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ABSTRACT

Neuroscience and artificial intelligence (AI) both face the challenge of interpreting
high-dimensional neural data, where the comparative analysis of such data is crucial
for revealing shared mechanisms and differences between these complex systems.
Despite the widespread use of representational comparisons and the abundance
classes of comparison methods, a critical question remains: which metrics are most
suitable for these comparisons? While some studies evaluate metrics based on their
ability to differentiate models of different origins or constructions (e.g., various
architectures), another approach is to assess how well they distinguish models that
exhibit distinct behaviors. To investigate this, we examine the degree of alignment
between various representational similarity measures and behavioral outcomes,
employing group statistics and a comprehensive suite of behavioral metrics for
comparison. In our evaluation of eight commonly used representational similarity
metrics in the visual domain—spanning alignment-based, Canonical Correlation
Analysis (CCA)-based, inner product kernel-based, and nearest-neighbor meth-
ods—we found that metrics like linear Centered Kernel Alignment (CKA) and
Procrustes distance, which emphasize the overall geometric structure or shape
of representations, excelled in differentiating trained from untrained models and
aligning with behavioral measures, whereas metrics such as linear predictivity,
commonly used in neuroscience, demonstrated only moderate alignment with be-
havior. These insights are crucial for selecting metrics that emphasize behaviorally
meaningful comparisons in NeuroAI research.

1 INTRODUCTION

Both neuroscience and artificial intelligence (AI) confront the challenge of high-dimensional neural
data, whether from neurobiological firing rates, voxel responses, or hidden layer activations in artificial
networks. Comparing such high-dimensional neural data is critical for both fields, as it facilitates
understanding of complex systems by revealing their underlying similarities and differences.

In neuroscience, one of the main goals is to uncover how neural activity drives behavior and to
understand neural computations at an algorithmic level. Comparisons across species and between
brain and model representations, particularly those of deep neural networks, have been instrumental
in advancing this understanding (Yamins et al. (2014); Eickenberg et al. (2017); Güçlü & Van Gerven
(2015); Cichy et al. (2016); Khaligh-Razavi & Kriegeskorte (2014); Schrimpf et al. (2018; 2020);
Storrs et al. (2021); Kriegeskorte et al. (2008)). A growing interest lies in systematically altering
model parameters—such as architecture, learning objectives, and training data—and comparing the
resulting internal representations with neural data (Yamins & DiCarlo (2016); Doerig et al. (2023);
Schrimpf et al. (2018; 2020)).

Similarly, in AI, researchers are increasingly focused on reverse-engineering neural networks by
tweaking architectural components, training objectives, and data inputs to examine how these
modifications impact the resulting representations. However, studying neural networks in isolation
can be limiting, as interactions between the learning algorithms and structured data shape these
systems in ways we do not yet fully understand. Comparative analysis of model representations offers
a powerful tool to probe these networks more deeply. This endeavor is rooted in the universality
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hypothesis that similar phenomena can arise across different networks. Indeed, a large number
of studies have provided empirical evidence licensing these universal theories (Huh et al. (2024);
Kornblith et al. (2019); Bansal et al. (2021); Li et al. (2015); Roeder et al. (2021); Lenc & Vedaldi
(2015)) but the extent to which diverse neural networks converge to similar representations is not
well understood.

Given the growing interest in comparative analyses across neuroscience and AI, a key question
arises: what are the best tools for conducting such analyses? Over the past decade, a wide variety of
approaches have emerged for quantifying the representational similarity across artificial and biological
neural representations (Sucholutsky et al. (2023); Klabunde et al. (2023); Williams et al. (2021)).
Most of these approaches can be classified as belonging to one of four categories: representational
similarity based measures, alignment-based measures, nearest-neighbor based measures and canonical
correlation analysis-based measures (Klabunde et al. (2023)). With the wide range of available
approaches for representational comparisons, researchers are tasked with selecting a suitable metric.
The choice of a specific metric implicitly prioritizes certain properties of the system, as different
approaches emphasize distinct invariances and are sensitive to varying aspects of the representations.
This complexity ties into broader issues in the concept and assessment of similarity, which, as
emphasized in psychology, is highly context-dependent (Tversky (1977)).

