
Under review as a conference paper at ICLR 2023

DEEP ACCURATE SOLVER FOR THE GEODESIC
PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

A high order accurate deep learning method for computing geodesic distances
on surfaces is introduced. We consider two main components for computing dis-
tances on surfaces; A numerical solver that locally approximates the distance func-
tion and an efficient causal ordering scheme by which surface points are updated.
The proposed method exploits a dynamic programming principle which lends it-
self to a scheme with quasi-linear computational complexity. The quality of the
distance approximation is determined by the local solver and is the main focus of
this paper. A common approach to compute distances on continuous surfaces is
by considering a discretized polygonal mesh approximating the surface, and esti-
mating distances on the polygon. With such an approximation, the exact geodesic
distances restricted to the polygon are at most second order accurate with respect
to the distances on the corresponding continuous surface. Here, by order of ac-
curacy we refer to the rate of convergence as a function of the average distance
between sampled points. To improve the accuracy, we consider a neural network
based local solver which implicitly approximates the structure of the continuous
surface. The proposed solver circumvents the polyhedral representation, by di-
rectly consuming sampled mesh vertices for approximation of distances on the
sampled continuous surfaces. We supply numerical evidence that the proposed
learned update scheme, with appropriate local numerical support, provides better
accuracy compared to the best possible polyhedral approximations and previous
learning based methods. We introduce a trained solver which is third order accu-
rate, with quasi-linear complexity in the number of sampled points.

1 INTRODUCTION

Geodesic distance is defined as the length of the shortest path connecting two points on a surface. It
can be considered as a generalization of the Euclidean distance to curved manifolds. The approx-
imation of geodesic distances is used as a building block in many applications. It can be found in
robot navigation (Kimmel et al., 1998; Kimmel & Sethian, 2001), and shape matching (Ion et al.,
2008; Elad & Kimmel, 2001; Shamai & Kimmel, 2017; Panozzo et al., 2013), to name just a few
examples. Thus, for effective and reliable use, computation of geodesics is expected to be both fast
and accurate.

Over the years, many methods have been proposed for computing distances on polygonal meshes
that compromise between the accuracy of the distance approximation and the complexity of the
algorithm. One family of algorithms for computing distances in this domain is based on solutions to
the exact discrete geodesic problem introduced by Mitchell et al. (1987). This problem is defined as
that of finding the exact distances on a polyhedral mesh. The algorithms introduced so far for solving
the discrete geodesic problem involve substantially higher than linear complexity which makes them
impractical for operating on surfaces sampled by a large number of vertices. At the other end, a
popular family of methods for efficient approximation of distances known as fast marching, involves
quasi-linear computational complexity. These methods are based on the solution of the eikonal
equation and consists of two main components, a heap sorting strategy and a local causal numerical
solver, often referred to as a numerical update procedure. Fast marching, originally introduced for
regularly sampled grids (Sethian, 1996; Tsitsiklis, 1995), was extended to triangulated surfaces in
Kimmel & Sethian (1998). While operating on curved surfaces approximated by triangulated mesh,
the first proximity neighbors of a vertex in the mesh are used to locally approximate the solution of

1

Under review as a conference paper at ICLR 2023

an eikonal equation, resulting in a first-order-accurate scheme in terms of a typical triangle’s edge
length denoted as h.

Figure 1: Geodesic distance
from a single source point
on a surface. Our method
produces highly accurate dis-
tance maps while operating in
quasi-linear time.

It can be easily shown that the exact geodesic distances computed
on a polygonal mesh approximating a continuous surface would
be at most a second order approximation of the corresponding dis-
tances on the surface (see Appendix A.1). To overcome the second
order limitation, we extend the numerical support about each vertex
beyond the classical one ring approximation, and utilize the uni-
versal approximation properties of neural networks. We develop a
neural network based local solver that overcomes the second order
approximation limitation induced by geodesics restricted to poly-
hedral meshes. We exploit the low complexity of the well-known
dynamic programming update scheme (Dijkstra, 1959), and com-
bine it with a novel neural network-based solver, resulting in an
efficient and accurate method.

In a related effort (Lichtenstein et al., 2019), a neural network based
local solver for the computation of geodesic distances was pro-
posed. We improve upon Lichtenstein’s O(h2) approach by ex-
tending the local neighborhood numerical support, and refining the
network’s architecture to obtain O(h3) accuracy at similar linear
complexity.

The proposed local solver is trained in a supervised manner using
ground truth examples. Since geodesics can not be derived analyti-
cally except for a limited set of surfaces like spheres and planes, we
propose a multi-hierarchy ground truth generation technique. The
suggested framework uses distance approximations on high resolu-
tion sampled meshes to better approximate distances on lower reso-
lution meshes. We thereby utilize our ability to compute high order
solvers to generate accurate training examples at low resolution.

1.1 CONTRIBUTIONS

We develop a fast and accurate geodesic distance approximation method on surfaces.

• For fast computation, we use a distance update scheme (Algorithm 1) that guarantees quasi-
linear computational complexity.

• For accurate approximation, we develop a neural network based local solver with a wide
local neighborhood support that operates directly on the sampled mesh vertices.

• To provide accurate ground truth distances required for training our solver, we propose a
novel data generation bootstrapping procedure.

2 RELATED EFFORTS

Given a domain Ω ⊂ Rn and a curve Γ ∈ Ω, the predominant approach for generating distance
functions from the curve Γ to all other points in Ω, is to find a function ϕ : Ω → R which satisfies
the eikonal equation,

|∇ϕ(x)| = 1, x ∈ Ω \ Γ
ϕ(x) = 0, x ∈ Γ . (1)

Due to the non-linearity and hyperbolicity of this partial differential equation (PDE), solving it
directly is a challenge. Common solvers sample the continuous domain and approximate the solution
on the corresponding discretized domain while being consistent with viscosity solutions.

