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Abstract

We consider the problem of sequential recommendations, where at each step an1

agent proposes some slate of N distinct items to a user from a much larger catalog2

of sizeK >> N . The user has unknown preferences towards the recommendations3

and the agent takes sequential actions that optimise (in our case minimise) some4

user-related cost, with the help of Reinforcement Learning. The possible item5

combinations for a slate is
(
K
N

)
, an enormous number rendering value iteration6

methods intractable. We prove that the slate-MDP can actually be decomposed7

using just K item-related Q functions per state, which describe the problem in a8

more compact and efficient way. Based on this, we propose a novel model-free9

SARSA and Q-learning algorithm that performs N parallel iterations per step,10

without any prior user knowledge. We call this method SlateFree, i.e. free-of-11

slates, and we show numerically that it converges very fast to the exact optimum12

for arbitrary user profiles, and that it outperforms alternatives from the literature.13

1 Introduction14

In many real-life applications, an agent needs to optimally adapt to a random environment through the15

choice of multi-dimensional actions over time. A specific, common scenario is that of a personalised16

recommender system (RS), which should pick a set of N ≥ 1 items among a much larger corpus17

of size K >> N , given the user’s recent and past viewing history. An illustrative example of this18

challenge to solve the top-N recommendations problem is Google’s YouTube algorithm, where19

the current corpus contains several tens of billions of videos Goodrow [2021] and the number of20

recommended items per view may vary (based on scrolling) but in general involves N > 20 items. In21

such applications the group of N items recommended per step is often called a slate.22

As Shani et al. [2005] observed, the RS problem is essentially of sequential nature. The recommenda-23

tion of a specific slate at some point in time offers not only immediate gains if some recommended24

item is clicked, but can also generate future benefits by guiding the user towards a path of more25

interesting items as the user session evolves. Shani et al. [2005] formulated this problem within the26

framework of Markov Decision Processes (MDPs) (Puterman [1994]), and tried to solve it under27

strong assumptions of independence. Naturally, when the RS needs to learn unknown user prefer-28

ences, it can do so by observing user-item interactions over time, and the tools of Reinforcement29

Learning (RL) are most appropriate, see Taghipour et al. [2007] for an early effort.30

The optimal slate selection problem per step is in fact combinatorial: the user’s choice is affected by31

the combination (and possibly the order) of the items in the slate, not just their individual importance32

to the user Aouali et al. [2021]. In such control problems over long horizon, the challenge with33

slate actions is that the corresponding combinatorial action space is immense and the search for an34

optimal solution quickly becomes intractable. Even for a small catalog of size K = 100 items and a35
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recommendation slate of size N = 4, there are
(
100
4

)
≈ 4 million unordered slates as possible actions.36

Consequently, the number of slate actions in the YouTube example is astronomical.37

To tackle the dimensionality explosion in such value iteration algorithms, Ie et al. [2019] (motivated38

by previous work from Sunehag et al. [2015]) have shown that the slate-value function can be exactly39

decomposed into K individual Q item-values, per state. Such decomposition could actually render40

temporal-difference (TD) learning with slates tractable. However, this proposal is based on prior41

knowledge about the user behaviour given any slate and single item choice. In essence this is not42

a model-free algorithm. It can be implemented if either a user model is assumed, or if the user43

preference choice per slate is learned from history, which doubles the learning effort of RL and needs44

to keep in memory N
(
K
N

)
unknowns per user, one unknown per slate and per item choice.45

Our contribution. We introduce in this work a novel exact decomposition of the Q values for slates,46

into K individual item-Q values and propose a tractable TD-learning (SARSA- and Q-) algorithm,47

named here SlateFree, which allows to solve efficiently learning and control problems of arbitrary48

slate dimension N > 1 using value-iteration. The important difference compared to Ie et al. [2019] is49

that our decomposition is entirely model-free in the sense that it does not require any prior knowledge50

over the user behaviour, and it allows to include costs that depend on both state and action. The51

proposed decomposition without assuming any independence, simplifies Q-learning considerably:52

(i) It keeps K state-item Q functions per state in memory, instead of
(
K
N

)
, a massive reduction.53

(ii) The optimal slate in the exploitation consists of the N -out-of-K items with best item-Q function.54

The novel RL algorithm is based on definitions of state-item Q functions, item-costs and transitions.55

It performs N-parallel Q-updates per step, one per item included in the slate. This way, the relevance56

of an individual item is updated every time this is included in a slate. The method reminds of the57

independent learners in multi-agent systems, by Claus and Boutilier [1998], one agent per dimension.58

The SlateFree has considerable performance features. It can learn and take optimal actions over59

time for any unknown user behaviour. It is shown to be insensitive to the slate-size N , thus allowing60

to scale for arbitrary dimensions. The MDP decomposition is proved in this paper to hold under61

certain assumptions: (i) the slates are unordered sets of distinct items, and (ii) the user behaviour is62

Markovian, i.e. the user choice is based only on the current state and recommended slate. Numerical63

evaluations of the novel RL algorithm show empirically that it finds the optimum even when the cost64

is a function of both the state and the chosen action-slate, something not possible in other works.65