What, then, are the key desiderata for network comparison metrics? Networks may exhibit similarities
in some dimensions and differences in others, but the critical question is whether these differences are
functionally relevant or merely reflect differences in origin or construction. This consideration leads
to a central criterion for effective metrics: behavioral differences should correspond to differences
in internal representational similarity (Cao (2022)). However, identifying which measures reliably
capture behaviorally meaningful differences remains an open question.

Our study aims to address the above challenge. Here, we make the following key contributions:

• We conduct an extensive analysis of common representational comparison measures (in-
cluding alignment-based, representational similarity matrix-based, CCA-based, and nearest-
neighbor-based methods) and show that these measures differ in their capacity to distinguish
between models. While some measures excel at distinguishing between models from
different architectural families, others are better at separating trained from untrained models.

• To assess which of these distinctions reflects differences in model behaviors, we perform
complementary behavioral comparisons using a comprehensive set of behavioral metrics
(both hard and soft prediction-based). We find that behavioral metrics are generally more
consistent with each other than representational similarity measures.

• Finally, we cross-compare representational and behavioral similarity measures, revealing
that linear CKA and Procrustes distance align most closely with behavioral evaluations,
whereas metrics like linear predictivity, widely used in neuroscience, show only modest
alignment. This finding offers important guidance for metric selection in neuroAI, where
the functional relevance of representational comparisons is paramount.

Related Work Although few studies directly compare representational similarity measures based
on their discriminative power, most efforts in this area focus on identifying metrics that distinguish
between models by their construction. These efforts typically involve assessing measures based on
their ability to match corresponding layers across models with varying seeds (Kornblith et al., 2019)
or identical architectures with different initializations (Han et al., 2023; Rahamim & Belinkov, 2024).
The closest to our work are studies by Ding et al. (Ding et al., 2021) and Cloos et al. (Cloos et al.,
2024). Cloos et al. (Cloos et al., 2024) optimized synthetic datasets to resemble brain activity under
various measures, demonstrating that metrics like linear predictivity and CKA can yield high scores
even when task-relevant variables are not encoded. Ding et al. ((Ding et al., 2021)) examined the
sensitivity of representational similarity measures—CCA, CKA, and Procrustes—in BERT models
(NLP) and ResNet models (CIFAR-10) to factors that either preserve functional behavior (e.g.,
random seed variations) or alter it (e.g., principal component deletion). However, these studies
examine a limited set of similarity measures and primarily assess functional similarity based on task
performance alone, without evaluating the finer-grained alignment of predictions across models.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.1 METRICS FOR REPRESENTATIONAL COMPARISONS

Notations and Definitions Let S be a set of M fixed input stimuli. Define the kernel functions 1

f : S → RNX and g : S → RNY , where NX and NY are the output unit sizes of the first and second
encoders, respectively. Here, f(si) and g(si) map each stimulus si ∈ S to vectors in RNX and RNY .

Let X ∈ RM×NX and Y ∈ RM×NY be the representation matrices. For each input stimulus si,
denote the ith row of X as ϕi = f(si) and of Y as ψi = g(si), each being the activation in response
to the ith stimulus.

Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008) A method that quantifies
the distance between M ×M Representational Dissimilarity Matrices (RDMs) of two models in
response to a common set of M stimuli.

RSA(X,Y ) = τ(JM −XTX,JM − Y TY )

with JM denoting the M ×M all-ones matrix, the representational dissimilarity matrices (RDMs)
for X and Y are JM −XTX and JM − Y TY , respectively. XTX and Y TY in RM×M represent
the self-correlations of X and Y , with each matrix entry i, j quantifying the correlation between
activations for the ith and jth stimuli. The Kendall rank correlation coefficient τ(·) quantifies the
similarity between these RDMs.

Canonical Correlation Analysis (CCA) (Hotelling, 1992) A popular linear-invariant similarity
measure quantifying the multivariate similarity between two sets of representations X and Y under a
shared set of M stimuli by identifying the bases in the unit space of matrix X and Y such that when
the two matrices are projected on to these bases, their correlation is maximized.
Here, the ith canonical correlation coefficient ρi (associated with the ith optimized canonical weights
wi

x ∈ RNX and wi
y ∈ RNY ) is being calculated by:

ρi = max
wi

x,w
i
y

corr(Xwi
x, Y w

i
y)

subject to ∀j < i, Xwi
x ⊥ Xwj

x and Y wi
y ⊥ Y wj

y,

with the transformed matrices Xwi
x and Y wi

y being called canonical variables.

