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ABSTRACT

The task adaptation and alignment of Large Multimodal Models (LMMs) have
been significantly advanced by instruction tuning and further strengthened by re-
cent preference optimization. Yet, most LMMs still suffer from severe modality
imbalance during reasoning, i.e., outweighing language prior biases over visual
inputs, which bottlenecks their generalization to downstream tasks and causes hal-
lucinations. However, existing preference optimization approaches for LMMs do
not focus on restraining the internal biases of their Large Language Model (LLM)
backbones when curating the training data. Moreover, they heavily rely on of-
fline data and lack the capacity to explore diverse responses adaptive to dynamic
distributional shifts during training. Meanwhile, Group Relative Policy Optimiza-
tion (GRPO), a recent method using online-generated data and verified rewards
to improve reasoning capabilities, remains largely underexplored in LMM align-
ment. In this paper, we propose a novel preference learning framework, Modality-
Balancing Preference Optimization (MBPO), to address the modality imbalance in
LMMs. MBPO constructs a more effective offline preference dataset by generating
hard negatives, i.e., rejected responses misled by LLM biases due to limited usage
of visual information, through adversarial perturbation of input images. Moreover,
MBPO leverages the easy-to-verify nature of close-ended tasks to generate online
responses with verified rewards. GRPO is then employed to train the model with
offline-online hybrid data. Extensive experiments demonstrate that MBPO can en-
hance LMM performance on challenging vision-language tasks and effectively
reduce hallucinations.

1 INTRODUCTION

Large Multimodal Models (LMMs) have achieved incredible success by integrating vision mod-
els with pre-trained Large Language Models (LLMs) through instruction tuning, enabling effec-
tive adaptation to diverse visual tasks (Liu et al., 2023; 2024a; Bai et al., 2025; Tong et al., 2024;
Chen et al., 2024e; 202, 2023; Xiong et al., 2024; Chen et al., 2023; 2024d). Despite their strong
performance across complex visual understanding scenarios, LMMs still face several fundamen-
tal challenges: achieving proper alignment between multimodal inputs (Li et al., 2024; Liu et al.,
2023); collecting and effectively leveraging high-quality aligned multimodal data with accurate an-
notations (Tong et al., 2024; Luo et al., 2024); and mitigating hallucination, where models generate
content disconnected from or contradicting the visual evidence (Yu et al., 2024a; Zhao et al., 2023).
Furthermore, recent studies show that LMMs suffer from the modality imbalance problem, tending
to over-rely on their language backbone while underutilizing the rich information available in visual
inputs (Liu et al., 2024b; Jiang et al., 2024), thus leading to problematic behaviors such as incorrect
visual perception and hallucinated responses.

To further improve task adaptation and alignment with human intent, recent studies (Yu et al.,
2024a; Zhou et al., 2024b; Lu et al., 2025) adopt preference learning as a post-training strategy
for LMMs, enhancing performance in general vision-language tasks and reducing hallucination.
Benefiting from the simplified reward parameterization introduced by Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023), some works (Yu et al., 2024a; Pi et al., 2024; Cui et al., 2024;
Jiang et al., 2024; Yu et al., 2024b; Amirloo et al., 2024) propose various strategies for constructing
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pairwise preference datasets, typically selecting high-quality responses as preferred examples and
hallucinated ones as rejected. While these methods help align model outputs with human prefer-
ences, they do not explicitly tackle the modality imbalance issue—where LMMs tend to over-rely
on the linguistic priors of the language backbone rather than grounding their predictions in visual in-
put. Furthermore, the inherently offline nature of DPO—relying exclusively on pre-collected model
responses—limits its ability to adapt to distributional shifts during training, thereby hindering op-
timization effectiveness (Chen et al., 2024f;a). In contrast, the recently proposed Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) improves reasoning capabilities by utilizing online
model-generated trajectories with verifiable reward signals (Guo et al., 2025). Recent studies (Chen
et al., 2025; Shen et al., 2025; Zheng et al., 2025) have explored the potential of using GRPO to
visual reasoning tasks, such as multimodal math problems and visual perception. However, the
broader potential of reinforcement learning with verified rewards for general multimodal alignment
remains largely underexplored.

In this paper, we propose Modality-Balancing Preference Optimization (MBPO), a novel framework
that combines both offline and online preference data to address modality imbalance and improve
alignment in LMMs. This framework comprises two complementary components: (1) an offline
pairwise preference dataset constructed using adversarially mined negative responses, and (2) an
online dataset with verifiable rewards collected dynamically during training.

• For the offline dataset, we focus on addressing modality imbalance issue, where the model
tends to rely more on the language backbone’s prior knowledge than on visual evidence. We
first introduce an image information gain metric that quantifies how much visual content is
utilized in a response. To generate rejected responses with low image information gain and
high modality imbalance, we apply adversarial perturbations to the input image to reduce the
model’s confidence in the original ground-truth response. The perturbed image is then used,
together with the original instruction, to produce a less visually grounded rejected response.

• For the online dataset, we leverage closed-ended visual instruction-tuning data (i.e., multiple-
choice and yes/no questions) with verifiable answers. During training, the model generates
multiple candidate responses for each input instruction, and rewards are assigned based on
factual correctness. To avoid generating extremely short responses, we add a simple prompt
instruction and an extra format reward to the online dataset. By adapting to distributional shifts
throughout training, these reward signals enable more effective model alignment.

We jointly optimize the model using both offline and online data through the Group Relative Policy
Optimization (GRPO) objective. Experimental results on a wide range of vision language tasks and
hallucination benchmarks demonstrate that MBPO significantly mitigates modality imbalance and
enhances overall performance.

Overall, our contributions can be summarized as follows:

• We propose MBPO, a novel framework that addresses modality imbalance in large multimodal
models (LMMs) to improve alignment. By mining adversarial images to construct rejected re-
sponses, MBPO explicitly incentivizes LMMs to incorporate visual information during response
generation.

• We leverage the easy-to-verify nature of close-ended data as an online dataset and use a simple
prompt instruction along with a format reward to encourage the model to generate more diverse
responses, including verifiable single-word answers and corresponding explanations.

• Experiments across general vision-language tasks and hallucination benchmarks demonstrate
that MBPO effectively enhance LMM performance while effectively mitigating modality imbal-
ance.

