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Abstract

Recent advances in retrieval-based in-context learning (ICL) train the retriever
using a classification objective, which categorizes in-context examples (ICEs) into
the most useful and the rest based on absolute scores. However, during inference,
ICEs are retrieved by score ranking rather than classification — The classification
training objective deviates from this test scenario. Hence, in this paper, we propose
a novel algorithm that trains a retrieval model by ranking formulation, where the
preference rankings between ICEs are given by comparing the likelihood of the
LLM generating the correct answer conditioned on each exemplar. By learning
to rank, we motivate the retriever to automatically learn diverse rationales why
specific examples are more useful for ICL decisions. This addresses the issue
that classification models poorly capture broader utility. Experimental results
demonstrate the top-1 performance of our proposal across 9 NLP tasks, with
ablation studies and case studies further validating the effectiveness of our design.
The code can be found in: https://github.com/2022neo/SeDPO_NIPS25

1 Introduction

Large Language Models (LLMs) [1, 2, 3] have shown their versatility in addressing diverse problems
through in-context learning (ICL), which can be viewed as few-shot learning. ICL [4, 5, 6, 7] allows
providing a few in-context examples (ICEs) to guide LLMs in generating predictions for test inputs
without parameter updates. When there is a large set of labeled data, selecting the most useful few
examples can improve ICL performance. To this end, existing methods [8, 9] fine-tune LMs as dense
retrievers, typically in two steps: (1) Scoring a set of examples one by one or group by group using
the ICL LLM; (2) Training the retriever model on scored data to align with the ICL LLM.

Dominant approaches train the retriever using a classification objective [10], categorizing ICEs into
the most useful and the rest based on absolute scores. However, during inference, ICEs are retrieved
by score ranking rather than classification — The classification training objective deviates from this
test scenario, which leads to limitations. Taking math problems as an example, when there are no
reference answers for a test query, recommending other useful ICEs, e.g., relevant formulas, will be
more valuable. What we care about ultimately is not the absolute classification of examples, but the
relative orders conditioned by the test input — which sets of examples are more useful.

We formulate in-context example retrieval as an information retrieval (IR) task by adopting a learning-
to-rank (LTR) objective. LTR has been widely used in information retrieval [11], naturally capturing
the broader utility across examples with ranking formulation. However, it remains underexplored in
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Figure 1: Motivating framework of existing work and our proposal (in red). E.g., when there are no
reference answers (EJZ) for test input, LTR recommends alternative concepts or formulas (DEF).

ICL. As depicted in Figure 1, using partial order knowledge between scored examples, a retriever can
retrieve a broader range of useful examples with ranking formulation, improving ICL performance.

To train the retriever, we propose a novel algorithm that aligns the preference ranking of ICEs, by
comparing the likelihood of the LLM generating the correct answer conditioned on each exemplar. By
LTR, we motivate the retriever to automatically learn various rationales why ICEs are more useful for
ICL decisions. This addresses the issue that classification models poorly capture broader utility. To
learn how to rank training examples, we adapt direct preference optimization [12] (DPO), integrating
the Sequential Example relaxation [13], so as to derive a trainable pairwise ranking objective, while
implicitly conforming to global preference order constraints. We thus name this algorithm SeDPO.

Experimentally, our method constantly ranks in top-1 across 9 NLP tasks, with an improvement of up
to 18% over the best-performing classification-based baseline, achieving the SOTA results. Ablation
study further confirms the usefulness of our ranking formulation and its complementary strength to
existing paradigms. We summarize our key contributions as follows:

• We propose to learn preference ranking orders for ICL example retrieval.

• We introduce an extension of DPO for training retriever with pairwise ranking formulation.

• We demonstrate that SeDPO significantly outperforms existing state-of-the-art retrieval
methods for in-context example retrieval.

2 Related work

Retrieval-based ICL. Two primary types of retrievers are commonly used for sample selection
in ICL. The first type consists of off-the-shelf retrievers derived from heuristic criteria [14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25]. However, the assumption that model performance is always
correlated with heuristic criteria is not reliable. Consequently, other approaches train a retriever on a
corpus using LLM’s feedback so as to select ICEs that the LLM truly prefers. EPR [26] encodes and
selects few-shot examples independently, with both queries and examples being encoded as vectors,
enabling rapid retrieval through DPR (dense passage retrieval) [27] during inference. Following
EPR’s paradigm, CEIL [28] and UPRISE [29] are proposed to tackle various aspects of NLP tasks.

Observing that the above methods can overlook the interaction of examples that are used together
as one few-shot prompt, the latest advancements achieve the SOTA performance by modeling the
sequential order between examples in each prompt, such as RetICL [30], Active Example Selection
[31], and Se2 [13]. Among these, RetICL and Active Example Selection formalize the problem
as Markov Decision Processes (MDP) and optimize models through reinforcement learning (RL).
However, they suffer from training instability. In contrast, Se2 models sequential order among
examples in each prompt directly on the input text, achieving closed-loop optimization and the SOTA
performance, making it the most suitable baseline in this class. Neither of these methods considers
ranking orders of examples across prompts, which we address in this paper.
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Recent ICL papers have considered aspects that are complementary to our work: (1) BESC [32]
focuses on the internal ordering of ICEs within each prompt, using a contrastive loss to incrementally
construct optimal sequences with dynamic lengths step-by-step. By contrast, our work emphasizes
the ranking of different prompts. (2) CASE [33] prioritizes the efficiency of the selection process,
framing it as a “top-m arm identification" problem with absolute training rewards. We, however,
prioritize the quality of retrieved examples, formulating selection as a “learning to rank" problem with
pairwise training rewards. (3) CLG [34] is a task-level selection method for few-shot scenarios, where
scalability is critical—it selects a fixed set of examples for all test queries via gradient matching. Our
work, by contrast, is optimized for few-shot scenarios where query-specific utility of each example is
essential. We leave the exploration of these complementary aspects for future work.

Preference-aware ICL. Example retrieval methods considering the preference ranking orders of ICL
examples are limited. UDR [35] additionally fits mini-batch rank indices with LambdaRank loss
[36], which may conflict with global rank indices, as inserting a new scored example between two
originally scored examples alters the local rank indices. This discrepancy amplifies as the example
pool scales. Another line is RL-ICL [37], which develops a self-retrievable LLM with PPO [38] by
modeling ICL performance as a reward signal. Due to differences in experimental and retrieval setups,
we focus our comparison on mainstream retriever-based methods. A few ICL methods [39, 40]
consider the preference order as an evaluation metric. In contrast, our method can efficiently learn
the ranking orders of scored examples over the entire corpus.

3 Method

We first formalize the problem of ICL for LLM (Section 3.1), and subsequently use it to label ranking
data (Section 3.2). Finally, we use the ranked data to train one different retriever (Section 3.3).

3.1 In-context learning with sequential example retrieval

In-context learning [41] is a key capability of LLMs where the model learns from a few examples
provided in the input prompt to perform a task without parameter updates. Following the previous
definition [13, 30], given a test sample (x, y), the LLM predicts ŷ based on examples and input x as:

ŷ = LLM(eK ⊕ eK−1 ⊕ ...⊕ e1 ⊕ x), (1)

where ek=(xk, yk)
K
k=1 is an example drawn from a corpus C, consisting of an input-output pair. K is

the shot number and ⊕ is the concatenation. The retrieval objective is to seek a set of examples in C for
test input x, putting them into a sequential order (e1, ..., eK−1, eK) = e[1:K] following [42], aiming
to make ŷ match the label y. All candidate K-shot sequences are denoted as E = {e[1:K]}. Notably,
we specify in Eq. (1) that ordered examples are input right-to-left. As long as the ICL templates
remain consistent during training and inference, the left-to-right input order is also supported.