In Section 2 we introduce state-item values as marginal quantities and prove the decomposition of the66

Bellman equations in the MDP setting. In Section 3 we present the decomposed SARSA- and RL-67

algorithms, referred to from now on, jointly, as SlateFree. In Section 4 we show numerically the68

exactness of the solution compared to vanilla-RL for users with various preference behaviour and69

illustrate significant performance improvements against SlateQ in Ie et al. [2019]. We also illustrate70

how SlateFree converges for any type of user and the convergence speed does not depend on the71

size of the slate. We further illustrate how the algorithm behaves in situations where the cost is a72

function of both state and action-slate. The code is available on Google Colab SlateFree Authors73

[2022a] and here SlateFree Authors [2022b].74

Related literature. The established solution for static recommender systems is based on collaborative75

filtering, as in Deshpande and Karypis [2004] or matrix factorisation, as in Takács et al. [2008]. Since76

the problem is actually dynamic, Reinforcement Learning (Sutton and Barto [2018]) is at the moment77

widely applied to propose more effective or more diverse recommender systems (Karatzoglou et al.78

[2013], Rohde et al. [2018], Zhou et al. [2020], Warlop et al. [2018]). To overcome the curse of79

dimensionality in the action space a deep reinforcement learning approach is taken: Zheng et al.80

[2018] work with a value-based approach and approximate the Q-value by a neural network, whereas81

Liu et al. [2020b], Liu et al. [2020a] use an actor-critic architecture for policy-based opimisation,82

where the actor network outputs a continuous feature vector, which can be mapped to an item, thus83

avoiding the discrete formulation.84

RL problems with continuous and high-dimensional action spaces have been recently approached85

by policy iteration methods. Deterministic policy gradient by (Silver et al. [2014]) is shown to86

considerably outperform standard policy updates. This method was combined with an efficient87

mapping to discrete actions by Dulac-Arnold et al. [2015], so that problems like the search for top-N88

recommendations can be efficiently resolved. Chen et al. [2019] adapt the REINFORCE algorithm89

with reward independence assumptions. de Wiele et al. [2020] work with amortised inference to90
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maximise over a smaller subset of possible actions. Metz et al. [2017] propose an autoregressive91

network architecture to sequentially predict the action value for each action dimension, which requires92

manual ordering of the actions. Tavakoli et al. [2018] propose a neural architecture with many network93

branches, one for each action dimension. The special structure of slate-recommendations has given94

rise to problem specific solutions, like the one by Sunehag et al. [2015], who introduce a formulation95

that benefits from the fact that at each step the user chooses a single item, for a given action slate.96

Their approach cannot scale because it needs to keep in memory one value-function per slate. In a97

very interesting recent approach Ie et al. [2019] show how the slate-value function can be exactly98

decomposed into individual Q item-values and introduce the method SlateQ. They construct optimal99

slates from the individual item-values by solving a Linear Program (LP) per step. As mentioned, their100

decomposition is based on prior knowledge of user choice behaviour.101

2 Decomposition of slate-MDPs102

We first introduce the slate-MDP, defined as (S,A,P, C, λ) and describe the process for the special103

application of the recommender system. Time is slotted with current step t. The state St = s at time104

t will be here the currently viewed item, so the state-space S = K is the full item catalog of size K.105

But we can use more general states, e.g. the history of the last m-viewed items m > 1, so S 6= K.106

The action At = ω is an N -sized unordered slate of recommended items. The set of possible actions107

A is the set of all possible unordered N -sized slates, where in each slate ω ∈ A no item is duplicated.108

Here, “unordered” means that only the set of recommended items in the slate is important, not their109

order. The state transition function P : S ×A×S → [0, 1] is the probability, given the current state s110

and recommended slate ω, that the user moves to state s′, by either picking one of the recommended111

items, or rejecting them and selecting some item from the search bar. The general cost function112

is C : S × A → R and λ ∈ (0, 1) is the discount rate. The objective is to find an optimal policy113

π : S ×A → [0, 1] to minimise the expected cumulative discounted cost from any initial state s ∈ S ,114

which is the value-function of state s (alternatively one could work with rewards and maximisation)115

Vπ(s) = Eπ

[ ∞∑
k=0

λkct+k | St = s

]
. (1)

In the above, Eπ is the expectation under given policy π, the current time-step is t and the cost at116

future step t+ k is ct+k = c(St+k, At+k). The randomness is due to the user choice behaviour. We117

consider a stationary policy π, which is a distribution over actions given the current state. It does not118

depend on time t. This is a randomised policy in general,119

πs(ω) := Pπ [At = ω | St = s] , ω ∈ A(s). (2)
If the mass is concentrated on a single slate-action ω, the policy is called deterministic and we denote120

it by πds (or just d). Given a state s, it holds
∑
ω∈A(s) πs(ω) = 1. Observe that we introduced an121

action space A(s) per state s, because for our recommender application the currently viewed item s122

should not be included in the recommendation slate.123

The state-action function Qπ(s, ω) of pair (s, ω) ∈ S × A is the expected cumulative discounted124

cost, starting from state s, taking action ω and following policy π,125

Qπ(s, ω) = Eπ

[ ∞∑
k=0

λkct+k | St = s,At = ω

]
. (3)