2 RELATED WORK

Multimodal Preference Learning. Preference learning is a proven method to align pretrained
LLMs (Ouyang et al., 2022; McAleese et al., 2024) and LMMs (Sun et al., 2023) with human inten-
tions and reduce model hallucination. Specifically, Direct Preference Optimization (DPO) (Rafailov
et al., 2023) has been widely adopted for its elimination of an explicit reward model, enabling direct
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optimization over pairs of preferred and rejected responses. Prior works have collected multimodal
preference datasets using human annotations (Yu et al., 2024a) or AI-generated feedback (Li et al.,
2023; Xiong et al., 2024). Another line of papers focus on self-rewarding (Yuan et al., 2024; Chen
et al., 2024f) mechanisms, gathering preference data from model-generated response without exter-
nal supervision. These approaches typically involve the design of evaluation prompts (Wang et al.,
2024c), sentence-level search strategies (Zhou et al., 2024b) or decomposition into fine-grained
judgments (Yu et al., 2024b; Cui et al., 2024). Although some methods re-collect preference data
for multi-round iterative training, the inherently offline nature of DPO leads them to rely heavily on
pre-collected model responses within each epoch, making it difficult to adapt to distribution shifts
during training. In contrast, our method combines online and offline samples for both dynamic and
consistent preference alignment.

Noise Injection in Multimodal Preference Learning While human annotations are costly and AI-
generated feedback is susceptible to reward hacking (Skalse et al., 2022) and lacks verifiability,
some studies create rejected responses by deliberate error injections. some works (Pi et al., 2024;
Zhou et al., 2024a) apply Gaussian distortions to input images and employ LLM or LMM to intro-
duce hallucinated responses, while Wang et al. (2024a) apply random cropping on images. More
recently, Liu et al. (2025a) use distorted image inputs in GRPO training to enhance LMM reasoning
in multimodal math. However, rejected responses generated with random image distortion or ex-
ternal rewriting may not yield clearly incorrect outputs and often lie far from the model generation
distribution. Our work focuses on adversarial inputs that produce in-domain, instruction-following
responses that are incorrect yet highly probable under the model’s distribution.

Multimodal RLVR. Recent studies show that large-scale reinforcement learning significantly en-
hances LLM in complex reasoning (Jaech et al., 2024; Guo et al., 2025; Team et al., 2025). Sev-
eral concurrent works extend Reinforcement Learning with Verifiable Rewards (RLVR), as used in
Deepseek-R1 to multimodal settings. One line of research focuses on multimodal math (Meng et al.,
2025; Huang et al., 2025), academic questions (Peng et al., 2025; Yang et al., 2025), while others
target visual perception tasks (Yu et al., 2025) such as counting Chen et al. (2025), grounding (Shen
et al., 2025), detection (Zhan et al., 2025), and refering segmentation (Liu et al., 2025b). In our
paper, we extend RLVR to broader visual domains, including general visual question answering,
open-ended visual chat and hallucination related tasks.

3 PRELIMINARIES

Adversarial Attacks on images can mislead LMMs into generating incorrect or misleading re-
sponses. To expose worst-case vulnerabilities of the model, adversarial images can be crafted by
Projected Gradient Descent (PGD) (Madry et al., 2017), the multistep extension of the Fast Gradi-
ent Sign Method (FGSM) (Goodfellow et al., 2014) that is widely regarded as the strongest first-order
ℓ∞ attack. Beginning from either the clean input x or a random point x(0)∼U

(
x− ϵ, x+ ϵ

)
inside

the ℓ∞ ball of radius ϵ, PGD perform T iterative updates

x(t+1) = ΠBϵ(x)

(
x(t) + α · sign

(
∇xJ(θ, x

(t), y)
))

, t = 0, . . . , T − 1, (1)

where α is the step size, θ is the parameter of model and J(θ, x, y) is the loss, and ΠBϵ(x)(·)
projects its argument back onto the ℓ∞ ball Bϵ(x) = {x̃ : ∥x̃− x∥∞ ≤ ϵ}. After the final iteration,
PGD clips x(T ) to the valid data range to obtain the adversarial example xadv. By following the
steepest ascent direction at each step yet remaining within the prescribed perturbation budget, PGD
yields perturbations that are imperceptible to humans but significantly degrade model performance,
providing a stringent evaluation of robustness.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) has been proven
effective on LLMs. Instead of relying on a critic model, which is typically as large as the policy
model, this approach estimates the baseline using group scores. Specifically, for each question q,
GRPO samples a set of outputs {o1, o2, . . . , oG} from the old policy πθold , and then updates the
policy model πθ by maximizing the following objective:
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JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O | q)]

1

G

G∑
i=1

{
min

( πθ(oi | q)
πθold(oi | q)

Ai, clip
( πθ(oi | q)
πθold(oi | q)

, 1− ϵ, 1 + ϵ
)
Ai

)
− β DKL

(
πθ ∥πref

)}
,

(2)

where ϵ and β are hyperparameters, and Ai denotes the advantage, which is computed based on a
group of rewards {r1, r2, . . . , rG} associated with the outputs in each group:

Ai =
ri − mean({r1, r2, · · · , rG})

std({r1, r2, · · · , rG})
. (3)

To prevent the updated policy πθ from deviating too far from the stable reference πref , GRPO loss
has a Kullback-Leibler Divergence term DKL which is estimated with an unbiased estimator:

DKL (πθ||πref ) =
πref (oi|q)
πθ(oi|q)

− log
πref (oi|q)
πθ(oi|q)

− 1, (4)

4 METHODOLOGY

MBPO is a hybrid preference learning framework designed to enhance alignment and mitigate the
modality imbalance problem in LMMs. It combines both offline and online preference data to pro-
vide stable yet adaptive reward signals throughout training. Section 4.1 introduces how MBPO con-
structs the offline preference dataset, where the chosen responses are accurate and visually grounded,
and the rejected responses rely heavily on the LLM backbone’s prior knowledge, neglecting visual
information. These modality-imbalanced rejected responses are generated by adding adversarial
noise to input images, which suppresses visual cues and triggers the prior biases from the LLM
backbone. Section 4.2 describes how MBPO performs online exploration using closed-ended data
with verifiable rewards. With a simple prompt instruction and an extra format reward, MBPO en-
hances the model’s ability to explore diverse responses and dynamically adapt to distributional shifts
during training. An overview of our training pipeline is illustrated in Figure 1.

4.1 OFFLINE PREFERENCE DATA CONSTRUCTION

Current LMMs often suffer from the modality imbalance problem that model responses overweigh
the prior biases of the LLM backbone and underutilize the visual information from the image en-
coder, leading to incorrect or insufficient visual content in the output responses. To address this
issue, MBPO is designed to balance different input modalities to incorporate more accurate and rel-
evant visual information into the the model responses. To quantify this, we propose a metric called
Image Information Gain (IIG), which measures the amount of visual information contained in the
generated response. Given data consisting of a question q, an image I , and a response o, IIG is
defined as:

IIG(o, q, I) = − log pθ(o | q, Ib) + log pθ(o | q, I) (5)

where Ib denotes a blank image (all-zero pixels) of the same dimensions as I . This metric captures
the difference in output probability when conditioned on the actual image versus a blank image with
no information, using the same question and response. A larger IIG value indicates that the response
o incorporates more information from the image I . As the goal of MBPO is to encourage LMMs to
incorporate more visual information into their responses, we select data whose responses have high
IIG scores from a visual instruction tuning dataset as our preference dataset and chosen responses.