Retriever model. We consider a class of methods based on dense passage retrieval (DPR) as our
retriever model. DPR consists of a query encoder Einput(·) and an example encoder Eexample(·), often
initialized with a pretrained text-encoder such as BERT-base-uncased [43]. The retrieval score ϕretriever
of example e for test input x conditioned on c is computed as sim(e, x|c) = Eexample(e)

⊤Einput(c⊕x).

Retrieval process. Following [13], we use the same beam search during inference to retrieve e[1:K]

for fair comparison. We first encode and index all examples ek ∈ C using the trained Eexample(·).
Given a test input x, we encode x with Einput(·) and retrieve w examples with the highest retrieval
scores Eexample(·)⊤Einput(·). We set default beam size w = 3, the same as in [13]. We also draw w = 1
for brief illustration in Figure 2(c). These examples are then concatenated with the current inputs as
new context sequences. The retriever scores are accumulated into the sequences’ scores. This process
is repeated, encoding inputs and seeking examples to maintain the w highest scoring candidate
sequences until each sequence contains K examples. The sequence with highest accumulated scores is
chosen as e[1:K]. Motivated by left-to-right generation in autoregressive models, this retrieval process
lets later retrieved ICEs observe previous retrieved ones, being aware of sequential relationships.

Training task. To convert LTR for ICL into a formal goal, we design our training task as follows:
(1) A scoring function ϕLLM takes (e[1:K], x, y) as input and evaluates the ICL performance for each
e[1:K] ∈ E through LLM. In this way, we obtain an ICL performance ranking conditioned on x. (2)
Since the true answer y of a test input x is unavailable during inference, another scoring function
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Figure 2: (a) Prepare preference data D̃. (b) Train the retriever on D̃ with SeDPO loss to align with
partial order instead of the top-scored. (c) Inference with dense passage retrieval (DPR).

ϕretriever is introduced, which takes (e[1:K], x) as input to score each e[1:K] ∈ E . This produces a
retriever-based ranking conditioned on x. (3) To ensure that higher-scored retrieved e[1:K] can lead to
better ICL performance, our goal is to train the retriever by aligning the ϕretriever-based ranking with
the ϕLLM-based ranking. Notably, previous methods widely use classification objective, categorizing
e[1:K] with the best ICL performance as positive, and the rest as negative, which is unlike our goal.

3.2 Labeling data with ranking orders

Definition of ranking orders. We focus on Multiple-Choice Question (MCQ) tasks [44] by default.
MCQ is a question format in which respondents (i.e., LLM) are asked to select only the correct
answers from the choices offered as a list. How much the LLM’s prediction ŷ matches the ground
truth y ∈ Ygt can be measured by a task-specific scoring function S(·, ·), which can be formulated:

ϕLLM(e[1:K], x, y) = SMCQ(e[1:K] ⊕ x, y) =
LH(y|e[1:K] ⊕ x)∑

y′∈Y LH(y′|e[1:K] ⊕ x)
, (2)

where Y or Ygt is output/ground-truth label space, LH is per token conditional likelihood of the LLM.
For brevity, we denote e[1:K] ⊕ x = (eK ⊕ ... ⊕ e1 ⊕ x) w.r.t Eq. (1). As higher scores indicate
that LLMs are more likely to output ground-truth answers, we can define partial order for ranking
as ew[1:K] ≻ el[1:K]|x if SMCQ(e

w
[1:K] ⊕ x, y) > SMCQ(e

l
[1:K] ⊕ x, y) for all y ∈ Ygt given x. The

partial order can be a total order by weighted aggregating SMCQ for all y ∈ Ygt; but we focus on the
partial order as domain knowledge isn’t required. In scored MCQ data, there may be multiple or no
examples that guide LLMs in predicting correctly, requiring exploration beyond top-scored examples.

Scored data construction. Since the corpus C can form (|C|!)/(|C| −K)! possible e[1:K], scoring
all e[1:K] would be computationally prohibitive. Following [13], we employ a greedy algorithm to
selectively score the data for fair comparison, ultimately obtaining sequentially scored data D. The
constructed queries in D are marked by tilde. For each (x, y) ∈ C, we denote the test input x without
ICE as x̃0, and sample L examples from corpus C as B(x̃0). We score the examples in B(x̃0) with
frozen LLM and Eq. (2), and repeatedly resample the examples in B(x̃0) that cannot be ranked.
Finally, we select an example from scored set B(x̃0) as ec based on its rank:

p(rank) =
exp(−rank)∑L

rank′=1 exp(−rank′)
(3)

from which the higher-scored example is more likely to be selected and the diversity is preserved.
x̃k+1 = ec⊕ x̃k is iteratively updated for next round scoring, until the K-shot data are all constructed.
The L scored examples in each B(x̃k) are gathered with corresponding x̃k to form D (Fig. 2 (a)).

Ranked data construction. Given x̃k, we have L scored examples, forming
(
L
2

)
pairs of partial

order. Empirically, we consider that two types of preference play a dominant role: (a) Given (x, y),
examples in different pairs are non-overlapping, so as to enhance the diversity of training data. (b) ew
and el have a larger score margin, where their discrepancy is easier to learn. Therefore, we select
T examples with the highest scores as the preferred ones and randomly match them with bottom-T
dispreferred candidates, to construct sequential preference data D̃ out of D. We discuss it in ablation.
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3.3 Algorithm for learning orders

We devise a novel RL algorithm for training a retriever, as directly applying existing RL algorithms
such as DPO [12] on ranked data (Sec. 3.2) is prohibitive: (1) DPO requires knowing the probability
distribution of specific retrieval actions over the entire corpus (i.e., policy), but the retriever model only
outputs retrieval scores for specific ICEs; (2) optimizing retrieval actions over the entire corpus is very
expensive and hard to scale. We innovatively address these challenges with (a) reparameterization of
retriever score into policy model and (b) sequential relaxation of ek ∈ e[1:K] in this section.