Fast Eikonal Solvers. In Sethian (1996); Tsitsiklis (1995), quasi-linear algorithms for approximat-
ing distances on regularly sampled grids were introduced. These algorithms involve O(N log(N))
complexity, where N is the number of points on the grid. For example, the fast marching algorithm

2

Under review as a conference paper at ICLR 2023

consists of two main parts, a numerical solver that locally estimates the distance function, by approx-
imating a solution of an eikonal equation, and an ordering scheme that determines which points are
visited at each iteration. Over the years, more sophisticated local solvers have been developed which
utilize wide local support and lead to second (Sethian, 1999) and third (Ahmed et al., 2011) order
accurate methods. Kimmel & Sethian (1998) extended the fast-marching scheme to approximate
first-order accurate geodesic distances on triangulated surfaces. Another prominent class of numer-
ical solvers is the fast sweeping methods (Kimmel & Maurer, 2006; Zhao, 2005; Li et al., 2008;
Weber et al., 2008), iterative schemes that use alternating sweeping ordering. These methods have
an asymptotic complexity of O(N2), thus, they are usually considerably slower since they require
many sweeps to converge to accurate results in worst case scenarios (Hysing & Turek, 2005).

Geodesics in Heat. Instead of directly solving the hyperbolic eikonal equation, the heat method pre-
sented in Crane et al. (2013) solves a linear elliptic PDE for heat transport. The suggested approach
requires the solution of a diffusion equation and a Poisson equation. An advantage promoted in that
paper, is that the required linear systems can be pre-factored per mesh, which leads to computational
efficiency when calculating distance maps from multiple sources. It has been empirically shown that
the heat method leads to first order approximation of geodesic distances on average. The distance
functions produced with the heat method are smoother than those generated with fast marching and
are less accurate near the discontinuities of the distance functions.

Window Propagation Methods. Trying to solve the discrete geodesic problem, Mitchell et al.
(1987) proposed a O(N2 log(N)) complexity algorithm known as MMP. This algorithm was the first
method introduced for computing exact distances on non-convex triangulated surfaces. In its original
formulation, it calculates the distance from a single source to all other points on the polygonal
mesh. The main idea of this algorithm is to track groups of shortest paths that can be atomically
parameterized. This is achieved by dividing each mesh edge into a set of intervals, which are referred
to as windows. This quadratic algorithm is computationally demanding and challenging to code. In
fact, the first implementation was introduced 18 years after its publication, by Surazhsky et al.
(2005). Over the years, many improvements to the exact geodesic scheme were suggested (Xu et al.,
2015; Ying et al., 2014; Trettner et al., 2021). For example, the Vertex-oriented Triangle Propagation
(VTP) algorithm (Qin et al., 2016), which by sorting out superfluous windows is considered to be
one of the fastest exact geodesics algorithms on polyhedral surfaces.

Deep Learning Based Methods. A number of recent papers exploited neural networks approxima-
tion capabilities to numerically solve PDEs (Greenfeld et al., 2019; Hsieh et al., 2019; bin Waheed
et al., 2021). Similar to our strategy, Lichtenstein et al. (2019) proposed a deep learning based
method for geodesic distance approximation. It uses a heap sort ordering scheme while introducing
a neural network based local solver. For each distance evaluation of a target point p, a local neigh-
borhood is obtained as input to the solver. This neighborhood consists of all vertices connected to
p by a path with at most 2 edges, which we refer to as second-ring neighborhood. The proposed
method showed second-order accuracy, similar to the exact geodesic method (Mitchell et al., 1987),
while operating at quasi-linear O(N log(N)) computational complexity.

Curve Shortening Methods. A geodesic is defined as the path connecting two points on a surface,
which is characterized by having zero geodesic curvature at each point along the curve. Between
two points on a surface, there can be multiple geodesic paths with different corresponding distances.
The geodesic distance is defined as the length of the minimal geodesic connecting each point on
the surface to some source points at which the distance is defined to be zero. A geodesic path
can be extracted by starting with an arbitrary path on the surface and applying a length shortening
method. Kimmel & Sapiro (1995) presented a curve shortening flow that fixes the two endpoints of
the curve at each iteration and minimize the geodesic curvature. Sharp & Crane (2020) presented
a curve shortening method for triangulated meshes by considering paths constrained to the mesh
edges and applying intrinsic edge flips. These local refinement methods converge an initial guess
into a geodesic which is not necessarily the minimal one.

3 GEODESIC DISTANCES: O(h3) ACCURATE AT QUASI-LINEAR COMPLEXITY

We present a neural network based method for approximating accurate geodesic distances on sur-
faces. Similar to most dynamic programming methods, like the fast marching scheme, the proposed
method consists of a numerical solver that locally approximates the distance function u, and an or-

3

Under review as a conference paper at ICLR 2023

dering scheme that defines the order of the visited points. Here, the points are divided into three
disjoint sets.

