
Generalized Protein Pocket Generation with
Prior-Informed Flow Matching

Zaixi Zhang1,2, Marinka Zitnik3∗, Qi Liu1,2∗,
1: School of Computer Science and Technology, University of Science and Technology of China

2:State Key Laboratory of Cognitive Intelligence, Hefei, Anhui, China
3:Harvard University

zaixi@mail.ustc.edu.cn, marinka@hms.harvard.edu, qiliuql@ustc.edu.cn

Abstract

Designing ligand-binding proteins, such as enzymes and biosensors, is essential
in bioengineering and protein biology. One critical step in this process involves
designing protein pockets, the protein interface binding with the ligand. Current
approaches to pocket generation often suffer from time-intensive physical compu-
tations or template-based methods, as well as compromised generation quality due
to the overlooking of domain knowledge. To tackle these challenges, we propose
PocketFlow, a generative model that incorporates protein-ligand interaction priors
based on flow matching. During training, PocketFlow learns to model key types of
protein-ligand interactions, such as hydrogen bonds. In the sampling, PocketFlow
leverages multi-granularity guidance (overall binding affinity and interaction geom-
etry constraints) to facilitate generating high-affinity and valid pockets. Extensive
experiments show that PocketFlow outperforms baselines on multiple benchmarks,
e.g., achieving an average improvement of 1.29 in Vina Score and 0.05 in scRMSD.
Moreover, modeling interactions make PocketFlow a generalized generative model
across multiple ligand modalities, including small molecules, peptides, and RNA.

1 Introduction

Proteins are the fundamental building blocks of living organisms, often interacting with ligands (e.g.,
small molecules, nucleic acids, and peptides) to execute their functions. Recently, computational
methods have played critical roles in designing functional proteins binding with ligands with broad
applications in bio-engineering and therapeutics [76, 52, 50, 51, 67, 8, 58]. For example, Polizzi
et al., [65] leverage template-matching methods to design de novo proteins binding with the drug
apixaban [15]; Yeh et al., [83] use deep learning methods to generate efficient light-emitting enzyme
luciferases with selective substrate catalysis capabilities. To design such ligand-binding proteins,
an essential step is to design protein pockets, the protein interface interacting with binding ligands
[68, 39, 12, 28]. However, the complexity of ligand-protein interactions, the variability of protein
sidechains, and sequence-structure relationships pose great challenges for pocket design [25, 51, 48].

Traditional methods for pocket design mainly focus on physics modeling or template-matching [12, 28,
65, 19, 62]. However, the involved physical energy calculation or substructure enumeration could be
quite time-consuming. Recent advancements in pocket design have benefited a lot from deep learning-
based approaches [73, 92, 83, 47, 51, 48]. However, these innovative approaches often overlook
essential domain knowledge, such as the protein-ligand interactions and the geometric constraints
governing them. Though they can efficiently generate many candidates, further screening/optimization
is required to get valid and high-affinity pockets. Moreover, most methods are restricted to small
molecule ligands, omitting other important ligand types such as nucleic acids [8] and peptides [53].

∗Marinka Zitnik and Qi Liu are the corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

To tackle the aforementioned challenges, we propose PocketFlow, a protein-ligand interaction prior-
informed flow matching model for protein pocket generation. Firstly, we define conditional flows
for diverse data modalities in the protein-ligand complex including backbone frames, sidechain
torsions, and residue/interaction types. We choose flow matching as the generative framework
because of its efficiency and flexibility [17, 13, 57, 57]. Furthermore, PocketFlow explicitly learns
the dominant protein-ligand interaction types including hydrogen bonds [35], salt bridges [24],
hydrophobic interactions [61], and π − π stacking [36], which are crucial for strong binding stability
and affinity of protein-ligand pairs [2]. In the sampling process, binding affinity and interaction
geometry guidance are adopted to encourage generating pockets with high affinity and validity.
Specifically, we leverage a lightweight binding affinity predictor to predict the affinity of the generated
complex and apply distance and angle constraints to promote desirable protein-ligand interactions.
To circumvent the non-differentiability issues associated with residue type sampling, we employ
a novel sidechain ensemble method for interaction geometry calculations. Extensive experiments
show that PocketFlow provides a generalized framework for high-quality protein pocket generation
across various ligand modalities (small molecules, RNA, peptides, etc.,). The code is provided at
https://github.com/zaixizhang/PocketFlow. Our main contributions are summarized as:

• Generalized tasks: Our study broadens the scope of protein pocket generation tasks to
include various ligand modalities such as small molecules, nucleic acids, and peptides.

• Novel method: PocketFlow combines the recent progress of flow-matching-based generative
models and physical/chemical interaction priors (affinity guidance and interaction geometry
guidance) to generate protein pockets with enhanced affinity and structural validity.

• Strong performance: PocketFlow outperforms existing methods on various benchmarks
of pocket generation, producing an average improvement of 1.29 in Vina score and 0.05
in scRMSD. Further interaction analysis highlights the model’s ability to foster benefi-
cial protein-ligand interactions, e.g., an average of 4.12 hydrogen bonds, while markedly
reducing steric clashes (an average of 1.21 in generated pockets v.s. 4.59 in the test set).

2 Related Works

2.1 Generative Models for Protein Generation

Recent advancements in deep generative models have significantly advanced the field of de novo
protein structure generation, enabling researchers to create proteins with specific desired properties
[81, 37, 84, 86, 13, 95, 94, 91]. For example, RFDiffusion [81] employs denoising diffusion proba-
bilistic models [33] in conjunction with RoseTTAFold [7] for de novo protein structure generation.
It achieved notable success by generating proteins validated in wet lab experiments. Chroma [37]
leverages a similar diffusion process with efficient neural architecture for molecular systems that
enables long-range reasoning with sub-quadratic scaling. It also demonstrates strong capabilities
to satisfy constraints including symmetries, substructure, shape, semantics, and simple natural-
language prompts. Recently, models leveraging flow matching frameworks have shown promising
results on protein generation [86, 13, 85, 40, 53]. For example, FoldFlow [13] proposed a series
of flow-matching-based generative models for protein backbones with improved training stability
and efficiency than diffusion-based models. FrameFlow [84, 85] further shows sampling efficiency
and achieves success on motif-scaffolding tasks with flow matching. However, these protein gener-
ation methods are not directly applicable to protein pocket generation that requires protein-ligand
interaction modeling.

2.2 Protein Pocket Generation

Protein pockets are the protein interface where the ligand binds to the protein and pocket design
is a critical task for bioengineering [68, 39, 12, 28]. Traditional methods for pocket design focus
on physics modeling or template-matching [12, 28, 65, 19, 62, 93]. For example, PocketOptimizer
[62] predicts mutations in protein pockets to increase binding affinity based on physical energy
calculation, which may bring a large time burden. The recent progress in protein pocket design has
been facilitated by deep generative models [73, 92, 83, 93, 48]. For instance, FAIR [92] co-designs
pocket structures and sequences using a two-stage coarse-to-fine refinement approach. RFDiffusion
All-Atom [48] extends RFDiffusion for joint modeling of protein and ligand structure to generate

2

https://github.com/zaixizhang/PocketFlow

ligand-binding protein and further leverages ProteinMPNN[21]/LigandMPNN[22] for sequence
design. However, deep-learning methods lacking physical/chemical prior guidance may be less
accurate and generalizable. In PocketFlow, we aim to design prior-guided pocket generative models.

3 Preliminaries

3.1 Notations and Problem Formulation

Not Bind

Residue type

Atom position

Cα R
C

N

R

C

N
Cα

Cα
R

C

N

Protein

Cα position

Residue type: Lysine

N

Frame orientation

Cα

C

N

Interaction
Type

…

t = 0 Initialized pocket

Forward Process

t = 1 Designed pocket

…

t = t = One PocketFlow Step

Affinity Guidance Interaction Geometry Guidance
Hydrogen bonds Salt bridges

Hydrophobic π − π stacking

…

Ligand

Bind

P LP L

Predictor

Compute Gradient

Weighted Sum

…PEA???????FTE… …PEALMYPMYRFTE……PEALAYPGYRFTE… …PEALAYPMYRFTE…

(a) (b)

Figure 1: (a) Parameterization of protein-ligand complex. (b) Illustration of PocketFlow forward
process. The affinity and interaction geometry guidance are proposed to improve affinity and structural
validity. The red/blue lines denote the unconditional/guidance paths respectively.

Notations. As shown in Figure 1(a), we model protein-ligand complex as C = {P,G} consisting
of protein P and ligand G (small molecule as an example). Protein P is composed of a sequence of
residues (amino acids) with residue types denoted c(i) ∈ R20. Consistent with [92, 87], the protein
pocket R ⊂ P is defined as the subset of residues closest to the ligand atoms under a threshold δ (e.g.,
3.5 Å). In a residue, the backbone structure (consisting of Cα, N , C, O) is parameterized with Cα
position x(i) ∈ R3 and a frame orientation matrix O(i) ∈ SO(3) following [43, 84]. The sidechain
is parameterized with maximal 4 torsion angles χ(i) = {χi1, χi2, χi3, χi4} ∈ [0, 2π)4. Given these
key parameters, the full atom protein structure can be derived with the ideal frame coordinates and
the sidechain bond length/angles [43]. The protein-ligand interaction type for each residue is marked
as I(i) ∈ R5 (Hydrogen bond, Salt bridge, Hydrophobic, π-π stacking, no interaction). A pocket with
Nr residues can be compactly represented as R = {c(i),x(i),O(i),χ(i), I(i)}Nr

i=1. As for the ligand,
we use a generalized atom-level representation that accommodates various modalities including small
molecules, peptides, and RNA. The atom types and bonding information between atoms are given
and PocketFlow predicts the Nl ligand atom coordinates (also denoted as x(i) for conciseness).

Problem Formulation. PocketFlow co-designs residue types and 3D structures of the protein pocket
conditioned on the ligand (could be small molecules, nucleic acids, peptides, etc.) and protein scaffold
(the other parts of protein besides the pocket region, i.e., P \ R). The ligand structure G is also
predicted. Formally, PocketFlow aims to learn a conditional generative model pθ(R,G|P \ R).

