

Train the teacher and
update both weights and
architecture parameter 

step 1 step 2

Use accumulated
gradients to update

weights

step 3

Figure 5: Training flowchart. First, the complete supernetwork with architecture parameters is trained,
including both forward and backward passes (the color intensity indicates the magnitude of the architecture
parameters). Next, subnetworks are sampled using the Focus-Fair sampling method based on the architecture
parameters, and are distilled using soft labels obtained from the first step. Finally, the accumulated gradients
are used to update the supernetwork weights.

Training a supernetwork based on TSS is more challenging than training one based on SSS. In SSS, such as
the MobileNet search space, the smallest subnetwork is the shared part of all networks; thus, all subnetworks
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can be viewed as pruned versions of the supernetwork. From this perspective, the original weight-sharing
NAS process can be improved by omitting the retraining step and adopting progressive shrinking, consistent
with pruning (Cai et al., 2020). A more aggressive strategy is to train all architectures simultaneously without
any fine-tuning (Yu et al., 2020a). However, in TSS, architectures do not have a hierarchical relationship and
only partially overlap, making it much harder to train all subnetworks at once. To address these challenges,
we propose novel sampling and distillation strategies for supernetwork training, as illustrated in Figure 5.

Distillation in topology search space: Knowledge distillation is an effective technique for improving
network performance. BigNAS (Yu et al., 2020a) demonstrated that using the largest subnetwork for in-place
distillation (Yu & Huang, 2019) is effective in SSS. However, in TSS-based NAS, the architectural differences
between subnetworks make uniform distillation challenging. Although larger networks typically yield better
performance, in TSS, the largest subnetwork does not inherently subsume the others, and thus may not
be the best teacher for distillation. Instead, the entire supernetwork, which contains all subnetworks and
their characteristics, serves as a more suitable teacher. Inspired by DARTS (Liu et al., 2019), we introduce
additional architecture parameters β to balance the outputs of different operations:

xj =
∑

o∈Oi,j

exp(βi,j
o )∑

o′∈Oi,j

exp(βi,j
o′ )

oi,j(xi) , (5)

where Oi,j denotes the set of all operations between node xi and node xj . This approach, which aggregates
all operations, makes the supernetwork a better teacher for all subnetworks than any single-path network.
Unlike DARTS, which aims to search for the best architecture on the validation set, our goal is to train an
optimal teacher for all subnetworks.

Additionally, we do not freeze the BatchNorm parameters as in DARTS, even though this may affect the
scaling of β. This is because: 1) we train the supernetwork and subnetworks jointly, so BatchNorm param-
eters benefit subnetwork training and can be corrected during subnetwork updates; 2) our objective is to
train the best teacher for all subnetworks, not to search for the best architecture, so the scaling of β is less
critical.

As illustrated in Figure 5, for each training batch, we first use the teacher (supernetwork) to generate soft
labels and update both the network weights and architecture parameters β. Then, subnetworks are sampled
and trained on the same data, using only the soft labels for loss computation. We have experimented with
combining distillation and target losses, but found that using only soft labels yields better results.

FocusFair Sampling: The sampling strategy plays a crucial role in the training of weight-sharing NAS.
As noted in FairNAS (Chu et al., 2021), uniform sampling can introduce sequence bias, which FairNAS
partially alleviates. Yu et al. (2020b) further showed that FairNAS offers better stability than uniform
sampling, especially in the early training stages. Moreover, as illustrated in Figure 7a, our experiments
reveal that, in TSS, low-performance architectures tend to benefit more from supernetwork training, often
improving to match or surpass their from-scratch performance. Conversely, high-performance architectures
are more likely to be negatively impacted, resulting in performance significantly below their from-scratch
counterparts.

To address this, we propose Focus-Fair Sampling, which focuses training on high-performance architectures
while minimizing adverse effects on others. Inspired by DARTS (Liu et al., 2019), we use softmax(β) as the
sampling weight in FairNAS, so that operations with higher architecture parameters β are more likely to be
selected together, while still ensuring all operations are traversed in each iteration. This approach minimizes
the impact on non-high-performance architectures.

For example, consider a search block with three nodes [x0, x1, x2] and operation pool [o0, o1, o2], with
softmax(β0,1) = [0.2, 0.5, 0.3] and softmax(β1,2) = [0.3, 0.1, 0.6]. The probability of sampling [o0,1

1 , o1,2
2 ]

in the first iteration is 30%, nearly twice that of uniform sampling (11.1%). Combined with our distillation
method, this sampling is cost-free. Compared to DFair (Meng & Chen, 2023), our method is simpler and
does not require extensive validation during training.