1. Visited: points where the distance function u(p) has already been computed and will not
be changed.

2. Wavefront: points where the computation of u(p) is in progress and is not yet fixed.

3. Unvisited: points where u(p) has not yet been computed.

Algorithm 1 Distance Updating Scheme

1: Definitions:
S - Set of all source points
p - point on the surface
u(p) - minimal distance from sources to p

2: Initialize:
u(p) = 0, tag p as Visited; ∀p ∈ S
u(p) = ∞, tag p as Unvisited; ∀p ̸∈ S
Tag all Unvisited points adjacent to Visited points as Wavefront

3: repeat
4: for p ∈ Wavefront do
5: Approximate u(p) based on Visited points
6: Tag p as Wavefront
7: end for
8: Tag the least distant Wavefront point p′ as Visited
9: Tag all Unvisited neighbors of p′ as Wavefront

10: until all points are Visited.
11: Return u

The distances at the sampled surface points are computed according to Algorithm 1, where Step 5
of the scheme is performed by the proposed local solver. When applied to a target point p ∈ Wave-
front, the local solver uses a predefined maximum number of Visited points. These Visited points
are chosen from the local neighborhood and are not related to the number of points on the mesh;
hence, a single operation of our solver has constant complexity. Since, within our dynamic program-
ming setting, the proposed method retains the heap sort ordering scheme, the overall computational
complexity is O(N log(N)).

Section 3.1 introduces the operation of the local solver, presents the required pre-processing and
elaborates on the implementation of the neural network. Section 3.2 explains how the dataset is
generated and the network weights are optimized. Section 3.3 details how ground truth distances are
calculated when no analytic closed form is available.

3.1 LOCAL SOLVER

We present an application of a novel local neural network-based solver. It can be used as a distance
approximation method in Step 5 of Algorithm 1. When the solver is applied to a given point p ∈
Wavefront, it receives as input the coordinates and distance function values of its neighboring points.
The neighboring points, denoted by N (p) = {p1, p2, ..., pM}, are defined by all vertices connected
to p by a path of at most 3 edges, which is often referred to as third ring neighborhood. Based on
the information from the Visited points in N (p), the local solver approximates the distance function
u(p). This way, we keep utilizing the order of updates that characterizes the construction of distance
functions.

As mentioned earlier, for a given target point p and neighboring points {pi}Mi=1 ⊂ Visited ∩N (p),
the input to our solver is {(xpi , ypi , zpi , u(pi)}Mi=1 ∪{(xp, yp, zp)}. To address the solver’s general-
ization capability and to handle diverse possible inputs, we transform the input to the neural network
into a canonical representation. To this end, we design a preprocessing pipeline. The coordinates are
centered with respect to the target point, resulting in relative coordinates (xpi

−xp, ypi
−yp, zpi

−zp),
and minj{u(pj)} is subtracted from the values of the distance function {u(pi)}Mi=1. After the input
is centered, it is scaled so that the mean L2 norm of the coordinates is of unit size. Last, a SO(3)

4

Under review as a conference paper at ICLR 2023

Figure 2: The proposed network architecture described in Section 3.1. The input coordinates and
distance function are in their canonical form, after translation rotation and scale.

rotation matrix is applied to the coordinates so that their first moment is aligned with a predefined
direction. The processed input is fed into the neural network and the output is further processed to
reverse the centering and scaling transformations.

Our input neighborhood has no fixed order and can be viewed as a set. To properly handle our
unstructured set of points, we prefer our neural network output to be permutation invariant. Our
architecture, shown schematically in Figure 2, is based on the Pointnet model (Qi et al., 2017) and
consists of three main components. (1) A shared weight encoder that lifts the 4-dimensional input to
512 features using residual multi-layer perceptron (MLP) blocks (Ma et al., 2022), (2) a per-feature
max pooling operation that results in a single 512 feature vector, and (3) a fully connected regression
network of dimensions (512, 1024, 512, 256, 1) that outputs the desired target distance.

3.2 TRAINING THE LOCAL SOLVER

We use a customary supervised training procedure, using examples with corresponding ground-truth
distances. These ground truth distances are obtained by applying a bi-level sampling strategy, as de-
tailed in Section 3.3. Given an input {(xpi

, ypi
, zpi

, u(pi)}Mi=1, our network is trained to minimize
the difference between its output and its corresponding ground truth, denoted by ugt(p). To develop
a reliable and robust solver, we create a diverse dataset that simulates a variety of scenarios. We
construct this dataset by selecting various source points and sampling local neighborhoods at differ-
ent random positions relative to the sources. According to the causal nature of our algorithm, we
build our training examples, such that a neighboring point p′ is defined as Visited and is allowed to
participate in the prediction of u(p) if ugt(p

′) < ugt(p). The network’s parameters Θ are optimized
to minimize the Mean Square Error (MSE) loss

L(Θ) =
1

K

K∑
j=1

(fΘ({(xpi,j , ypi,j , zpi,j , u(pi,j))}Mi=1)− ugt(pj))
2, (2)

where K is the number of examples in the training set and pi,j corresponds to the ith neighbor of the
target point pj . The coordinates and distances used in our training procedure are in their canonical
form, after being translated, rotated and scaled, as explained in Section 3.1.

3.3 LEARNING TO AUGMENT

Exact distances on continuous surfaces are given by analytic expressions for a very limited set of
continuous surfaces; namely, for spheres and planes. Since our solver is trained on examples con-
taining ground truth distances, an additional approximation algorithm must be considered to gener-
ate our training examples for general surfaces. Currently, the most accurate axiomatic method for

5

Under review as a conference paper at ICLR 2023

Figure 3: Bootstrapping by training. Distance values computed for a high h2-resolution sampled
mesh of a continuous surface with an r accurate scheme yields O(h2r) accurate distances given
at the mesh points. The mesh can then be sampled into a lower h-resolution mesh of the same
continuous surface, while keeping the corresponding O(h2r) accurate distances at the vertices. See
text for an elaborated discussion regarding data augmentation at high resolution and training more
accurate update procedures at the low resolution.

distance computation is the MMP algorithm, which computes “exact” polyhedral distances. Consid-
ering polyhedral surfaces as sampled continuous ones, the “exact” distances on triangulated surfaces
are 2nd order accurate with respect to the edge length h. Therefore, the MMP is an O(h2) accurate
method. In order to train our network with more accurate than O(h2) distances for general smooth
surfaces, we resort to the following bootstrapping idea.