To obtain a measure of similarity between neural network representations, the mean CCA correlation
coefficient ρ̄ over the first N ′ components is reported, with N ′ = min(NX , NY ). Here,

ρ̄ =

∑N ′

i=1 ρi
N ′ =

∥∥QT
YQX

∥∥
∗

N ′ ,

where ∥ · ∥∗ denotes the nuclear norm. Here, QX = X(XTX)−1/2 and QY = Y (Y TY )−1/2

represent any orthonormal bases for the columns of X and Y .

Linear Centered Kernel Alignment (CKA) (Kornblith et al., 2019; Gretton et al., 2005)

A representation-level comparison that measures how (in)dependent the two models’ RDMs are
under a shared set of M stimuli. This measure possesses a weaker invariance assumption than
CCA, being invariant only to orthogonal transformations, rather than all classes of invertible linear
transformations, which implies the preservation of scalar products and Euclidean distances between
pairs of stimuli.

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
with K and L be kernel matrices where Kij = κ(ϕi, ϕj) and Lij = κ(ψi, ψj). These matrices
represent the inner products of vectorized features ϕ and ψ from two different models, respectively,
computed using the kernel function function κ. In the linear case, κ is the inner product, implying
K = XXT , L = Y Y T . The Hilbert-Schmidt Independence Criterion HSIC(·) evaluates the cross-
covariance of the models’ internal embedding spaces, focusing on the similarity of stimulus pairs.

1The term "encoder/kernel function: refers to the function that represents the mapping from an input to the
output of a specific layer’s activation in a neural network
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Mutual k-nearest neighbors (Huh et al., 2024) A local-biased representation-level measure that
quantifies the similarity between the representations of two models by assessing the average overlap
of their nearest neighbor sets for corresponding features.

MNN(ϕi, ψi) =
1

k
|S(ϕi) ∩ S(ψi)|

where ϕi = f(si) and ψi = g(si) are features derived from model representations f and g given the
shared stimulus si. S(ϕi) and S(ψi) are the set of indices of the k-nearest neighbors of ϕi and ψi in
their respective feature spaces and | · | is the size of the intersection.

Linear predictivity An asymmetric measure of alignment between the representations of two
systems, obtained using ridge regression. The numerical score is calculated by summing Pearson’s
correlations between each pair of predicted and actual activations in the held-out set. For reporting,
we provide symmetrized scores by averaging the correlation coefficients from both fitting directions.

Procrustes distance (Ding et al., 2021; Williams et al., 2021) A rotational-invariant shape align-
ment distance between X and Y ’s representations after removing the components of uniform scaling
and translation and applying an optimized mapping, where the mappings from one representation
matrix to another is constrained to rotations and reflection. Here, the Procrustes distance is given by:

d(X,Y ) = min
T∈O(n)

∥ϕ(X)− ϕ(Y )T∥F

where ϕ(·) is the function that whitens the covariance of the matrix X and Y, i.e. the columns sum to
zero and ∥ϕ(X)∥F , ∥ϕ(X)∥F = 1. O(n) is the orthogonal group.

The similarity scores reported are obtained by 1− d(X,Y ), such that the comparison with a repre-
sentation itself yields a score of 1, and lower distance yields a higher score.