From Sutton and Barto [2018] and Puterman [1994] we know that the state-value functions satisfy126

the recursive system of Bellman equations (just policy π evaluation here), ∀(s, ω) ∈ S ×A127

Qπ(s, ω) = c(s, ω) + λ
∑
s′∈S

P [s′|s, ω]
∑

ω′∈A(s′)

πs′(ω
′)Qπ(s

′, ω′) (4)

= c(s, ω) + λEs′ [Vπ(s′) | S = s,A(s) = ω] , (5)
where in the last equation we replaced with the value function in s′ because for stationary randomised128

policies it holds Vπ(s′) =
∑
ω′∈A(s′) πs′(ω

′)Qπ(s
′, ω′).129

The P [s′|s, ω] in (4) models the random user choice behaviour when visiting state s and exposed to130

slate ω, which is considered known in the MDP setting. Notice here, that the process is Markovian131

exactly because the user is Markovian, meaning that their choice is only based on the current state132

and action and not the past.133
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2.1 Item frequencies, transition probabilities, and state-item functions134

For the decomposition we need to introduce some new marginal quantities to shift the analysis from135

slates to items. Since the policy π is stationary and randomised, given state s it randomly recommends136

among feasible slates, each containing a different set of items. Obviously, the item j ∈ K can appear137

in several action-slates.138

Definition 1. The frequency of a recommended item j ∈ K at state s ∈ S , under policy π, is defined139

through the randomised probabilities of slate-actions in (2) as140

rπs,j := P[At = ω ∈ A(s; {j})|St = s] =
∑

ω∈A(s;{j})

Pπ[ω|s] =
∑

ω∈A(s)

πs(ω)1(j ∈ ω), (6)

where A(s; {j}) ⊆ A(s) is the set of actions at state s, that necessarily include item j. The indicator141

function 1(j ∈ ω) = 1 if j is included in the slate, otherwise 0. What we call “frequency” is in fact142

the probability to randomly select some slate-action that includes item j, when at state s. It holds,143 ∑
j∈K

rπs,j =
∑
j∈K

∑
ω∈A(s)

πs(ω)1(j ∈ ω) = N, ∀s ∈ S, (7)

where we use the fact that each slate contains N distinct items, i.e. there are no duplicates.144

Definition 2. The transition probability given item j inside the recommended slate is defined as145

Pπ[s′|s, j] := P[s′|s, ω ∈ A(s; {j})], ∀s ∈ S, ∀j ∈ K. (8)

For the transition probability given state s and some action including item j we prove three Properties:146

Property 1. The single-item transition probability depends on the policy π. It satisfies,147

Pπ[s′|s, j] =
∑

ω∈A(s)

P[s′|s, ω]Pπ[ω|s, j]1(j ∈ ω). (9)

Proof. We can write the slate as ω = (ω−j , j) which contains item j and ω−j are the remaining148

N − 1 entries. It holds due to conditioning, that149

P[s′|s, ω] = P[s′|s, (ω−j , j)] =
Pπ[s′, ω−j |s, j]
Pπ[ω−j |s, j]

=
Pπ[s′, ω|s, j]
Pπ[ω|s, j]

,

where the superscript π is included, because Pπ[ω|s, j] depends on the policy π. Using this expression,150 ∑
ω∈A(s;{j})

Pπ[s′, ω|s, j] =
∑

ω∈A(s;{j})

P[s′|s, ω]Pπ[ω|s, j].

Summing at the left-hand side over all ω that contain j, we get the marginal Pπ[s′|s, j].151

Property 2. The single-item transition probability is a marginal probability of P[s′|s, ω], and it holds152 ∑
ω∈A(s)

πs(ω)1(j ∈ ω)P[s′|s, ω] = rπs,jPπ[s′|s, j] ∀s ∈ S, ∀j ∈ K. (10)

Proof. It holds that πs(ω) := Pπ[ω|s]. We can use the conditional probability formula153 ∑
ω∈A(s)

πs(ω)1(j ∈ ω)P[s′|s, ω] =
∑

ω∈A(s)

P[s′, ω|s]1(j ∈ ω)

= P[s′, ω ∈ A(s; {j})|s] = P[s′|s, ω ∈ A(s; {j})] · P[ω ∈ A(s; {j})|s]
Def.2, Def.1

= Pπ[s′|s, j]rπs,j .
Property 3. If rπs,j > 0, then P[s′|s, j] is a probability mass function,

∑
s′∈S Pπ[s′|s, j] = 1.154

Proof. Using Definition 2 and Definition 1 we can write155 ∑
s′∈S

Pπ[s′|s, j] Def.2
=

∑
s′∈S

P[s′|s, ω ∈ A(s; {j})] =
∑
s′∈S

P[s′, ω ∈ A(s; {j})|s]
P[ω ∈ A(s; {j})|s]