We introduce a multi-resolution ground truth boosting generation technique that allows us to obtain
ground truth distances of any desired order. The underlying idea is that distances computed on a
mesh obtained from a denser sampling of the surface are a better approximation to the distances on
the continuous surface.

When generating examples from a given surface, two sampling resolutions of the surface are ob-
tained and corresponding meshes are formed, denoted by Sdense and Ssparse, respectively. Dis-
tances are computed on the high-resolution mesh Sdense and the obtained distance map is sampled
at Ssparse.

Consider hdense, hsparse that correspond to the mean edge length of the polygons Sdense, Ssparse,
so that,

hdense = hq
sparse . (3)

The distances computed by an approximation method of order r on Sdense are r order accurate
O(hr

dense). Therefore, the same approximated distances, sampled at the corresponding vertices of
Ssparse, have O(hqr

sparse) accuracy.

Using the distance samples of the polyhedral distances obtained by the MMP algorithm while re-
quiring q ≥ 2 in Equation (3), allows us to generate distance maps that are at least fourth-order
accurate. By considering these approximated distances as our ground truth, training examples can
be generated from Ssparse as described in Section 3.2 which allow us to properly train a third-order
accurate method. The iterative application of this process allows us to generate accurate ground
truth distances to properly train solvers of arbitrary order. For example, after training a 3rd order
solver, we can apply the same process while replacing the MMP with our new solver to generate a
O(h6) ground truth distances and train a solver up to 6th order. For a schematic representation of
this technique, see Figure 3.

6

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 4: Order of accuracy: (a) Mesh approximations of a unit sphere with different edge resolu-
tions. (b) Plots showing the effect of the edge size on the errors. The accuracy of each scheme is
associated with its corresponding slope.

4 NUMERICAL EVALUATION

4.1 ANALYTICALLY COMPUTED GROUND TRUTH

Geodesic distances on spheres can be calculated analytically. Therefore, they are well suited for the
evaluation of our method. For two given points a = (xa, ya, za), b = (xb, yb, zb) lying on a sphere
of radius r, the geodesic distance between them is defined by

u(a, b) = r arccos
(
xaxb + yayb + zazb

r2

)
. (4)

To train our solver, we first randomly sampled spheres at different resolutions and obtained a trian-
gulated version of them. Using the distances calculated by Equation (4), we then created a rich data
set and applied a training procedure as presented in Section 3.2. To evaluate our method, we create
a hierarchy of sphere resolutions as illustrated in Figure 4a.

As described in Osher & Sethian (1988), we assume that the exact solution u(a, b) can be written as

u(a, b) = uh(a, b) + ChR +O(hR+1) , (5)
where C is a constant, uh is defined as the approximate solution on a mesh with a corresponding
mean edge length of h, and R is the order of accuracy. For two given mesh resolutions of the
same continuous surface S1, S2 with corresponding h1, h2, we can estimate our method’s order of
accuracy by

R = log h1
h2

(
u− uh1

u− uh2

)
. (6)

The evaluation of our method is shown in Figure 4b, where the slope of the line indicates the order
of accuracy R. It can be seen that our method has a higher order of accuracy than the classical fast
marching, the exact geodesic method, and the previous deep learning method proposed by Lichten-
stein et al.

4.2 GENERALIZATION TO POLYNOMIAL SURFACES

We evaluated our method on second order polynomial surfaces. In general, there is no closed form
analytical expression for geodesic distances on these surfaces. To train our solver, we generated a
wide variety of polynomial surfaces and obtained an accurate approximation of their geodesics for
a range of sampling resolutions, as described in Section 3.3. After obtaining an accurate geodesic
distance map, we created a training set and trained our model according to Section 3.2. An evaluation
of our method on surfaces from this family is shown in Table 1 and Figure 5.

7

Under review as a conference paper at ICLR 2023

Table 1: Polynomial surfaces: Quantitative evaluation conducted on 2nd order polynomial surfaces.
The errors were computed relative to the polyhedral distance projected from high-resolution sampled
meshes, as described in Section 3.3.

Surface L1 L∞
FMM Lichtenstein et al. MMP Ours FMM Lichtenstein et al. MMP Ours

x2 − y2 0.02861 0.00213 0.00094 0.00043 0.0795 0.0117 0.0024 0.0016
x2 + y2 0.02053 0.00339 0.00276 0.00096 0.0680 0.0144 0.0067 0.0026
x2 − y2 + xy 0.02913 0.00336 0.00182 0.00088 0.0640 0.0260 0.0063 0.0028

4.3 GENERALIZATION TO ARBITRARY SHAPES

Figure 5: Polynomial surfaces: Errors pre-
sented for the polyhedral scheme and the pro-
posed method. Local errors, represented as
colors on the surface, were computed relative
to exact polyhedral distances computed at a
high-resolution sampled mesh of the contin-
uous surface, as described in Section 3.3.