Policy of retriever model. To train a retriever with ranked data using DPO, we must convert the
retriever score into a policy, to model the probability that retrieved ICEs are ranked in the order of ICL
performance. We denote C \ {ei}i<k as the corpus excluding the selected ICEs. Based on retrieval
scores sim(·, ·|·), the policy π of selecting e[1:K] from all candidates without replacement is:

π(e[1:K]|x) =
K∏

k=1

exp(sim(ek, x|{ei}i<k))∑
e∗∈C\{ei}i<k

exp(sim(e∗, x|{ei}i<k))
(4)

Direct preference optimization (DPO) [12] is one of the most popular RL methods for preference
ranking orders modeling. Instead of learning an explicit reward model, DPO reparameterizes the
reward function r using a closed-form expression with the optimal policy. By initializing policy
model πθ and reference model πref with Eq. (4), the reward function r is as follows

r(x, e[1:K]) = β log
πθ(e[1:K]|x)
πref(e[1:K]|x)

+ β logZ(x) (5)

where β controls the KL-divergence constraint on policy/reference models, and Z(x) is the partition
function [12]. By incorporating this reward formulation into the BradleyTerry ranking objective,
P (ew[1:K] > el[1:K]|x) = σ(r(x, ew[1:K])− r(x, el[1:K])), DPO expresses the probability of preference
data with the policy model, yielding the following loss for triple (x, ew[1:K], e

l
[1:K]):

LDPO(πθ;πref) = −E(x,ew
[1:K]

,el
[1:K]

)

[
log σ

(
β log

πθ(e
w
[1:K]|x)

πref(ew[1:K]|x)
− β log

πθ(e
l
[1:K]|x)

πref(el[1:K]|x)

)
,

]
(6)

where ew[1:K] and el[1:K] denote the preferred and dispreferred prompts conditioned by input x. During
training, we update the πθ while freezing πref . By plugging Eq. (4) into Eq. (6), we have:

LDPO(πθ;πref ) = −E(x,ew
[1:k]

,el
[1:k]

)∼D

[
log σ

(
β · fθ(x, ew[1:K])− β · fθ(x, el[1:K])− β · (γw − γl)

)]
fθ(x, e

j
[1:K]) =

K∑
k=1

[
simθ(e

j
k, x|{e

j
i}i<k)− simref(e

j
k, x|{e

j
i}i<k)

]
, j ∈ {w, l}

γj =

K∑
k=1

log

∑
e∗∈C\{eji}i<k

exp(simθ(e∗, x|{eji}i<k))∑
e∗∈C\{eji}i<k

exp(simref(e∗, x|{eji}i<k))
, j ∈ {w, l}

(7)

However, the estimation of the policy denominator (i.e., γ) necessitates repeated re-embedding of the
entire corpus for each sampling step. This representation results in a prohibitively high computational
overhead. To tackle this, we consider a relaxation by modeling the sequential relation among ek
within the same prompt e[1:K], motivated by left-to-right generation in autoregressive models.

Sequential LLM preference alignment. Under the sequential assumption, the ICL performance of
the prompt given retrieved ek is solely influenced by the performance of the retrieved ICEs, i.e., ei<k.
Therefore, the optimal ek ∈ e[1:K] can be explored sequentially:

max
{ek}K

k=1

SMCQ(eK ⊕ ...⊕ e1 ⊕ x, y) ⇒ {ek|max
ek

SMCQ(ek ⊕ ...⊕ e1 ⊕ x, y)}Kk=1 (8)

from which sequential preference data D̃ can be constructed from D as:

{(ewk ≻ elk)|ek−1 ⊕ ...⊕ x}Kk=2 ∪ {(ew1 ≻ el1)|x} = {(ewk ≻ elk)|x̃k−1}Kk=1 (9)
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where the conditional term is abbreviated as x̃k−1. Based on this, the policy can be factorized
sequentially into π(e[1:K]|x) =

∏K
k=1 π(ek|x̃k−1). Here, π(ek|x̃k−1) is as follows:

π(ek|x̃k−1) =
exp(sim(ek, x̃k−1))∑

e∗∈C\{ei}i<k
exp(sim(e∗, x̃k−1))

(10)

by plugging Eq. (10) into Eq. (6), we obtain same form as Eq. (7) with γw − γl = 0:

LSE-DPO(πθ;πref ) = −E(x̃k−1,ewk ,elk)∼D̃
[
log σ

(
β · fθ(x̃k−1, e

w
k )− β · fθ(x̃k−1, e

l
k)− β · 0

)]
,

fθ(x̃k−1, e
j
k) = simθ(e

j
k, x̃k−1)− simref(e

j
k, x̃k−1), j ∈ {w, l}

(11)

The new objective function is tractable by implicitly considering the global partition function (i.e.,
the denominator in Eq. (10)). Training signals (e.g., ewk ,elk) can be readily generated from scored data.
We train the retriever on D̃ with Eq. (11). The resulting retriever can discern the preferred ICEs for
varying context input. Note that the partial order learned by our bi-encoder satisfies the transitivity: if
ea ≻ eb|x and eb ≻ ec|x, then ea ≻ ec|x, ensuring our retriever is ranking-informative. The proof of
the transitivity can be found in Appendices.

4 Experiments

We take the SOTA method Se2 [13] as our base, which is a classification-based method, and implement
SeDPO on top of it. We first compare the ICL performance with SOTA retrievers (main results);
validate key components in SeDPO (ablation); then provide extra experiments for deeper analysis.

4.1 Experimental settings

Task and dataset. We use a total of 9 tasks across 4 distinct categories, including Paraphrase:
MRPC [45], PAWS [46], QQP [47]; Coreference: WSC [48]; Reading: MultiRC [49], BoolQ [50],
AGNews [51]; NLI: MNLI-m/mm [52]. The preprocessing and evaluation for all datasets are the
same as Se2. The description of each dataset is provided in the appendices.

Implementation details. For fair comparison, we follow the hyperparameter setting of Se2 and use
GPT-Neo-2.7B [53] as the scoring and inference LLM for most of the experiments. The encoders
in retriever model are initialized with "BERT-base-uncased" [43]. The shot number K = 3. We set
T = 20, ensuring that D̃ is sourced from the same training data for fairness; retriever is fine-tuned
for 6 epochs on each category, the best checkpoint is chosen based on retrieval accuracy of validation
set, and evaluated using task-specific metric on the test set. Refer to appendices for more details.

Additionally, Se2 incorporates two data augmentation techniques: (1) positive chosen — Se2 reserves
only the data where the selected representative examples can guide LLM in correctly predicting; (2)
in-batch rejection — in each training batch, the negative sample set for each input is extended with
examples from other inputs for diversity. Following Se2, we reserve the data where ew guides LLM
in correctly predicting; for each input, the rejected instance is uniformly sampled from combined set
of original el and examples from other inputs. We analyse the techniques in ablation study.

Baselines. All model comparisons are fair using the same size, as detailed in the appendices. We
repeat each algorithm 10 times and report the average performance. The off-the-shelf baselines
include: Random involves sampling K demonstrations randomly; BM25 [21] is the commonly used
sparse retriever that finds exemplars based on textual similarity; SBERT [23] is a dense retriever by
computing sentence embedding, we take "paraphrase-mpnet-base-v2" as its encoder.

For fair comparison, we re-trained the learning-based baselines aligning our task settings (e.g., with
the same scored dataset): UPRISE [29] estimate the usefulness of each example separately; Se2

[13] improves upon UPRISE by sequentially retrieving representative examples, making it the most
competitive and accessible alternative for comparison; UDR [35] uses LambdaRank loss to inject
ranking information, while estimating the usefulness of each example separately. We also study the
integration of UDR’s LambdaRank loss with Se2 in the ablation experiments.
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Table 1: Main results on various tasks. The best results and the second-best are highlighted. The
Avg. of all metrics for tasks within the same category with significant improvements is marked by ↑.