3.2 Preliminaries on Flow Matching

Flow matching (FM) [57] is a simulation-free method for learning continuous normalizing flows
(CNFs) [18] that generates data by integrating an ordinary differential equation (ODE) over a learned
vector field. Here, we first give an overview of Riemannian flow matching [17]. On a manifold M,
the CNF ψt(·) : M → M is defined by integrating along a time-dependent vector field ut(x) ∈ TxM
where TxM denotes the tangent space of the manifold at x ∈ M: d

dtψt(x) = ut(ψt(x)), ψ0(x) =
x, t ∈ [0, 1]. The flow transforms a simple distribution p0 towards the data distribution p1. In FM,
the target is to learn a neural network vθ(x, t) that approximates ut(x), while the vanilla regression
loss: LFM (θ) = Et∼U [0,1],pt(x)∥vθ(x, t) − ut(x)∥2g is hard to compute in practice. Here, U [0, 1]
is the uniform distribution between 0 and 1, and ∥ · ∥2g is the norm induced by the Riemannian

3

metric g. Instead, it is tractable to define conditional vector field ut(x|x1) and obtain the conditional
FM objective: LCFM (θ) = Et∼U [0,1],p1(x1),pt(x|x1)∥vθ(x, t)− ut(x|x1)∥2g. It has been proved that
∇θLFM (θ) = ∇θLCFM (θ) [57, 17]. In the inference, ODE solvers are applied to solve the ODE,
e.g., x1 = ODESolve(x0, vθ, 0, 1) where x0 is the initialized data and x1 is the generated data.

4 PocketFlow

PocketFlow is an interaction prior-informed flow-matching model for pocket design. In this section,
we first define PocketFlow for different components in the protein-ligand complex (backbone in Sec.
4.1, sidechain in Sec. 4.2, and residue/interaction types in Sec.4.3). Then we show the prior-informed
training and sampling in Sec. 4.4 and 4.5.

4.1 PocketFlow on SE(3)

As introduced in Sec. 3.1, each residue frame can be parameterized by a rigid transformation
T = (x(i),O(i)) within SE(3) space. The backbone with Nr residues can thus be described by a
set of transformations [T (1), . . . , T (Nr)] belonging to SE(3)Nr and constitutes a product space. The
following deduction focuses on a single frame but can be generalized to the whole protein backbone.
The Cα coordinates x(i) are initialized with linear interpolation and extrapolation based on the
coordinates of neighboring scaffold residues following [92]. The prior distribution of O(i) is chosen
as the uniform distribution on SO(3). Following previous works [17, 84], the conditional flow for x(i)

and O(i) are defined as x(i)
t = (1− t)x

(i)
0 + tx

(i)
1 and O

(i)
t = exp

O
(i)
0
(t log

O
(i)
0
(O

(i)
1)) respectively,

which are geodesic paths in R3 and SO(3). The exponential map expO0
can be computed using

Rodrigues’ formula and the logarithmic map logO0
is similarly easy to compute with its Lie algebra

so(3) [84]. The loss function of PocketFlow on SE(3) is the summation of the two losses below:

Lcoord(θ) = Et,p1(x1),p0(x0),pt(xt|x0,x1)
1

Nr +Nl

Nr+Nl∑
i=1

∥∥∥v(i)θ (x
(i)
t , t)− x

(i)
1 + x

(i)
0

∥∥∥2
2
, (1)

Lori(θ) = Et,p1(O1),p0(O0),pt(Ot|O0,O1)
1

Nr

Nr∑
i=1

∥∥∥∥∥∥v(i)θ (O
(i)
t , t)−

log
O

(i)
t
(O

(i)
1)

1− t

∥∥∥∥∥∥
2

SO(3)

, (2)

where we additionally consider Nl ligand atom coordinates in Lcoord(θ), for which we use Gaussian
distribution at the center of ligand mass as the prior distribution.

4.2 PocketFlow on Torus

As described in Sec. 3.1, the sidechain conformation of each residue can be represented as maximally
four torsion angles χ(i) = {χi1, χi2, χi3, χi4} ∈ [0, 2π)4. In a pocket with Nr residues, the
sidechain torsion angles form a hypertorus T4Nr , which is the quotient space R4Nr/2πZ4Nr with the
equivalence relation: χ = (χ1, . . . , χ4Nr) ∼ (χ1 + 2π, . . . , χ4Nr) ∼ (χ1, . . . , χ4Nr + 2π) [41, 90].
Following [42], the prior distribution is chosen as a uniform distribution over T4Nr . We regard the
torsion angles as mutually independent and use interpolation paths as: χt = (1− t)χ0 + t(χ′

1 −χ0)
where χ′

1 = (χ1 − χ0 + π) mod (2π)− π + χ0. The loss for the torsion angles is defined as:

Ltor(θ) = Et,p1(χ1),p0(χ0),pt(χt|χ0,χ1)
1

Nr

Nr∑
i=1

∥∥∥v(i)θ (χ
(i)
t , t)− χ

′(i)
1 + χ

(i)
0

∥∥∥2
2
. (3)

4.3 PocketFlow on Residue Types and Interaction Types

Each residue is assigned a probability vector with 20 dimensions: c(i) ∈ R20. The prior distribution
is set as the uniform distribution and the conditional flow is defined as the Euclidean interpolation
between c0 and c1 (one hot vector indicating residue type). ct is a probability vector because its
summation over all types equals 1. We leverage the cross-entropy loss CE(·, ·) following [53, 73, 16]:

Lres = Et∼U(0,1),p1(c1),p0(c0),pt(c|c0,c1)

Nr∑
i=1

CE
(
c
(i)
t + (1− t)v

(i)
θ (c

(i)
t , t), c

(i)
1

)
, (4)

4

which measures the difference between the true probability and the inferred one ĉ
(i)
1 = c

(i)
t + (1−

t)v
(i)
θ (c

(i)
t , t). We also note the recent progress of the sequential flow matching methods [74, 16],

which can be seamlessly integrated into PocketFlow and are left for future works.

It has been shown that modeling Protein-ligand interactions explicitly in biomolecular generative
models can effectively enhance the generalizability [89, 97]. We used the protein–ligand interaction
profiler (PLIP) [69] to detect and annotate the protein-ligand interactions for each residue by analyzing
their binding structure. Following [97], 4 dominant interactions are considered including salt bridges,
π–π stacking, hydrogen bonds, and hydrophobic interactions. For simplicity, if a residue has more
than one interaction, we take the one with the highest rank, which considers both the contribution
to the binding affinity and the frequencies (see Appendix. B). Similar to residue types, interactions
are modeled as category data: I = {I(i)}Nr

i=1. Besides the 4 interaction types, we also consider an
unknown/none type. Similar to Equ. 4, we have the interaction loss:

Linter = Et∼U(0,1),p1(I1),p0(I0),pt(I|I0,I1)

Nr∑
i=1

CE
(
I
(i)
t + (1− t)v

(i)
θ (I

(i)
t , t), I

(i)
1

)
. (5)

4.4 Model Training

Network Architecture. To design the binding protein pocket R = {c(i),x(i),O(i),χ(i), I(i)}Nr
i=1

and update the binding ligand coordinates {x(i)}Nl
i=1, we utilize an architecture modified from the

FrameDiff [86] which incorporates Invariant Point Attention (IPA) from AF2 [43] to encode spatial
features combined with transformer layers [79] to encode sequence-level features. To achieve a
unified representation of both protein residues and ligand atoms, we follow the approach used in
RoseTTAFold All-Atom [49], where each ligand atom is treated as an individual residue. Initial
representations are based on atom element type embeddings, and the frame orientations are set as
identity matrices. To further model the covalent bonding information (single bond, double bond, triple
bond, or aromatic bond), we also add the bond embeddings to the 2D track. We use additional MLPs
based on the residue embeddings to predict the residue types, interaction types, and sidechain torsion
angles. Instead of directly predicting the vector field, we let the model predict the final structure at
t = 1 and interpolate to obtain the vector field. More details are introduced in the Appendix. C.

Overall Training Loss. The overall training loss of PocketFlow is the summation of Equ. 1, 2, 3,
4, and 5. To fully utilize the protein-ligand context information, we use the whole protein-ligand
complex structure at t, i.e., Ct = Pt ∪ Gt as the inputs of vθ(·, t).
Equivariance. Following [84, 53], we perform all training and sampling within the zero center
of mass (CoM) subspace by subtracting the CoM of the scaffold from the initialized structure.
PocketFlow has the ideal SE(3)-equivariance property of geometric generative models:
Theorem 1. Denote the SE(3)-transformation as Tg , PocketFLow pθ(R,G|P \ R) is SE(3) equivari-
ant i.e., pθ(Tg(R,G)|Tg(P \R)) = pθ(R,G|P \R), where R denotes the designed pocket, G is the
binding ligand, and P \ R is the protein scaffold.

The main idea is that the SE(3)-invariant prior and SE(3)-equivariant neural network lead to an
SE(3)-equivariant generative process of PocketFlow. We give the full proof in the Appendix. D.

4.5 Pocket Sampling with Prior Guidance

To improve the binding affinity and structural validity of the generated protein pocket, we proposed a
novel domain-knowledge-guided sampling scheme. Generally, we use classifier-guided sampling [23]
and consider overall binding affinity guidance and interaction geometry guidance. To encourage the
generated protein-ligand complex to satisfy a specific condition y, we apply the Bayes rule [23, 30]:

∇Ct log p(Ct|y) = ∇Ct log p(Ct) +∇Ct log p(y|Ct), (6)

where ∇Ct
log p(Ct) is the unconditional vector field vθ(Ct, t) and ∇Ct

log p(y|Ct) is the guidance
term to constrain the generated complex in a specific condition y.

Binding Affinity Guidance. To generate protein pockets with higher binding affinity to the target
ligand, we train a separate lightweight affinity predictor for guidance (More details of the predictor
in Appendix. E.1). Specifically, the data points in the training set are annotated 1 if their affinity is

5

higher than the average score of the dataset, otherwise 0 [66]. Because the intermediate structure is
noisy, we take the expected structure at t = 1, i.e., Ĉ1(Ct) from the model output and feed it into the
predictor. Then we have the classifier-guided velocity field ṽθ(Ct, t):

ṽθ(Ct, t) = vθ(Ct, t)− γ∇Ct
log pθ(vb = 1|Ĉ1(Ct)), (7)

where we add a scaling factor γ > 0 that controls the gradient strength. pθ is the affinity predictor
and vb ∈ {0, 1} is the binary label of binding affinity.