Semi-matching score (Li et al., 2015; Khosla et al., 2024) An asymmetric correlation-based
measure obtained using the average correlation after matching every neuron in X to its most similar
partner in Y . The scores reported are the average from both fitting directions.

ssemi(X,Y ) =
1

Nx

Nx∑
i=1

max
j∈{1,...,Ny}

x⊤i yj

Soft-matching distance (Khosla & Williams, 2024) A generalization of permutation dis-
tance (Williams et al., 2021) to representations with different number of neurons. It measures
alignment by relaxing the set of permutations to “soft permutations”. Specifically, consider a non-
negative matrix ∈Nx×Ny whose rows each sum to 1/Nx and whose columns each sum to 1/Ny.
The set of all such matrices defines a transportation polytope (De Loera & Kim, 2013), denoted as
T(Nx, Ny). Optimizing over this set of rectangular matrices results in a “soft matching” or “soft
permutation” of neuron labels in the sense that every row and column of P may have more than one
non-zero element.

dT(X,Y ) =

√
min

P∈T(NX ,NY )

∑
i,j

Pij∥xi − yj∥2

1.2 DOWNSTREAM BEHAVIORAL MEASURES

For classification tasks, we incorporate various downstream measurements at different levels of
granularity to assess behavioral consistency across systems. For a given pair of neural networks, their
activations over a shared set of stimuli are extracted. A linear readout based on a fully connected layer
is trained over a training set of activations, where the resulting behavioral classification decisions
determined by the linear readouts on a held-out testing set are exploited in the following ways as a
comparison between the neural networks:
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Figure 1: Framework for evaluating representational similarity metrics based on their functional
correspondence. We conduct pairwise comparisons of the representational similarities and behavioral
outputs of 19 vision models, utilizing 9 widely-used representational similarity measures and 10
behavioral metrics across 17 distinct behavioral datasets.

Raw Softmax alignments emphasize the consistency of numerical class-level activation strength
patterns. Compares two models’ representations by their linear-readout’s softmax layer activation,
which is a class-dimensional vector reflecting the model’s judgement of the probabilities assigned to
each label for a given input, with scores calculated by summing the Pearson correlation coefficient
between these softmax vectors over the testing set.

Classification Confusion Matrix alignments emphasize the consistency of discrete inter-class
(mis) classification patterns. A similarity score is obtained by comparing the two models’ confusion
matrices in the following ways:

1 Pearson Correlation Coefficient between the flattened confusion matrices given by two
models, each being a vector of dimension C2 over C classes.

2 Jensen-Shannon (JS) Distance (Lin, 1991) introduced as a behavioral alignment measure
by Tuli et al. (2021) is functionally similar to a symmetrized and smoother version of the
Kullback-Leibler (KL) divergence. For class-wise JS distance, let p̂ = ⟨p1, p2, . . . , pC⟩ and
q̂ = ⟨q1, q2, . . . , qC⟩ be error probability vectors over C classes, with

pi =
ei∑C
i=1 ei

,∀i ∈ {1, 2, ..., C}

where ei represents error counts per class. The JS divergence is defined as:

JSD(p, q) =

√
D(p||m) +D(q||m)

2
,

with D(p||m) =

C∑
i=1

pi log

(
pi
mi

)
and mi =

pi + qi
2

A finer inter-class dissimilarity measure derived from the complete misclassification patterns
shown in the non-diagonal elements of the confusion matrix results in two C ∗ (C − 1)
dimensional flattened vectors p̂ and q̂, where each component is proportional to the counts
of misclassifications from class i to class j, is calculated as

eij∑C
i=1

∑C
j=1,j ̸=i eij

, ∀i, j ∈ {1, 2, . . . , C}

.
The resulting distances from both method range from [0, 1], where we simply report a
similarity measure given by 1− JSD(p, q).
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Classification Binary Correctness alignments emphasize consistency in per-stimulus prediction
correctness. The error patterns for each model are encoded as vectors of binary values, where
each entry corresponds to the correctness of a stimulus’s prediction. We incorporate the following
measures to compare alignment between the binary vectors:

1 Pearson Correlation Coefficient between the two binary vectors of dimension M over M
shared testing stimuli, reflecting the prediction correctness of two models (1 = correct, 0 =
incorrect).

2 Cohen’s κ Score Consider two systems tested independently on identical trials, each
correctly classifying with a probability pcorrect, leading to i.i.d. samples from a binomial
distribution.

κxy =
cobs,xy − cexp,xy

1− cexp,xy
,

with cexp,xy = pipj + (1− pi)(1− pj) , cobs,xy = # of agreements/M

where cexp,xy represents the expected probability of agreement between model x and y,
calculated from the accuracies px and py of two independent binomial observers, and cobs,xy
denotes the observed probability of agreement. Cohen’s κ assesses the consistency of error
overlap, providing a measure of classification agreement without distinguishing error types.