Paraphrase Coreference
MRPC PAWS QQP Avg. WSC

acc f1 acc acc f1 acc/Avg.
Zeroshot 46.1±0.0 45.3±0.0 51.8±0.0 48.4±0.0 42.1±0.0 46.7±0.0 59.6±0.0
Random 66.8±3.0 79.5±4.1 50.1±3.8 40.6±4.8 50.9±7.8 57.6±3.8 48.3±8.2
BM25 57.8±0.0 69.1±0.0 48.9±0.0 54.8±0.0 55.4±0.0 57.2±0.0 52.4±0.0
SBERT 56.4±0.0 66.9±0.0 49.4±0.0 51.2±0.0 56.2±0.0 56.0±0.0 46.2±0.0
UDR 65.9±4.6 75.4±3.5 51.8±1.2 74.1±1.9 67.9±2.4 67.0±1.2 52.0±4.7
UPRISE 74.0±0.8 83.3±0.1 49.1±0.0 71.0±1.0 69.8±0.1 69.4±0.2 46.5±2.2
Se2 77.6±0.4 85.4±0.3 54.7±0.1 75.5±0.1 72.8±0.0 73.2±0.2 55.1±0.9

SeDPO 77.9±0.9 85.6±0.2 73.0±2.9 77.6±0.6 75.0±0.2 77.9±0.6↑ 62.5±0.2↑

Reading Natural Language Inference (NLI)
MultiRC BoolQ AGNews Avg. MNLI-m MNLI-mm Avg.f1 acc acc acc acc

Zeroshot 57.1±0.0 54.6±0.0 38.4±0.0 50.0±0.0 35.2±0.0 36.4±0.0 35.8±0.0
Random 57.7±2.5 54.8±6.7 25.8±1.1 46.1±1.2 34.2±3.0 34.9±3.9 34.6±1.6
BM25 46.5±0.0 60.3±0.0 81.7±0.0 62.8±0.0 35.3±0.0 35.6±0.0 35.5±0.0
SBERT 49.3±0.0 58.1±0.0 84.7±0.0 64.0±0.0 37.3±0.0 37.3±0.0 37.3±0.0
UDR 55.3±3.1 54.6±1.9 88.5±1.0 66.1±0.9 62.7±1.5 65.0±1.3 63.8±1.4
UPRISE 55.4±0.2 61.5±0.1 90.6±0.8 69.2±0.1 68.5±0.1 70.3±0.3 69.4±0.2
Se2 52.1±2.3 63.6±0.2 90.8±0.3 68.8±0.7 69.4±0.2 70.4±0.1 69.9±0.2

SeDPO 60.3±0.4 64.6±1.7 91.0±0.2 72.0±0.6↑ 70.6±0.1 72.0±0.3 71.3±0.2↑

4.2 Main results

Table 1 details the experimental results on MCQ tasks, where generative LLMs are known to need
improvement [29]. On each task, we mark the best results in bold and underline the second-best.
The Avg. column represents the mean performance for each category, with significant improvements
marked by ↑ (confidence level is 99%) over the best alternative. SeDPO outperforms all other methods
in all categories with an avg improvement of up to 4.7%, and we also have several findings.

First, random sampling does not lead to sizable gains compared to zeroshot. In contrast, BM25 and
SBERT have a significant gain over random sampling and zeroshot. This demonstrates the necessity
of providing related examples for LLMs in downstream tasks. In addition, finetuning-based retrievers
perform better than off-the-shelf retrievers, highlighting the effectiveness of using LLM feedback.

Second, among the finetuning-based retrievers, Se2 outperforms UPRISE by using sequential rela-
tionships between examples, showing the importance of capturing sequential relationships between
examples. Though UDR considers local ranking regularization, the performance gain is limited on
average compared to Se2. In particular, our proposed SeDPO achieves the best performance in all
categories, significantly exceeding Se2 by at least 1.4% to a maximum of 7.4%. This demonstrates
that learning preference orders rather than the representative examples, significantly enhances the
ICL performance on MCQ tasks and complements previous advancements.

Third, for downstream tasks such as PAWS, WSC, and MultiRC, SeDPO achieves a substantial
improvement of up to 18.3%. We speculate that retrievers trained to learn representative patterns fail
to capture the true preferences of LLMs on challenging data, as they show no significant improvement
compared to zero-shot. Particularly, Se2 underperforms random selection in both MultiRC and WSC
tasks, indicating that these tasks require the capture of more diverse query-dependent ICE patterns.
Se2 learns from top-scored ICEs, thus insufficient to generalize to test input. In contrast, SeDPO
consistently outperforms random selection by 2.9% to 3.9% and surpasses Se2 by 7.4% to 8.2%. This
demonstrates the superiority of our proposal in challenging tasks.

4.3 Ablation studies

We compare our original framework with its variants altering each time a different component.
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Table 2: Ablation results on Paraphrase task
using GPT-Neo-2.7B, trained on 3-shot.

Paraphrase
SeDPO (β = 0.02) 77.9
w/o positive chosen 77.9
w/ top-1 chosen 70.8
w/o in-batch rejection 73.9
w/ random preference 57.6
w/ LambdaRank (UDR) 72.9
w/ RoBERTa 85.7
SeDPO (β = 0.02) ◦ Se2 79.0
Se2 ◦ SeDPO (β = 0.02) 74.8

Figure 3: Performance of SeDPO on Paraphrase
category using GPT-Neo-2.7B with different β.
The dashed line represents the results of Se2.

Table 3: The average textual/semantic diversity of selected ICEs, as well as the average performance
when the input order of ICEs is randomized. We take the main results on Paraphrase as our base.

SeDPO Se2 UPRISE UDR SBERT BM25 Random
Textual Diversity 53.3% 49.0% 46.7% 54.3% 49.7% 46.0% 61.4%

Semantic Diversity 40.7% 39.0% 37.3% 40.3% 25.3% 29.0% 46.0%

Random order (Best of 5) 78.2% 73.5% 70.9% 68.4% 57.3% 58.1% -
Random order (Worst of 5) 77.1% 72.5% 68.6% 66.3% 55.1% 57.0% -

Complementary strength. We test the complementary strength of SeDPO and Se2. In Table 2,
SeDPO (β=0.02) ◦ Se2 denotes initializing the retriever’s weights of Se2 with weights of trained
SeDPO, and vice versa. Training Se2 model using SeDPO’s trained weights can enhance ICL
performance. We surmise that the greedy data construction may not be globally optimal for fully
learning preference ranking order, there is still room for improvement. Conversely, initializing
SeDPO with Se2’s weights leads to suboptimal results. This asymmetry likely arises from SeDPO’s
inherent KL-divergence constraint, which preserves the retriever’s pretrained knowledge base. Se2

may overfit to top-scored, hindering SeDPO’s ability to use the retriever’s pretrained knowledge.

Effect of components. As shown in Table 2, replacing our original preference data with randomly
selected pairs of the same size led to poor results (w/ random preference). Since T ≪

(
L
2

)
, random

local observations struggle to learn reliable partial orderings. Furthermore, using local representative
examples (w/ top-1 chosen) as the only chosen in preference data and pairing them randomly with
bottom-T examples, while performing better than random selection, still falls short of our original
design. This demonstrates the effectiveness of reserving diverse (ew, el) with a larger score margin.

Notably, we also investigate the impact of the two data augmentation techniques used in Se2 (detailed
in Sec. 4.1). The positive chosen does not enhance our results, indicating that learning orders rely
more on the discrepancy between chosen/rejected samples rather than the absolute quality of the
chosen ones. In contrast, in-batch rejection increases data diversity and improves our results by 4%.