=
1

P[ω ∈ A(s; {j})|s]
∑
s′∈S

∑
ω∈A(s)

1(j ∈ ω)P[s′, ω|s]

Def.1
=

1

rπs,j

∑
ω∈A(s)

πs(ω)1(j ∈ ω)
∑
s′∈S

P[s′|s, ω] = 1

rπs,j
rπs,j1.
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Definition 3. The marginal cost-item function cπ(s, j) that depends on policy π is defined as156

rπs,jc
π(s, j) :=

∑
ω∈A(s)

πs(ω)c(s, ω)1(j ∈ ω), ∀s ∈ S, ∀j ∈ K. (11)

In the special case that the cost is just a function of the current state, cπ(s, j) = c(s), ∀j ∈ K.157

Finally, we give the following special definition for the state-item function Qπ(s, j):158

Definition 4. The state-item function Qπ(s, j) is defined from the state-action functions Qπ(s, ω) as159

rπs,jQπ(s, j) :=
∑

ω∈A(s)

πs(ω)Qπ(s, ω)1(j ∈ ω) ∀s, j ∈ S. (12)

Notice that this definition is different from what would be the most natural one, i.e. to be the160

value-function starting from state s, and taking some initial slate-action that necessarily includes item161

j and following policy π. The Definition 4 is in fact a marginal quantity, i.e., the expectation over all162

state-value functions that include item j normalised by the frequency rπs,j > 0.163

Notice here that for items j such that rπs,j = 0, the state-item functions Qπ(s, j) are not well defined.164

We will see next that this is not actually a problem for the decomposition.165

2.2 Decomposed Bellman equations166

Theorem 1. [SlateFree-MDP] The Bellman equations in (4) for state-action functions with slates167

Qπ(s, ω), are equivalent to the following system of equations with state-item functions Qπ(s, j) from168

Def. 4, cost-item functions from Def. 3, and transition probability given some item j from Def. 2169

Qπ(s, j) = cπ(s, j) + λ
∑
s′∈S

Pπ[s′|s, j]

(
1

N

∑
k∈K

rπs′,kQπ(s
′, k)

)
, ∀s ∈ S, ∀j ∈ K. (13)

If the cost is a function of just the current state, we replace in the above by cπ(s, j) = c(s), so that170

the cost does not depend on the policy.171

Proof. We multiply both sides of (4) by πs(ω)1(j ∈ ω) and sum over all feasible slate-actions ω,172 ∑
ω∈A(s)

πs(ω)1(j ∈ ω)Qπ(s, ω) =
∑

ω∈A(s)

c(s, ω)πs(ω)1(j ∈ ω) +

+ λ
∑

ω∈A(s)

πs(ω)1(j ∈ ω)
∑
s′∈S

P[s′|s, ω]Vπ(s′).

Then, we replace the left-hand side by the function Definition 4, the first term of the right-hand side173

by the cost-item Definition 3 and in the second term we use Property 2, to find174

rπs,j

(
Qπ(s, j)− cπ(s, j)− λ

∑
s′∈S

Pπ[s′|s, j]Vπ(s′)

)
= 0. (14)

Now, use the equality Vπ(s′) =
∑
ω∈A(s′) πs′(ω)Qµ(s

′, ω), multiply it from both sides by 1(k ∈ ω)175

and sum over k ∈ K. We use the fact that the slate size is N and again Definition 4, so we get176 ∑
k∈K

Vπ(s
′)1(k ∈ ω) =

∑
k∈K

∑
ω∈A(s′)

πs′(ω)Qπ(s
′, ω)1(k ∈ ω)⇒ Vπ(s

′) =
1

N

∑
k∈K

rπs′,kQπ(s
′, k).

By replacing the above expression for Vπ(s′) in (14) we get the expression in (13), as long as rπs,j > 0177

for the (s, j) pair. In the case that rπs̃,` = 0 for some pair (s̃, `), notice that regardless of its value178

Qπ(s̃, `) <∞, it will always contribute rπs̃,`Qπ(s̃, `) = 0 when found at the right-hand side of (13),179

hence the pairs with zero frequencies do not affect the equations of others. For their own state-item180

value, any solution Qπ(s̃, `)− c(s̃)− λ
∑
s̃′∈S Pπ[s̃′|s̃, `]Vπ(s̃′) = κ <∞ satisfies (14), hence also181

the one for κ = 0. This way we result in the validity of (13) for any possible state-item pair.182
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2.3 Optimality equations183

We know from Puterman [1994, Prop.6.2.1] that the discounted MDPs always have a stationary184

deterministic optimal policy. We denote from now on deterministic policies by index d (we may omit185

π) and the optimal policy by d∗ (we may omit d). Then by definition,186

πds (ω) =

{
1, for a unique slate ωd(s) ∈ A(s)
0, ∀ω 6= ωd(s) and ω ∈ A(s) . (15)