3 Jaccard Similarity Coefficient is defined as:

J(x, y) =

∑n
i=1 xiyi∑n

i=1(xi + yi − xiyi)

where each xi, yi ∈ {0, 1} represents the correctness (1) or incorrectness (0) of the ith
sample prediction from the two models, respectively. The numerator "|Intersections|" counts
samples where both models predict correctly, normalized by "|Unions|", which counts
samples where either model predicts correctly.

4 Hamming Distance counts the number of discrepancies in the correctness of predictions:

d(x, y) = |{i : xi ̸= yi, i = 1, . . . , n}| .

5 Agreement Score is the normalized difference between counts of agreement and disagree-
ment in the prediction correctness made by the two models:

s(x, y) =
(n11 + n00)− (n10 + n01)

n11 + n00 + n10 + n01

with nij , where i, j ∈ 0, 1, counts predictions where model x predicts i (correct/incorrect)
and model y predicts j over shared stimuli.

1.3 DOWNSTREAM BEHAVIORAL DATASETS

We analyze the behavior of all models across a series of downstream tasks, including in-distribution
and several out-of-distribution image types, such as silhouettes, stylized images, and natural images
distorted by various noise types (see Appendix A.1 for details). In total, these comparisons span 17
behavioral datasets.

1.4 SELECTION OF NEURAL NETWORK ARCHITECTURES AND LAYERS

We incorporated a comprehensive list of popular deep learning models pretrained over the 1000-class
classification tasks over the ImageNet-1k dataset (Deng et al., 2009). The selection spans a diverse
set of architectures, including conventional convolutional neural networks (CNNs) and transformers.
These models were trained using various objective functions, both supervised and self-supervised.
Specifically, our lineup includes AlexNet (Krizhevsky et al., 2012), ResNet (He et al., 2015), VGG16
(Simonyan & Zisserman, 2015), Inception (Szegedy et al., 2014), ResNeXt (Xie et al., 2017), MoCo
(He et al., 2020), ResNet Robust (Engstrom et al., 2019), and several variants of Vision Transformers
(ViTs) (Dosovitskiy et al., 2020) such as Vit-b16 and ViT-ResNet (vit on ResNet architecture),

6
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and Swin transformer (Liu et al., 2021). For representational analysis, we mainly focused on the
penultimate layer of each model, where we averaged the outputs across channels or patches, as
applicable per architecture. For transformer models, we’ve included outputs from the final GELU
activation layers in addition to their penultimate layer.

We included randomized versions of AlexNet, ResNet, ViT, and Swin to study their behavior under
random initialization before training.

2 RESULTS

2.1 DIFFERENT REPRESENTATIONAL SIMILARITY MEASURES HAVE DISTINCT CAPACITIES
FOR MODEL SEPARATION

To characterize how different representational similarity measures discriminate models, we first
visualize the model-by-model similarity matrices for each measure. We observed that while some
measures like the soft-matching distance were effective at differentiating architectural families (Fig.
2, right), others like the Procrustes distance were more sensitive to the effects of training (Fig. 2, left),
clearly separating trained from untrained models. Other measures, like linear predictivity, which allow
greater flexibility in aligning the two representations, showed limited ability in distinguishing between
models trained with different architectures or trained from untrained models (see Appendix A.4 for
additional similarity matrices). To quantify these distinctions, we computed d′ scores (Appendix A.2)
to assess each measure’s ability to differentiate two categories of models: (a) those from different
architectural families, and (b) those with varying levels of training (trained vs. untrained). Significant
differences in d′ scores emerged across measures (Fig. 3). For instance, Procrustes achieved d′
scores with a mean of 3.70 when separating trained from untrained models across all datasets,
while commonly used measures like CCA and linear predictivity produced much lower scores
with means of 0.53 and 0.87, respectively. Similarly, some measures were better at discriminating
architectural differences, with the soft-matching distance demonstrating the highest discriminability
(mean of d′ scores = 1.6). Previous studies have also demonstrated that different measures vary
in their effectiveness at establishing layer-wise correspondence across networks with the same
architecture (Kornblith et al., 2019; Thobani et al.). Considering these differences in how measures
distinguish between models, a key question emerges: Which distinctions should we prioritize?