To prevent max(softmax(β)) from becoming too large—i.e., over-focusing on a single high-performance
architecture and causing training imbalance—we introduce a temperature hyperparameter τ , using
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softmax(β/τ) as the sampling weight to smooth the distribution. Empirically, we find τ ≈ 1.5 yields
the best results.

Figure 6: Comparison between training all architectures from scratch and directly sampling them from the
supernetwork on NAS-Bench-201.

4 Result

In this section, we present the experimental results of our method on NAS-Bench-201 (Dong & Yang, 2020)
and ImageNet-1K (Russakovsky et al., 2015).

4.1 Evaluation on NAS-Bench-201

To evaluate the overall performance of our method across the entire search space, we use NAS-Bench-
201 (Dong & Yang, 2020) for testing. NAS-Bench-201 is a NAS benchmark based on cell search, where the
search space is defined by DAG. Each cell contains four nodes, and five possible operations can be selected
between any two nodes: zeroing, skip connection, 1 × 1 convolution, 3 × 3 convolution, and 3 × 3 average
pooling. This results in a total of 15,625 possible architectures. For each architecture, NAS-Bench-201
provides detailed training data for both 12 and 200 epochs on three datasets: CIFAR-10, CIFAR-100, and
ImageNet16-120. As such, NAS-Bench-201 is widely used to evaluate both the search capability of NAS
methods and the ranking ability of weight-sharing approaches. We assessed the training effectiveness of
the supernetwork, specifically whether subnetworks sampled from the supernetwork can directly achieve the
same performance as training from scratch. Therefore, we use the average accuracy of all subnetworks as
our evaluation metric.

Supernetwork Training: For the Hypernetwork configuration, we set h = 32 and N = 64. Training is
performed using stochastic gradient descent (SGD) with a momentum of 0.9 and Nesterov acceleration, with
a batch size of 256 per GPU. The initial learning rate is set to 0.2, and the total training duration is 300
epochs. Training details are provided in Appendix A.1.

Result: Table 1 presents the training results of our method on NAS-Bench-201. Since other methods do not
report average accuracy, a direct comparison is not possible. Our method achieves a slightly higher average
accuracy on CIFAR-10 compared to the baseline, and is very close to the baseline on CIFAR-100. The
difference in maximum accuracy between our method and the baseline is within 2%. On ImageNet16-120,
the accuracy gap is larger, which may be due to the dataset being more challenging to train and lacking
suitable training techniques. Overall, our method can bring most subnetworks close to or even surpass the
results of training from scratch on NAS-Bench-201.
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Table 1: Training results on NAS-Bench-201.

Cifar10 Cifar100 Imagenet16
Avg. Acc. (baseline) 87.06% 61.41% 33.59%
Avg. accuracy (ours) 87.12% 61.02% 29.79%
Max. Acc. (baseline) 94.37% 73.51% 47.31%
Max. accuracy (ours) 92.47% 72.04% 46.33%

Table 2: Effect of our Kshot-Hypernet based on Cifar100. The result of KshotNAS (Su et al., 2021) is
produced by us, since they didn’t provide source code.

Avg. Acc. Max. Acc.
weight sharing 53.04% 65.24%
Kshot(N = 12) 53.75% 63.88%
Kshot-Hypernet 60.66% 68.40%

Effectiveness of Kshot-Hypernet: We compare the performance of direct weight sharing, Kshot-NAS (Su
et al., 2021), and our Kshot-Hypernet method on CIFAR-100. As shown in Table 2, our method achieves an
improvement of approximately 7% in average accuracy and about 5% in maximum accuracy. These results
demonstrate that our approach significantly outperforms other methods in supernetwork training within
TSS.

Table 3: Effect of our distillation method based on Cifar100.

Avg. Acc. Max. Acc.
w/o KD 58.60% 67.86%
w/ our KD 60.26% 69.30%

Effectiveness of our distillation method: To further validate the effectiveness of our distillation strategy,
we conducted an ablation study. As shown in Table 3, our distillation method improves both the average and
maximum accuracy on CIFAR-100 by approximately 1.5%. This demonstrates that our distillation approach
effectively enhances the performance of individual subnetworks and overall improves the supernetwork’s
performance.