Influence of embeddings. This paper uses “BERT-base-uncased" as the encoder model for fair
comparison. Nowadays there are many better text embedding models available. To further show the
influence of the embeddings, we replaced the retriever backbone of SeDPO with “RoBERTa-base"
[54], which is known to outperform “BERT-base-uncased" [43] across a range of NLP tasks. The
results are shown as w/ RoBERTa in Table 2, SeDPO benefits from stronger embeddings as expected.

Diversity of retrieved examples. Table 3 presents the diversity metrics corresponding to the main
results in Table 1, where higher values indicate lower query-similarity and a richer context of
retrieved ICEs. Both SeDPO and UDR achieve high diversity in selected ICEs, exceeding other
retrievers (except random) by at least 3.6%/1.3% in textual/semantic diversity. This demonstrates that
incorporating ranking signals enhances diversity. The poor ICL performance of randomly selected
ICEs highlights the importance of selecting relevant ICEs. In addition, though UDR’s diversity
is comparable to SeDPO’s, its ICL performance lags behind Se2 and UPRISE. This indicates that
SeDPO better trades off diversity with ICL utility and successfully retrieves diverse yet useful ICEs.
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Table 4: Transferability on shot number and model size. The average performance of Paraphrase.
Inference Model Method 1-shot 3-shot 6-shot 9-shot 12-shot 15-shot Average

GPT-2-XL-1.5B
(0-shot=39.6)

BM25 57.6 58.5 58.8 58.7 59.3 60.1 58.8
SBERT 57.9 57.5 59.0 59.6 58.6 58.3 58.5
UPRISE 69.2 69.4 69 .8 69.8 70.0 70.2 69.7

Se2 73.9 72.9 72.9 72.8 72.8 72.7 73.0
SeDPO 75.0 78.9 79.5 79.2 79.0 79.2 78.5

GPT-Neo-2.7B
(0-shot=46.7)

BM25 57.1 57.2 58.9 59.5 59.0 59.4 58.5
SBERT 56.6 56.0 59.4 58.9 59.8 58.4 58.2
UPRISE 69.4 69.7 69.5 69.2 69.2 69.3 69.4

Se2 73.5 73.2 73.1 73.0 72.8 72.6 73.0
SeDPO 77.6 77.9 78.0 77.9 78.2 78.1 78.0

Llama3-8B-Instruct
(0-shot=56.4)

BM25 68.6 73.2 74.7 75.1 75.6 76.7 74.0
SBERT 68.3 73.0 73.4 75.1 75.4 76.1 73.5
UPRISE 70.9 75.3 76.4 76.6 76.9 77.0 75.5

Se2 71.9 76.7 78.0 78.0 77.9 77.9 76.7
SeDPO 71.9 77.4 78.5 79.3 80.2 80.3 77.9

Llama3.3-70B
(0-shot=67.6)

BM25 78.4 80.7 82.2 81.7 81.8 82.2 81.2
SBERT 78.7 80.3 81.2 81.7 81.7 82.7 81.1
UPRISE 77.3 80.2 81.3 80.5 80.8 81.3 80.2

Se2 77.9 81.0 82.0 82.2 81.9 81.9 81.1
SeDPO 78.6 81.0 82.3 82.9 83.2 83.2 81.9

Impact of ICE ordering. We empirically analyze the impact of randomizing the input order of
ICE on paraphrase performance. The results in Table 3 suggest that randomizing the ICE order
exhibits limited potential for enhancing sequential approaches. We attribute this to that SeDPO and
Se2 already optimize the input order of ICEs to an extent by sequential example selection.

Impact of β. Table 3 shows the Paraphrase performance of SeDPO using GPT-Neo-2.7B with
different β. Too large or too small β can lead to a dominant or negligible constraint of KL divergence,
resulting in performance degradation. SeDPO shows promising improvements when β ranges from
0.01 to 0.1, so we tune β between 0.001 and 2 across different categories.

Impact of T . Table 12 in Appendices shows the extra ablation results for different T , following the
setup of Table 2. As T increases, the performance of SEDPO improves because a broader preference
ranking is learned. However, when T is too large, the performance gain decreases due to more
low-confidence LLM rankings, leading to the same conclusion as in Table 2 (w/ random preference).

4.4 Analysis

Transferability. As LLM scales, aligning the LLM preference under different shot numbers K
of ICEs is time-consuming and resource-intensive. We thus explore the effectiveness of retrievers,
as LLMs and example numbers vary. Specifically, in our main experiments (Table 1), we trained
retrievers for each category using 3-shot data and GPT-Neo-2.7B. We then evaluated these retrievers
in unseen inference settings, where the K varied from 1 to 15, and the inference LLMs included
GPT-2-XL [55], GPT-Neo-2.7B, Llama3-8B-Instruct and Llama3.3-70B [2]. Table 4 illustrates that
SeDPO consistently outperforms baseline retrievers in all settings. Notably, though SeDPO is trained
on 3-shot, its performance improves as the K increases and significantly outperforms 0-shot by at
least 10% on all LLMs. We also find that as the model size of LLMs increases, the gap between
different ICL methods decreases. This indicates that larger LLMs are smarter and can reason using
suboptimal examples; on the other hand, smaller LLMs (not that smart) rely more on high-quality
examples, as is also mentioned in [56]. However, the in-context examples provided by SeDPO are
useful for both small and large LLMs, demonstrating strong transferability.

Math inference. We compare SeDPO and Se2 with several reasoning-focused retrievers [57, 58, 28]
on AUQA [59], a MCQ task requiring math inference. Table 9 in Appendices shows that SeDPO
outperforms Se2, aligning with our main discovery. Though RGER [57] is built for reasoning-focused
tasks, SeDPO surpasses RGER [57] without being geared toward reasoning capabilities.

More in-depth analysis. To further study the performance boundaries of SeDPO, we provide extra
results in Appendices, including 0-shot performance on human-labeled data, impact of preference
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Figure 4: Two cases on Paraphrase where SeDPO helps LLM correctly infer, but Se2 does not.

dataset construction using various LLMs, detailed math inference, analysis of full list order, proof of
transitivity, cost of constructing training data, discussion of Eq. (2) in open-ended QA setting.

Case study. In Figure 4, we analyze two cases from the Paraphrase, to intuitively compare the
effectiveness of SeDPO and Se2. The answers of the examples are marked with underscores. Specifi-
cally, the task focuses on whether two sentences in the test input are synonymous. Se2’s examples
emphasize surface patterns: in the left case, the two sentences have similar word compositions; in the
right case, there are changes in percentage numbers. In contrast, SeDPO captures the task-related
nuances preferred by LLMs: it selects examples based on the extent of difference between the two
sentences and marginalizes causal information using broader contexts such as historical, legal, and
social. This demonstrates how learning preference ranking orders gives a broader causal relationship
between examples, which improves the ICL performance. More cases can be found in the appendices.

5 Conclusion

We considered learning to rank for in-context example retrieval, introducing SeDPO, a simple yet
effective method. Unlike dominant methods that focus on representative examples, SeDPO captures
the global preference orders through a pairwise ranking formulation. We effectively address the issue
that classification-based retrievers poorly capture broader utility. Extensive experiments demonstrate
our superiority. Additional experiments, discussions, and proofs appear in the Appendices.