To better emphasize the generalization ability of our
method, we conduct an additional experiment. We
train our solver only on the three 2nd order polyno-
mial surfaces shown in Table 1, and evaluate it on
arbitrary shapes from the TOSCA dataset (Bronstein
et al., 2008). It can be seen in Figure 6, that our
method generalizes well and leads to significantly
lower errors compare to the heat method, classical
fast marching and the method presented by Lichten-
stein et al. (2019) when trained on the same poly-
nomial surfaces. Errors are computed relative to the
polyhedral distances, since they are the most accu-
rate distances available to us for these shapes. For
a more detailed analysis of the generalization of our
method to Tosca, one can see Table 3 and Figure 9
in the Appendix.

Figure 6: Generalization to arbitrary shapes. Top row: Iso-contours shown for our method. Bottom
row: errors presented (left to right) for the heat method, fast marching, Lichtenstein et al. and the
proposed method. Local errors presented as colors on the surface (brighter color indicates higher
error), were computed relative to the polyhedral distances. The evaluation was conducted on TOSCA
whereas our solver and the solver proposed by Lichtenstein et al. were trained with only limited
number of 2nd order polynomial surfaces (the 3 surfaces presented in Table 1).

4.4 ABLATION STUDY

To analyze the performance and robustness of our method, we conduct additional tests. These
include modifying the local numerical support by which neighborhoods are defined and the precision
point representation of the network weights.

8

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 7: (a) Local neighborhood: Evaluation of the proposed method on spheres with different
local neighborhoods support. Ringi corresponds to a neighborhood containing all vertices with at
most i edges from the evaluated target. (b) Precision floating point representation: Evaluation of
our method on spheres with different precision floating point representation of the neural network
weights.

Local Neighborhood Support. In the fast-marching method, the solver locally estimates a solution
to the eikonal equation using a finite-difference approximation of the gradient. This approximation
of the gradient is defined by a local stencil. For example, in the case of regularly sampled grids, the
one-sided difference formula for a third order approximation requires a stencil with three neighbor-
ing points (Fornberg, 1988). In analogy to the stencil, our method uses a 3rd ring neighborhood.
Our local solver does not explicitly solve an eikonal equation nor does it use an approximation of the
gradient. Yet, the size of the numerical support is the underlying ingredient that allows our neural
network to realize high order accuracy. We have empirically validated this, as depicted in Figure 7a.

Precision Floating Point Representation. The choice of numerical representation is an important
decision in the implementation of a neural network based solver. It leads to a trade-off between
the accuracy of the solver and its execution time and memory footprint. In all our experiments, our
main focus is on the accuracy of the method. Hence, we used double precision floating point for our
neural network implementation. Figure 7b shows a comparison between our implemented network
with different precision, showing only a slight degradation when a single and half precision floating
points are used.

5 CONCLUSIONS

A fast and accurate method for computing geodesic distances on surfaces was presented. Inspired
by Lichtenstein et al. (2019) we revisited the ingredients of dynamic programming based distance
computation methodologies to designed a neural network based local solver. While the local solver
proposed by Lichtenstein was limited to second order, we were able to lift this practical barrier
by (1) extending the solver numerical support and (2) providing accurate high-order distances to
train our solver for general surfaces for which there is no analytic expression for geodesic distances.
We trained a neural network to locally extrapolate the values of the distance function on sampled
surfaces. The result is a higher accuracy method compared to state of the art solvers while keeping
the low quasi-linear computational complexity. To achieve a more accurate approximation of the
distance function, the proposed solver is trained using an extended local numerical support (more
neighboring points). For third order accuracy, the neighborhood consists of all vertices connected
to the target point by a path with at most three edges. To train our solver using accurate examples,
we proposed a novel multi-resolution generation bootstrapping technique that projects distances
computed at high resolutions to lower ones. We believe that the proposed bootstrapping idea could
be utilized for training other numerical solvers while keeping in mind that the numerical support
enables the required accuracy.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Shahnawaz Ahmed, Stanley Bak, Joyce R. McLaughlin, and Daniel Renzi. A third order accurate
fast marching method for the eikonal equation in two dimensions. SIAM Journal on Scientific
Computing, 33(5):2402–2420, 2011.

Umair bin Waheed, Ehsan Haghighat, Tariq Alkhalifah, Chao Song, and Qi Hao. Pinneik: Eikonal
solution using physics-informed neural networks. Computers & Geosciences, 155:104833, 2021.

Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Numerical geometry of non-rigid
shapes. Springer Science & Business Media, 2008.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. Geodesics in heat: A new approach to
computing distance based on heat flow. ACM Transactions on Graphics (TOG), 32(5):1–11, 2013.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1
(1):269–271, 1959.

Asi Elad and Ron Kimmel. Bending invariant representations for surfaces. In Proceedings of the
2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR
2001, volume 1, pp. I–I. IEEE, 2001.

Bengt Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics
of computation, 51(184):699–706, 1988.

Daniel Greenfeld, Meirav Galun, Ron Kimmel, Irad Yavneh, and Ronen Basri. Learning to optimize
multigrid pde solvers. In International Conference on Machine Learning, pp. 2415–2423. PMLR,
2019.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural pde solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 2019.

Shu-Ren Hysing and Stefan Turek. The eikonal equation: numerical efficiency vs. algorithmic
complexity on quadrilateral grids. In Proceedings of ALGORITMY, volume 22, 2005.

Adrian Ion, Nicole M Artner, Gabriel Peyré, Salvador B López Mármol, Walter G Kropatsch, and
Laurent Cohen. 3d shape matching by geodesic eccentricity. In 2008 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8. IEEE, 2008.

Ron Kimmel and Ron Maurer. Method of computing sub-pixel euclidean distance maps, Septem-
ber 26 2006. Application filed Dec. 2000, US Patent 7,113,617.

