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Abstract

Variational Autoencoders (VAEs) are powerful probabilistic models to learn rep-
resentations of complex data distributions. One important limitation of VAEs
is the strong prior assumption that latent representations learned by the model
follow a simple uni-modal Gaussian distribution. Further, the variational training
procedure poses considerable practical challenges. Recently proposed regular-
ized autoencoders offer a deterministic autoencoding framework, that simplifies
the original VAE objective and is significantly easier to train. Since these mod-
els only provide weak control over the learned latent distribution, they require
an ex-post density estimation step to generate samples comparable to those of
VAEs. In this paper, we propose a simple and end-to-end trainable deterministic
autoencoding framework, that efficiently shapes the latent space of the model
during training and utilizes the capacity of expressive multi-modal latent distri-
butions. The proposed training procedure provides direct evidence if the latent
distribution adequately captures complex aspects of the encoded data. We show
in experiments the expressiveness and sample quality of our model in various
challenging continuous and discrete domains. An implementation is available at
https://github.com/boschresearch/GMM_DAE.

1 Introduction

Variational autoencoders (VAEs) constitute one of the popular generative learning frameworks widely
used for applications such as image understanding and generation, sentence modeling, and optimizing
discrete data and graph-based structures [7, 23, 34, 40, 48]. The VAE framework elegantly combines
autoencoders with variational inference [24]. The encoder of the model maps the input data into
a lower-dimensional latent space according to a given inference model. The decoder provides a
mapping from the latent space back to the original input space. Both are jointly optimized by
maximizing a lower bound on the model evidence, regularizing the latent space towards a fixed
prior distribution, usually a uni-modal Gaussian. By sampling from the latent space prior, we can
utilize the decoder network to efficiently generate new samples from the training distribution. Due
to the variational formulation, optimizing the VAE training objective poses significant practical
challenges. Further, the over simplistic prior assumption often leads to an unsatisfying trade-off
between the quality of reconstructed samples and the prior regularization [2]. Recent work has shown
that choosing more flexible priors helps to improve the generative performance of VAEs [44].

Since the initial introduction of VAEs, various novel training objectives have been proposed. One line
of work focuses on different regularization techniques derived from alternative probabilistic metrics
to shape the latent space of the model during training, e.g. using the Wasserstein distance [43]. In
contrast to the KL-divergence, the Wasserstein distance measure induces a metric on probability
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distributions. Practically, this facilitates smoother convergence even for initially non-overlapping
distributions. Further, it overcomes the over-regularization effect in VAEs. To be precise, it prevents
the undesired behaviour of multiple data points being mapped to the same latent representation by the
encoder. Since closed-form solutions for metrics like the Wasserstein distance can only be derived
for very few prior distributions, these approaches rely on numerical approximations during training.

Recent work by Ghosh et al. [12] reinterprets deterministic autoencoders as variational models,
even when trained with a deterministic loss. During training, this approach maximizes the negative
log-marginal likelihood of the latent samples under a Gaussian normal distribution as a regularization
in addition to minimizing the reconstruction loss. Experimental results show that this regularization
alone does not suffice to generate high quality samples using the Gaussian prior. To overcome
this, Gosh et al. propose to use a multi-modal Gaussian mixture model (GMM) to fit arbitrary,
learned latent spaces. While this approach leads to good sampling efficiency and generalization if the
post-hoc fit is reasonable, sampling quality can suffer significantly if the learned latent space can not
be modeled well by a GMM.

In this work, we propose a deterministic training scheme for autoencoders that is applicable to
expressive priors and overcomes the necessity of a post-hoc density estimation step for deterministic
training. To be precise, we derive a deterministic regularization loss from the distance metric used
in the non-parametric Kolmogorov-Smirnov (KS) test for equality of probability distributions. The
resulting training objective can be derived in closed form for a class of expressive multi-modal prior
distributions and provides a strong signal to efficiently shape the latent space of the model during
training. We chose our experiments to evaluate the proposed approach in terms of sampling quality
and expressiveness. In the first line of experiments, we compare the quality of newly generated and
reconstructed samples from our model with those from a variety of other VAE variants. In the second
line, we investigate our method’s capability to model discrete and complex structured inputs such as
arithmetic expressions and molecules. In these domains, VAEs have recently been proposed as a tool
for dimensionality reduction in optimization. Applying our regularization scheme effectively utilizes
multi-modal prior distributions in this context and significantly improves optimization performance.