The next step is to construct the corresponding rejected responses for the selected data. Compared
to the chosen responses that contain rich image information, the rejected responses should include
limited visual information and rely primarily on the prior biases of the LLM backbone. To generate
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Figure 1: Overview of MBPO framework. To construct the offline preference dataset, we generate
adversarial perturbations for each input image to minimize the output probability of the chosen
response. Rejected responses are then generated using these adversarially perturbed images. This
process amplifies modality imbalance, causing the LMM to rely more heavily on the prior biases
of its LLM backbone rather than the visual information. In parallel, MBPO incorporates an online
dataset composed of closed-ended examples, where response correctness can be easily verified.
During training, the LMM generates multiple responses, and verified rewards are assigned based on
their correctness. Finally, the offline and online datasets are combined to optimize the LMM using
the MBPO loss in a hybrid training paradigm.

the rejected responses, MBPO adds adversarial noise to the image to minimize the output probability
of the chosen responses:

I(t+1) = ΠBϵ(I)

(
I(t) + α · sign (∇I (− log pθ(ow | q, I)))

)
, t = 0, . . . , T−1 (6)

where ow is the winner/chosen response from the visual instruction dataset. I0 is the original image
from the visual instruction dataset, and we denote the final IT as the adversarial image Iadv. After
obtaining the adversarial image, we sample a loser/rejected response using the same question q:

ol ∼ πθ(· | q, Iadv) (7)
As the adversarial image is perturbed to minimize the output probability of the correct chosen re-
sponse, it loses visual information relevant to that response. When the model generates a new
response using the adversarial image, it cannot effectively retrieve the visual information from the
image and instead relies on the prior biases of the LLM backbone.

The chosen responses from the visual instruction dataset and the generated rejected responses using
adversarial images constitute our offline preference dataset: Doffline = {(q, I, ow, ol)}. During our
training, we assign hard rewards to the offline data. Specifically, a reward of 2 is given to the chosen
response, and a reward of 0 is assigned to the rejected response.

4.2 ONLINE PREFERENCE DATA

Although training on offline datasets can improve a model’s performance, they still face several limi-
tations. First, they cannot adapt to the latest distribution shifts during training, limiting their training
effectiveness on the offline data (Chen et al., 2024f). Moreover, offline data typically consists of
pairwise preference annotations, which represent only a limited set of possible model responses. In
contrast, online preference learning methods (Peng et al., 2025; Guo et al., 2025) generate multiple
responses using the latest model weights, allowing optimization over the current output distribution
and enabling the sampling of more possible responses. Furthermore, they can provide accurate feed-
back to online generations using verified rewards, rather than relying on unreliable reward models
or costly human verification.
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In the visual instruction dataset, we observe that the responses for multiple-choice and yes/no
questions are easy to verify using verifiable checking (Shao et al., 2024). Therefore, we construct
our online preference data using all the multiple-choice and yes/no samples from MMSeed, totaling
around 2k examples. However, in the original visual instruction dataset, the multiple-choice data are
prompted with "Answer with the option’s letter from the given choices
directly.", which results in responses with limited diversity, restricted to just a few option
letters. Therefore, we replace it with a new simple prompt: "Answer with the option’s
letter from the given choices first, and only after that, provide
a detailed explanation for the choice.".

For each sample, the model generates multiple responses using random decoding. The correctness
of each response is verified by matching it with the ground-truth answer—either the correct option
letter or the ”yes”/”no” word. A reward of 2 is assigned to correct responses, while incorrect re-
sponses receive a reward of 0. Furthermore, to ensure that the model follows the instructions and
provides diverse responses for both multiple-choice and yes/no data, we add an extra format reward
to the online data: if a response contains fewer than τ words, we apply a γ penalty to the reward:

ri = 2 · 1ŷi=yi
− γ · 1Li<τ (8)

where ŷi denotes the correct letter, yi denotes the generated letter, and Li denotes the number of
words in the response. γ and τ are two hyperparameters. In this way, we encourage the model to
provide an explanation after the verifiable option letter, rather than generating only a single option
letter.

Overall, to exploit the complementary strengths of both online and offline preference data, MBPO
integrates them into a unified hybrid preference dataset. During training, MBPO randomly samples
mini-batches from this combined dataset. For samples coming from the offline dataset, rewards
are directly assigned to the chosen and rejected responses based on the known preference. For
samples drawn from the online dataset, MBPO first generates multiple candidate responses using the
current policy model πθ, and then assigns rewards according to their agreement with the ground
truth answer.

5 EXPERIMENTS

In this section, we first introduce the implementation details, including training details, datasets,
evaluation protocol and baseline methods. Subsequently, we present our main results comparing
MBPOwith baseline methods on several general vision language tasks and hallucination benchmarks,
demonstrating the effectiveness of MBPO. In addition, the ablation study provides a closer look at
MBPO and verifies the contributions of its individual components. Lastly, we include additional
experimental results for further analysis.

5.1 IMPLEMENTATION DETAILS

Training details: Following recent studies (Shen et al., 2025; Chen et al., 2025; Zheng et al., 2025)
that apply GRPO to train LMMs, we adopt Qwen2-VL-7B-Instruct (Wang et al., 2024b) and
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as our backbone models. The learning rate is set
to 5 × 10−7, and the KL-divergence coefficient (β) is set to 0.1. Gradient accumulation is used to
maintain an effective batch size of 16. For each multiple-choice and yes/no sample, we generate
16 responses to compute the GRPO advantage. A reward of 2 is assigned to correct responses,
and 0 otherwise. γ and τ are set to 0.5 and 5 respectively. For offline data, chosen responses are
assigned a reward of 2, while rejected responses receive reward 0. To enable efficient training, we
use bfloat16 precision. For the adversarial image generation, we attack each image 20 iterations
and the step size α is set as 4

255 . All experiments are conducted using PyTorch and the Hugging
Face Transformers library on 4× NVIDIA H100 80GB GPUs.

Datasets: Following previous works (Pi et al., 2024; Zhou et al., 2024a), we use high-quality vi-
sual instruction tuning data as our offline positive samples to train the powerful and up-to-date
Qwen series models. Specifically, from the high-quality MMSeed-163K dataset (Luo et al.,
2024), we randomly select 10K samples with high IIG for the offline dataset, along with all
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multiple-choice and yes/no samples (approximately 2K) as the online dataset. The MMSeed-163K
dataset is a diverse multi-domain instruction dataset curated from LLaVA-Instruct (Liu et al., 2023),
ShareGPT4V (Chen et al., 2024b), and Cambrian-1 (Tong et al., 2024), encompassing 163K sam-
ples across tasks such as VQA, OCR, chart understanding and reasoning. More details can be found
in the Appendix.