Limitations. Our research focuses on improving retriever training but shares existing frameworks’
structural limitations. First, we mainly use GPT-Neo-2.7B for fair comparison, where shot number
analysis is constrained by sequence length; this can be improved by recent input/prompt compression
[60]. Second, results are affected by inherent biases [61] in retriever models and LLMs, requiring fair
and interpretable strategies (a promising direction). Third, permutation-based example retrieval is
underexplored. Notably, SeDPO needs dominant preference identification to reduce computational
costs and redundant interference; while clear for MCQ tasks, open-ended question challenges remain.

Broader Impacts. Learning-to-rank for ICE retrieval boosts LLM’s ICL performance but carries
negative societal risks. Without safeguards, it may retrieve/prioritize biased, misleading, or harmful
examples—reinforcing unfair decisions (e.g., employment/legal consultation) or spreading disinfor-
mation—and could be misused to get adversarial examples manipulating LLMs. Mitigation requires
rigorous fairness audits, retrieved example filters, and controlled access for high-stakes deployments.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Proofs related to our theoretical results can be found in the supplemental
material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce our main results can be found in the
"Experiments" section or the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data, code, and instructions are all available in the supplemental material. We
will open-source all materials when the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in the "Experiments" section; more
details can be found in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the statistical significance of the main comparison in the "Experi-
ments" section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Full information on the computer resources is available in the supplemental
materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully followed the Ethics Guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We mention the impacts of the work in "Conclusion" section and provide more
details in the appendices.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We conduct experiments using compliant released data/models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to the supplemental materials.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the assets introduced in the paper in the supplemental materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the usage of LLMs in experiments and provide more details in
appendices.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

.1 Datasets details

• MRPC: A paraphrase task with 3,668 training examples and 408 test examples, evaluated
using Accuracy and F1.

• PAWS: A paraphrase task with 49,401 training examples and 8,000 test examples, evaluated
using Accuracy.

• QQP: A paraphrase task with 363,846 training examples and 40,430 test examples, evaluated
using Accuracy and F1.

• WSC: A coreference task with 554 training examples and 104 test examples, evaluated
using Accuracy.

• MultiRC: A reading comprehension task with 27,243 training examples and 4,848 test
examples, evaluated using F1.

• BoolQ: A reading comprehension task with 9,427 training examples and 3,270 test examples,
evaluated using Accuracy.

• AGNews: A reading comprehension task with 120,000 training examples and 7,600 test
examples, evaluated using Accuracy.

• MNLI-m/mm: A natural language inference task with 392,702 training examples and
9,815/9,832 test examples for m/mm, evaluated using Accuracy.

We list the detailed datasets’ statistical information above. To convert datasets into natural language
instructions, we follow previous practice [13] using the instruction template of FLAN [62]. Each task
dataset corresponds to approximately seven templates. All datasets are publicly available under open
licenses (e.g., CC-BY, CC-BY-SA, or research-only terms). Datasets are all for MCQ tasks and are
widely used in relevant work without offensive content, which is in line with our purpose of use.

.2 Model details

• BERT-base-uncased has approximately 110 million parameters and is released under the
Apache License 2.0.

• GPT-Neo-2.7B consists of 2.7 billion parameters and is distributed under the MIT License.
• Llama3-8B-Instruct features 8 billion parameters and is licensed under the Meta Llama 3

Community License.
• Llama3.3-70B contains 70 billion parameters and is also governed by the Meta Llama 3

Community License.

The documentation for the artifacts is publicly available, refer to their citations in main paper.

.3 Implementation details

Table 5 lists the overall hyperparameters. For fair comparison, we follow the hyperparameter setting
of Se2: we use GPT-Neo-2.7B [53] as the scoring and inference LLM for most experiments; both
encoders were initialized with "BERT-base-uncased" [43]; up to 10k data points are randomly selected
for each task to construct the training data and example pool for each category while maintaining class
balance in classification tasks; sample size L is set to 50 by default, depending on the configuration of
Se2; the shot number K=3; retriever is fine-tuned for 6 epochs on each category, the best checkpoint
is chosen based on retrieval accuracy using the validation set, and evaluated using task-specific metric
on the test set. For the hyperparameters of SeDPO, we set T=20 and ensure that our preference data
are sourced from the training data of Se2 for data fairness. β takes values between 0.001 and 2.

Number of samples per batch. Note that in mini-batch training, for each top-scored positive example
considered by Se2, it is necessary to simultaneously consider T low-scored negative examples and
T negative examples randomly sampled from the corpus, as shown in parentheses of # of samples
per batch for Se2 in Table 5. SeDPO generates T positive and negative example pairs for each input,
but each positive example only needs to consider one negative example, as shown in parentheses of
the number of samples per batch for SeDPO in Table 5. We trained the retriever with 8 threads in a
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Table 5: Hyperparameter settings.
Hyperparameter Assignment Hyperparameter Assignment
shot-number 3 Max sequence length 512 for retriever
Optimizer Adam 2048 for LLMs
Number of epochs 6 per GPU Max learning rate 1e-5
Preference β > 0.001 # of samples per batch for SeDPO 8*32*(1+1)

< 2 # of samples per batch for Se2 1*32*(1+2*T )
Adam epsilon 1e-8 Warmup steps 1000
Adam beta weights 0.9, 0.999 Learning rate decay linear
Weight decay 0.0 Learning rate scheduler warmup linear

data-distributed manner on 8*A100-80GB. To speed up the training process of Se2, we considered
32 positive examples in each mini-batch, along with their dependent negative examples, resulting
in a total of 32*(1+2*T ) examples used per mini-batch. Since SeDPO needs to allocate additional
memory to the reference model, we only consider using 8*32*(1+1) examples per mini-batch in
SeDPO. The number of samples per batch can be adjusted according to the experimental environment.

Since the training algorithm does not alter the model architecture, the total number of parameters
remains 220M, consistent with Se2. Briefly put, our design is compatible with existing fine-tuning-
based retrievers using DPR[27] or its sequential version, no further inference or data load is introduced.
SeDPO leaves the original framework’s token flux unchanged [13], each task takes about 7/9 hours in
the scoring/training phase. To allay concerns that the improved ICL performance might stem from
differences in backbone models, we detail settings of related methods in Table 6 for reference only.

Table 6: The setting of the related methods.

Finetuned Retriever (Number of Parameters) Scoring LLM
BM25 × × ×
SBERT × paraphrase-mpnet-base-v2 (1*109) ×
UPRISE ✓ 2*BERT-based-uncased (2*110M) GPT-Neo-2.7B
Se2 ✓ 2*BERT-based-uncased (2*110M) GPT-Neo-2.7B
SeDPO ✓ 2*BERT-based-uncased (2*110M) GPT-Neo-2.7B

.4 Diversity calculation

Textual diversity in Table 3 is measured by Levenshtein Edit distance:

divtextual(s1, s2) =
dist(s1, s2)

sum(len(s1), len(s2))
(12)

where s1 and s2 are two sentences, dist(·, ·) is Levenshtein Edit distance, len(·) denotes the number
of characters in sentence. Semantic diversity in Table 3 is measured by SBERT [23]:

divsemantic(s1, s2) =
1− cos(E(s1), E(s2))

2
(13)

where E(·) is the sentence embedding encoded by SBERT and cos(·, ·) is the cosine similarity
between two embeddings. We take "paraphrase-MiniLM-L6-v2" as the encoder.