2 Related Work

Since the introduction of VAEs, many follow up works tried to overcome the practical and theoretical
limitations of the framework, e.g. [2, 43, 44], and make them applicable to specific applications such
as clustering [6, 39] or anomaly detection [49]. We first review some seminal examples of VAE
models with different priors and probability metrics for latent regularization. Since our proposed
regularization term structures the latent space to a Gaussian mixture model, we also compare it to
prior work on deep clustering. Lastly, we discuss VAEs in the context of black-box optimization
approaches such as Bayesian Optimization (BO).

VAEs In the standard VAE framework, the prior distribution is commonly assumed to be a Gaussian
normal distribution. This might lead to simplified representations learned by the model which is
unable to represent the rich semantics in the data distribution. Several methods were proposed to
introduce more flexible and expressive priors to the VAE formulation. Casale et al. [3] employ
Gaussian process priors to account for correlations between the data samples. In [15], a Bayesian
non-parametric prior is used with a hierarchical non-parametric variational autoencoder for video
representation learning. Chen et al. [4] use an auto-regressive prior to achieve improved generative
performance on image datasets. Berger et al. [2] propose to replace the standard spherical Gaussian
prior with a more general version with an arbitrary covariance matrix and learn the correlations by
optimizing the evidence lower bound of the model. Although the proposed methods offer competitive
performance, they often employ complex architectures [4] to achieve desired performance.

In another line of work, multi-modal priors were utilized in VAE models. Zong et al. [49] propose
to use a GMM prior in autoendocers for unsupervised anomaly detection by training an additional
network estimating the parameters of the GMM. Lee et al. [27] address unsupervised meta-learning
using a GMM prior in VAEs to shape the latent space by employing an extension of the evidence lower
bound to complex variational inference schemes. Tomczak et al. [44] propose to replace the GMM
prior by a coupling of the posterior and prior of the model. Adversarial autoencoders [31] improve
the generative performance of VAEs by incorporating adversarial learning into the VAE framework
and offer competitive performance in image generation at an increased computational complexity and
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decreased training stability. To account for the over regularization effect of the KL divergence term
in the standard VAE framework, [43] minimize the Wasserstein distance between the representations
learned by the model and the target prior. Recently introduced regularized autoencoders [12](RAEs),
question the variational framework adopted by the VAEs and propose a deterministic approach
to achieve comparable or better image generation performance. The authors use the negative log
likelihood for regularization, but require a post-hoc step to derive a strong sampling procedure from
the model. The state of the art VAE model for high fidelity image generation, VQ-VAE [37, 41],
can be also considered as a deterministic autoencoder. Similar to RAEs, training VQ-VAE involves
two stages of training relying on complex discrete autoregressive density estimators. Moreover, the
training loss of VQ-VAE is non-differentiable due to the quantization of the latent vector.

Our approach elegantly combines the idea of new training objectives with the extension to multi-
modal priors without increasing training complexity or compromising sampling quality. We derive a
strong training signal which can be derived in closed form for multimodal priors. This ensures stable
training and reliable regularization of the latent space, improving sampling quality.

Deep Clustering Deep Clustering approaches benefit from well structured latent spaces. Thus,
several methods employ Gaussian mixture VAEs for data encoding [6, 39] or establish a GMM-like
latent space structure through k-means models in the latent space. For example, Xie et al. [46] train
an autoencoder and apply a KL-divergence loss for better k-means clustering while Ghasedi et al. [8]
combine the autoencoder reconstruction loss with the relative cluster entropy. Similar approaches
have been proposed in the literature [8, 16, 18, 22, 42, 47]. Caron et al. [33] iteratively group points
using k-means during optimization. In the context of clustering, generative adversarial networks
have been considered in [11, 35]. While we are not considering the clustering task in this paper,
we hypothesise that the proposed regularization can be beneficial in this context since it implicitly
optimizes for mode assignments.