2.2 BEHAVIORAL METRICS PRIMARILY REFLECT LEARNING DIFFERENCES OVER
ARCHITECTURAL VARIATIONS

To address the question of which separation should be prioritized, we return to our central premise:
measures that emphasize functional distinctions should be favored. Therefore, we next evaluated
how different behavioral measures (as previously described) distinguish between models. Our results

Figure 2: Model-by-model similarity matrices from different measures on the Cue Conflict task. Left:
The Procrustes measure clearly distinguishes between trained and untrained models. Middle: Linear
Predictivity reveals no noticeable separation between trained and untrained models or across different
architectures. Right: Soft-matching more effectively differentiates between architectural families
(CNN vs. transformers) compared to other representational metrics.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Discriminative ability (d’ scores) of (top) representational and (bottom) behavioral similarity
measures in distinguishing between trained vs. untrained models (left) and architectures (right).

show that behavioral metrics effectively and consistently separate trained from untrained networks,
with even the weakest metric (Confusion Matrix (JSD)) achieving a mean d′ of 1.82. However,
most behavioral measures struggle to differentiate between architectural families (e.g., CNNs vs.
Transformers), with the best-performing metric (Confusion Matrix (Inter-class JSD)) achieving an
average d′ of 0.65 across all behavioral datasets (see Appendix A.5 for all similarity matrices). This
suggests that differences in these architectural motifs have minimal impact on model behavior.

2.3 BEHAVIORAL METRICS SHOW GREATER CONSISTENCY THAN NEURAL
REPRESENTATIONAL SIMILARITY MEASURES

We next examined the consistency across different representational similarity measures and across
different behavioral measures by computing correlations between the model-by-model similarity
matrices generated by each measure. As shown in Fig. 4 (Top),we find that behavioral metrics (mean
r: 0.85± 0.01) are more correlated on average than representational metrics (mean r: 0.75± 0.007),
with a significant difference (z = −7.10, p = 5× 10−8 < 0.0001).

To further understand the relationships between different representational similarity measures, we ana-
lyzed the MDS plot (Fig. 4 (Bottom)). This visualization revealed distinct clusters of measures based
on their theoretical properties. Measures that rely on inner product kernels (stimulus-by-stimulus
dissimilarities) tend to group together, indicating they capture similar aspects of representational
structure. On the other hand, measures that use explicit, direct mappings between individual neu-
rons—such as Linear Predictivity and Semi-Matching—form a separate cluster. Notably, Procrustes
Distance and CCA also involve alignment, similar to Linear Predictivity and Semi-Matching; however,
this alignment is achieved collectively across all units or neurons rather than through independently
determined mappings for each neuron. Procrustes aligns the entire configuration of points, while
CCA projects the two representations onto common subspaces to maximize correlation, further
distinguishing them from other representational similarity approaches.

How behavioral metrics distinguish models is crucial, as most comparative analyses of representations
in neuroscience and AI revolve around understanding computations and how those computations relate
to behavior; behaviorally grounded comparisons of model representations are key to this endeavor.
We find that behavioral metrics distinguish between models in a consistent manner across different
datasets, reinforcing the robustness of the model relationships they uncover (Appendix A.3). The
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consistency of the behavioral metrics -across datasets and with each other- fulfills another scientific
desiderata of replicability. Therefore, the model relationships identified by behavioral metrics are
not only important but also reliable. It becomes crucial, then, to determine which representational
similarity measures align with these robust behavioral relationships between models.

Figure 4: Consistency Between Similarity Metrics. (A) and (C) display the correlation matrix
averaged across all behavioral datasets and the 2D-projected multidimensional scaling (MDS) plot
(using 1 minus the correlation matrix as the distance matrix) for behavioral measures. (B) and (D)
illustrate the average correlation matrix and the MDS plot for representational similarity measures.