A special case is when we follow the optimal deterministic policy, so that187

π∗s (ω) =

{
1, for ω∗(s) = argminω∈A(s)Qd∗(s, ω)
0, otherwise . (16)

When more than one action-slates have the minimum Q(s, ω) ties are broken arbitrarily. For the188

deterministic and optimal policies the value function starting from state s is equal to189

Vd(s) =
∑

ω∈A(s)

πds (ω)Qd(s, ω) = Qd(s, ω
d(s))

opt.⇒ Vd∗(s) = min
ω∈A(s)

Qd∗(s, ω). (17)

Theorem 2. [Optimal SlateFree-MDP] The Bellman optimality equations for slates are equivalent190

to the following system of equations with state-item functions from Def. 4, cost-item functions from191

Def. 3, and transition probability given some item j from Def. 2, under the optimal policy π = d∗192

Qd∗(s, j) = cd
∗
(s, j) + λ

∑
s′∈S

Pd
∗
[s′|s, j] min

`∈K
Qd∗(s

′, `), ∀s ∈ S, ∀j ∈ K (18)

and it holds Qd∗(s, j) = Vd∗(s), ∀j ∈ ω∗(s) inside the optimal slate. Also, cd
∗
(s, j) = cd(s, ω

∗(s))193

for j in the optimal slate. For ` /∈ ω∗(s) the cost c∗(s, `) can be any convex combination of the slate-194

costs c(s, ω), for ω ∈ A(s; {`}). For state-only dependent cost, we replace by cd
∗
(s, ω∗(s)) = c(s).195

Proof. For deterministic (and optimal) policies the quantities in Section 2.1 related to items become:196

1. Item-frequencies (from Definition 1)197

rds,j =

{
1, ∀j ∈ ωd(s)
0, otherwise . (19)

2. Transition probability (from Definition 2):198

Pd[s′|s, j] = P[s′|s, ωd(s)], ∀j ∈ ωd(s), (20)
meaning that the transition probability given some item in the slate, is equal to the transition199

probability given the whole information about the slate. 3. Cost – if it depends on the action ω (from200

Definition 3):201

cd(s, j) = cd(s, ω
d(s)), ∀j ∈ ωd(s) (21)

4. State-item function (from Definition 4):202

Qd(s, j) = Qd(s, ω
d(s)), ∀j ∈ ωd(s). (22)

In words, given state s, all items included in the deterministic (resp. optimal) slate have the same203

state-item function value, equal to that of the whole slate.204

Lemma 1. For any stationary policy d (and also the optimal d∗), it holds that Qd(s, j) = Vd(s),205

∀j ∈ ωd(s). Specifically for the optimal,206

Qd∗(s, j) = min
ω∈A(s)

Qd∗(s, ω), ∀j ∈ ω∗(s) (23)

Proof of Lemma 1. For stationary deterministic policies we have from (22) that Qd(s, j) =207

Qd(s, ω
d(s)), ∀j ∈ ωd(s). It also holds from (17) that Vd(s) = Qd(s, ω

d(s)).208

We now continue to the proof of Theorem 2. Applying the optimal deterministic policy to the state-209

action equations for item-frequencies from Theorem 1 (see formulation in 14) we get, (c∗ := cd
∗
)210

Qd∗(s, j) = c∗(s, j) + λ
∑
s′

Pd
∗
[s′|s, j]Vd∗(s′)

(17)
= c∗(s, j) + λ

∑
s′

Pd
∗
[s′|s, j] min

ω∈A(s)
Qd∗(s

′, ω).

From (23) in Lemma 1 it holds that Qd∗(s′, j) = Vd∗(s
′), ∀j ∈ ω∗(s′). Then, necessarily211

Qd∗(s
′, j) ≤ Qd∗(s

′, k), ∀k /∈ ω∗(s′), otherwise Vd∗(s′) would not be the optimal value. In212

other words, Vd∗(s′) = min`∈KQd∗(s
′, `). From (11) we get (21) c∗(s, j) = cd

∗
(s, ω∗(s)) for all213

j ∈ ω∗(s). For ` /∈ ω∗(s), we know that r∗s,` → 0 and πs(ω) → 0 for all ω ∈ A(s; {`}), so that214

from (11) c∗(s, `) can be any convex combination of the slate-costs c(s, ω), for ω ∈ A(s; {`}).215
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3 Decomposed SARSA and Q-learning for slate actions216

Consider a sequence of states, slate-actions and costs over discrete time-slots t = 1, 2, . . . as217

(S1 = s,A1 = ω, c1 = c(s), S2 = s′, A2 = ω′, c2 = c(s′), . . .). The transition from state S1 to218