Interaction Geometry Guidance. Inspired by [97, 89], we considered 4 dominant non-covalent inter-
action types in PocketFlow, including salt bridges, π–π stacking, hydrogen bonds, and hydrophobic
interactions. The local geometries need to satisfy a series of distance/angle constraints to form strong
interactions [69]. For example, for hydrogen bonds, the distances between donor and acceptor atoms
need to be less than 4.1 Å and larger than 2 Å to reduce steric clashes [35]. The following inequality
is a necessary condition for residues in Ĉ1(Ct) with predicted interaction label Î1 as hydrogen bond:

lmin ≤ min
i∈A(k)

hbond,j∈G

∥∥∥x(i) − x(j)
∥∥∥
2
≤ lmax, (8)

where lmin and lmax are distance constraints; A(k)
hbond denote the k-th residue in the set of residues

with predicted hydrogen bonds. With a little abuse of notations, x(i) and x(j) denote the candidate
atom coordinates in the residue and ligand respectively. The distance guidance can be derived as:

−∇Ct

|Ahbond|∑
k=1

[
ξ1 max

(
0, d(k) − lmax

)
+ ξ2 max

(
0, lmin − d(k)

)]
, (9)

where d(k) = min
i∈A(k)

hbond,j∈G

∥∥x(i) − x(j)
∥∥
2

and ξ1, ξ2 > 0 are constant coefficients that control
the strength of guidance. The detailed deduction is included in the Appendix. E.2. Besides the
distance constraint, the hydrogen bond needs to satisfy the acceptor/donor angle constraint [69], e.g.,
the donor/acceptor angle needs to be larger than 100◦. The angle guidance is presented as follows:

−ξ3∇Ct

|Ahbond|∑
k=1

max(0, αmin − ϕ(k)), (10)

where ϕ(k) = max
i∈A(k)

hbond,j∈G hangle(x(i),x(j)) and hangle(·, ·) calculates the acceptor/donor
angle in Figure. 4. ξ3 > 0 is the guidance coefficient. The guidance for the other interactions is
discussed in Appendix. E. We note that the residue type/side chain structure of the pocket is not
determined during the sampling. Directly sampling from the residue type distribution makes the
model not differentiable [38]. We propose the Sidechain Ensemble for the interaction geometry
calculation, i.e., the weighted sum of geometric guidance with respect to residue types (Figure. 6).

Sampling. With the initialized data, the sampling process is the integration of the ODE dCt

dt =
vθ(Ct, t) from t = 0 to t = 1 with an Euler solver [14]. γ, ξ1, ξ2, and ξ3 are set as 1 in the default
setting. To apply the guidance, we use ṽθ which is vθ plus guidance terms (Equ. 7, 9, and 10):

χ
(i)
t+∆t = reg

(
χ

(i)
t + ṽθ(χ

(i)
t , t)∆t

)
; (11)

x
(i)
t+∆t = x

(i)
t + ṽθ(x

(i)
t , t)∆t; O

(i)
t+∆t = O

(i)
t exp

(
ṽθ(O

(i)
t , t)∆t

)
; (12)

c
(i)
t+∆t = norm

(
c
(i)
t + ṽθ(c

(i)
t , t)∆t

)
; I

(i)
t+∆t = norm

(
I
(i)
t + ṽθ(I

(i)
t , t)∆t

)
; (13)

where ∆t is the time step; vθ(·; t) denotes the subcomponent of the vector field for different variables.
norm(·) means normalizing the vector to a probability vector such that the summation is 1, and reg(·)
means regularizing the torsion angles by reg(τ) = (τ + π) mod (2π)− π.

5 Experiments

5.1 Experimental Settings

Datasets. Following previous works [29, 71, 92] we consider two widely used protein-small molecule
binding datasets for experimental evaluations: CrossDocked dataset [27] is generated through cross-
docking and is split with mmseqs2 [75] at 30% sequence identity, leading to train/val/test set of

6

Table 1: Evaluation of different models on small-molecule-binding protein pocket design. We report
the average and standard deviation values across three independent runs. We highlight the best two
results with bold text and underlined text, respectively.

Model CrossDocked Binding MOAD
AAR (↑) scRMSD (↓) Vina (↓) AAR (↑) scRMSD (↓) Vina (↓)

Test set - 0.65 -7.016 - 0.67 -8.076
DEPACT 31.52±3.26% 0.73±0.06 -6.632±0.18 35.30±2.19% 0.77±0.08 -7.571±0.15
dyMEAN 38.71±2.16% 0.79±0.09 -6.855±0.06 41.22±1.40% 0.80±0.12 -7.675±0.09

FAIR 40.16±1.17% 0.75±0.03 -7.015±0.12 43.68±0.92% 0.72±0.04 -7.930±0.15
RFDiffusionAA 50.85±1.85% 0.68±0.07 -7.012±0.09 49.09±2.49% 0.70±0.04 -8.020±0.11

PocketFlow 52.19±1.34% 0.67±0.04 -8.236±0.16 54.30±1.70% 0.68±0.03 -9.370±0.24
w/o Aff Guide 50.94±1.37% 0.65±0.04 -7.375±0.10 51.43±1.52% 0.64±0.04 -8.380±0.19
w/o Geo Guide 49.80±1.41% 0.68±0.03 -8.120±0.14 53.49±1.53% 0.71±0.05 -9.197±0.22

w/o Geo & Aff Guide 48.50±1.66% 0.71±0.06 -7.135±0.13 49.71±1.68% 0.69±0.03 -8.241±0.18
w/o Inter Learning 50.72±1.20% 0.66±0.03 -7.968±0.15 52.25±1.74% 0.68±0.05 -9.031±0.17

Pocket Seq: RLCRSADNHY
Vina Score: -6.53

Pocket Seq: RLCLSADGHY
Vina Score: -8.95

Reference (1NJE) Designed (1NJE)

Pocket Seq: EIYHYDEM
Vina Score: -7.79

Pocket Seq: LIYLYDEM
Vina Score: -9.06

Reference (2PQL) Designed (2PQL)

Figure 2: Case studies of small-molecule-binding protein pocket design. We show the reference and
designed structures/sequences of two protein pockets from the CrossDocked (PDB ID: 1NJE) and
Binding MOAD (PDB ID: 2PQL) datasets respectively.

100k/100/100 complexes. Binding MOAD dataset [34] contains experimentally determined protein-
small molecule complexes and is split based on the proteins’ enzyme commission number [9],
resulting in 40k protein-small molecule pairs for training, 100 pairs for validation, and 100 pairs for
testing. To test the generalizability of PocketFlow to other ligand modalities, we further consider
PPDBench [3], which contains 133 non-redundant complexes of protein-peptides and PDBBind
RNA [80], which contains 56 protein-RNA pairs by filtering the PDBBind nucleic acid subset. More
details of data preprocessing are included in the Appendix. A. Considering the distance ranges of
protein-ligand interactions [60], we redesign all the protein residues that contain atoms within 3.5 Å
of any binding ligand atoms, i.e., the pocket area. The number of designed residues is set the same as
the reference pocket. We sample 100 pockets for each complex in the test set for evaluation.

Baselines and Implementation. PocketFlow is compared with four state-of-the-art representative
baseline methods. DEPACT [19] is a template-matching method [88] for pocket design by searching
and grafting residues. dyMEAN [47] and FAIR [92] are deep-learning methods based on equivariant
translation and iterative refinement. RFDiffusionAA [48] is the latest version of RFDiffusion [81],
which can directly generate protein pocket structures conditioned on the ligand. Different from
the sequence-structure co-design scheme in dyMEAN and FAIR, the residue types and sidechain
structures in RFDiffusionAA are determined with LigandMPNN [22] in a post-hoc manner.

For experiments on PPDBench and PDBBind RNA, we pretrain PocketFlow and baseline models on
the combination of the CrossDocked and Binding MOAD dataset, in which we carefully eliminate all
complexes with the same PDB IDs to avoid potential data leakage. Then we represent the peptide and
RNA similar to small molecules (atom coordinates/types and covalent bonds) and input to PocketFlow
for sampling without fine-tuning. For simplicity, the structure of peptide/RNA is set fixed. All the
baselines are run on the same Tesla A100 GPU.

Performance Metrics. We employ the following metrics to comprehensively evaluate the validity
of the generated pocket sequence and structure. Amino Acid Recovery (AAR) is defined as the
overlapping ratio between the predicted and ground truth residue types. In bioengineering, mutating
too many residues may lead to instability or failure to fold [4]. Therefore, a larger AAR is more favor-
able. scRMSD refers to self-consistency Root Mean Squared Deviation between the generated and
the predicted pocket’s backbone atoms to reflect structural validity. Following established pipelines

7

Table 2: Evaluation of different approaches on the peptide and RNA datasets. DEPACT is not
reported here because it is specially designed for small molecules. dyMEAN, FAIR, and PocketFlow
are pretrained on protein-small molecule datasets and we use the checkpoint of RFDiffusionAA [1].

Model PPDBench PDBBind RNA
AAR (↑) scRMSD (↓) ∆∆G (↓) AAR (↑) scRMSD (↓) ∆∆G (↓)

Test set - 0.64 - - 0.59 -
dyMEAN 26.29±1.05% 0.71±0.05 -0.23±0.04 25.90±1.22% 0.71±0.04 -0.18±0.03

FAIR 32.53±0.89% 0.86±0.04 0.05±0.07 24.90±0.92% 0.80±0.05 0.13±0.05
RFDiffusionAA 46.85±1.45% 0.65±0.06 -0.62±0.05 44.69±1.90% 0.65±0.03 -0.45±0.07

PocketFlow 48.19±1.34% 0.67±0.04 -1.06±0.04 44.34±1.16% 0.69±0.01 -0.78±0.07
w/o Aff Guide 47.78±1.18% 0.70±0.02 -0.47±0.10 42.15±1.56% 0.68±0.04 -0.35±0.11
w/o Geo Guide 47.30±1.94% 0.72±0.05 -0.96±0.08 41.73±2.34% 0.77±0.09 -0.65±0.15

w/o Geo & Aff Guide 44.63±1.79% 0.78±0.05 -0.31±0.05 39.70±1.24% 0.78±0.06 -0.26±0.08
w/o Inter Learning 36.41±1.38% 0.74±0.06 -0.34±0.05 36.27±1.47% 0.82±0.13 -0.23±0.06

Pocket Seq: NRYKTYND Pocket Seq: QRYKTYDD
ΔΔG: -0.75

Reference (1NQ7) Designed (1NQ7)

Pocket Seq: KQIPE Pocket Seq: KQLYE
ΔΔG: -1.60

Reference (5DNO) Designed (5DNO)

Figure 3: Case studies of peptide/RNA-binding protein pocket design. We show the reference
and designed structures/sequences of two protein pockets from PPDBench (PDB ID: 1NQ7) and
PDBBind RNA (PDB ID: 5DNO) datasets respectively. The ligand structures (orange) are set fixed.

[77, 54], for each generated protein structure, eight sequences are firstly derived by ProteinMPNN
[21] and the folded to structures with ESMFold [56]. we report the minimum scRMSD for the
predicted structures. To measure the binding affinity for protein-small molecule pairs, we calculate
Vina Score with AutoDock Vina [78] following [64, 92]. For protein-peptide and protein-RNA pairs,
we calculate Rosetta ∆∆G [5] and Rosetta-Vienna RNP-∆∆G [44] respectively that measure the
binding affinity change. The unit is kcal/mol and a lower Vina score/∆∆G indicates higher affinity.