Ron Kimmel and Guillermo Sapiro. Shortening three-dimensional curves via two-dimensional
flows. Computers & Mathematics with Applications, 29(3):49–62, 1995.

Ron Kimmel and James A. Sethian. Computing geodesic paths on manifolds. Proceedings of the
national academy of Sciences, 95(15):8431–8435, 1998.

Ron Kimmel and James A. Sethian. Optimal algorithm for shape from shading and path planning.
Journal of Mathematical Imaging and Vision, 14(3):237–244, 2001.

Ron Kimmel, Nahum Kiryati, and Alfred M. Bruckstein. Multivalued distance maps for motion
planning on surfaces with moving obstacles. IEEE Transactions on Robotics and Automation, 14
(3):427–436, 1998.

Fengyan Li, Chi-Wang Shu, Yong-Tao Zhang, and Hongkai Zhao. A second order discontinuous
galerkin fast sweeping method for eikonal equations. Journal of Computational Physics, 227(17):
8191–8208, 2008.

Moshe Lichtenstein, Gautam Pai, and Ron Kimmel. Deep eikonal solvers. In International Confer-
ence on Scale Space and Variational Methods in Computer Vision, pp. 38–50. Springer, 2019.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. arXiv preprint arXiv:2202.07123,
2022.

10

Under review as a conference paper at ICLR 2023

Joseph S.B. Mitchell, David M. Mount, and Christos H. Papadimitriou. The discrete geodesic prob-
lem. SIAM Journal on Computing, 16(4):647–668, 1987.

Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent speed: Algo-
rithms based on hamilton-jacobi formulations. Journal of computational physics, 79(1):12–49,
1988.

Daniele Panozzo, Ilya Baran, Olga Diamanti, and Olga Sorkine-Hornung. Weighted averages on
surfaces. ACM Transactions on Graphics (TOG), 32(4):1–12, 2013.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Yipeng Qin, Xiaoguang Han, Hongchuan Yu, Yizhou Yu, and Jianjun Zhang. Fast and exact discrete
geodesic computation based on triangle-oriented wavefront propagation. ACM Transactions on
Graphics (TOG), 35(4):1–13, 2016.

James A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings
of the National Academy of Sciences, 93(4):1591–1595, 1996.

James A. Sethian. Level set methods and fast marching methods: evolving interfaces in computa-
tional geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge
university press, 1999.

Gil Shamai and Ron Kimmel. Geodesic distance descriptors. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6410–6418, 2017.

Nicholas Sharp and Keenan Crane. You can find geodesic paths in triangle meshes by just flipping
edges. ACM Transactions on Graphics (TOG), 39(6):1–15, 2020.

Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues Hoppe. Fast
exact and approximate geodesics on meshes. ACM transactions on graphics (TOG), 24(3):553–
560, 2005.

Philip Trettner, David Bommes, and Leif Kobbelt. Geodesic distance computation via virtual source
propagation. In Computer graphics forum, volume 40, pp. 247–260. Wiley Online Library, 2021.

John N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Transactions on
Automatic Control, 40(9):1528–1538, 1995.

Ofir Weber, Yohai S Devir, Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Par-
allel algorithms for approximation of distance maps on parametric surfaces. ACM Transactions
on Graphics (TOG), 27(4):1–16, 2008.

Chunxu Xu, Tuanfeng Y Wang, Yong-Jin Liu, Ligang Liu, and Ying He. Fast wavefront propagation
(fwp) for computing exact geodesic distances on meshes. IEEE transactions on visualization and
computer graphics, 21(7):822–834, 2015.

Xiang Ying, Shi-Qing Xin, and Ying He. Parallel chen-han (pch) algorithm for discrete geodesics.
ACM Transactions on Graphics (TOG), 33(1):1–11, 2014.

Hongkai Zhao. A fast sweeping method for eikonal equations. Mathematics of computation, 74
(250):603–627, 2005.

11

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 EXACT DISTANCES ON A POLYHEDRON APPROXIMATING A CONTINUOUS SURFACE
ARE SECOND ORDER ACCURATE

A.1.1 SECOND ORDER ACCURATE ON CIRCLES

When considering a polyhedral approximation of a continuous surface, the exact distances on the
polyhedron would be O(h2) approximation of distances on the continuous surface. Let us start with
a toy example. Assume we try to approximate the circumference of a circle with radius 1 in the
plane using a regular polygon with n vertices. Let θ = 2π

n be the angle of the circular sector defined
between two successive sample points on the circle. The distance between these points is given by
h = 2 sin(θ2). The circumference of the circle is known to be 2π, while the length approximated by
the polygon is nh = 2n sin(πn). The truncation error would then be given by

2π − nh = 2π − 2n sin
(π
n

)
= 2π − 2n

(
π

n
−
(
π
n

)3
3!

+

(
π
n

)5
5!