Effectiveness of Focus-Fair Sampling: As discussed in Section 3.3, previous sampling methods such as
FairNAS tend to result in insufficient training for high-performance subnetworks. To evaluate the effective-
ness of our Focus-Fair sampling strategy, we compared the training outcomes of both sampling methods.
As shown in Figure 7, our approach effectively addresses the performance gap for top-ranked subnetworks
caused by FairNAS sampling.

Ranking ability: Although ranking ability is not our primary focus, we also evaluated the ranking per-
formance of our method on NAS-Bench-201. As shown in Table 4, our method achieves a Kendall’s Tau
value of approximately 70% on both datasets. On ImageNet16-120, the ranking ability remains significantly
better than other methods, with a Kendall’s Tau value of 63.95%. This indicates that our method surpasses
nearly all other approaches in ranking ability, further validating its effectiveness

4.2 Evaluation on ImageNet-1K

Dataset: We also evaluate our method on ImageNet-1K, a large-scale image classification dataset containing
1.28 million training images across 1000 categories. All experiments are conducted on 16 Nvidia H100 GPUs.
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(a) FairNAS Sampling (b) Focus-Fair Sampling

Figure 7: Comparison of FairNAS Sampling and Focus-Fair Sampling. The baseline is the result of training
from scratch, provided by NAS-Bench-201.

Table 4: Kendall’s Tau of different methods on NAS-Bench-201.

Method Cifar10 Cifar100 Imagenet16
SPOS Guo et al. (2020) 55.00% 56.00% 54.00%
AngleNet Hu et al. (2020) 57.48% 60.40% 54.45%
K-shot Su et al. (2021) 62.64% 61.22% 56.33%
FewShot(25-supernets) Zhao et al. (2021) 69.60% N/A N/A
ours 69.42% 70.18% 63.95%

Table 5: Results on ImageNet-1K

Model Params MACs Top-1 Acc.
MobileNet-V2-1.0x Sandler et al. (2019) 3.4M 0.3B 72.0
MobileNet-V3-Large-0.75x Howard et al. (2019) 4.0M 0.2B 73.3
MNv4-Conv-S Qin et al. (2024) 3.8M 0.2B 73.8
iFormer-T Zheng (2025) 2.9M 0.5B 74.1
FastViT-T8 Vasu et al. (2023a) 3.6M 0.7B 75.6
KHyper-S 3.9M 0.5B 76.0
MobileNet-V3-Large 1.0x Howard et al. (2019) 5.4M 0.2B 75.2
MobileNet-V2 1.5x Sandler et al. (2019) 6.8M 0.7B 76.8
MobileOne-S2 Vasu et al. (2023b) 7.8M 1.3B 77.4
MobileViG-S Munir et al. (2023) 7.2M 1.0B 78.2
RepViT-M1.0 Wang et al. (2024) 6.8M 1.1B 78.6
iFormer-S Zheng (2025) 6.5M 1.1B 78.8
EfficientNet-B1 Tan & Le (2019) 7.8M 0.7B 79.1
KHyper-M 6.8M 1.3B 79.1
MIT-EfficientViT-B1-r224 Cai et al. (2024) 9.1M 0.5B 79.4
FastViT-S12 Vasu et al. (2023a) 8.8M 1.8B 79.8
MNv4-Conv-M Qin et al. (2024) 9.2M 1.0B 79.9
EfficientNet-B2 Tan & Le (2019) 9.2M 1.0B 80.1
iFormer-M Zheng (2025) 8.9M 1.6B 80.4
FastViT-SA12 Vasu et al. (2023a) 10.9M 1.9B 80.6
MNv4-Hybird-M Qin et al. (2024) 10.5M 1.2B 80.7
KHyper-L 8.7M 1.8B 80.7

10



Under review as submission to TMLR

Search space: We use the UIB block from MobileNetV4 (Qin et al., 2024) as our search space, which
consists of two depthwise (DW) convolutions and two pointwise (PW) convolutions. Additionally, we also
search for model size. The detailed configuration of the search space is detailed in Appendix A.3.

Supernetwork Training: We adopt the same Hypernetwork configuration as utilized in NAS-Bench-201.
SGD with a momentum of 0.9 and an initial learning rate of 0.1 is employed for optimization, with training
conducted over 225 epochs and a batch size of 2048. Cosine learning rate decay is applied throughout the
training process. For further details regarding data augmentation and additional training strategies, please
refer to Appendix A.1.