Evaluation protocol: We conduct a wide range of benchmarks to evaluate the comprehensive ca-
pabilities of LMMs, covering both general vision language tasks and hallucination benchmarks.
For general vision language tasks, we use AI2D (Kembhavi et al., 2016), MME (Fu et al., 2023),
MMStar (Chen et al., 2024c), MMVet (Yu et al., 2024c) and MMBench (Liu et al., 2024c). For
hallucination benchmarks, we use MMHal-Bench (Sun et al., 2023) and ObjectHal (Rohrbach et al.,
2018). The evaluation is performed using the popular LMMs-Eval framework (Zhang et al., 2024).
More details about these benchmarks can be found in the Appendix.

Baselines: We select studies that use preference learning to align LMMs as our baselines, includ-
ing BPO (Pi et al., 2024), POVID (Zhou et al., 2024a), RLAIFV (Yu et al., 2024b), SIMA (Wang
et al., 2024c), CSR (Zhou et al., 2024b), mDPO (Wang et al., 2024a), MFPO (Jiang et al., 2024),
FiSAO (Cui et al., 2024), and DAMA (Lu et al., 2025). For BPO, POVID, RLAIF-V, and CSR, we
download their publicly released model weights and report evaluation results with the LMMs-Eval
framework. For other methods, we report the results of the 7B model reported in their original
papers. To ensure a fair comparison, we also train Qwen2/2.5-VL-7B-Instruct on the cor-
responding public datasets from BPO, POVID, RLAIF-V and CSR as additional baselines. More
details about the baselines are provided in the Appendix.

5.2 BENCHMARK COMPARISONS

In this section, we compare the performance of baseline methods and MBPO on general vision-
language tasks and hallucination benchmarks. The detailed results are presented in Table 1. If a
baseline model is not available or the original paper does not report results on a specific bench-
mark, we use a “–” in the table. On general vision-language tasks such as MMEp, MMStar, and
MMVet, MBPO consistently outperforms all baselines with both Qwen base models. For exam-
ple, MBPO using Qwen2-VL-7B surpasses the second-best result on MMEp by 5.7 points and on
MMVet by 1.9 points. When using the Qwen2.5-VL-7B backbone, MBPO improves MMStar
performance from 62.0 to 63.0, and MMVet from 62.2 to 65.8. On the AI2D benchmark, which
evaluates the factual knowledge of LMMs, all methods, including MBPO, perform similarly and do
not show significant improvements. This suggests that preference learning strategies cannot effec-
tively enhance the factual knowledge of LMMs. On hallucination benchmarks MMHal-Bench and
ObjectHal, MBPO achieves the best performance across most metrics. With Qwen2-VL-7B, MBPO
reduces CHAIRS and CHAIRI by 3.3 and 1.6 points respectively, compared to the base model.
These reductions are even more pronounced with Qwen2.5-VL-7B, where CHAIRS drops from
14.1 to 7.4, and CHAIRI from 6.9 to 3.6, nearly halving the hallucination error. In addition, MBPO
improves MMHalscore from 3.68 to 3.75 and reduces MMHalrate from 0.42 to 0.34, indicating fewer
hallucinations in model responses. In summary, MBPO yields consistent and superior performance
across a wide range of benchmarks based on the average of scores. It not only improves results on
general vision-language tasks, but also significantly alleviates hallucination. These results highlight
the advantage of encouraging LMMs to rely more on input visual information rather than the prior
biases of the LLM backbone.

5.3 ABLATION STUDY

We conduct an ablation study on two Qwen base models across both general vision language tasks
and hallucination benchmarks, following the same implementation details described in Section 5.1.
To evaluate the effectiveness of each component in MBPO, we incrementally add each one to the
framework and measure its impact on each benchmark. The results are shown in Table 2, where
+offline rand. denotes offline rejected responses constructed using random noise sampled from
N (0, 1). +offline adv. indicates using only our offline dataset for training, and +online refers
to training the model solely on our online dataset. Based on the results, MBPO achieves the best
performance on 7 out of 10 benchmarks with Qwen2-VL-7B and on 6 out of 10 benchmarks
with Qwen2.5-VL-7B. Furthermore, MBPO performs the second best on 2 of 10 benchmarks with
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Table 1: Comparison with baseline methods on general vision language and hallucination bench-
marks. * indicates results reported in the original papers, and ↓ indicates that lower is better. The
best performance is marked in bold.
Model AI2D MMEp MMStar MMVet MMB MMHalscore Avg MMHalrate↓ CHAIRS↓ CHAIRI↓ Avg↓

BPO – – – 36.8* – – – – 31.9* 15.1* –
POVID 54.2 1438.7 35.6 31.9 64.3 2.1 1626.8 0.60 37.9 18.9 57.4
RLAIFV 52.3 1356.0 – 24.0 62.7 2.9 – 0.46 8.6 4.3 13.4
SIMA – 1507.7* – 31.6* 64.9* 2.3* – – 40.9* 10.4* –
CSR 54.9 1523.3 34.3 31.1 64.1 2.2 1709.9 0.6 12.2 8.3 21.1
mDPO – – – – – 2.39* – 0.54* 35.7* 9.8* 46.1
MFPO – – – – – 2.89* – 0.45* 10.6* 5.1* 16.2
FiSAO – 1522.6* – 30.7* 64.8* – – – 39.9* 9.9* –
DMMA – – – 32.8* – 2.76* – 0.41* – – –

Qwen2-VL-7B 80.4 1692.7 57.1 57.9 78.9 3.50 1970.5 0.34 10.9 5.9 17.1
+BPO 80.6 1684.3 57.0 58.4 79.2 3.55 1963.1 0.31 8.7 4.8 13.8
+POVID 80.6 1690.2 57.6 58.9 78.6 3.53 1969.4 0.29 11.6 7.2 19.1
+RLAIF-V 80.4 1696.4 57.1 56.9 78.1 3.38 1972.3 0.34 9.2 5.6 15.1
+CSR 80.6 1697.1 57.1 57.0 78.5 3.38 1973.7 0.35 21.4 11.6 33.4
+MBPO (ours) 80.6 1702.8 57.6 60.8 79.4 3.58 1984.5 0.36 7.6 4.3 12.3

Qwen2.5-VL-7B 82.6 1680.1 62.0 62.2 83.2 3.68 1973.8 0.42 14.1 6.9 21.4
+BPO 82.7 1659.8 62.9 63.7 83.5 3.51 1956.1 0.42 9.9 5.4 15.7
+POVID 82.6 1669.1 62.6 63.8 83.5 3.73 1965.3 0.37 10.5 5.7 16.6
+RLAIF-V 82.7 1686.3 62.7 63.8 83.6 3.63 1982.7 0.41 11.8 6.4 18.6
+CSR 82.6 1687.8 62.1 61.7 83.6 3.71 1981.5 0.41 18.3 11.0 29.7
+MBPO (ours) 82.5 1706.3 63.0 65.8 83.6 3.75 2005.0 0.34 7.4 3.6 11.3