Structural VAEs and optimization High-dimensional optimization problems in structured discrete
input domains are ubiquitous. VAEs have been used in this context to learn low dimensional, continu-
ous representations of high dimensional, structured data like molecules or arithmetic expressions.
Recent work proposes to use such representations to perform efficient optimization by running BO in
the latent space of VAEs [25, 30]. In this setting, prior knowledge of the structure of the latent space
is crucial to allow for an efficient exploration and generation of valid samples. Yet, as discussed
above, VAEs can suffer from simplistic prior assumptions. Thus, sampling from the latent space of
such models can result in invalid samples, reducing the sampling efficiency of BO [17]. Kusner et
al. [25] overcome this issue if data follows a specific grammar. Lu et al. [30] propose a VAE that
directly works on parse trees from context-free grammars to represent discrete data. Yet, those only
work with unimodal priors which limits the generalization capabilities. Our approach can be readily
used to extend these models to better encode structural data and improve BO performance.

3 Method

We introduce a novel loss function to regularize the latent representation learned by deterministic
autoencoders towards a given prior distribution. The definition of our loss builds on the non-parametric
statistical Kolmogorov-Smirnov (KS) test for equality of one-dimensional probability distributions.
We propose a multivariate variant of the distance measure used in the KS test, that allows for gradient
based optimization and can easily be applied to expressive multi-modal prior distributions. For
ease of exposition, we start with introducing our regularization loss for unimodal Gaussian priors in
section 3.1 and extend the formulation to expressive multi-modal Gaussian mixture models in Section
3.2. Finally, in Section 3.3, we provide an explicit way to estimate the weighting parameters of our
loss.

3.1 Uni-Modal latent regularization

The KS test can be used to determine whether a collection of N , one-dimensional samples follow
a given reference distribution. It compares the cumulative distribution function (CDF) of the ref-
erence distribution with the empirical CDF F̄ (N) of the samples. It is often applied to the class of
one-dimensional Gaussian distributions, which has important analytical properties. For spherical
Gaussians, the one-dimensional KS test quantifies a distance between the empirical distribution
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function of the data and the cumulative distribution function

Φ(z) =
1

σ
√

2π

∫ x

−∞
exp
−(t− µ)2

2σ2
dt (1)

of the univariate Gaussian Z ∼ N (µ, σ) as supz∈R |F̄ (N)(z)− Φ(z)|. Extending this KS distance
to higher dimension is particularly challenging, since it requires matching joint CDFs [10, 14, 38].
Especially in higher dimensions this becomes infeasible [29]. The continuous ranked probability
score [13] shares the same theoretical basis as the KS distance. However it tests whether two sets
of samples are consistent with each other, i.e., they could originate from the same distribution, and
is thus not suitable to regularize a collection of latent samples towards a given prior distribution.
Alternative multi-variate normality tests, like the Mardia test [32] and the BEHP test [1] suffer from
slow convergence rates.

To derive a regularization loss from the KS distance, we propose to overcome this issue by taking
into consideration the marginal CDFs and correlations in the prior distribution separately. Given
d-dimensional latent samples z1, . . . , zN , the empirical marginal CDF in dimension j is given by

F̄
(N)
j (z) =

1

n

N∑
n=1

1[zn]j≤z. (2)

We aim to regularize the latent space of our models by comparing the empirical marginal CDFs
with the one-dimensional CDFs of the marginal distributions of the prior. To strengthen the training
signal of our regularization scheme and make it suitable for gradient-based optimization, we replace
the supremum in the original KS distance by a smoother MSE loss, that compares the distances
between those functions at the latent representations. For a uni-modal Gaussian prior with mean µ
and covariance matrix Σ, this results in

LKS(z1,...,N ) =
1

d

d∑
j=1

MSE
(
F̄

(N)
j (zj),Φ(z̄j)

)
, z̄j =

zj − µj

[Σ]j,j
. (3)

Here, F̄ (N)
j (zj) denotes the vector with entries F̄ (N)

j ([zi]j) and Φ(z̄j) is defined accordingly. This
loss is minimized, if the empirical marginal CDFs of the latent samples match those of the uni-modal
Gaussian prior. Using the above loss alone will not account for correlations between different
latent dimensions. In the case of a spherical Gaussian prior with identity covariance matrix for
example, samples with perfectly correlated Gaussian components [zi]j = [zi′ ]j , will also minimize
this objective, see Figure 1. To overcome this problem, we equip our loss with an additional term, that
matches covariances between different latent distributions explicitly. Following a similar reasoning
to the MSE above, we define an additional loss term,