Result: Table 5 presents a comparison between our models and state-of-the-art (SOTA) models on
ImageNet-1K. The detailed configurations of the architectures discovered by our search are provided in
Appendix A.4. Our small model achieves a Top-1 accuracy of 76.0% with 3.9M parameters and 0.5B MACs,
outperforming MobileNet-V3 (Howard et al., 2019) by approximately 2.7% at a similar parameter scale.
The medium model attains a Top-1 accuracy of 79.1% with 6.8M parameters and 1.3B MACs, exceeding
RepViT (Wang et al., 2024) by about 0.5% under comparable conditions. Our large model reaches a Top-1
accuracy of 80.7% with 8.7M parameters and 1.8B MACs, slightly surpassing iFormer (Zheng, 2025) by
0.3% at a similar parameter count. Overall, our approach achieves competitive accuracy on ImageNet-1K
compared to SOTA models, without any additional retraining or fine-tuning.

5 Conclusion

In this paper, we propose a novel training paradigm for TSS-based supernetwork. After training the super-
network, it can be directly searched and deployed on the target platform without the need for retraining.
We introduce a new distillation and sampling method for TSS-NAS, which effectively improves the per-
formance of all architectures in the search space after supernetwork training. Our method transcends the
limitations of the MobileNet search space, enabling the training of a supernetwork to be applicable across
various platforms, thereby increasing flexibility and efficiency in deployment.

We conducted experiments on NAS-Bench-201, achieving results comparable to training from scratch for
most sub-networks. We also performed experiments on ImageNet, achieving 80.5% Top-1 accuracy with
8.6M parameters, surpassing MobileNetV4-M. The results demonstrate the effectiveness of our method in
training a supernetwork that can be efficiently searched and deployed on various platforms.

In summary, our approach provides a promising direction for future research in NAS, particularly in the
context of topological search spaces. We believe that our method can serve as a foundation for further
advancements in NAS, enabling more efficient and effective architecture search and deployment across diverse
platforms. We hope that our work will inspire further research in this area and contribute to the development
of more efficient and effective NAS methods.
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A Appendix

A.1 Training Details

In this section, we will introduce the training details for each dataset. For all experiments, we set the same
hypernetwork hyperparameters h = 32 and N = 64.

NAS-Bench-201: To increase the batch size for the architecture feature and weight coefficient generation
network during each update, we adopt the same strategy as GHN3 (Knyazev et al., 2023): using identical
input samples on each GPU while training with different subnetworks. We utilize 4 NVIDIA H100 GPUs for
training. According to the NAS-Bench-201 setup, 5 subnetworks are sampled per iteration (corresponding
to the 5 possible operations), resulting in a batch size of 20 for the architecture feature and weight coefficient
generation network in each iteration. Training is performed using SGD with momentum of 0.9 and Nesterov
acceleration. Each GPU uses a batch size of 256. The initial learning rate is set to 0.2 and decayed
using a cosine schedule over 300 epochs. For Focus-Fair sampling, the temperature parameter is set to
τ = 1.5. We also employ the same warm-up strategy as KshotNAS (Su et al., 2021), where all weight
coefficients are set equal during the first 5 epochs. For in-place distillation, we follow the weight decay strategy
of BigNAS (Yu et al., 2020a), applying weight decay only to the teacher network, and removing weight
decay from all BatchNorm layers and biases. The complete training process is summarized in Algorithm 1.
After supernetwork training, we directly evaluate subnetworks sampled from the supernetwork without any
retraining. During evaluation, we follow Yu et al. (2018) and use 2048 training samples to recompute the
running statistics of the BatchNorm layers. To ensure fairness, our experiments strictly follow the NAS-
Bench-201 protocol, with no additional data augmentation.
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ImageNet-1K: Due to the larger size of ImageNet-1K, we only use DDP for training. The training learning
rate is set to 0.1, using SGD with a momentum of 0.9 and a batch size of 2048, with cosine learning rate
decay. We also employ the sandwich rule from BigNAS (Yu et al., 2020a), where each sampled architecture
undergoes Focus-Fair sampling with a temperature of 1.5. Instead of the warm-up strategy used in NAS-
Bench-201, we apply a temperature annealing strategy, where the temperature decreases from 30 to 1 over
the first 10 epochs to facilitate smoother optimization. L2 normalization and Dropout are employed for
regularization. For data augmentation, we use RandAugment (Cubuk et al., 2019), CutMix (Yun et al.,
2019), and Mixup (Zhang et al., 2018), with configurations consistent with MNv4-Conv-L (Qin et al., 2024).