Table 7: The co-reference performance using preference data generated by different LLMs.
GPT-Neo-2.7B Llama3-8B-Instruct DeepSeek-R1

SeDPO 62.5% 59.6% 53.8%
Se2 55.1% 54.8% 53.8%

.5 Analysis of preference labeling

It will be valuable to study the reliability of the preferences generated by artificial intelligence
and their impact on performance. To this end, we conduct comparative experiments on dataset
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construction using various LLMs in two settings: (a) To study the reliability of the likelihood-based
scoring method, we construct training data through Llama3-8B-Instruct [2] using Eq. (2). (b) To
compare with the prompt-engineer-based scoring method, we use DeepSeek-R1 as an agent to
simulate a human annotation pipeline following Table 8. The overall results on the co-reference task
are shown in Table 7. Specifically, to align with the results in Table 1, the test time LLM is still
GPT-Neo-2.7B. The generalization ability of the retriever on different test LLMs has been analyzed
in Table 4. The results show that imitating human sorting cannot super-enhance ICL performance.
We recommend using the output probability of the LLM for the desired answer to rank ICEs.

Table 8: Prompt used for R1 ranking.

Prompt
You have a question inside <question> tags, and you have a correct answer inside <answer> tags.
Your task is to determine which examples inside <demonstrations> tags are more conducive to
obtaining the correct answer to the question.

<question>{#question}<\question>
<answer>{#answer}<\answer>
<demonstrations>#demonstrations<\demonstrations>

In the tags, the examples are arranged in the form of "ID: example". You can sort all the examples
based on their usefulness and return their sorted IDs in the form of a number list that can be parsed
by JSON in the <output> tags. More useful examples should be at the front of the list.

Discussion on full list order. Recent advances [63] in Reinforcement Learning from Human
Feedback show the potential of modeling full list order. The policy in this kind of method requires
estimating the partition function by knowing all actions. For LLMs, the partition function means being
able to observe the entire vocabulary to model the probability of the next word, and this is achievable.
However, applying such a formulation to retrieval is substantially more challenging — it involves
re-embedding the entire corpus at each sampling step, which leads to prohibitive computational costs.
In contrast, SeDPO, the pairwise approach, circumvents this by implicitly estimating the partition
function, i.e., the denominator of retrieval policy in Eq. (4). This makes pairwise algorithm feasible.

Table 9: The performance on mathematical inference tasks.
Base LLM Base Shot Number AUQA-3shot AUQA-8shot

CEIL [28] Llama2-7B-chat 8 - 22.83
DQ-LoRe [58] Llama2-7B-chat 8 - 25.20
RGER [57] Llama2-7B-chat 8 - 25.59
Se2 GPT-Neo-2.7B 3 24.80 22.44
SeDPO GPT-Neo-2.7B 3 25.59 27.56

.6 Mathematical inference

The results on inference tasks are shown in Table 9. Due to variations in the language models, tasks,
instruction templates, training and testing datasets, as well as evaluation metrics used by different
methods, and due to limitations in computational resources, it is hard to include all related work in
the comparison. So we also collected the settings and reported performance of [57] for reference only.
Note that only the AUQA [59] task adopted in RGER [57] belongs to MCQ and is compatible with
our scoring framework. The results show SeDPO still outperforms Se2 on inference tasks, aligning
with our main discovery. Notably, though RGER is explicitly built for reasoning-focused tasks,
SeDPO achieves comparable effectiveness without being geared toward reasoning capabilities.

.7 0-shot retrieval performance

BEIR [64] is a robust and heterogeneous evaluation benchmark for information retrieval, aiming
to assess the 0-shot retrieval capabilities on human-labeled document of retrieval models. We
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Table 10: The zero-shot retrieval performance on tasks of BEIR.
webis-touche2020 fiqa scidocs arguana nq Avg.

DPR-BERT 0.0000 0.0002 0.0025 0.0601 0.0012 0.0128
Se2 0.0000 0.0000 0.0032 0.0287 0.0010 0.0066
SeDPO 0.0000 0.0000 0.0032 0.0701 0.0013 0.0149

evaluate nDCG@10 following BEIR in Table 10. While both Se2 and SeDPO are fine-tuned on
DPR-BERT, they show no significant 0-shot retrieval gains, aligning with BEIR’s observation about
dense retrievers’ generalization limitations on human-labeled documents. Furthermore, as Table
3 analyzed, SeDPO and Se2’s task-preference specialization can compromise semantic similarity
modeling, which may be detrimental to content-similarity tasks in BEIR. Addressing this requires
strategies such as scaling and task-aware prompting, which presents a promising research direction.

.8 Extra analyse

Discussion of ϕLLM in open-ended QA setting. Our paper focused on MCQ setting, with theoretical
soundness. We also empirically analyze open-ended QA as follows. For open-ended QA, the set Y
becomes impractically large, making Eq. (2) intractable to compute. We have experimented with
sampling y values for Y directly from the model; however, the results were unsatisfactory. Unlike
MCQs, open-ended QA lacks a clear way to quantify and normalize the quality gap between good
and bad answers, making reliable supervision difficult.

Proof of transitivity. By the definition of ≻ (Section 3.2):

• If ea ≻ eb | x, then for all y ∈ Ygt, SMCQ(e
a ⊕ x, y) > SMCQ(e

b ⊕ x, y). (1)

• If eb ≻ ec | x, then for all y ∈ Ygt, SMCQ(e
b ⊕ x, y) > SMCQ(e

c ⊕ x, y). (2)

Note that SMCQ(·) is a scalar-valued function, and its outputs are real numbers. The ">" relation on
the real numbers is transitive: for any real numbers a, b, c, if a > b and b > c, then a > c.

Applying this transitivity to (1) and (2) for each y ∈ Ygt:

For all y ∈ Ygt, SMCQ(e
a⊕x, y) > SMCQ(e

b⊕x, y) and SMCQ(e
b⊕x, y) > SMCQ(e

c⊕x, y) implies
SMCQ(e

a ⊕ x, y) > SMCQ(e
c ⊕ x, y). (3)

By the definition of ≻ again, (3) implies ea ≻ ec | x. Thus, the relation ≻ is transitive.

Q.E.D.

Cost of constructing training data. We provide in Table 11 the average cost of constructing
preference data for all tasks. The scoring batch size is 10, using GPT-Neo-2.7B as the ICL model.
For each x, we only sample T = 20 preference pairs. This means the number of processed preference
pairs is less than the number of scored entries. For instance, on NLI, the total time for constructing
scored data is 794× greater than that for preference data:

Table 11: Cost of constructing training data.

Steps to construct trainset Speed
Score data (Se2) 0.0241 s/entry
Rank scored data (SeDPO) 0.0007 s/pair

Table 12: Impact of T

Method T=1 T=10 T=20 T=30
SeDPO (β=0.02) 66.1 74.5 77.9 79.9

.9 More case studies

In addition, we provide more interesting cases in Table 13. Various finetuning-based baselines of our
experiments are considered.