LCV(z1,...,N ) =
1

d2

d∑
l,j=1

(
[Σ̄]l,j − [Σ]l,j

)2
, (4)

where Σ̄ is the empirical covariance matrix of the latent representations and Σ stands for the prior
covariance. Compared to the negative log marginal regularization proposed in [12], our loss will
actually enforce the latent representations to be spread across the entire support of the Gaussian prior,
instead of being minimal when all latent collapse to the origin.

3.2 Multi-Modal latent regularization

One advantage of our approach is the applicability to more expressive, multi-modal prior distribu-
tions. While the Gaussian distribution has important analytical properties, it suffers from significant
limitations when modelling real data sets. In contrast, a linear combination of Gaussians can give rise
to very complex densities while still allowing for closed form computations of important quantities,
like CDFs and covariances. A d-dimensional K-modal Gaussian mixture model is a weighted super-
position of K Gaussian distributions in Rd, that are often referred to as the modes of the model. For
k ≤ K, let µk and Σk be the mean and covariance matrix of the k-th mode in the model. Further, let
pk > 0 be the weight of the k-th mode. Then, the marginal CDFs of a GMM model can be computed
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Figure 1: Uni-modal latent regularization in one and two dimensions for varying numbers of samples
(x-axis) from different distributions: In two dimensions (right), the simplistic KS distance can not
differentiate the target prior (blue) from other probability distributions. By contrast, our proposed
regularization scheme successfully matches correlations across different dimensions.

from the CDFs of univariate Gaussians as follows

FGMM,j(z) =

K∑
k=1

pkΦ

(
z − [µk]j

[Σ]j,j

)
, (5)

i.e. the marginal CDFs in the GMM are weighted sums of CDFs of one-dimensional Gaussians. The
covariance matrix of the GMM can be computed as

ΣGMM =

K∑
k=1

pkΣk +

K∑
k=1

pk (µk − µ̄) (µk − µ̄)
T
, µ̄ =

1

k

K∑
k=1

µk. (6)

Extending our proposed regularization scheme to multimodal GMMs is straight forward. Our first
loss term is defined as

LKS,K(z1,...,N ) =
1

d

d∑
j=1

MSE
(
F̄

(N)
j (zj), FGMM,j(zj)

)
. (7)

Similarly, the second loss term is defined to be

LCV,K(z1,...,N ) =
1

d2

d∑
l,j=1

(
[Σ̄]l,j − [ΣGMM]l,j

)2
. (8)

The total loss of the model is a combination of the reconstruction loss and a regularization loss,
that enforces the latent representations of the encoded data to match a predefined multi-modal prior
distribution. The reconstruction loss LREC(x′1,...,N ) equals the mean squared error between inputs
xi and their reconstructions x′i. Given positive weights λKS and λCV, our final loss is given by

L(x1,...,N ) = λRECLREC(x′1,...,N ) + λKSLKS,K(z1,...,N ) + λCVLCV,K(z1,...,N ). (9)

Formally, the weights λKS, λCV and λREC are hyperparameters of the model. Nevertheless, we
propose an explicit way to set λKS and λCV and a simple heuristic to estimate λREC to avoid an
extensive optimization of these weights.

3.3 Loss weight estimation

Balancing the two regularization losses appropriately poses a key challenge as they potentially vary on
very different scales. For example, if modes of the GMM prior are far spread, the covariance LCV,K

loss will dominate the marginal CDF LKS,K loss by far. Nevertheless, given a target GMM prior, the
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dimension of the latent space and the batch size n used during training, there is a concise way to fix
those hyperparameters beforehand. To be precise, for m = 1, . . . ,M samples z

(m)
1 , . . . , z

(m)
N from

the prior GMM, we propose to set

λ−1KS =
1

M
LKS

(
z
(m)
1,...,N

)
, λ−1CV =

1

M
LCV

(
z
(m)
1,...,N

)
. (10)

Formally, we can not overcome the necessity of tuning the weight of the reconstruction loss, which
has significant impact on performance of the model. Nevertheless, a reasonable approximation to it
can be obtained by training an autoencoder model and using the inverse of the best obtained loss for
λREC. Using this scaling, all loss terms in our regularization loss will ultimately converge to one if
the target prior is matched successfully.