Algorithm 1 Training a Topology Search Space Based Supernetwork
Input: number of training epochs E, warmup epochs Ew, training data loader D, number of generated
weights N , weight coefficients λ, operations pool O, number of operation candidates K.
for e = 0 to E − 1 do

if e < Ew then
set warmup temperature of λn; # warmup phase

end if
train the entire supernetwork and get the soft label ŷ;
calculate the loss with true label y and backward pass;
update weights and β with weight decay;
for k = 0 to K − 1 do

randomly sample one architecture from O with weights softmax(β/τ);
remove the sampled operation from O, and its corresponding architecture parameter from β;
train the sampled architecture with soft label ŷ;

end for
update weights without weight decay;

end for

A.2 Ablation study on NAS-Bench-201

Rank of Decomposition: As introduced in Section 3.1, the hypernetwork is based on weight decomposi-
tion. An important hyperparameter in weight decomposition is the rank. We further investigate its impact
on training the hypernetwork for NAS. We conduct experiments with ranks of 8, 16, and 32, and present the
results in Table 6. As the rank increases, both the average and maximum performance of the hypernetwork
improve, indicating that a larger rank enhances the expressive power of the hypernetwork. However, the
impact on Kendall’s tau is minimal, suggesting that simply increasing the rank does not significantly improve
the training of high-performance subnetworks.

Table 6: Impact of rank on Decomposition. We compare the average performance, maximum performance,
and Kendall’s tau of the hypernetwork with ranks of 8, 16, and 32.

Avg. Acc. Max. Acc. Kendall’s Tau

Rank = 8 32.12% 40.80% 41.26%
Rank = 16 40.25%(+8.13%) 53.30%(+12.5%) 40.94%(-0.32%)
Rank = 32 44.18%(+12.06%) 57.20%(+16.4%) 39.13%(-2.13%)

Number of N for Kshot-Hypernet: Another important hyperparameter in our Kshot-Hypernet is the
number of N . Since we represent weights using weight decomposition and N is applied only to one of the
decomposition matrices, its impact may differ from that in Kshot-NAS. We analyze this by conducting ex-
periments with N values of 8, 16, 32, and 64, and present the results in Table 7. When N is less than 64,
both the average and maximum performance of the hypernetwork improve as N increases. However, the im-
provement gradually slows down with larger N values. At N = 64, both average and maximum performance
decrease. This may be due to a lack of sufficient overfitting prevention methods during CIFAR100 training,
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Table 7: Impact of number of N in Kshot-Hypernet. We compare the average performance, maximum
performance, and Kendall’s tau of the hypernetwork with N values of 8, 16, 32, and 64.

Avg. Acc. Max. Acc. Kendall’s Tau

N = 8 56.71% 65.22% 65.19%
N = 16 58.07%(+1.36%) 65.62%(+0.4%) 66.14%(+0.95%)
N = 32 59.46%(+2.75%) 66.88%(+1.66%) 64.61%(-0.58%)
N = 64 59.21%(+2.5%) 66.60%(+1.38%) 63.35%(-1.84%)

leading to a performance bottleneck for the hypernetwork. The ranking ability of the hypernetwork shows
only slight fluctuations as N increases.

A.3 Search space details

The detailed configuration of the size search space is presented in Table 8. The initial layer is fixed as a
3×3 convolutional layer with a stride of 2 and an output channel size of 32. Each search block supports four
candidate structures: Extra DW, Inverted Bottleneck, ConvNext-Like, and FFN. The SE module is excluded
due to its limited hardware efficiency. The classification head adopts the same structure and channel size
as MobileNetV3. Upon completion of training, we conduct an evolutionary search with a population size of
100 over 50 iterations. In each iteration, the top 20 subnetworks are selected as parents, 50 subnetworks are
generated through mutation, and another 50 are produced via crossover.

Table 8: Size search space details.

Stage Channels Depth Kernel Sizes
1 [16, 24] [1, 2] [3, 5]
2 [24, 32] [2, 3] [3, 5]
3 [40, 48] [2, 3] [3, 5]
4 [80, 88] [2, 3, 4] [3, 5]
5 [112, 128] [2, 3, 4, 5, 6] [3, 5]
6 [192, 216] [2, 3, 4, 5, 6] [3, 5]
7 [320, 352] [1, 2] [3, 5]

A.4 Model details

Tables 9 to 11 present the detailed parameter settings for the small, medium, and large models. In the early
stages, all three models frequently use the ExtraDW, IB, and ConvNext modules. In the final stage, only
the FFN module is used for channel fusion, which is consistent with the search results of MobileNetV4 Qin
et al. (2024).
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Table 9: KHyper-S architecture details