Table 2: Ablation studies of adding each component of MBPO and their results on general vision
language and hallucination benchmarks. +offline,rand. indicates that the offline rejected samples
are generated using images with random noise. We mark the best performance in bold.
Model AI2D MMEp MMStar MMVet MMB MMHalscore Avg MMHalrate↓ CHAIRS↓ CHAIRI↓ Avg↓

Qwen2-VL-7B 80.4 1692.7 57.1 57.9 78.9 3.50 1970.5 0.34 10.9 5.9 17.1
+offline, rand. 80.6 1684.8 57.8 58.5 78.6 3.54 1963.8 0.36 10.2 5.3 15.9
+offline, adv. 80.5 1697.6 58.0 59.8 78.8 3.50 1978.2 0.33 7.8 4.8 12.9
+online, γ = 0 80.5 1682.3 57.5 59.0 78.4 3.46 1961.1 0.36 8.4 4.5 13.3
+online, γ = 0.5 80.5 1681.9 57.4 60.6 78.4 3.52 1962.3 0.35 8.3 4.3 12.9
+MBPO 80.6 1702.8 57.6 60.8 79.4 3.58 1984.5 0.36 7.6 4.3 12.3

Qwen2.5-VL-7B 82.6 1680.1 62.0 62.2 83.2 3.68 1973.8 0.42 14.1 6.9 21.4
+offline, rand. 82.6 1688.4 62.1 61.5 83.4 3.57 1981.6 0.38 12.4 6.0 18.8
+offline, adv. 82.5 1693.5 62.1 61.3 83.3 3.56 1986.3 0.38 7.5 4.1 12.0
+online, γ = 0 82.8 1693.8 62.8 64.3 83.5 3.83 1991.0 0.39 10.6 6.1 17.1
+online, γ = 0.5 82.8 1693.6 62.9 64.7 83.6 3.91 1991.5 0.37 9.8 5.4 15.6
+MBPO 82.5 1706.3 63.0 65.8 83.6 3.75 2005.0 0.34 7.4 3.6 11.3

Qwen2.5-VL-7B. Thus, we conclude that each component of MBPO is essential for achieving the
best performance in most cases.

5.4 FURTHER ANALYSIS

Adversarial Image: To gain a deeper understanding of the adversarial image, we present a detailed
case study comparing model responses on an image with adversarial noise versus an image with
random noise. The images and corresponding responses from Qwen2-VL-7B and Qwen2.5-VL-
7B are shown in Fig. 2. For the adversarial image, both models follow the question’s instruction
and provide responses based on the prior biases of the LLM backbone. In contrast, for the image
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Qwen2-VL-7B: 
There is a castle in the image.

Qwen2.5-VL-7B:
The image shows a picturesque and artistic representation of 
the old town of St. Martino, located in the Swiss canton of 
Ticino. The town's main historical landmark visible in the 
image is the San Carlo al Lago Church, which is part of the 
Monte San Carlo heritage complex.

Qwen2-VL-7B:
The main historical landmarks visible in the image are the 
Colosseum and the Pantheon.

Qwen2.5-VL-7B:
The image shows a historical site with several prominent 
features. In the background, there are ancient stone 
structures that resemble a castle or fortress. One of the most 
noticeable elements is a tall, slender tower with a pointed 
roof, which could be a bell tower or part of a church or a 
defensive structure.

+ random noise

+ adversarial noise

Question: What are the main historical landmarks visible in the image?

Figure 2: An example comparing model responses of the image with adversarial noise and random
noise. The prior bias from LLM is marked in red.

Figure 3: IIG of chosen and rejected responses
change along with the training.

Figure 4: Reward of the online closed-end data
changes along with the training.

with random noise, both models fail to follow the question’s instruction and instead offer a general
description of the image, without leveraging the LLM’s prior biases.

Image Information Gain: The goal of MBPO is to encourage LMMs to extract more information
from the image, reflected by a higher IIG after training. Using the same +offline adv. setting
described in Section 5.3, we train the model on offline dataset and measure the change in IIG during
training. The smoothed results are shown in Fig 3. As illustrated, the IIG of chosen responses
increases throughout the training process, while the IIG of rejected responses remains consistently
low. These results demonstrate that MBPO effectively addresses the modality imbalance problem
and successfully incorporates more visual information into the responses by training on our offline
preference data.

Closed-set Data Reward: To verify the effectiveness of learning from the online preference dataset,
we measure the reward on closed-end data during training. The settings follow those of the +online
configuration in Section 5.3, where each model is trained on online closed-end data for one epoch.
As shown in the smoothed results in Fig. 4, the reward of closed-end data increases as training
progresses for all models. This demonstrates the effectiveness of our online learning strategy, which
improves model performance on closed-end questions through GRPO training.
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ETHICS STATEMENT

Our approach enhances LMM alignment by explicitly addressing modality imbalance, encouraging
models to rely more on visual inputs rather than language priors. Technically, MBPO offers a new
perspective on leveraging both adversarially generated offline data and online verified responses for
training, which may inspire future research in multimodal alignment. Our method helps reduce
hallucinations in LMMs, a key challenge for deploying such models in real-world applications.
While MBPO significantly improves factual grounding, hallucinations can still occur. Therefore, we
emphasize the importance of safety measures, robust evaluation, and responsible deployment when
applying this method in practice.

REPRODUCIBILITY STATEMENT

We describe the implementation details in Section 5.1 to ensure clarity and reproducibility. More-
over, the complete source code is included in the supplementary materials, allowing readers to re-
produce all experiments and results presented in this work.
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Appendix

A EXPERIEMNTAL DETAILS

A.1 DATASET

The MMSeed-163K dataset (Luo et al., 2024) is a curated collection of 163K high-quality image-
text instruction samples designed to support multimodal language model training. It integrates and
refines data from LLaVA-Instruct (Liu et al., 2023), ShareGPT4V (Chen et al., 2024b), and
Cambrain-1 (Tong et al., 2024), covering diverse instruction formats including dialogue-based
QA, global descriptions, scientific reasoning, and chart interpretation. As the goal of MBPO is to
balance modality in Large Multimodal Models (LMMs) by encouraging more visual information to
be used, we use responses with high IIG as the chosen responses in our offline dataset. To construct
our offline dataset efficiently, we first randomly select 60K samples without closed-end questions
from the MMSeed-163K. Then we use Qwen2-VL-2B (Wang et al., 2024b) to compute the Image
Information Gain (IIG) of each sample and choose 10K samples with the highest IIG as our offline
dataset.