S2 depends on the slate recommended by the agent, and the unknown user behaviour to select one219

of the items in the slate; the user is allowed to disregard the slate and select another item of their220

own preference. The vanilla SARSA Sutton and Barto [2018] is an on-policy TD(0) method, which221

updates the state-action values Q(st, ωt) as follows222

Q(st, ωt) = Q(st, ωt) + γ [c(st, ωt) + λQ(st+1, ωt+1)−Q(st, ωt)] . (24)
The slate-actions ωt+1 can follow the ε-greedy exploration policy. We denote it by πε; based on223

this, the greedy slate ω∗(s) that minimises Q(s, ω) is chosen with probability 1− ε and a uniformly224

random slate ω ∈ A(s) is chosen with probability ε. This implementation requires per state s ∈ S,225

all
(
K
N

)
combinations of Q-values stored in memory. Furthermore, all these combinations need to be226

traversed when searching for the minimum in the greedy step.227

SlateFree updates. We can use the decomposition of the Bellman equations in Theorem 1, to propose228

a SlateFree-SARSA policy. We remind that a state-action pair (s, ω) corresponds to N state-item229

pairs (s, j) one per j ∈ ω. The update can be written based on (13),230

[SlateFree− SARSA] For all N items in the slate j ∈ ωt :

Q(st, j) = Q(st, j) + γ

cε(st, j) + λ
1

N

∑
k∈ωt+1

Q(st+1, k)−Q(st, j)

 .(25)

For the ε-greedy policy, each time state st is visited, the transition to st+1 is sampled from the231

unknown transition probability Pε[st+1|st, j], which depends on user preferences, but also on the232

policy ε-greedy, which can change over time in the transient regime. The frequencies rεs′,k in (13)233

do not appear above, because the new action batch ωt+1 is a sample of the policy πε (and the234

frequencies rε). In fact it can be easily shown that
∑
k∈ωt+1

Q(st+1, k)/N is just a one-sample235

unbiased estimator of
∑
k∈K rs′,kQ(s′, k)/N . The cost cε(st, j) also depends on the ε-greedy; in the236

special case that it depends on the state only, we replace cε(st, j) = c(st), otherwise the cost per item237

will evolve over time and needs to be recalculated using Def. 3, keeping track of r̃ε, π̃ estimators.238

Similar to SARSA, we can introduce a decomposed version of the Q-learning algorithm (Watkins and239

Dayan [1992]), which is an off-policy TD(0) method, where the Q functions are updated based on240

the optimal action policy, although the actions may follow some other (say ε-greedy) policy. Then as241

above, we can use Theorem 2 to propose the updated step of the state-item functions following (18),242

[SlateFree− Q] For all N items in the slate j ∈ ωt :

Q(st, j) = Q(st, j) + γ

[
c(st, ωt) + λmin

`∈K
Q(st+1, `)−Q(st, j)

]
. (26)

In the special case that it depends on the state only, we replace by c(st, ωt) = c(st). The implemen-243

tation of SlateFree (both -SARSA and -Q variations) requires per state s at most K values stored244

in memory (if we avoid self-loops, then recommending the same item is not an option).245

Finding the best slate. In the exploitation phase of the ε-greedy policy, we need to decide which246

N -slate is optimal. We are given, however, for each state s, not the state-action values Q(s, ω) but247

rather the K state-item values Q(s, j). Since we are looking for a stationary deterministic optimal248

policy, then we can apply the results from Section 2.3. Specifically, we have proved in Lemma 1 that249

Qd∗(s, j) = minω∈A(s)Qd∗(s, ω), ∀s ∈ ω∗(s), meaning that all state-item values will be equal, for250

the items included in the optimal slate (or more generally in the slate of the deterministic policy).251

Hence, we need only select in the greedy phase, the N items with smallest Q(s, j) values, both in the252

-SARSA and -Q version of SlateFree.253

The update steps in (25) and (26) have important novelties compared to alternatives, as in e.g. Ie254

et al. [2019, eq.14, 15]. They are strictly model-free and do not need any prior knowledge over255

the environment. Also, costs that depend on both state and action are allowed. Hence, SlateFree256

uses N parallel updates to learn any stationary environment over time, using a more compact Q-257

function representation, compared to the non-decomposed vanilla-SARSA and Q-learning methods.258

Convergence to the optimal is empirically verified in practice, but yet not provably guaranteed, due to259

the dependence of the costs and transition probabilities per item in the learned policy.260
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4 Numerical evaluation261

In this section, we evaluate numerically the performance of SlateFree (both -Q and -SARSA262

variations), against two methods from the literature: (i) the standard Q-learning and SARSA tabular263

method (called Vanilla-Q and Vanilla-SARSA, where all possible
(
K
N

)
action-slate combinations are264

accounted for, each having its own Q-value per state; furthermore against (ii) the proposed in Ie265

et al. [2019] method SlateQ with greedy slate selection in exploitation phase. Our environment is266

a recommendation system where a user starts their viewing episode from a certain item, and the267

system recommends a slate of N (unordered) items, excluding the currently viewed item. Each268

episode has average length (1 − λ)−1 steps. The experience is repeated over Tepis ≥ 1 episodes.269

The great challenge is to test the SlateFree method on user behaviours whose solution needs to be270

combinatorially searched. We evaluate three such artificial user choice models:271