Input Block K1 K2 Expand ratio Output Dim Stride

2722 × 3 Conv3 × 3 - - - 32 2
1362 × 32 IB - 3 1 16 1
1362 × 16 FFN - - 1 16 1
1362 × 16 ExtraDW 3 3 6 24 2
682 × 24 ExtraDW 5 3 6 24 1
682 × 24 ExtraDW 5 3 6 48 2
342 × 48 ExtraDW 5 5 6 48 1
342 × 48 ConvNext - 5 6 48 1
342 × 48 ExtraDW 5 3 6 88 2
172 × 88 IB - 5 6 88 1
172 × 88 IB - 3 6 112 1
172 × 112 ConvNext 3 - 6 112 1
172 × 112 ExtraDW 5 5 6 112 1
172 × 120 IB - 5 6 192 2
82 × 192 ConvNext 3 - 6 192 1
82 × 192 IB - 5 6 192 1
82 × 192 FFN - - 6 320 1
82 × 320 Conv1 × 1 - - - 960 1
82 × 960 GlobalAvgPool - - - 960 1
12 × 960 Conv1 × 1 - - - 1280 1
12 × 1280 Conv1 × 1 - - - 1000 1
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Table 10: KHyper-M architecture details

Input Block K1 K2 Expand ratio Output Dim Stride

3202 × 3 Conv3 × 3 - - - 32 2
1602 × 32 FFN - - 1 16 1
1602 × 16 ExtraDW 5 3 6 32 2
802 × 32 ExtraDW 3 3 6 32 1
802 × 32 IB - 5 6 48 2
402 × 48 ExtraDW 5 3 6 48 1
402 × 48 ExtraDW 3 3 6 88 2
202 × 88 IB - 5 6 88 1
202 × 88 FFN - - 6 88 1
202 × 88 ExtraDW 5 5 6 88 1
202 × 88 ExtraDW 5 3 6 128 1
202 × 128 ConvNext 3 - 6 128 1
202 × 128 IB - 5 6 128 1
202 × 128 FFN - - 6 128 1
202 × 128 ExtraDW 3 5 6 128 1
202 × 128 IB - 5 6 216 2
102 × 216 ConvNext 5 - 6 216 1
102 × 216 ExtraDW 3 5 6 216 1
102 × 216 ConvNext 5 - 6 216 1
102 × 216 FFN - - 6 320 1
102 × 320 FFN - - 6 320 1
102 × 320 Conv1 × 1 - - - 960 1
102 × 960 GlobalAvgPool - - - 960 1
12 × 960 Conv1 × 1 - - - 1280 1
12 × 1280 Conv1 × 1 - - - 1000 1
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Table 11: KHyper-L architecture details

Input Block K1 K2 Expand ratio Output Dim Stride

3202 × 3 Conv3 × 3 - - - 32 2
1602 × 32 IB - 5 1 24 1
1602 × 24 IB - 5 1 24 1
1602 × 24 ExtraDW 5 5 6 32 2
802 × 32 ExtraDW 3 5 6 32 1
802 × 32 ExtraDW 3 5 6 32 1
802 × 32 IB - 5 6 48 2
402 × 48 IB - 5 6 48 1
402 × 48 ExtraDW 5 5 6 48 1
402 × 48 FNN - - 6 88 2
202 × 88 ExtraDW 3 5 6 88 1
202 × 88 ConvNext 5 - 6 88 1
202 × 88 ExtraDW 5 5 6 88 1
202 × 88 IB - 5 6 128 1
202 × 128 ConvNext 5 - 6 128 1
202 × 128 ExtraDW 5 5 6 128 1
202 × 128 FFN - - 6 128 1
202 × 128 IB - 5 6 128 1
202 × 128 IB - 5 6 128 1
202 × 128 ExtraDW 5 5 6 216 2
102 × 216 ConvNext 3 - 6 216 1
102 × 216 IB - 5 6 216 1
102 × 216 IB - 5 6 216 1
102 × 216 IB - 5 6 216 1
102 × 216 ConvNext 5 - 6 216 1
102 × 216 FFN - - 6 352 1
102 × 352 FFN - - 6 352 1
102 × 352 Conv1 × 1 - - - 960 1
102 × 960 GlobalAvgPool - - - 960 1
12 × 960 Conv1 × 1 - - - 1280 1
12 × 1280 Conv1 × 1 - - - 1000 1
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