A.2 EVALUATION BENCHMARKS

• AI2D (Kembhavi et al., 2016) is a large-scale dataset designed to evaluate a model’s ability
to interpret and reason about grade school science diagrams. It contains over 5,000 annotated
diagrams with more than 150,000 detailed annotations, syntactic parses, and 15,000+ multiple-
choice questions. The benchmark focuses on two key tasks: Syntactic Parsing, which involves
detecting diagram components and their structural relationships, and Semantic Interpretation,
which maps these components to real-world concepts and events.

• MME (Fu et al., 2023) is a comprehensive benchmark designed to evaluate LMMs across two
core dimensions: perception (MMEp) and cognition (MMEc). It consists of 14 subtasks, each
crafted to assess a model’s ability to interpret visual content and reason about it. For each
image, the benchmark poses two questions whose answers are marked yes [Y] and no [N],
respectively, allowing for a fine-grained evaluation of LMMs.

• MMStar (Chen et al., 2024c) is a high-quality vision-indispensable benchmark designed to
rigorously evaluate the multimodal capabilities of LMMs. It comprises 1,500 human-curated
samples across 6 core capabilities and 18 fine-grained evaluation axes, offering a comprehen-
sive and balanced assessment of models’ understanding of both visual and textual modalities.

• MMVet (Yu et al., 2024c) is a comprehensive benchmark designed to evaluate the integration
capabilities of generalist vision-language models. It defines six core VL abilities and system-
atically examines sixteen meaningful pairwise combinations to assess how well models can
jointly reason over multiple modalities. To address the challenge of evaluating open-ended
outputs, MMVet introduces an LLM-based evaluator. Specifically, we use the OpenAI API
gpt-4o-2024-08-06 as our evaluator model.

• MMBench (Liu et al., 2024c) is a comprehensive benchmark designed to objectively and sys-
tematically evaluate the capabilities of LMMs. It consists of over 3,000 multiple-choice ques-
tions spanning 20 ability dimensions, including object localization, social reasoning, and more.
Each dimension includes approximately 125 questions, ensuring balanced coverage across var-
ious vision-language skills.

• MMHal-Bench (Sun et al., 2023) is a benchmark designed to evaluate hallucinations in large
multimodal models (LMMs) through 96 adversarially constructed image-question pairs. These
pairs span 8 hallucination types and cover 12 object topics from COCO. A GPT model (Ope-
nAI gpt-4o-2024-08-06) is used as an evaluator by providing it with the image category, the
question, the LMM’s response, and a human-generated reference answer. The overall score
and hallucination rate are reported to measure the model performance on MMHal-Bench.

• ObjectHal (Rohrbach et al., 2018) is a widely adopted benchmark for assessing common ob-
ject hallucination in detailed image descriptions. Following Yu et al. (2024b), we employ 8
diverse prompts per image to improve evaluation stability. It assesses object hallucination at
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the instance and sentence levels, which can be calculated as:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

CHAIRS =
|{captions with hallucinated objects}|

|{all captions}|
(9)

A.3 BASELINES

• BPO (Pi et al., 2024) generates negative responses directly from the model to perform prefer-
ence learning. It introduces two key strategies: (1) using distorted images to trigger language-
biased outputs, and (2) using a text-only LLM to inject common but incorrect elements into
otherwise correct responses. These bootstrapped negatives are paired with high-quality refer-
ences to train the model via preference optimization.

• POVID (Zhou et al., 2024a) uses ground-truth instructions as preferred responses, and creates
dispreferred responses through two different hallucination strategies: (1) prompting GPT-4V
to inject plausible hallucinations into correct answers, and (2) distorting input images to elicit
hallucinations from the VLM itself. These pairwise preference samples are then trained with
Direct Preference Optimization (DPO).

• RLAIF-V (Yu et al., 2024b) introduces two key innovations to enhance reward learning from
AI feedback. First, it improves feedback quality by generating candidate responses through
multiple decoding trials under identical conditions, effectively removing confounding factors
like text style. It also uses a divide-and-conquer strategy to break complex response evaluation
into simpler claim-level judgments, enabling more accurate and efficient preference modeling.
Second, for inference-time guidance, RLAIF-V employs a self-feedback mechanism using re-
ward scores from models aligned via Direct Preference Optimization (DPO) to refine responses
without external supervision.

• SIMA (Wang et al., 2024c) leverages existing vision instruction datasets to self-generate re-
sponses and uses an in-context self-critic mechanism to create preference pairs for tuning. By
designing specialized critic prompts, SIMA enables the LMM itself to act as the judge, elim-
inating the need for extra fine-tuning. Additionally, it introduces three new visual metrics to
guide the self-critique process, boosting the reliability of preference judgments.

• CSR (Zhou et al., 2024b) enables the model to refine itself by repeatedly generating candidate
responses, scoring each with a reward function, and compiling the highest-rated examples into
preference data for fine-tuning. In its reward-modeling phase, CSR follows a step-wise strategy
and embeds visual constraints within the self-rewarding process to amplify the impact of visual
signals.

• mDPO (Wang et al., 2024a) aligns LMMs by optimizing image preference data, rather than re-
lying solely on text-based preference. To stabilize training, MDPO introduces a reward anchor
that ensures chosen responses always receive positive rewards, mitigating the risk of degrading
their likelihood.

• MFPO (Jiang et al., 2024) constructs image preference data by identifying hallucination-prone
regions via keyword extraction and mapping them to image segments using the Segment Any-
thing Model. Fine-grained noisy images are used as negative samples, and a reward function is
built to favor clean over noisy regions. MFPO also incorporates a curriculum learning-inspired
hierarchical alignment strategy that categorizes training data by difficulty (easy to hard), en-
abling stable and progressive learning. Margin loss is used to ensure consistent reward separa-
tion between preferred and rejected responses.

• FiSAO (Cui et al., 2024) is a self-alignment approach for LMMs that enhances multimodal
alignment without requiring extra data. It leverages the model’s own vision encoder as a fine-
grained verifier to provide token-level feedback during training. This enables more precise
supervision and improves alignment performance beyond traditional preference tuning meth-
ods.