User-1 The user has a fixed retention probability α ∈ [0, 1] per step to select one of the N272

recommended items uniformly at random, and (1− α) probability to disregard the recom-273

mendations and select on their own for one of the K library items uniformly at random.274

User-2 The user has a set X of undesired items that they would never click on. Then, this behaviour275

is similar to user-1, with the difference that user-2 will choose either from the recommended276

items (with probability α), or from the whole library (with 1 − α) one item uniformly at277

random among all items, ignoring in both cases those items in set X .278

User-3 The user has a set Y of must-include global items. This user does not follow a retention279

probability α. Instead, they will select among the recommended items at random, as long as280

at least one item from Y is included in the recommendation slate.281

A. Small scenario. We first study a small size scenario with K = 10 and N = 4. The number of282

possible combinations per state is
(
K−1
N

)
= 126, where we exclude recommendation of the currently283

viewed item. With SlateFree we get a reduction in memory for the Q-table from 10 × 126 to284

10× 9. The costs per item are all high 20 + zi, where zi ∼ Uniform(0, 4), but there are four items285

with lower cost, namely c0 = 5 + z0, c1 = 0 + z1, c7 = 4 + z7 and c9 = 8 + z9 (remember it is a286

minimisation problem). The discount is fixed in all experiments to λ = 0.85. For user-1 and -2, the287

retention is α = 0.75. For user-2 the exclusion set X = {0, 1, 8}. For user-3 we select X = Y as288

in user-2. The learning rate is γ = 0.004 and the ε-greedy GLIE strategy has fixed ε = 0.05 for the289

exploration probability. We consider as number of episodes for the evaluation Tepis = 600K. Each290

episode is a walk of the user on the library of K items, with mean length (1− λ)−1 = 6, 67 views.291

The evaluation for the three types of users and Tepis = 600K is shown in Fig. 1 (TOP-row). We use292

on the x-axis logarithmic scale of episodes. The value per episode has high variance and so we smooth293

the results within a window of 200 episodes. SlateFree-Q and -SARSA converge for any user type294

in around 10K episodes, an order of magnitude faster than the Vanilla-Q and Vanilla-SARSA. Also,295

the average value after convergence is the same for the two methods, indicating that SlateFree296

converges to the optimal value function. Both SlateFree and SlateQ converge to the optimal value,297

but we will see this is not true for larger catalog and dimension instances. Our method shows faster298

and steeper convergence than SlateQ in all users, because SlateQ updates the item-Q values only for299

the single selected item, whereas SlateFree for all N items included in the slate.300

B. Larger Scenario. Next we evaluate the convergence in a more difficult scenario with K = 100301

and N = 10, which corresponds to
(
99
10

)
≈ 15 · 1012 combinations. This problem is not tractable for302

Vanilla-Q or Vanilla-SARSA. Hence, we only show results for SlateFree-Q, SlateFree-SARSA303

and SlateQ in Fig. 1 (BOTTOM-row). The value per episode has high variance and so we smooth304

the results within a window of 1000 episodes. Now, both SlateFree-Q and -SARSA can solve all305

three user cases within ≈ 500K episodes, whereas SlateQ seems to learn and improve over time, but306

cannot solve for any user, at least within the Tepis = 1M episodes.307

C. Insensitivity in N . Our evaluations show that the convergence time given some library size K308

becomes almost insensitive to the dimension size N . To illustrate this, we simulate user-3 for a309

catalog size K = 10 and various sizes of N ∈ {1, 2, 3, 4, 5}. The results are illustrated in Fig. 2310

(left). One can observe that surprisingly the slowest converging curve is for N = 1, whereas for311

the higher N almost all curves converge before Tepis = 10K. The reason for the poor convergence312

behaviour of N = 1 is probably due to the fact that each step in the episode contributes a single313

update of the state-item functions, whereas for N > 1 the multiple parallel updates accelerate the314
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Figure 1: (TOP-row) Value function user-1 (left), user-2 (centre), user-3 (right); library K = 10,
dimension N = 4, episodes 600K, methods: SlateFree-Q, SlateFree-SARSA, SlateQ, Vanilla-*.
(BOTTOM-row) Value function user-1 (left), user-2 (centre), user-3 (right); library K = 100,
dimension N = 10, episodes 1M , methods: SlateFree-Q, SlateFree-SARSA, and SlateQ.

Figure 2: (left) Insensitivity in N , (centre) Number of Q-updates, (right) Slate-dependent cost.

process considerably. This is the same reason why SlateFree-Q in Fig. 1 shows a steeper learning315

curve compared to SlateQ, where the latter updates a single state-item function per step.316