5.2 Small-molecule-binding Pocket Design

Table 1 shows the results of different methods on the CrossDocked and Binding MOAD dataset
for small-molecule-binding pocket design. We can observe that PocketFlow overperforms baseline
models with a clear margin on AAR, scRMSD, and Vina scores, demonstrating the strong ability of
PocketFlow to design pockets with high validity and affinity. The average improvements over the
RFDiffusionAA on AAR, scRMSD, and Vina Score are 3.3%, 0.05, and 1.29 respectively. PocketFlow
also predicts more aligned sidechain angles with ground truth as evidenced in Table. 5. Compared
with baselines, PocketFlow enjoys the advantage of powerful flow-matching architecture and effective
physical/chemical prior guidance. Different from the post-hoc manner of deriving sequences in
RFDiffusionAA [48], the co-design scheme also encourages sequence-structure consistency. We also
compare the generation efficiency of different models in Figure. 7. Considering the pocket quality
improvement brought by PocketFlow, the time overhead is acceptable.

We also perform ablation studies in Table. 1, where w/o Aff Guide, w/o Geo Guide, and w/o Geo &
Aff Guide indicate generating pockets without Affinity Guidance, Interaction Geometry Guidance,
and all Guidance respectively. In w/o Inter Learning, we retrain a model without learning interaction
types and generate pockets without Interaction Geometry Guidance as well. We can observe that
the Affinity and Geometry Guidance indeed play critical roles in enhancing binding affinity and
structural validity. For example, the Vina score drops to -7.135 without guidance from -8.236 on the
CrossDocked dataset. We also note Affinity Guidance may have slight side effects on scRMSD and
we need to balance the strength of unconditional and guidance terms (more results in Appendix. F).

8

Methods Clash (↓) HB (↑) Salt (↑) Hydro (↑) π–π (↑)
Test set 4.59 3.89 0.26 5.89 0.32

DEPACT 6.72 3.10 0.14 5.70 0.16
dyMEAN 4.65 3.07 0.17 5.85 0.20

FAIR 4.90 3.30 0.18 5.47 0.15
RFDiffusionAA 3.58 3.76 0.22 5.65 0.31

PocketFlow 1.21 4.12 0.27 6.03 0.28

Table 3: Interaction analysis of the generated protein pockets on the CrossDocked dataset. We
measure the average number of steric clashes (Clash), hydrogen bonds (HB), salt bridges (Salt),
hydrophobic interactions (Hydro), and π–π stacking (π − π) per protein-ligand complex. More
results on the variants of PocketFlow are included in Appendix F.

5.3 Generalization to Other Ligand Domains

Besides small molecules, the binding of protein with other ligand modalities such as peptides and
nucleic acids play critical roles in biomedicine [82, 8]. However, the available dataset size compared
with small molecules-protein complexes is quite limited (e.g., ∼ 100 in PPDBench v.s. over 100k
in CrossDocked). Here, we explore whether the pretrained PocketFlow on the combination of
CrossDocked and Binding MOAD can generalize to peptide and RNA-binding pocket design in
Table. 2. The peptide and RNA ligands are represented as molecules (atoms and covalent bonds) to
fit into the pretrained models. We have observed that PocketFlow achieves performance comparable
to the state-of-the-art baseline, RFDiffusionAA, with prior guidance significantly enhancing its
generalizability. Our hypothesis is that the protein-ligand interactions and fundamental physical laws
learned by PocketFlow are applicable universally across various biomolecular domains [89, 97]. By
explicitly incorporating physical and chemical priors into the generative model, PocketFlow not only
aligns with these universal principles but also gains a marked advantage of generalizability.

5.4 Interaction Analysis and Case Studies

We adopt PLIP [69] and posecheck [31] to detect the protein-ligand interactions in the generated
pockets. In Table. 3, we show the average number of steric clashes, hydrogen bond donors, acceptors,
and hydrophobic interactions (without redocking). We observe that PocketFlow can generate pockets
with fewer clashes and more favorable interactions. For example, the average steric clashes for
RFDiffusionAA and PocketFlow are 3.58 and 1.21 respectively. The average number of Hydrogen
Bonds for RFDiffusionAA and PocketFlow are 3.76 and 4.12 respectively. These improvements can
be attributed to the model’s affinity/geometry guidance and its enhanced modeling of pocket/ligand
flexibility, both of which promote the formation of advantageous protein-ligand interactions while
minimizing clashes. Some interaction types such as π–π stacking in PocketFlow are a little less than
the reference, which may be due to the low frequency of these interactions in the dataset.

Figure. 2 and 3 show examples of the generated pockets for small molecules, peptides, and RNA.
PocketFlow recovers most residue types and changes several key residues to achieve higher binding
affinity. The overall structure of the pocket, including the sidechains, is generally well-maintained.

5.5 Limitations and Broader Impacts

While PocketFlow is a powerful generative method for pocket generation, we find the following
limitations for further improvement. First, PocketFlow is only trained on protein-small molecule
datasets in the paper. In the future, incorporating protein-peptides/nucleic acids/metal datasets, even
the generated data from AlphaFold3 [2] would be promising directions. Second, the integration
of pretrained protein language models [55] and structure models [96] could significantly enhance
PocketFlow’s performance. Additionally, wet lab experiments to verify PocketFlow’s efficacy are
planned. Potential negative impacts may include the misuse of PocketFlow for creating harmful
biomolecules [32]. Rigorous oversight and screening access to the model should be considered.

6 Conclusion

In this paper, we proposed PocketFlow, a protein-ligand interaction prior-informed flow matching
model for protein pocket generation. We define multimodal flow matching for protein backbone

9

frames, sidechain torsion angles, and residue/interaction types to appropriately represent the protein-
ligand complex. The binding affinity and interaction geometry guidance effectively improve the
validity and affinity of the generated pockets. Moreover, PocketFlow offers a unified framework
covering small-molecule, nucleic acids, and peptides-binding protein pocket generation.

7 Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (Grant
No. 623B2095) and the Fundamental Research Funds for the Central Universities.

References

[1] https://github.com/baker-laboratory/rf_diffusion_all_atom. 2024.

[2] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 2024.

[3] Piyush Agrawal, Harinder Singh, Hemant Kumar Srivastava, Sandeep Singh, Gaurav Kishore,
and Gajendra PS Raghava. Benchmarking of different molecular docking methods for protein-
peptide docking. BMC bioinformatics, 19:105–124, 2019.

[4] Matteo Aldeghi, Vytautas Gapsys, and Bert L de Groot. Accurate estimation of ligand binding
affinity changes upon protein mutation. ACS central science, 4(12):1708–1718, 2018.

[5] Rebecca F Alford, Andrew Leaver-Fay, Jeliazko R Jeliazkov, Matthew J O’Meara, Frank P
DiMaio, Hahnbeom Park, Maxim V Shapovalov, P Douglas Renfrew, Vikram K Mulligan, Kalli
Kappel, et al. The rosetta all-atom energy function for macromolecular modeling and design.
Journal of chemical theory and computation, 13(6):3031–3048, 2017.

[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[7] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov,
Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate
prediction of protein structures and interactions using a three-track neural network. Science,
373(6557):871–876, 2021.

[8] Minkyung Baek, Ryan McHugh, Ivan Anishchenko, Hanlun Jiang, David Baker, and Frank
DiMaio. Accurate prediction of protein–nucleic acid complexes using rosettafoldna. Nature
Methods, 21(1):117–121, 2024.

[9] Amos Bairoch. The enzyme database in 2000. Nucleic acids research, 28(1):304–305, 2000.

[10] David J Barlow and JM Thornton. Ion-pairs in proteins. Journal of molecular biology,
168(4):867–885, 1983.

[11] Arieh Y Ben-Naim. Hydrophobic interactions. Springer Science & Business Media, 2012.

[12] Matthew J Bick, Per J Greisen, Kevin J Morey, Mauricio S Antunes, David La, Banumathi
Sankaran, Luc Reymond, Kai Johnsson, June I Medford, and David Baker. Computational
design of environmental sensors for the potent opioid fentanyl. Elife, 6:e28909, 2017.

[13] Avishek Joey Bose, Tara Akhound-Sadegh, Kilian Fatras, Guillaume Huguet, Jarrid Rector-
Brooks, Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and
Alexander Tong. Se (3)-stochastic flow matching for protein backbone generation. ICLR, 2024.

[14] Kathryn Eleda Brenan, Stephen L Campbell, and Linda Ruth Petzold. Numerical solution of
initial-value problems in differential-algebraic equations. SIAM, 1995.

[15] Wonkyung Byon, Samira Garonzik, Rebecca A Boyd, and Charles E Frost. Apixaban: a clinical
pharmacokinetic and pharmacodynamic review. Clinical pharmacokinetics, 58:1265–1279,
2019.

[16] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative flows on discrete state-spaces: Enabling multimodal flows with applications to protein
co-design. arXiv preprint arXiv:2402.04997, 2024.

10

[17] Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv
preprint arXiv:2302.03660, 2023.

[18] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[19] Yaoxi Chen, Quan Chen, and Haiyan Liu. Depact and pacmatch: A workflow of designing de
novo protein pockets to bind small molecules. Journal of Chemical Information and Modeling,
62(4):971–985, 2022.

[20] Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv
preprint arXiv:2307.08698, 2023.

[21] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep
learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

[22] Justas Dauparas, Gyu Rie Lee, Robert Pecoraro, Linna An, Ivan Anishchenko, Cameron
Glasscock, and David Baker. Atomic context-conditioned protein sequence design using
ligandmpnn. Biorxiv, pages 2023–12, 2023.

[23] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[24] Jason E Donald, Daniel W Kulp, and William F DeGrado. Salt bridges: Geometrically specific,
designable interactions. Proteins: Structure, Function, and Bioinformatics, 79(3):898–915,
2011.

[25] Jiayi Dou, Lindsey Doyle, Per Jr Greisen, Alberto Schena, Hahnbeom Park, Kai Johnsson,
Barry L Stoddard, and David Baker. Sampling and energy evaluation challenges in ligand
binding protein design. Protein Science, 26(12):2426–2437, 2017.

[26] Dennis A Dougherty. Cation-π interactions in chemistry and biology: a new view of benzene,
phe, tyr, and trp. Science, 271(5246):163–168, 1996.

[27] Paul G Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B Iovanisci, Ian
Snyder, and David R Koes. Three-dimensional convolutional neural networks and a cross-
docked data set for structure-based drug design. Journal of chemical information and modeling,
60(9):4200–4215, 2020.

[28] Anum A Glasgow, Yao-Ming Huang, Daniel J Mandell, Michael Thompson, Ryan Ritterson,
Amanda L Loshbaugh, Jenna Pellegrino, Cody Krivacic, Roland A Pache, Kyle A Barlow, et al.
Computational design of a modular protein sense-response system. Science, 366(6468):1024–
1028, 2019.

[29] Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d
equivariant diffusion for target-aware molecule generation and affinity prediction. ICLR, 2023.

[30] Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang
Wang, and Quanquan Gu. Decompdiff: Diffusion models with decomposed priors for structure-
based drug design. ICML, 2023.

[31] Charles Harris, Kieran Didi, Arian Jamasb, Chaitanya Joshi, Simon Mathis, Pietro Lio, and Tom
Blundell. Posecheck: Generative models for 3d structure-based drug design produce unrealistic
poses. In NeurIPS 2023 Workshop on New Frontiers of AI for Drug Discovery and Development,
2023.