− · · ·

)
=

π3

3n2
− π5

60n4
+ · · ·

= O
(
n−2

)
= O(h2). (7)

Note, that this analysis also provides a lower bound on the length estimation error of great circles on
a sphere. In order to analyze the behaviour of more general surfaces approximated by triangulated
polyhedral surfaces we will resort to the general proof in A.1.2

A.1.2 SECOND ORDER ACCURACY FOR GENERAL SURFACES

Let S : Ω ∈ R2 → R3 be a Riemannian two dimensional manifold with effective Gaussian curvature
a.e. Let C(s) : [0, L] → S be a minimal geodesic connecting two surface points C(0) and C(L) on
S with arclength parametrization s, and L the length of C. We prove that the length of C differs by
O(h2) from the sum of the lengths of the cords. These line segments, of length h each as measured
in R3, are defined by a sequence of surface points C(si) and C(si+1). That is, the length of the
approximation γ defined by its vertices {C(0), C(s2), . . . , C(sn−1), C(L)}, is given by

L(γ) =

n−1∑
i=1

∥C(si+1)− C(si)∥R3 = nh, (8)

differs by O(h2) from

L(C) =

∫ L

0

ds. (9)

Consider the length parameterization along the line segment with end points C(si) and C(si+1)
be given by t ∈ [−h/2, h/2], and assume w.l.o.g. the monotone increasing reparametrization s(t)
that would allow us to parametrize the surface geodesic segment between C(si) and C(si+1). As
t is the arclength along the cord connecting the two end points of the line segment, by freedom of
parametrization, we could choose |Ct(0)| = 1.

Next, lets compute the length of C(t) in the ith interval.

LS(C(si), C(si+1)) =

∫ si+1

si

ds

=

∫ h/2

−h/2

|Ct|dt. (10)

Lets expand |Ct| about 0, by which we have

|Ct(t)| = |Ct(0)|+ t

(
d

dt
|Ct|

)
(0) +

t2

2

(
d2

dt2
|Ct|

)
(0) + · · ·

12

Under review as a conference paper at ICLR 2023

= |Ct(0)|+ t

(
⟨Ct, Ctt⟩

|Ct|

)
(0) +

t2

2

(
d

dt

⟨Ct, Ctt⟩
|Ct|

)
(0) + · · · (11)

Let us focus on the second term,

⟨Ct, Ctt⟩
|Ct|

=
⟨Ct, Ctt⟩
|Ct|3

|Ct|2 = κ|Ct|2, (12)

where κ is the curvature (normal curvature for a geodesic) of C at that point. The third term is given
by

d

dt
κ|Ct|2 = κt|Ct|2 + 2κ⟨Ct, Ctt⟩

= κs|Ct|3 + 2κ2|Ct|3. (13)

We conclude with

Li =

∫ si+1

si

ds

=

∫ h/2

−h/2

|Ct|dt

=

∫ h/2

−h/2

(
|Ct(0)|+ t

(
κ|Ct|2

)
(0) +

t2

2

(
κs|Ct|3 + 2κ2|Ct|3

)
(0) + · · ·

)
dt

= |Ct(0)|h+ 0 +
(
κs|Ct|3 + 2κ2|Ct|3

)
(0)

t3

6
|h/2−h/2 +O(h5)

= |Ct(0)|h+
(
κs|Ct|3 + 2κ2|Ct|3

)
(0)

h3

24
+O(h5). (14)

With our specific selection of |Ct(0)| = 1, we conclude with the overall error given by

Err =

n−1∑
i=1

|Li − h|

=

n−1∑
i=1

∣∣∣∣(κs + 2κ2)
h3

24
+O(h5)

∣∣∣∣
= h3

n−1∑
i=1

∣∣∣∣(1

24
κs +

1

12
κ2

)
+O(h2)

∣∣∣∣
= O(h3)O(n) (15)

where κ and κs are evaluated at t = 0 for each segment. Note, that κ and κs are geometric quantities
and thus could be regarded as effective bounded constants. Then, by the assumption h ≈ O(n−1)
we proved the convergence rate to be O(h2).

A.2 NEURAL ARCHITECTURE ENGINEERING CONSIDERATIONS

In this research we aim to develop high order accurate methods for computing geodesic distances
on surfaces. To overcome the 2nd order restriction of the polyhedral approximation, we start with
the method presented in Lichtenstein et al. (2019). This method uses a neural network based lo-
cal solver that circumvents the polyhedral representation of the surface and operates directly on the
neighboring points. In the fast-marching method, the local solver estimates a solution to the eikonal
equation using a finite-difference approximation of the gradient. The stencil size in the finite dif-
ference method determines the accuracy of the operator (Fornberg, 1988). Our hypotheses is that
extending the numerical support of the local solver would improve the overall order of accuracy.

In our first attempt we examine the neural network presented by Lichtenstein et al. (2019) while
extending the local support to 3rd ring neighborhood. Such a direct extension did not improve the
accuracy of the method, as can be seen in Figure 8. Next, we studied the trained model latent
vector obtained after the max-pooling operation. Out of the 1024 entries of this vector, only 96 were
different than zero.

13

Under review as a conference paper at ICLR 2023

Based on this observation we experimented with architectural modifications by extending the
number of hidden layers, changing the activation functions, and reducing the size of the latent
space. These modifications are presented in Table 2, where Model 1 is our proposed neural
architecture presented in Figure 2, and all other models have a similar architecture up to the changes
defined in the table. As can be seen in Figure 8, the various architectural changes have a large
impact on the performance of the solver .

Table 2: Neural Architectures: Various architectural modifications to our presented neural network
2. The residual connections and the different activation functions are defined only for the shared
weight MLP, while the fully connected network applied after the pooling operation has LeakyRelu
activations with a negative slope of 0.001 in all variants of our neural network.

Neural architecture Residual connections Activation function negative slope Pooling operation

Model 1 ✓ LeakyReLu 0.2 max
Model 2 ✓ LeakyReLu 0.2 avg
Model 3 ✓ LeakyReLu 0.001(default) max
Model 4 ✓ ReLu ✗ max
Model 5 ✗ ReLu ✗ max
Lichtenstein et al. ✗ ReLu ✗ max

Figure 8: Neural architectures: Evaluation of the effects of different modifications to our neural
network, presented in 2. All different models use the same local neighborhood support, which
includes all vertices with at most three edges from the evaluated target.