• DAMA (Lu et al., 2025) dynamically adjusts the preference optimization coefficient β based
on both data hardness and the model’s responsiveness. It measures the difficulty based on
CLIP-based image-text similarity. Furthermore, it adapts β based on real-time responsiveness
inferred from reward gaps between preferred and rejected responses. This dual adaptation
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Table 3: Exploration of the impact of iteration and step size in generating adversarial images for the
offline dataset. +(i, j) stands for i iterations and j

255 step size. We mark the best performance bold.
Model AI2D MMEc MMEp MMStar MMVet MMB MMHalscore MMHalrate ↓ CHAIRS ↓ CHAIRI ↓

Qwen2-VL-7B 80.4 628.2 1692.7 57.1 57.9 78.9 3.50 0.34 10.9 5.9
+(5,4) 80.5 635.7 1704.9 57.5 60.0 78.9 3.57 0.40 4.5 2.5
+(10,4) 80.7 637.8 1701.7 57.9 57.5 79.0 3.54 0.40 6.4 3.5
+(20,2) 80.5 640.0 1706.5 57.7 59.4 78.8 3.57 0.39 7.6 4.0
+(20,4) 80.5 635.7 1697.6 58.0 59.8 78.8 3.50 0.33 7.8 4.8
+(20,8) 80.7 628.2 1700.4 57.7 59.3 79.3 3.39 0.41 7.0 3.9

allows DAMA to improve model alignment by preventing both overfitting on easy samples and
underfitting on hard ones.

B ADDITIONAL EXPERIMENTS

B.1 ADVERSARIAL NOISE

We conduct additional experiments to explore the impact of iteration and step size in generating
adversarial noise. As shown in Table 3, we report experimental results using Qwen2-VL-7B as
the base model, and compare the performance of different iteraion and step size pairs. In the table,
+(i, j) means we construct offline dataset by adversarial attack on the image i iterations with j

255 as
each step size. The training setting is the same as the +offline adv. in our ablation study. Based on
the results, we can see that the adversarial attack performs similarly on all benchmarks except for
the MME and ObjectHal.

B.2 CASE STUDY

In this section, we provide some detailed case studies of the model output for both online and offline
datasets. In Fig. 5, we show an example to compare model responses on images with adversarial
noise and random noise. The image with adversarial noise effectively triggers the prior biases of
the LLM backbone. Furthermore, an example of model’s responses to an online multiple-choice
question is shown in Fig. 6. The response from Qwen2-VL-7B and Qwen2.5-VL-7B on online
Yes/No data are shown in Fig. 7 and Fig. 8 respectively. On the online datasets, the model produces
consistent outputs for some examples, while yielding different answers for others.

C LIMITATION

As a preliminary exploration of using online data with verified reward to align LMMs, our work
only study the alignment of image and text. This limits the ability of LMMs on other modality,
such as video and audio. In the future, it is worth studying the effectiveness of using reinforcement
learning with verified rewards to align LMMs on more modalities.

USE OF LARGE LANGUAGE MODELS

Large language models were used exclusively for grammar checking and minor language refinement
of the manuscript. They were not involved in generating ideas, designing methods, analyzing data,
or interpreting results.
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Qwen2-VL-7B: 
The dog is riding in a car looking outside with its mouth open.

Qwen2.5-VL-7B:
The dog in the image appears to be on a leash, and it is standing on a 
street. The dog seems to be looking forward with its tongue partially 
out, which could indicate that it is relaxed and perhaps enjoying the 
moment or the walk. The setting suggests it might be in an urban area, 
given the visible street and buildings in the background. 

Qwen2-VL-7B:
The dog appears to be riding in a stroller or a special carriage designed 
for dogs, enjoying a walk along a residential street

Qwen2.5-VL-7B:
The dog in the image appears to be looking out of a moving vehicle, 
possibly a truck or car, with its tongue out. The tongue out might 
suggest the dog is enjoying the breeze or it could be a sign of panting 
due to the heat or exertion. The background shows a street scene with a 
sidewalk, streetlights, a pole, and some parked cars.

+ random noise

+ adversarial noise

Question: What is the dog doing in the image? 

Chosen: The dog is sticking its head out of the car window and licking its nose. 

Figure 5: An example comparing model responses of the image with adversarial noise and random
noise. The prior bias from LLM is marked in red.
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Question: What type of shot is the woman hitting?
A. Slice
B. backhand
C. serve
D. forehand
Answer with the option‘s letter from the given choices 
first, and only after that, provide a detailed explanation 
for the choice.

Correct Answer: D

Qwen2-VL-7B: 

• B. The woman is hitting the ball with her backhand. This is evident from the position of her body and the 

way she is holding the racket….

• B. The woman is hitting the ball with her backhand, as indicated by the position of her racket and the way 

she is holding it…

• B. The woman is hitting the ball with her backhand, as indicated by the position of her body and the way 

she is gripping the racket…

• D.

• B. The woman is hitting the ball with her backhand. This is evident from the position of her body and the 

way she is gripping the racket…

• D.

• D.

• B. The woman is hitting the ball with her backhand, as indicated by the position of her racket and the way 

she is holding it…

• D.

• D.

• D.

• B. The woman is hitting the ball with her backhand. This is evident from the position of her body and the 

way she is gripping the racket…

• D.

• D.

• D.

• B. The woman is hitting the ball with her backhand, as indicated by the position of her racket and the way 

she is holding it…

Qwen2.5-VL-7B:
• B. The woman in the image appears to be hitting a backhand. This can be inferred from the position of her 

body and the orientation of her racket as she prepares to strike the ball. The backhand shot is typically 

executed with the non-dominant hand facing upwards and the …

• D.The woman in the image appears to be hitting a forehand shot. This can be deduced from several 

observations…

• D. The woman in the image is hitting a forehand shot. This can be determined by her stance and the position 

of her racket. Her body is turned slightly towards the net…

• D. The woman in the image appears to be hitting a forehand shot. This can be determined by her stance and 

the position of her body relative to the incoming ball…

• D. The woman in the image appears to be executing a forehand shot. This can be identified by her stance and 

the position of her racket…

• D. The woman in the image is hitting a forehand shot. This can be determined by the positioning of her body 

and the motion of her arm and racket. The player is facing towards the right side of the image, which 

suggests she is using the forehand technique to hit the ball. …

• D. The woman in the image is hitting a forehand shot. This can be determined by the following details:

             …

• D. The woman in the picture appears to be hitting a forehand shot. This can be identified by several key 

features…

• D. The woman in the image appears to be executing a forehand stroke. Here's the reasoning…

• D. The woman in the image is hitting a forehand shot. This can be identified by her body position and the 

direction of her swing…

• D. The woman in the image appears to be hitting a forehand shot. This can be deduced from her stance and 

the position of her racket…

• D. The woman in the image appears to be hitting a forehand shot. This can be determined by several key 

points:…

• D. The woman in the image appears to be hitting a forehand shot. This is evident from her stance and the 

position of her racket and body. …

• D. The woman in the image is hitting a forehand shot. This can be deduced by the position of her arm and 

racket as she prepares to swing forward…

• D. The woman in the image appears to be hitting a forehand shot. This is evident because her body is turned 

towards the oncoming ball…

• D. The woman is hitting a forehand in the image. This can be identified by several indicators…

Figure 6: An example of model responses on a multiple-choice question. Explanations are hidden
for clarity. Each model generates 16 responses using random decoding. The correct responses from
LMM are marked in green.
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• "No, the gray rubber object and the metallic object to its left in the image both have the 

same shape, which is a cylinder."