[32] Jiyan He, Weitao Feng, Yaosen Min, Jingwei Yi, Kunsheng Tang, Shuai Li, Jie Zhang, Kejiang
Chen, Wenbo Zhou, Xing Xie, et al. Control risk for potential misuse of artificial intelligence in
science. arXiv preprint arXiv:2312.06632, 2023.

[33] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[34] Liegi Hu, Mark L Benson, Richard D Smith, Michael G Lerner, and Heather A Carlson.
Binding moad (mother of all databases). Proteins: Structure, Function, and Bioinformatics,
60(3):333–340, 2005.

[35] Roderick E Hubbard and Muhammad Kamran Haider. Hydrogen bonds in proteins: role and
strength. eLS, 2010.

11

[36] Christopher A Hunter and Jeremy KM Sanders. The nature of. pi.-. pi. interactions. Journal of
the American Chemical Society, 112(14):5525–5534, 1990.

[37] John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vin-
cent Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating
protein space with a programmable generative model. Nature, pages 1–9, 2023.

[38] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[39] Lin Jiang, Eric A. Althoff, Fernando R. Clemente, Lindsey Doyle, Daniela Röthlisberger,
Alexandre Zanghellini, Jasmine L. Gallaher, Jamie L. Betker, Fujie Tanaka, Carlos F. Barbas,
Donald Hilvert, Kendall N. Houk, Barry L. Stoddard, and David Baker. De novo computational
design of retro-aldol enzymes. Science, 319(5868):1387–1391, 2008.

[40] Bowen Jing, Bonnie Berger, and Tommi Jaakkola. Alphafold meets flow matching for generating
protein ensembles. arXiv preprint arXiv:2402.04845, 2024.

[41] Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional
diffusion for molecular conformer generation. NeurIPS, 2022.

[42] Bowen Jing, Stephan Eismann, Pratham N Soni, and Ron O Dror. Equivariant graph neural
networks for 3d macromolecular structure. ICML, 2021.

[43] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[44] Kalli Kappel, Inga Jarmoskaite, Pavanapuresan P Vaidyanathan, William J Greenleaf, Daniel
Herschlag, and Rhiju Das. Blind tests of rna–protein binding affinity prediction. Proceedings of
the National Academy of Sciences, 116(17):8336–8341, 2019.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[46] Xiangzhe Kong, Wenbing Huang, and Yang Liu. Conditional antibody design as 3d equivariant
graph translation. ICLR, 2023.

[47] Xiangzhe Kong, Wenbing Huang, and Yang Liu. End-to-end full-atom antibody design. arXiv
preprint arXiv:2302.00203, 2023.

[48] Rohith Krishna, Jue Wang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek Kalvet,
Gyu Rie Lee, Felix S Morey-Burrows, Ivan Anishchenko, Ian R Humphreys, et al. Generalized
biomolecular modeling and design with rosettafold all-atom. Science, page eadl2528, 2024.

[49] Rohith Krishna, Jue Wang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek Kalvet,
Gyu Rie Lee, Felix S Morey-Burrows, Ivan Anishchenko, Ian R Humphreys, et al. Generalized
biomolecular modeling and design with rosettafold all-atom. Science, page eadl2528, 2024.

[50] Alexander Kroll, Sahasra Ranjan, Martin KM Engqvist, and Martin J Lercher. A general model
to predict small molecule substrates of enzymes based on machine and deep learning. Nature
Communications, 14(1):2787, 2023.

[51] Gyu Rie Lee, Samuel J Pellock, Christoffer Norn, Doug Tischer, Justas Dauparas, Ivan An-
ishchenko, Jaron AM Mercer, Alex Kang, Asim Bera, Hannah Nguyen, et al. Small-molecule
binding and sensing with a designed protein family. bioRxiv, pages 2023–11, 2023.

[52] Yipin Lei, Shuya Li, Ziyi Liu, Fangping Wan, Tingzhong Tian, Shao Li, Dan Zhao, and Jianyang
Zeng. A deep-learning framework for multi-level peptide–protein interaction prediction. Nature
communications, 12(1):5465, 2021.

[53] Haitao Lin, Odin Zhang, Huifeng Zhao, Lirong Wu, Dejun Jiang, Zicheng Liu, Yufei Huang,
and Stan Z Li. Ppflow: Target-aware peptide design with torsional flow matching. bioRxiv,
pages 2024–03, 2024.

[54] Yeqing Lin and Mohammed AlQuraishi. Generating novel, designable, and diverse protein
structures by equivariantly diffusing oriented residue clouds. ICML, 2023.

[55] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos
Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv,
2022:500902, 2022.

12

[56] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

[57] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[58] Lei Lu, Xuxu Gou, Sophia K Tan, Samuel I Mann, Hyunjun Yang, Xiaofang Zhong, Dimitrios
Gazgalis, Jesús Valdiviezo, Hyunil Jo, Yibing Wu, et al. De novo design of drug-binding
proteins with predictable binding energy and specificity. Science, 384(6691):106–112, 2024.

[59] Shitong Luo, Jiaqi Guan, Jianzhu Ma, and Jian Peng. A 3d generative model for structure-based
drug design. NeurIPS, 34:6229–6239, 2021.

[60] Gilles Marcou and Didier Rognan. Optimizing fragment and scaffold docking by use of
molecular interaction fingerprints. Journal of chemical information and modeling, 47(1):195–
207, 2007.

[61] Emily E Meyer, Kenneth J Rosenberg, and Jacob Israelachvili. Recent progress in understanding
hydrophobic interactions. Proceedings of the National Academy of Sciences, 103(43):15739–
15746, 2006.

[62] Jakob Noske, Josef Paul Kynast, Dominik Lemm, Steffen Schmidt, and Birte Höcker. Pocketop-
timizer 2.0: A modular framework for computer-aided ligand-binding design. Protein Science,
32(1):e4516, 2023.

[63] Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and
Geoffrey R Hutchison. Open babel: An open chemical toolbox. Journal of cheminformatics,
3:1–14, 2011.

[64] Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2mol:
Efficient molecular sampling based on 3d protein pockets. ICML, 2022.

[65] Nicholas F Polizzi and William F DeGrado. A defined structural unit enables de novo design of
small-molecule–binding proteins. Science, 369(6508):1227–1233, 2020.

[66] Hao Qian, Wenjing Huang, Shikui Tu, and Lei Xu. Kgdiff: towards explainable target-aware
molecule generation with knowledge guidance. Briefings in Bioinformatics, 25(1):bbad435,
2024.

[67] Zhuoran Qiao, Weili Nie, Arash Vahdat, Thomas F Miller III, and Animashree Anandkumar.
State-specific protein–ligand complex structure prediction with a multiscale deep generative
model. Nature Machine Intelligence, pages 1–14, 2024.

[68] Daniela Röthlisberger, Olga Khersonsky, Andrew M Wollacott, Lin Jiang, Jason DeChancie,
Jamie Betker, Jasmine L Gallaher, Eric A Althoff, Alexandre Zanghellini, Orly Dym, et al.
Kemp elimination catalysts by computational enzyme design. Nature, 453(7192):190–195,
2008.

[69] Sebastian Salentin, Sven Schreiber, V Joachim Haupt, Melissa F Adasme, and Michael
Schroeder. Plip: fully automated protein–ligand interaction profiler. Nucleic acids research,
43(W1):W443–W447, 2015.

[70] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. In International conference on machine learning, pages 9323–9332. PMLR, 2021.

[71] Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom
Blundell, Pietro Lió, Carla Gomes, Max Welling, et al. Structure-based drug design with
equivariant diffusion models. arXiv preprint arXiv:2210.13695, 2022.

[72] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[73] Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Harmonic self-
conditioned flow matching for multi-ligand docking and binding site design. arXiv preprint
arXiv:2310.05764, 2023.

[74] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay,
and Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. arXiv
preprint arXiv:2402.05841, 2024.

13

[75] Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

[76] Christine E Tinberg, Sagar D Khare, Jiayi Dou, Lindsey Doyle, Jorgen W Nelson, Alberto
Schena, Wojciech Jankowski, Charalampos G Kalodimos, Kai Johnsson, Barry L Stoddard,
et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature,
501(7466):212–216, 2013.

[77] Brian L. Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi S. Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. In The Eleventh International Conference on Learning Representations,
2023.

[78] Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

[79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[80] Renxiao Wang, Xueliang Fang, Yipin Lu, Chao-Yie Yang, and Shaomeng Wang. The pdbbind
database: methodologies and updates. Journal of medicinal chemistry, 48(12):4111–4119,
2005.

[81] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

[82] Kejia Wu, Hua Bai, Ya-Ting Chang, Rachel Redler, Kerrie E McNally, William Sheffler,
TJ Brunette, Derrick R Hicks, Tomos E Morgan, Tim J Stevens, et al. De novo design of
modular peptide-binding proteins by superhelical matching. Nature, 616(7957):581–589, 2023.

[83] Andy Hsien-Wei Yeh, Christoffer Norn, Yakov Kipnis, Doug Tischer, Samuel J Pellock, Declan
Evans, Pengchen Ma, Gyu Rie Lee, Jason Z Zhang, Ivan Anishchenko, et al. De novo design of
luciferases using deep learning. Nature, 614(7949):774–780, 2023.

[84] Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna,
Sarah Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al.
Fast protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297,
2023.

[85] Jason Yim, Andrew Campbell, Emile Mathieu, Andrew YK Foong, Michael Gastegger, José
Jiménez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Frank Noé, et al.
Improved motif-scaffolding with se (3) flow matching. arXiv preprint arXiv:2401.04082, 2024.

[86] Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina
Barzilay, and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone
generation. ICML, 2023.

[87] Zhang Zaixi, Wanxiang Shen, Qi Liu, and Marinka Zitnik. Pocketgen: Generating full-atom
ligand-binding protein pockets. bioRxiv, pages 2024–02, 2024.

[88] Alexandre Zanghellini, Lin Jiang, Andrew M Wollacott, Gong Cheng, Jens Meiler, Eric A
Althoff, Daniela Röthlisberger, and David Baker. New algorithms and an in silico benchmark
for computational enzyme design. Protein Science, 15(12):2785–2794, 2006.

[89] Odin Zhang, Tianyue Wang, Gaoqi Weng, Dejun Jiang, Ning Wang, Xiaorui Wang, Huifeng
Zhao, Jialu Wu, Ercheng Wang, Guangyong Chen, et al. Learning on topological surface and
geometric structure for 3d molecular generation. Nature Computational Science, 3(10):849–859,
2023.

[90] Yangtian Zhang, Zuobai Zhang, Bozitao Zhong, Sanchit Misra, and Jian Tang. Diffpack:
A torsional diffusion model for autoregressive protein side-chain packing. arXiv preprint
arXiv:2306.01794, 2023.