2.4 WHICH REPRESENTATIONAL SIMILARITY MEASURES SHOW THE STRONGEST
CORRESPONDENCE WITH BEHAVIORAL MEASURES?

Seeing that we want to prioritize the model relationships uncovered by behavioral metrics, we
move on to investigate which –if any– representational similarity metrics reveal the same underlying
relationships between models. To rigorously assess this, we computed correlations between the model-
by-model similarity matrices of each representational metric with the model-by-model behavioral
similarity matrix averaged across all behavioral metrics, separately for many datasets (Fig 5). We
found that three metrics stood out in their alignment with behavioral metrics - RSA (mean r: 0.52),
Linear CKA (mean r: 0.64), and Procrustes (mean r: 0.70). Going back to our original analysis,
these metrics are also able to more strongly differentiate trained and untrained models (Fig 1 Top d’
measures). All these representational metrics emphasize alignment in either the overall geometry or
shape of representations. Alternate measures like linear predictivity and CCA, which are commonly
employed in representational comparisons in neuroscience and AI, showed significantly weaker
alignment with mean correlation scores of 0.26 and 0.19 respectively. Given the opacity of neural
representations, selecting appropriate representational similarity metrics can be challenging; these
findings offer crucial guidance for metrics that support behaviorally grounded comparisons.
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Figure 5: Granular Comparison of Representational Similarity Measures with Behavioral
Measures: (A) Average correlation between representational and behavioral metrics across datasets.
(B) Distribution of correlation scores for each representational similarity measure with behavioral
measures; each point represents the averaged score for a dataset across all behavioral measures.

3 DISCUSSION

In this study, we compared 8 neural representational similarity metrics and 9 behavioral measures
across 17 datasets.Based on the premise that behavioral differences should be mirrored in the
representational structure of neural networks, we examined practical distinctions in their alignment
with behavior. Metrics like RSA, CKA, and Procrustes distance, which preserve the overall geometry
of neural representations, tend to align closely with behavioral measures. In contrast, methods
like linear predictivity, which align dimensions without preserving global geometry, show weaker
alignment. This divergence likely arises because linear predictivity has the capacity of mapping
complex, distributed geometric structures to simpler, compressed ones while maintaining prediction
accuracy. For instance, trained networks were observed to predict untrained network activation
patterns well, yielding high symmetrized scores.

Moreover, while different behavioral measures generally show consistency, neural representational
similarity metrics do not, underscoring the need for a deeper understanding of how these representa-
tional metrics discriminate between models in practical applications. Our analysis sets a new standard
for representational similarity measures in neuroscience and AI, using downstream behavioral ro-
bustness as a guide for selecting the most suitable metric. This framework is especially crucial in
model-brain comparisons, where representational analyses are frequently applied to assess if artificial
neural networks and biological systems are serving comparable functional roles in terms of perceptual
and cognitive processes.

Our framework for representational metric selection, though robust, makes some key assumptions.
It assumes a specific mechanism for how behavior is ‘reading out’ from neural representations,
and different readout mechanisms could reveal qualitatively different relationships between models.
For example, applying biologically-inspired constraints, such as sparsity, could reveal divergent
relationships, especially if some models encode behaviorally relevant information in a sparse manner
that others do not. In such cases, the precise representation structure at the unit-level becomes
critical. Additionally, we defined "behavior" within the scope of object classification across multiple
out-of-distribution (OOD) image datasets. Extending evaluations to include fine-grained visual
discrimination or broader tasks beyond categorization would better capture the full range of visual
processing. Lastly, a stronger theoretical framework explaining why certain similarity measures align
more closely with behavior than others is currently lacking in our work, but this remains an exciting
direction for future research.
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A APPENDIX

A.1 DOWNSTREAM BEHAVIORAL DATASETS

All datasets, directly drawn from Geirhos et al. (2019); Wang et al. (2019); Geirhos et al. (2021),
share the coarser 16 labels from ImageNet. These consist of a subset of the ImageNet1k validation set
sampled from the following categories: Airplane, Bear, Bicycle, Bird, Boat, Bottle, Car, Cat, Chair,
Clock, Dog, Elephant, Keyboard, Knife, Oven, Truck.

• Colour: Served as a baseline in-distribution dataset, with half of the images randomly
converted to greyscale and the rest kept in original color. Includes a total of 1280 images
(80 images per label).