• "no"

• "No. The gray object is a small matte ball, which is the same shape as the other three 

balls in the image. It is not a cylinder like the metallic objects are."

• "No, the gray rubber object and the metallic object left of the blue matte cylinder are 

not the same shape. The gray rubber object is a sphere, while the metallic object is a 

cylinder.",

• "No, the gray rubber object in the picture has the same shape as the other spheres and 

balls in the image. It is also a ball or sphere."

• "No, the gray rubber object is the same shape as the blue matte cylinder, or any cylinders 

on the image. The gray rubber object appears to be a sphere due to its smooth surface and 

curvature."

• "No, the gray rubber object is also a sphere like the other objects in the image, while 

the metallic object left of the blue matte cylinder is a cylinder. cylinders and spheres 

are distinct shapes in geometry."

• "No, the gray rubber object does not have the same shape as the metallic object left of 

the blue matte cylinder. The gray object is a ball, while the metallic object is a 

cylinder."

• "No, the gray rubber object and the metallic object left of the blue matte cylinder have 

different properties and purposes. The gray rubber object is a small, smooth sphere that 

is often used in 3D modeling and animation to represent objects such as marbles, balls, or 

spheres. These objects are typically created in 3D modeling software and are not 

physically real."

• "No, the gray rubber object in the image is not the same shape as the metallic object left 

of the blue matte cylinder. The metallic object is a cylinder, while the gray object is a 

sphere. The differences in their shapes and forms make them distinct from each other."

• "No, the gray rubber object is a sphere, while the metallic object left of the blue matte 

cylinder is a cylinder."

• "Yes, the gray rubber object in the picture is a sphere, just like the other objects."

• "No, the gray rubber object does not have the same shape as the metallic cylinder on the 

left. The gray rubber object is a sphere, while the metallic cylinder is a cylinder."

• "No, the gray rubber object in the image is a small gray ball, which shares the same shape 

as the larger red ball, the small yellow ball, and another larger cyan ball. It is not the 

same shape as the metallic objects, which are either cylinders."

• "No, the gray rubber object does not have the same shape as the metallic object on the 

left. The metallic object is a cylinder, while the gray object is a sphere. Although they 

are both three-dimensional shapes, they differ in their geometry."

• "No, the gray rubber object and the metal object left of the blue matte cylinder are not 

the same shape. The gray rubber object is a small sphere, while the blue metal object is a 

cylinder."

Question: There is a gray rubber object; does 

it have the same shape as the metallic object 

left of the blue matte cylinder? 

Correct Answer: No

Figure 7: An example of responses from Qwen2-VL-7B on a Yes/No question. The model gener-
ates 16 responses using random decoding. The incorrect responses from the model are marked in
red.
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• "Yes, the value of voting in pay is smaller than the value of belief in method."

• "Yes, the value of voting in pay is smaller than the value of belief in method. The bar for voting in pay is 

at -8, while the bar for belief in method is at -11."

• "Yes, the value of \"voting\" in the \"pay\" category is smaller than the value of \"belief\" in the 

\"method\" category. The value for \"voting\" in \"pay\" is approximately -8, while the value for \"belief\" 

in \"method\" is approximately -10."

• "Yes, the value of \"voting\" in \"pay\" is smaller (more negative) than the value of \"belief\" in 

\"method\". The \"voting\" bar in \"pay\" is below the zero line and extends further to the left, indicating 

a smaller (more negative) value, while the \"belief\" bar in \"method\" extends to the left but does not 

reach as far to the left as the \"voting\" bar in \"pay\"."

• "No, the value of voting in pay is not smaller than the value of belief in method. The value of voting in pay 

is around -8, while the value of belief in method is around -9."

• "Yes, the value of voting in pay (-8) is smaller than the value of belief in method (-9)."

• "Yes, the value of \"voting\" in \"pay\" is smaller than the value of \"belief\" in \"method\". The 

\"voting\" in \"pay\" is below the zero line, while \"belief\" in \"method\" is also below the zero line but 

further down. Therefore, \"voting\" in \"pay\" is more negative than \"belief\" in \"method\"."

• "Yes, the value of voting in pay is smaller (more negative) than the value of belief in method. The chart 

shows that the bar for 'voting pay' extends below the x-axis more than the bar for 'belief method', 

indicating a more negative value for 'voting pay'."

• "Yes, the value of voting in pay is smaller than the value of belief in method. The bar for \"voting\" in pay 

is below the zero line, indicating a negative value, while the bar for \"belief\" in method is above the zero 

line, indicating a positive value."

• "No, the value of voting in pay is not smaller than the value of belief in method. According to the bar 

chart:\n\n- The value for \"voting\" in \"pay\" is approximately -8.\n- The value for \"belief\" in 

\"method\" is approximately -9.\n\nTherefore, the value of \"voting\" in \"pay\" is larger than the value of 

\"belief\" in \"method\"."

• "Yes, the value of voting in pay is smaller than the value of belief in method. The bar for voting in pay is 

below the axis, indicating a negative value, while the bar for belief in method is also below the axis but 

appears to be more negative."

• "No, the value of voting in pay is not smaller than the value of belief in method. The bar for \"voting\" in 

pay is at approximately -8, while the bar for \"belief\" in method is at approximately -9. Therefore, the 

value of voting in pay is greater than the value of belief in method."

• "No, the value of voting in pay is not smaller than the value of belief in method. \n\n- The value of voting 

in pay is approximately -8.\n- The value of belief in method is approximately -9. \n\nTherefore, the value of 

voting in pay is greater than the value of belief in method."

• "Yes, the value of voting in pay is smaller than the value of belief in method. In the bar chart, the bar 

representing \"pay\" for \"voting\" is below the zero line, indicating a negative value, while the bar for 

\"belief\" in \"method\" is also below the zero line but higher than the \"pay\" bar for \"voting.\""

• "No, the value of \"voting\" in \"pay\" is not smaller than the value of \"belief\" in \"method\". The value 

of \"voting\" in \"pay\" is -8, while the value of \"belief\" in \"method\" is -9. Therefore, the value of 

\"voting\" in \"pay\" is greater than the value of \"belief\" in \"method\"."

• "No, the value of voting in pay is not smaller than the value of belief in method. In the bar chart, the 

value of voting in pay (negative) is smaller than the value of belief in method (negative), but both are 

negative values. Comparing negative values, the smaller absolute value is considered better. Therefore, the 

value of voting in pay (-8) is actually larger (less negative) than the value of belief in method (-9)."

Question: Is the value of voting in pay smaller 

than the value of belief in method?

Correct Answer: No

Figure 8: An example of responses from Qwen2.5-VL-7B on a Yes/No question. The model
generates 16 responses using random decoding. The incorrect responses from the model are marked
in red.
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