[91] Zaixi Zhang and Qi Liu. Learning subpocket prototypes for generalizable structure-based drug
design. ICML, 2023.

14

[92] Zaixi Zhang, Zepu Lu, Hao Zhongkai, Marinka Zitnik, and Qi Liu. Full-atom protein pocket
design via iterative refinement. Advances in Neural Information Processing Systems, 36:16816–
16836, 2023.

[93] Zaixi Zhang, Wanxiang Shen, Qi Liu, and Marinka Zitnik. Pocketgen: Generating full-atom
ligand-binding protein pockets. bioRxiv, pages 2024–02, 2024.

[94] Zaixi Zhang, Mengdi Wang, and Qi Liu. Flexsbdd: Structure-based drug design with flexible
protein modeling. Advances in Neural Information Processing Systems, 2024.

[95] Zaixi Zhang, Jiaxian Yan, Qi Liu, Enhong Chen, and Marinka Zitnik. A systematic survey in
geometric deep learning for structure-based drug design. arXiv preprint arXiv:2306.11768,
2023.

[96] Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel
Das, and Jian Tang. Protein representation learning by geometric structure pretraining. arXiv
preprint arXiv:2203.06125, 2022.

[97] Wonho Zhung, Hyeongwoo Kim, and Woo Youn Kim. 3d molecular generative framework for
interaction-guided drug design. Nature Communications, 15(1):2688, 2024.

15

A Dataset Preprocessing

We consider two widely used datasets for benchmark evaluation: CrossDocked dataset [27] contains
22.5 million protein-molecule pairs generated through cross-docking. Following previous works
[59, 64, 92], we filter out data points with binding pose RMSD greater than 1 Å, leading to a refined
subset with around 180k data points. For data splitting, we use mmseqs2 [75] to cluster data at 30%
sequence identity, and randomly draw 100k protein-ligand structure pairs for training and 100 pairs
from the remaining clusters for testing and validation, respectively; Binding MOAD dataset [34]
contains around 41k experimentally determined protein-ligand complexes. Following previous work
[71], we keep pockets with valid and moderately ‘drug-like’ ligands with QED score ≥ 0.3. We further
filter the dataset to discard molecules containing atom types /∈ {C,N,O, S,B,Br,Cl, P, I, F} as
well as binding pockets with non-standard amino acids. Then, we randomly sample and split the
filtered dataset based on the Enzyme Commission Number (EC Number) [9] to ensure different sets
do not contain proteins from the same EC Number main class. Finally, we have 40k protein-ligand
pairs for training, 100 pairs for validation, and 100 pairs for testing. For all the benchmark tasks in
this paper, PocketFlow and all the other baseline methods are trained with the same data split for a
fair comparison.

To test the generalizability of PocketFlow to other ligand modalities, we further consider PPDBench
[3], which contains 133 non-redundant complexes of protein-peptides and PDBBind RNA [80],
which contains 56 protein-RNA pairs by filtering the PDBBind nucleic acid subset with RNA
sequence lengths longer than 5 and less than 15.

B Considered Protein-ligand Interactions

Table 4: Key geometric constraints to define protein-ligand interactions [69]. Angles in degree and
distances in Ångström.

Variable Value Description Ref.
INTER_DIST_MIN 2.0 Å Min. distance to avoid steric clashes [31]
HYDROPH_DIST_MAX 4.0 Å Max. distance of carbon atoms for a hydrophobic interaction [69]
HBOND_DIST_MAX 4.1 Å Max. distance between acceptor and donor in hydrogens bonds [35]
HBOND_DON_ANGLE_MIN 100◦ Min. angle at the hydrogen bond donor (X-D. . . A) [35]
HBOND_ACC_ANGLE_MIN 100◦ Min. angle at the hydrogen bond acceptor (X-A. . . D) [35]
PISTACK_DIST_MAX 7.5 Å Max. distance between ring centers for stacking [26]
PISTACK_ANG_DEV 30◦ Max. deviation from optimum angle for stacking [69]
PISTACK_OFFSET_MAX 2.0 Å Max. offset between aromatic ring centers for stacking [69]
SALTBRIDGE_DIST_MAX 5.5 Å Distance between two centers of charges in salt bridges [10]

Following [97], we considered 4 dominant non-covalent interaction types in PocketFlow, including
salt bridges, π–π stacking, hydrogen bonds, and hydrophobic interactions (ranked based on their
contribution to affinity and reversed frequency). The frequency statistics are listed in Table.3.

• Salt bridges [10], which are electrostatic interactions between oppositely charged cen-
ters, are often considered among the strongest interactions in protein structures and other
biomolecular complexes. They can significantly contribute to stability and binding affinity
due to their strong electrostatic nature. To form salt bridges, two centers of opposite charges
need to be below a distance of SALTBRIDGE_DIST_MAX.

• Hydrogen bonds [35] occur between a hydrogen atom covalently bonded to a more elec-
tronegative atom (like oxygen or nitrogen) and another electronegative atom. Their strength
is less than that of salt bridges but is significant in biological contexts.
A hydrogen bond is established between a hydrogen bond donor and acceptor (OpenBabel
[63] is used to detect hydrogen bond donor/acceptor). The distance between the donor and
acceptor needs to be less than HBOND_DIST_MAX. The donor and acceptor angle needs to
be larger than HBOND_DON_ANGLE_MIN and HBOND_ACC_ANGLE_MIN respectively. Since
PocketFlow only considers heavy atoms (no hydrogen atoms), we consider the geometry

16

of hydrogen bonds without protonation [35] (see Figure. 4). For simplicity, we do not
differentiate donor/acceptor in the interaction geometry guidance.

• π–π stacking [69] involve the stacking of aromatic rings (like those found in phenylalanine,
tyrosine, or tryptophan) due to favorable van der Waals forces and sometimes electrostatic
interactions. π–π stacking is crucial in the structure of nucleic acids and proteins, especially
in the active sites of many enzymes, although they are generally weaker than hydrogen
bonds and salt bridges.
To form π–π stacking, we first need two aromatic rings (OpenBabel [63] is used to
detect aromatic rings). The distance between the two ring centers needs to be below
PISTACK_DIST_MAX. The angle between two normal vectors of ring planes needs to be
below PISTACK_ANG_DEV. Additionally, each ring center is projected onto the opposite ring
plane. The distance between the other ring center and the projected point (i.e., the offset)
has to be less than PISTACK_OFFSET_MAX. Figure. 5 shows the illustration.

• Hydrophobic Interactions [11] are caused by the tendency of hydrophobic side chains to
avoid contact with water, leading them to aggregate. While these are not strong interactions
on their own, they play a crucial role in the folding and stability of proteins by driving
the burial of nonpolar groups away from the aqueous environment, thereby contributing
significantly to the overall stability. To form hydrophobic interactions, the atom distance
needs to be less than HYDROPH_DIST_MAX.

Figure 4: Schematic representation of the geometry of a hydrogen bond (without protonation). D and
A denote the hydrogen bond donor and acceptor respectively. X1 and X2 are the neighboring atoms
of donor and acceptor. The hydrogen bond distance as well as donor/acceptor angles are illustrated.

Figure 5: Schematic representation of the geometry of π–π stacking. To form a π–π stacking, we
need two aromatic rings. The distance of ring centers, the angle between normal vectors, and the
projection offset of the ring centers need to satisfy a set of geometry constraints.

C Model Details

In PocketFlow, we adopt a neural network architecture modified from the FrameDiff [86]. This
architecture consists of Invariant Point Attention from AlphaFold2 [43] and transformer blocks

17

[79]. In this section, we use superscripts to refer to the network layer and subscripts to indexes
or variables. In the network, each residue/ligand atom is represented by one embedding h ∈ RDx

and a frame T ∈ SE(3). For the ligand atoms, the orientation matrix of frame is set as identity
matrices. Overall, at the ℓ-th layer of the network, hℓ = [hℓ1, . . . , h

ℓ
N] ∈ RN×Dx are all the node

embeddings where hℓi is the embedding for the i-th node and N = Np +Nl is the total number of
nodes; T ℓ = [T ℓ1 , . . . , T

ℓ
N] ∈ SE(3)N is the frames of every node at the ℓ-th layer; zℓ ∈ RN×N×Dz

are edge embeddings with zℓij being the embedding of the edge between residues i and j. In the
following paragraphs, we introduce the details of feature initialization, node/edge update, backbone
update, and residue type/interaction type/sidechain torsion angle predictions.

Feature initialization. Following [86], node embeddings are initialized with residue indices and
timestep while edge embeddings additionally get relative sequence distances. Initial embeddings
at layer 0 for residues i, j are obtained with an MLP and sinusoidal embeddings ϕ(·) [79] over the
features. Following [86], we additionally include self-conditioning of predicted Cα displacements.
Let x̃ be the Cα coordinates predicted during self-conditioning. 50% of the time we set x̃ = 0. The
binned displacement of two Cα is given as,

dispij =
Nbins∑
k=1

1{x̃i − x̃j < dk}, (14)

where d1, . . . , dNbins are linspace(0, 20) are equally spaced bins between 0 and 20 angstroms. In our
experiments we set Nbins = 22. The initial embeddings can be expressed as

h0i = MLP(ϕ(i), ϕ(t)), h0i ∈ RDh , (15)

z0ij = MLP(ϕ(i), ϕ(j), ϕ(j − i), ϕ(t), ϕ(dispij)), z0ij ∈ RDz , (16)
where Dh, Dz are node and edge embedding dimensions. For the initialization of Cα coordinates,
we use the interpolation and extrapolation strategy of FAIR [92].

Node update. The process of node update is shown below. Invariant Point Attention (IPA) is from
[43]. No weight sharing is performed across layers. We use the vanilla Transformer from [79]. We
use Multi-Layer Perceptrons (MLP) with 3 Linear layers, ReLU activation, and LayerNorm [6] after
the final layer.

hipa = LayerNorm(IPA(hℓ, zℓ,T ℓ) + hℓ), hipa ∈ RN×Dh (17)

hskip = Linear(h0), hskip ∈ RN×Dskip (18)

hin = concat(hipa, hskip), hin ∈ RN×(Dh+Dskip) (19)

htrans = Transformer(hin), htrans ∈ RN×(Dh+Dskip) (20)

hout = Linear(htrans) + hℓ, hout ∈ RN×Dh (21)

hℓ+1 = MLP(hout), hℓ+1 ∈ RN×Dh (22)

Edge update. Each edge is updated with a MLP over the current edge and source and target node
embeddings. In the first line, node embeddings are first projected down to half the dimension.

hℓ+1
down = Linear(hℓ+1), hℓ+1

down ∈ RN×Dh/2 (23)

z′
ij = concat(hℓ+1

down,i,h
ℓ+1
down,j , z

ℓ
ij), z′

ij ∈ RN×(2Dh+Dz) (24)

zℓ+1 = LayerNorm(MLP(z′)), zℓ+1 ∈ RN×N×Dz (25)

Backbone update. Our frame updates follow the BackboneUpdate algorithm in AlphaFold2 [43].
We write the algorithm here with our notation,

(bi, ci, di, x
update
i) = Linear(hLi), (26)

(ai, bi, ci, di) = (1, bi, ci, di) /
√

1 + b2i + c2i + d2i , (27)

Rupdate
i =

 a2i + b2i − c2i − d2i 2bici − 2aidi 2bidi + 2aici
2bici + 2aidi a2i − b2i + c2i − d2i 2cidi − 2aibi
2bidi − 2aici 2cidi + 2aibi a2i − b2i − c2i + d2i

 , (28)

18

T update
i = (Rupdate

i , xupdate
i), (29)

T ℓ+1
i = T ℓi · T

update
i , (30)

where bi, ci, di ∈ R, xupdate
i ∈ R3. Equ. 27 constructs a normalized quaternion which is then

converted into a valid rotation matrix in Equ. 28. Following [84, 81], we use the planar geometry of
the backbone to impute the oxygen atoms. Note that we only update the pocket and ligand nodes in
PocketFlow while setting the scaffold nodes fixed.