• Stylized ImageNet (SIN): Textures from one class are applied to shapes from another while
maintaining object shapes. Shape labels are used as "true labels" for confusion matrix and
correctness analyses. Includes a total of 800 images

• Sketch: Contains cartoon-styled sketches of objects from each class, totaling 800 images.
• Edges: Created from the original dataset using the Canny edge extractor for edge-based

representations. Includes a total of 160 images
• Silhouette: Black objects on a white background, generated from the original dataset.

Includes a total of 160 images
• Cue Conflict: Images with texture conflicting with shape category, generated using iterative

style transfer (Gatys et al., 2016) between Texture dataset images (style) and Original
dataset images (content). Includes a total of 1280 images.

• Contrast: Variants of images adjusted for contrast levels. Includes a total of 1280 images.
• High-Pass/Low-Pass: Images filtered to emphasize either high-frequency or low-frequency

components using Gaussian filters. Includes a total of 1280 images per dataset.
• Phase-Scrambling: Images had phase noise added to frequencies, creating different levels

of distortion from 0 to 180 degrees. Includes a total of 1120 images.
• Power-Equalisation: Images were processed to equalize the power spectra across the

dataset by setting all amplitude spectra to their mean value. Includes a total of 1120 images.
• False-Colour: Images had colors inverted to their opponent colors while keeping luminance

constant using the DKL color space. Includes a total of 1120 images.
• Rotation: Images are rotated by 0, 90, 180, or 270 degrees to test rotational invariant

robustness. Includes a total of 1120 images.
• Eidolon I, II, III: Images distorted using the Eidolon toolbox, varying coherence and reach

parameters to manipulate local and global image structures. Each filtering intensity level
contains 1280 images.

• Uniform Noise: White uniform noise added to images with a varying range to assess
robustness; pixel values exceeding bounds were clipped. Includes a total of 1280 images.
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A.2 INTER VS INTRA GROUP STATISTIC MEASURES USING d′ SCORES

To quantify a comparative metric’s ability to reflect the expected proximity between similarly trained
models, compared to their dissimilarity with the untrained models, involves speculating the group
statistics from the resulting similarity matrix. We employ the d′ score defined as:

d′ =
µ(A)− µ(B)√

σ2
A+σ2

B

2

where A represents the set of similarity scores from intra-group comparisons, specifically the
similarity scores between every pair of trained models. B represents the set of similarity scores
from inter-group comparisons, specifically the similarity scores between each pair of trained and
untrained models. Equivalent to the set of entries located at the intersection of trained model rows
and untrained model columns in the model-by-model similarity matrix of the metrics.

A similarity metric with d′ ≥ 0 of greater magnitude indicates a greater ability to separate trained
models from untrained ones. A metric with d′ = 0 or d′ < 0 indicates that there were no discernible
difference in average similarity scores computed in "trained model pairs" and "trained vs. untrained
model pairs", or that trained vs. untrained models exhibit even higher similarity than that among
trained models.

Similarly, when examining architectural differences, A represents intra-group comparisons within
Convolutional models, while B captures inter-group comparisons between Convolutional models and
Transformers.

A.3 DATASET CONSISTENCY

To assess consistency across behavioral datasets, we used an M ×M correlation matrix, where M is
the number of datasets. Each entry i, j represents the correlation between datasets i and j, derived
from their downstream similarity matrices. Averaging these scores across all behavioral measures
revealed high correlations, indicating consistent uniformity across most datasets.
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A.4 REPRESENTATION SIMILARITY MATRICES

We include the Model-by-Model Similarity Matrix given by the 8 distinct representation measures.
The scores provided are averaged across 17 datasets. For mutual k-NN, different neighborhood sizes
(k) are included. Note that the "1 − Procrustes" score can range from (−∞, 1], whereas all other
metrics yield scores within the range [0, 1].
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A.5 BEHAVIORAL SIMILARITY MATRICES

Similarly, we include the Model-by-Model Similarity Matrix given by the 9 distinct behavioral
measures. The scores are averaged across 17 datasets. For the measures "1− Hamming Distance"
and "Agreement Scores", the alignment value can all range from (−∞, 1], whereas all other measures
yield scores within the range [0, 1].
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