D. Effect of parallel updates. We investigate the role of N parallel updates in the convergence of the317

SlateFree-Q algorithm. More specifically, for user-1, and the small scenario K = 10 and N = 4318

we evaluate the algorithm using a different number of updates per step at each evaluation. Aside the319

proposed algorithm which updates all four items in the slate per step, in the others we allow three320

items per step, two items, and finally a single item to update. We plot our results in Fig. 2 (centre). We321

observe that the complete method with all four updates converges in 10K episodes already (shown in322

red). For three updates per step, the method seems to converge (green curve) to a value close to the323

optimum, albeit very slowly. For two and a single update (brown and pink curves) we observe that324

the method gradually improves over the episodes but even in 150K events it has not converged to the325

optimum. To conclude, the plot shows that it is necessary to do all N parallel updates per step for the326

method to converge to the best possible value, and fast.327

E. Dependence of cost on both state and action-slate. We study now how the performance of328

SlateFree is affected when the cost depends on both the current state and the entire action-slate329

c(st, ωt). Such an option is not supported by SlateQ Ie et al. [2019]. We now modify the cost so that330

a penalty = 42 is applied to all Q(st, j) where j ∈ ωt are the items participating in the recommended331

slate, whenever the user does not follow (rejects) the recommendation slate. Obviously this penalty is332

slate-dependent. We illustrate the performance of all methods in Fig. 2 (right). We observe that the333

decomposed SlateFree converges to the optimal solution for both -Q and -SARSA variations, same334

as Vanilla-Q and Vanilla-SARSA. SlateQ from Ie et al. [2019] fails to converge to the minimal value.335
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1. For all authors...439

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s440

contributions and scope? [Yes]441

(b) Did you describe the limitations of your work? [Yes] The limitations are described in442

lines 60-64 in page 2, Section 1. These include the necessary assumptions to prove the443

main theorems. In the simulations we show that the method performs in practice very444

well even when assumption (ii), related to cost, is not satisfied. The necessity of N445

parallel updates is described and illustrated in page 9, Section 4-D.446

(c) Did you discuss any potential negative societal impacts of your work? [No] The work447

is about the solution of a standard mathematical problem of Slate-MDPs and has both448

theoretical and practical flavour, but general applicability to various practical cases, not449

a specific one.450

(d) Have you read the ethics review guidelines and ensured that your paper conforms to451

them? [Yes]452

2. If you are including theoretical results...453

(a) Did you state the full set of assumptions of all theoretical results? [Yes] As mentioned454

above, these are given in lines 60-64 in page 2, Section 1. These assumptions are further455

repeated when necessary in the presentation of Theorems 1 and 2. In the simulations456

we show that the method performs in practice very well even when assumption (ii),457

related to cost, is not satisfied. We also argue about the necessity of N parallel updates.458

(b) Did you include complete proofs of all theoretical results? [Yes] The available 9 pages459

where sufficient to include all proofs.460

3. If you ran experiments...461

(a) Did you include the code, data, and instructions needed to reproduce the main ex-462

perimental results (either in the supplemental material or as a URL)? [Yes] The code463

is included as a URL in the references. Specifically, the code can be downloaded464

from Dropbox through reference SlateFree Authors [2022b] and can be used online in465

Google Colab SlateFree Authors [2022a]. It is the exact code that we used to produce466

all figures.467

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were468

chosen)? [Yes] All details and hyperparameters are explicitly stated in the Numerical469

Evaluation Section 4470

(c) Did you report error bars (e.g., with respect to the random seed after running exper-471

iments multiple times)? [No] The randomness in the initialization of the algorithm472

could be related to the initial value of the Q-matrix. We did not explicitly run many473

experiments with various initialisations, but we let this option available on the code.474

The aim is to identify whether and how fast our algorithm converges to the optimal475

policy compared to alternatives. Various initialisations could start closer or further476

away from the optimal solution, but this would hold for all policies/methods tested and477

the relative results would be similar to what we show.478

(d) Did you include the total amount of compute and the type of resources used (e.g., type479

of GPUs, internal cluster, or cloud provider)? [No] The experiments we perform are of480

small scale to validate the theory. We only used local CPUs and the x-axis of the plots481

are in "number of learning episodes", which is a measure of time.482

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...483

(a) If your work uses existing assets, did you cite the creators? [No] All code was developed484

by the authors.485

(b) Did you mention the license of the assets? [No]486

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]487

We include the code for the numerical evaluations as a URL on the paper references (for488

Dropbox SlateFree Authors [2022b] and for Google Colab SlateFree Authors [2022a])489

(d) Did you discuss whether and how consent was obtained from people whose data you’re490

using/curating? [No] Does not apply.491

(e) Did you discuss whether the data you are using/curating contains personally identifiable492

information or offensive content? [No] Data content is not relevant to our numerical493

evaluation.494
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5. If you used crowdsourcing or conducted research with human subjects...495

(a) Did you include the full text of instructions given to participants and screenshots, if496

applicable? [No] Does not apply.497

(b) Did you describe any potential participant risks, with links to Institutional Review498

Board (IRB) approvals, if applicable? [No] Does not apply.499

(c) Did you include the estimated hourly wage paid to participants and the total amount500

spent on participant compensation? [No] Does not apply.501

A Appendix502

No appendix accompanies the submission. The 9 pages and extra references are self-sufficient. Two503

URLs (for Dropbox SlateFree Authors [2022b] and for Google Colab SlateFree Authors [2022a])504

link to the code used for the numerical evaluations.505
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