Residue/Interaction Type and Torsion angle Prediction. We predict the residue/interaction types
and sidechain torsion angles based on node embeddings.

hc = MLP(hL), hI = MLP(hL), hχ = MLP(hL), (31)

c = softmax(Linear(hc + hL)), I = softmax(Linear(hψ + hL)), (32)

χ = Linear(hχ + hL)mod2π (33)

where c ∈ RN×20, I ∈ RN,5, and χ ∈ [0, 2π)4N . In PocketFlow, the number of network blocks is set
to 8, the number of transformer layers within each block is set to 4, and the number of hidden channels
used in the IPA calculation is set to 16. The node embedding size Dh and the edge embedding size
Dz are set as 128. We removed skip connections and psi-angle prediction. For model training, we
use Adam [45] optimizer with learning rate 0.0001, β1 = 0.9, β2 = 0.999. We train on a Tesla A100
GPU for 20 epochs. In the sampling process, the total number of steps T is set as 50.

D Proof of Equivariance

Theorem 1. Denote the SE(3)-transformation as Tg , PocketFLow pθ(R,G|P \ R) is SE(3) equivari-
ant i.e., pθ(Tg(R,G)|Tg(P \R)) = pθ(R,G|P \R), where R denotes the designed pocket, G is the
binding ligand, and P \ R is the protein scaffold.

Proof. The main idea is that the SE(3)-invariant prior and SE(3)-equivariant neural network lead to
an SE(3)-equivariant generative process of PocketFlow. By subtracting the CoM of the scaffold from
the initialized structure, we obtain an SE(3)-invariant prior distribution similar to [86, 29]. Moreover,
the neural network for structure update as shown in Appendix C is SE(3)-equivariant. Formally,
the two conditions to guarantee an invariant likelihood pθ(R1,G1|P \ R) are as follows (we use
subscripts to denote the time steps from t = 0 to t = 1):

Invariant Prior: p(R0,G0,P \ R) = p(Tg(R0,G0,P \ R)), (34)

Equivariant Transition: pθ(Rt+∆t,Gt+∆t|Rt,Gt,P\R) = pθ(Tg(Rt+∆t,Gt+∆t)|Tg(Rt,Gt,P\R)),
(35)

We can obtain the conclusion as follows:

pθ(Tg(R1,G1)|Tg(P \ R)) =

∫
p(Tg(R0,G0,P \ R))

T−1∏
s=0

pθ(Tg(R(s+1)∆t,G(s+1)∆t)|Tg(Rs∆t,Gs∆t,P \ R))

=

∫
p(R0,G0,P \ R)

T−1∏
s=0

pθ(Tg(R(s+1)∆t,G(s+1)∆t)|Tg(Rs∆t,Gs∆t,P \ R))

=

∫
p(R0,G0,P \ R)

T−1∏
s=0

pθ(R(s+1)∆t,G(s+1)∆t|Rs∆t,Gs∆t,P \ R)

= pθ(R1,G1|P \ R),

where T is the total number of steps. We apply the invariant prior and equivariant transition conditions
in the derivation.

19

E Classifier-guided Flow Matching

Here, we present the Bayesian approach to guide the flow matching with the affinity predictor. The
key insight comes from connecting flow matching to diffusion models to which affinity guidance
can be applied. Sampling a data point from the prior distribution p0, we have the following ordinary
differential equation (ODE) [72] that pushes it to data distribution:

dCt = v(Ct, t)dt =
[
f(Ct, t)−

1

2
g(t)2∇ log pt(Ct)

]
dt, (36)

where ∇ log pt(Ct) is the score function, f(Ct, t) and g(t) are the drift and diffusion coefficients
respectively. We modify Equ. 36 to be conditioned on the affinity label (vb = 1) followed by an
application of Bayes rule,

dCt =
[
f(Ct, t)−

1

2
g(t)2∇ log pt(Ct|vb = 1)

]
dt (37)

=

[
f(Ct, t)−

1

2
g(t)2 (∇ log pt(Ct) +∇ log pt(vb = 1|Ct))

]
dt (38)

=

[
v(Ct, t)−

1

2
g(t)2∇ log pt(vb = 1|Ct)

]
dt, (39)

where the first term is the unconditional vector field and the second term is the affinity guidance term.
In practice, we do not directly predict the affinity label based on Ct because the intermediate structure
is noisy. We use the following transformation:

pt(vb = 1|Ct) =
∫
p(vb = 1|C1)p(C1|Ct)dCt ≈ p(vb = 1|Ĉ1(Ct)), (40)

where Ĉ1(Ct) is the expected denoised protein-ligand complex structure based on Ct. Details of the
affinity predictor is introduced in the Appendix. E.1. We need to choose g(t) such that it matches the
learned probability path. Previous works [20, 86] showed g(t)2 = t

1−t in the Euclidean setting. For
simplicity, we set g(t) as constant 1 and observe good performance in experiments.

E.1 Binding Affinity Predictor

In PocketFlow, we leverage a binding affinity predictor pθ(vb|Ĉ1(Ct)) to guide the denoising process,
where vb ∈ {0, 1} is the binary label of binding affinity and Ĉ1(Ct) is the expected protein-ligand
structure at t = 1. Following [66, 29], we leverage a 3-layer EGNN [70] with the node initialized
embeddings and residue/ligand atom coordinates from Appendix C. Specifically, we take the Cα
coordinates for the residues and ligand atom coordinates and construct k-NN graphs (k set as 9). Let
hℓi and xℓi be denote the node representations and coordinates at the ℓ−th layer. The (ℓ+ 1)−th layer
is computed as follows:

hℓ+1
i = hℓi +

∑
j∈N ,i̸=j

fh(d
ℓ
ij , h

ℓ
i , h

ℓ
j , eij), (41)

xℓ+1
i = xℓi +

∑
j∈N ,i̸=j

(xℓi − xℓj)fx(d
ℓ
ij , x

ℓ
i , x

ℓ
j , eij), (42)

where dℓij = ∥xℓi − xℓj∥ represents the Euclidean distance between node i and node j at the ℓ-th layer,
N denotes the k-NN neighbors, and eij indicates the direction of message-passing, including from
protein to protein, from protein to ligand, from ligand to protein, and from ligand to ligand. The
functions fh and fx are graph attention networks. Finally, we append an average pooling, one linear
layer, and softmax operation at the end to predict the binary label of affinity.

To train the binding affinity predictor, we first annotate the data points in the corresponding training
set: data points are annotated 1 if their affinity is higher than the average score of the dataset,
otherwise 0. We train the predictor separately instead of joint training with flow matching because
we find it can converge more quickly than the flow matching losses. We did not train the predictor on
the intermediate structures as we find they are noisy and deteriorate the predictor and PocketFlow’s
overall performance. In experiments, we use the Adam optimizer and train for 10 epochs.

20

E.2 Geometry Guidance

Distance Guidance. For hydrogen bonds, the distances between donor and acceptor atoms need to
be less than 4.1 Å and larger than 2 Å to reduce steric clashes [35]. The following inequality is a
necessary condition for residues in Ĉ1(Ct) with predicted interaction label Î1 as hydrogen bond:

lmin ≤ min
i∈A(k)

hbond,j∈G

∥∥∥x(i) − x(j)
∥∥∥
2
≤ lmax, (43)

where lmin and lmax are distance constraints; A(k)
hbond denote the k-th residue in the set of pocket

residues with predicted hydrogen bonds. With a little abuse of notations, x(i) and x(j) denote the
atom coordinates in the residue and ligand respectively. We use the following derivations to obtain
the guidance term for the distance constraints:

∇Ct
logP ({lmin ≤ min

i∈A(k)
hbond,j∈G

∥x(i) − x(j)∥2 ≤ lmax, k = 1 : |Ahbond|}) (44)

= ∇Ct

|Ahbond|∑
k=1

logP (lmin ≤ min
i∈A(k)

hbond,j∈G
∥x(i) − x(j)∥2 ≤ lmax) (45)

=

|Ahbond|∑
k=1

∇Ct
[P (−min

i∈A(k)
hbond,j∈G ∥x(i) − x(j)∥2 ≤ −lmin) · P (min

i∈A(k)
hbond,j∈G ∥x(i) − x(j)∥2 ≤ lmax)]

P (lmin ≤ min
i∈A(k)

hbond,j∈G ∥x(i) − x(j)∥ ≤ lmax)

(46)

=

|Ahbond|∑
k=1

ξ1∇CtP (min
i∈A(k)

hbond,j∈G
∥x(i) − x(j)∥2 ≤ lmax) + ξ2∇xtP (− min

i∈A(k)
hbond,j∈G

∥x(i) − x(j)∥2 ≤ −lmin)

(47)

=

|Ahbond|∑
k=1

ξ1∇Ct
I(min
i∈A(k)

hbond,j∈G
∥x(i) − x(j)∥2 ≤ lmax) + ξ2∇Ct

I(− min
i∈A(k)

hbond,j∈G
∥x(i) − x(j)∥2 ≤ −lmin),

(48)

where ξ1 = 1/∇CtP (min
i∈A(k)

hbond,j∈G ∥x(i) − x(j)∥2 ≤ lmax) and ξ2 =

1/P (−min
i∈A(k)

hbond,j∈G ∥x(i) − x(j)∥2 ≤ −lmin). Due to the discontinuity of the indicator
function I(·) that is incompatible with the gradient, we apply ξ −max(0, ξ − y) as a surrogate of
I(y < ξ) in the above equation. Although ξ1 and ξ2 are dependent on Ct, we find setting them as
constant still works well in experiments. With these approximations, we can derive guidance term for
hydrogen bond distance constraints:

−∇Ct

|Ahbond|∑
k=1

[
ξ1 max

(
0, d(k) − lmax

)
+ ξ2 max

(
0, lmin − d(k)

)]
, (49)

where d(k) = min
i∈A(k)

hbond,j∈G

∥∥x(i) − x(j)
∥∥
2
. Such distance guidance terms for hydrophobic

interactions, salt bridges, and π − π stackings are similar. The difference is to replace Ahbond with
Ahydro, Asalt, and Aπ that denotes the residue sets with corresponding interactions. We modify the
functions in plip 2 for the ease of detecting interaction atom pair candidates. In practice, ∇Ct takes
gradients with each component in Ct, including χt,xt,Ot, ct, and It.