Table 13: More case studies on different tasks.
Task: Paraphrase (MRPC)
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Test Input: "And it’s going to be a wild ride," said Allan Hoffenblum, a Republican consultant.
"Now the rest is just mechanical," said Allan Hoffenblum, a Republican consultant. Please tell me if
the sentences above mean the same.
UPRISE:
Example1: His wife, who he married in a first ever space wedding by a space phone during his
lengthy mission, waited in Moscow. His wife Yekaterina Dmitriyeva, whom he married in a first
ever space wedding by a space phone during his daunting mission, was waiting for him in Moscow.
Please tell me if the sentences above mean the same. Yes.

Example2: The main change, said Jim Walton, CNN’s president, is a fundamental shift in the way
CNN collects its news. The main change, said CNN president Jim Walton, was a fundamental shift
in the way the network collected its news. Please tell me if the sentences above mean the same. Yes.

Example3: "There were," said board member and Nobel-prize winning Stanford physicist Douglas
Osheroff, "some extremely bad decisions." Board member Douglas Osheroff, a Nobel-prize winning
Stanford physicist, said: "There were some extremely bad decisions." Please tell me if the sentences
above mean the same. Yes.

Test Input Answer: Yes. ×
Se2:
Example1: The Nets and the Spurs are crossing new frontiers of offensive ineptitude while causing
their high-scoring American Basketball Association forefathers to cringe. The Nets and the San
Antonio Spurs are crossing new frontiers of offensive ineptitude while embarrassing their high-
scoring ABA forefathers. Please tell me if the sentences above mean the same. Yes.

Example2: The girl turned up late Sunday at a convenience store in East Palo Alto, about 30 miles
from her home. The girl turned up late Sunday night at an East Palo Alto convenience store about
30 miles from her home. Please tell me if the sentences above mean the same. Yes.

Example3: "There were," said board member and Nobel-prize winning Stanford physicist Douglas
Osheroff, "some extremely bad decisions." Board member Douglas Osheroff, a Nobel-prize winning
Stanford physicist, said: "There were some extremely bad decisions." Please tell me if the sentences
above mean the same. Yes.

Test Input Answer: Yes. ×
SeDPO:
Example1: He was sentenced in June to more than seven years in prison for securities fraud, perjury
and other crimes. He was sentenced to more than seven years in prison after pleading guilty to
charges including securities fraud. If the first sentence is true, is the second one also true? No.

Example2: He really left us with a smile on his face and no last words, daughter Linda Hope said.
"He really left us with a smile on his face and no last words...He gave us each a kiss and that was it."
she said. If the first sentence is true, is the second one also true? No.

Example3: This Palm OS smart phone is the last product the company will release before it becomes
a part of palmOne. This was almost certainly its last full quarter before the company becomes a part
of Palm. If the first sentence is true, is the second one also true? No.

Test Input Answer: No. ✓
Task: Paraphrase (QQP)
Test Input: What is teeth scaling? How is teeth scaling done? Do those questions have the same
meaning?
UPRISE:
Example1: How much time is needed to master Quantum Mechanics from scratch? How much time
is required to master Quantum mechanics from scratch? Do those questions have the same meaning?
Yes.

Example2: Why was the holocaust so slow? Why did the holocaust happen so slowly? Do those
questions have the same meaning? Yes.

Example3: Why can’t we make artificial blood? Why we can’t make artificial blood? Do those
questions have the same meaning? Yes.

Test Input Answer: Yes. ×
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Se2:
Example1: The best of 2016: Which are the best Bollywood movies in 2016? Which Bollywood
movie you like the most in 2016? Do those questions have the same meaning? Yes.

Example2: How does starving help to lose weight? How can starving yourself to lose weight
adversely affect your health? Do those questions have the same meaning? Yes.

Example3: Why are so few drugs with promising animal trials tested in humans? How much do
clinical trials for drugs cost? Do those questions have the same meaning? No.

Test Input Answer: Yes. ×
SeDPO:
Example1: Is PC gaming better than console gaming? Is PC gaming better? Please tell me if those
questions are the same. Yes.

Example2: Should people over 95 not be allowed to vote? Should people over 93 not be allowed to
vote? Please tell me if those questions are the same. Yes.

Example3: Which hp laptop is best for a graphic design/gamer? Which is best HP or Dell laptop?
Would you say that these questions are the same? No.

Test Input Answer: No. ✓
Task: Paraphrase (PAWS)
Test Input: Do these mean the same? Wilbur was born on 1 March 1921 in North Caldwell, New
Jersey and grew up in New York City. Wilbur was born in North Caldwell, New Jersey March 1,
1921, and grew up in New York City.
UPRISE:
Example1: Are these paraphrases? Born in Gosforth, Northumberland, he moved to the south as a
boy to Wiseton Estate, near Retford, Nottinghamshire, when his father found jobs there. Born in
Retford, Nottinghamshire, he moved as a boy to Wiseton Estate, near Gosforth, Northumberland,
when his father found jobs there. No.

Example2: Do these mean the same? J.David Spurlock was born on November 18, 1959 in Memphis,
Tennessee. He moved to Dallas, Texas in 1973. David Spurlock was born on 18 November 1959 in
Dallas, Texas, and moved to Memphis, Tennessee in 1973. No.

Example3: Do these mean the same? Joe was born in Somerville, Massachusetts on March 27, 1929
and grew up in Quincy, Massachusetts. Joe was born on March 27, 1929 in Quincy, Massachusetts,
where he grew up in Somerville, Massachusetts. No.

Test Input Answer: NO. ×
Se2:
Example1: Are these paraphrases? The following sound changes from Proto-Celtic to Welsh,
Cornish and Breton are summarised in the regular consonant table. The regular consonantal sound
changes from Proto-Celtic to Welsh, Cornish and Breton are summarised in the following table. No.

Example2: Do these two sentences from wikipedia have the same meaning? Kennell was born in
Colorado Springs, Colorado, and spent her early years between the Rockies and Dunedin, Florida.
Kennell was born in Dunedin, Florida, and spent her early years between the Rockies and Colorado
Springs, Colorado. No.

Example3: Do these two sentences from wikipedia have the same meaning? Robert Maass was born
in East Orange, New Jersey, to study German immigrants Hedwig and Clara Maass. Robert Maass
was born in East Orange, New Jersey, to German immigrants Hedwig and Clara Maass. Yes.

Test Input Answer: No. ×
SeDPO:
Example1: Do these two sentences from wikipedia have the same meaning? Several of these
names were chosen to correspond to their international equivalents in rough chess, and not as literal
translations of the Japanese names. These names were chosen to correspond to their international
counterparts in the rough chess and not as literal translations of Japanese names. Yes.
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Example2: Do these two sentences from wikipedia have the same meaning? Due to the results
obtained in the previous round, Kevin Gleason received + 30kg , Gianni Morbidelli + 20kg and Pepe
Oriola + 10kg. Due to the results of the previous round Kevin Gleason received + 30kg, Gianni
Morbidelli + 20kg and Pepe Oriola + 10kg. Yes.

Example3: Do these two sentences from wikipedia have the same meaning? When combined for
joint or coalition operations, it was known as a common or employed air operations centre for
coalition operations. When combined for joint or coalition operations, it was known as a joint or
employed air operations center for coalition operations. Yes.

Test Input Answer: Yes. ✓
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