A.3 ROBUSTNESS TO TRIANGULATION

The proposed local solver is applied directly to the mesh points, and does not use the underlying
triangulation. However, the numerical support of the solver and the distance updating scheme do
depend on the triangulation. Therefore, it is important to investigate the robustness of our method to
various triangulation methods. Ones that was not part of the training of the proposed solver.

14

Under review as a conference paper at ICLR 2023

Table 3: Generalization to arbitrary shapes: Quantitative evaluation tested on TOSCA. The errors
are relative to the polyhedral scheme. Our solver and the solver proposed by Lichtenstein et al. were
trained using our bootstrapping method 3.3 with a very limited number of 2nd order polynomial
surfaces (the 3 surfaces presented in Table 1).

Shape L1 L∞
Heat FMM Lichtenstein et al. Ours Heat FMM Lichtenstein et al. Ours

Dog 0.0728 0.0110 0.0123 0.0037 0.8688 0.1514 0.1318 0.0465
Cat 0.1596 0.0136 0.0386 0.0053 0.6541 0.0631 0.3450 0.0384
Wolf 0.0440 0.0162 0.0169 0.0072 0.2244 0.1009 0.1343 0.0422
Horse 0.1084 0.0136 0.0199 0.0068 0.8239 0.2273 0.1616 0.0896
Michael 0.1185 0.0109 0.1073 0.0054 0.5906 0.1602 0.4873 0.0881
Victoria 0.1211 0.0076 0.0479 0.0027 0.4538 0.1075 0.2289 0.0414
Centaur 0.0672 0.0188 0.1088 0.0062 4.9437 0.1985 0.7348 0.1417

Figure 9: Generalization to arbitrary shapes: Iso-contours shown for (left to right) the heat method,
fast marching, Lichtenstein et al., our method and the exact polyhedral scehme, calculated by the
MMP algorithm. The evaluation was conducted on shapes from TOSCA whereas our solver and
the solver proposed by Lichtenstein et al. were trained with only limited number of 2nd order
polynomial surfaces (the 3 surfaces presented in Table 1

In a new experiment we train our neural network on regularly sampled spheres and evaluate the
resulting solver on arbitrarily triangulated spheres that includes ill-posed triangles. We show the
numerical and qualitative evaluation in Table 4 and Figure 10. It can be seen that the proposed
method is robust to different triangulations and produces lower errors compared to the heat method,

15

Under review as a conference paper at ICLR 2023

the classical fast marching, the exact geodesic method, and the deep learning method of Lichtenstein
et al.

Table 4: Robustness to triangulation: Quantitative evaluation of the ability of the proposed method
to handle triangulations other than those for which it was trained for. The evaluation was conducted
on randomly uniformly non-regularly sampled spheres whereas our solver and the solver proposed
by Lichtenstein et al. were trained only on regularly sampled spheres.

Error FMM Heat method Lichtenstein et al. MMP Ours

L1 0.01804 0.01964 0.00510 0.00128 0.00099
L2 0.01865 0.02048 0.00672 0.00142 0.00127
L∞ 0.0270 0.0361 0.02278 0.0027 0.0041

Figure 10: Robustness to Triangulation: Errors presented for the “exact” MMP scheme and the
proposed method. Local errors, represented as colors on the surface, were computed relative to the
analytical geodesic distances. The proposed method was trained on regularly sampled spheres as
can be seen in Figure 12.

A.4 THE UPDATE STEP COMPLEXITY

Theoretically, our method has the same quasi-linear computational complexity as the fast marching
method and the method presented by Lichtenstein et al. (2019), all of which relies on the distance
updating scheme presented in Algorithm 1. The different local solvers, while having O(1) compu-
tation complexity, involve different constants.

A single update step of the proposed method requires 1537µs, a single update step in Lichtenstein
et al. (2019) requires 788µs, while an update in the fast marching method requires only 6.3µs.
Hence, the fast marching is approximately 250 times faster when applied to the same grid resolution.
And yet, the high order accuracy allows us to sub-sample our triangulated surfaces and save on
overall complexity achieving the same goals.

16

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 11: Order of accuracy on parametric surfaces: Plots showing the effect of the edge size
on the errors. The accuracy of each scheme is associated with its corresponding slope. Ground
truth distances were evaluated using our bootstrapping method 3.3. (a) Evaluation on hyperbolic
paraboloid x2 − y2. (b) Evaluation on regular paraboloid x2 + y2.

Figure 12: Attention map showing the importance of each neighboring point in the network approx-
imation. The source point is colored pink, the point whose distance is currently evaluated is colored
red, and all other plotted points form the current local neighborhood. The Visited neighboring points
that are fed into the neural network are colored according to the percentage of the corresponding
features in the latent vector obtained from the max-pooling operation.

17

	Introduction
	Contributions

	Related Efforts
	Geodesic Distances: O(h3) accurate at quasi-linear complexity
	Local Solver
	Training the Local Solver
	Learning to Augment

	Numerical Evaluation
	Analytically Computed Ground Truth
	Generalization to Polynomial Surfaces
	Generalization to Arbitrary Shapes
	Ablation Study

	Conclusions
	Appendix
	Exact Distances on a Polyhedron Approximating a Continuous Surface are Second Order Accurate
	Second Order Accurate on Circles
	Second order accuracy for general surfaces

	Neural Architecture Engineering Considerations
	Robustness to Triangulation
	The update step complexity