Angle Guidance. Besides the distance constraint, the hydrogen bond needs to satisfy the accep-
tor/donor angle constraint [69], e.g., the donor/acceptor angle needs to be larger than 100◦. hangle(·, ·)

2https://github.com/pharmai/plip

21

calculates the acceptor/donor angle in Figure. 4.

∇Ct logP ({αmin ≤ max
i∈A(k)

hbond,j∈G
hangle(x(i),x(j)), k = 1 : |Ahbond|}) (50)

= ∇Ct

|Ahbond|∑
k=1

logP (αmin ≤ max
i∈A(k)

hbond,j∈G
hangle(x(i),x(j))) (51)

=

|Ahbond|∑
k=1

∇CtP (αmin ≤ max
i∈A(k)

hbond,j∈G hangle(x(i),x(j)))

P (αmin ≤ max
i∈A(k)

hbond,j∈G hangle(x(i),x(j)))
(52)

=

|Ahbond|∑
k=1

ξ3∇Ct
P (αmin ≤ max

i∈A(k)
hbond,j∈G

hangle(x(i),x(j))), (53)

where ξ3 = 1/P (αmin ≤ max
i∈A(k)

hbond,j∈G hangle(x(i),x(j))). The final guidance term is:

−ξ3∇xt

|Ahbond|∑
k=1

max(0, αmin − ϕ(k)), (54)

where ϕ(k) = max
i∈A(k)

hbond,j∈G hangle(x(i),x(j)). The angle constraint is similar for the π − π

stacking and the final guidance term is:

−ξ4∇Ct

|Aπ|∑
k=1

max(0, ϕ(k)π − αmax), (55)

where ϕ(k)π = min
i∈A(k)

π ,j∈G piangle(x(i),x(j)) and piangle(·, ·) calculates the π− π stacking angle
in Figure. 4. All the operations and calculations used in geometry guidance are made differentiable
and can be plugged into the sampling process of PocketFlow.

Figure 6: Superposition of 20 residue-type sidechains. When calculating the geometry guidance, we
use the expected sidechain conformations with respect to the estimated residue type probability ĉ

(i)
1

to avoid the non-differentiability issue of residue type sampling.

Sidechain Ensemble. PocketFlow takes the co-design scheme, where the residue type/side chain
structure of the pocket is not determined during sampling. Directly sampling from the residue type
distribution makes the model not differentiable [38]. We propose to use the sidechain ensemble for
the interaction geometry calculation, i.e., the weighted sum of geometric guidance with respect to
residue types. For example, for Equ. 54, we have:

−ξ3∇Ct

|Ahbond|∑
k=1

20∑
n=1

ĉ
(i)
1 [n] ·max(0, αmin − ϕ(k)), (56)

where ĉ(i)1 [n] denote the n-th residue type probability and ϕ(k) calculates the angle with the n-th type
residue side chain.

22

Figure 7: Average Generation time for 100 pockets by different models on CrossDocked (the error
bars show the standard deviations over different runs).

(a) (b) (c)

Figure 8: The influence of Affinity Guidance Strength γ on the pocket metrics.

F More Results

Here, we show additional results on efficiency analysis (Figure. 7), hyperparameter analysis of γ
(Figure. 8), and ablation studies on the interaction analysis (Table. 6).

Figure. 7 shows that the PocketFlow is much more efficient than stat-of-the-art diffusion-based
models such as RFDiffusionAA. Considering the high quality of the generated pockets, the slight
time overhead over models based on iterative refinement (e.g., dyMEAN and FAIR) is acceptable.
We find that Affinity and Interaction Geometry Guidance do not add much overhead to the generation
process. Therefore, these prior guidance are efficient tools for pocket optimization.

In Figure. 8, we explore the impact of Affinity Guidance Strength (γ) on various generation metrics.
As γ is scaled up, the Vina Score significantly improves and quickly stabilizes; AAR initially increases
before gradually decreasing; scRMSD, on the other hand, increases with higher γ. These observations
underscore the importance of selecting an appropriate γ to effectively balance the guidance and
unconditional terms. While Affinity Guidance promotes the generation of high-affinity pockets, an
excessively high γ can result in less valid pocket sequences or structures. In the default configuration,
γ is set to 1.

To evaluate the validity of the generated sidechain structure, we compute the Mean Absolute Error
(MAE) of sidechain angles (degrees) following [90] in Table. 5. We mainly compare PocketFlow
with RFDiffusionAA [48]+LigandMPNN [22] on the recovered residues. In the table, we report
the average MAE and can observe that PocketFlow achieves better performance in generating valid
sidechain structures.

Method χ1 χ2 χ3 χ4

RFDiffusionAA 21.56 27.92 48.76 52.88
PocketFlow 19.40 26.22 44.57 50.10

Table 5: The MAE of RFDiffusionAA + LigandMPNN and PocketFlow on sidechain torsion
angles(degrees).

23

In Table. 6, we supplement further results of interaction analysis (Table. 3 in the main paper). We
can observe that the guidance terms effectively improve the number of favorable interactions while
reducing steric clashes, which lay the foundation for generating high-affinity pockets.

Methods Clash (↓) HB (↑) Salt (↑) Hydro (↑) π–π (↑)
PocketFlow 1.21 4.12 0.27 6.03 0.28

w/o Aff Guide 2.58 3.84 0.25 5.84 0.27
w/o Geo Guide 3.27 3.96 0.24 5.90 0.27

w/o Geo & Aff Guide 3.56 3.68 0.23 5.73 0.26
w/o Inter Learning 3.34 3.74 0.22 5.80 0.26

Table 6: Ablation studies on the interaction analysis. The best results are bolded and the runner-up is
underlined.

24

G Baseline Implementation

DEPACT [19] 3 is a template-matching method that follows a two-step strategy for pocket design.
Firstly, it searches the protein-ligand complexes in the template database with similar ligand fragments
and constructs a cluster model (a set of pocket residues). The template databases are constructed
based on the corresponding training datasets for fair comparisons. Secondly, it grafts the cluster
model into the protein pocket with PACMatch. It works by placing residues from the cluster model
on protein scaffolds by matching the atoms of residues with atoms of the protein scaffold. The
backbone coordinates of the pocket residues are also modified in the process. The qualities of the
generated pockets are evaluated and ranked based on a statistical scoring function. We take the
top 100 designed pockets for evaluation. The output of DEPACT+PACMatch is complete protein
structures with redesigned pockets. In the paper, we only use DEPACT to represent the whole method
of DEPACT+PACMatch for conciseness.

RFDiffusionAA [48] 4 is the latest version of RFDiffusion which combines a residue-based rep-
resentation of amino acids and atomic representations of all other groups to model protein-small
molecules/metals/nucleic acids/covalent modification complexes. Starting from random distributions
of amino acid residues surrounding target small molecules, RFDiffusionAA can directly generate the
small molecule binding protein backbone. Furthermore, with LigandMPNN [22], the latest version
of ProteinMPNN[21], we can assign residue types and predict sidechain conformations considering
the protein-ligand interactions. Experiments in RFDiffusionAA [48] show that the generated protein
by RFDiffusionAA has better binding affinity than those obtained by RFDiffusion with auxiliary
potential. We use the provided checkpoints of RFDiffusionAA for all the experiments since the
training code is unavailable.

dyMEAN [47] 5 is an end-to-end full-atom model for E(3)-equivariant antibody design given the
epitope and the incomplete sequence of the antibody. Its previous version, MEAN [46], only considers
the backbone atoms, while dyMEAN considers the complete atom structure and performs better on
downstream tasks. Generally, dyMEAN co-designs antibody sequence and structure via a multi-round
progressive full-shot refinement manner, which is more efficient than auto-regressive or diffusion-
based approaches. An adaptive multi-channel equivariant encoder is used in dyMEAN, which can
process protein residues of variable sizes when considering full atoms. To adapt dyMEAN to our
pocket design task, we replace the antigen with the target ligand molecule to provide the context
information for pocket generation. We set the hidden size as 128, the number of layers as 3, and the
number of iterations for decoding as 3.

FAIR [92] 6 is our previous method for full atom pocket sequence-structure co-design. FAIR operates
in two steps, proceeding in a coarse-to-fine manner (backbone refinement to full atoms refinement,
including side chains) for full-atom generation. In FAIR, residue types and atom coordinates are
updated using a hierarchical graph transformer composed of a residue-level and atom-level encoder.
The number of layers for the atom and residue-level encoder are 6 and 2, respectively. Ka and Kr

are set as 24 and 8 respectively. The number of attention heads is set as 4; The hidden dimension d is
set as 128.

3https://github.com/chenyaoxi/DEPACT_PACMatch
4https://github.com/baker-laboratory/rf_diffusion_all_atom
5https://github.com/THUNLP-MT/dyMEAN
6https://github.com/zaixizhang/FAIR

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we clearly state the contributions of our paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Sec.5.5, we clearly describe the limitations of the work and the potential
ways to reduce the limitations in future works.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

26

Justification: The proofs of the theorems are included in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code will be included in https://github.com/zaixizhang/
PocketFlow.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

27

https://github.com/zaixizhang/PocketFlow
https://github.com/zaixizhang/PocketFlow

Answer: [Yes]
Justification: We clearly discussed the training datasets and other details.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provided the standard deviations of the results in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper conforms in every respect with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discussed potential societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

29

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The existing assets are properly cited and credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

30

paperswithcode.com/datasets

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Related Works
	Generative Models for Protein Generation
	Protein Pocket Generation

	Preliminaries
	Notations and Problem Formulation
	Preliminaries on Flow Matching

	PocketFlow
	PocketFlow on SE(3)
	PocketFlow on Torus
	PocketFlow on Residue Types and Interaction Types
	Model Training
	Pocket Sampling with Prior Guidance

	Experiments
	Experimental Settings
	Small-molecule-binding Pocket Design
	Generalization to Other Ligand Domains
	Interaction Analysis and Case Studies
	Limitations and Broader Impacts

	Conclusion
	Acknowledgements
	Dataset Preprocessing
	Considered Protein-ligand Interactions
	Model Details
	Proof of Equivariance
	Classifier-guided Flow Matching
	Binding Affinity Predictor
	Geometry Guidance

	More Results
	Baseline Implementation