4 Experiments

With our experiments we strive to investigate the potential of the proposed model when compared to
other VAE variants in generating new samples, analyse the effect of the defined prior to effectively
cluster the latent space and to shape the latent space efficiently in highly structured domains such as
discrete spaces. We provide all the experimental settings and hyperparameters used in the Appendix.
All experiments were run on a GPU cluster, with single GPU per individual experiments. Since the
cluster is part of a carbon-neutral framework, these experiments did not contribute to climate change.

4.1 Image generation

We consider four dataset, MNIST [26], FASHIONMNIST [45], SVHN [36] and CELEBA [28]
to evaluate the proposed method in image generation experiments. The qualitative analysis of the
generated samples for MNIST, SVHN amd CELEBA images are shown in Figure 2 along with
the reconstructed samples and interpolated samples in the latent space of the trained model. In
order to assess the quality of the generated images, we evaluate the Fréchet Inception Distance
(FID) [19] for each dataset, see Table 1. For baseline comparison, we evaluate the following
models: vanilla variational autoencoder (VAE [24]), Gaussian mixture variational autoencoder
(GMVAE) [6], Wasserstein autoencoder (WAE) [43] with MMD loss, 2stage VAEs (2s-VAE) [5],
constant variance-VAE (CV-VAE) [12] and regularized autoencoders (RAEs) [12]. We consider the
following evaluation metrics: 1. Sampling FID (Samp.) - FID score of the generated random samples
(evaluated by generating random samples from the prior distribution of the respective models and by
fitting a Gaussian distribution to models trained without any prior assumptions), 2. reconstruction
FID (Rec.) - measured by computing the FID between the test samples and their corresponding
reconstructions by the model and 3. interpolation FID (Inter.) - measured by computing the FID
between the interpolated samples in the latent space and test samples. As pointed out by [12], fitting
an ex-post density estimator on the learned embedding after training of VAEs further improves the
generation quality. Hence, we also report the FID values by fitting a GMM in the learned latent space
of the trained model (GMM column in Table 1, not evaluated for 2s-VAE as they perform ex-post
density estimation using another VAE).

As shown in Table 1, our method achieves better FIDs (Samp.) on all datasets considered, when
compared to all considered baselines sampled by fitting a single Gaussian in the latent space. We also
improved the generation quality as argued above by fitting a mixture of Gaussians in the latent space
and achieve better FIDs in MNIST, FASHION MNIST and CELEBA images, whereas for SVHN,
WAEs achieved the overall best score. It is also important to note that the proposed method performs
comparably or even better without employing the ex-post density estimation. The proposed method
also achieves better reconstruction quality than the other VAEs except for SVHN images where RAEs
performs better. The interpolation FID indicates the overall structure of the learned latent space and
the obtained FID values show that the proposed method shapes the latent space better than the other
approaches except for the CELEBA images where RAEs performs slightly better than our method.
For a fair comparison, we use the same architecture and experimental settings in all the considered
baseline evaluations. Please refer to the Appendix for more details on the experimental settings.

4.2 Unsupervised image clustering

We evaluate the potential of our method to naturally cluster the data points in the learned latent
space in two dataset, MNIST and FASHION-MNIST. The Gaussian mixture model prior with k
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Figure 2: Qualitative analysis on image generation across datasets, MNIST, SVHN and CELEBA.
Row 1 shows the randomly generated samples; row 2 shows the reconstructed samples by the decoder
on test dataset after training, first row in each sections corresponds to the ground truth and the second
one its corresponding reconstruction; row 3 shows randomly interpolated samples in the learned
latent space of our model.

components in our method could be considered as k different classes/clusters to which the data points
are mapped by the encoder. We train the model with latent space dimension 10 for both dataset and
visualize the random samples generated from each Gaussian component of our prior as shown in
Figure 3. The figure shows that visually similar images fall into the same cluster. For a quantitative
analysis of the clustering performance, we evaluated the unsupervised classification accuracy (similar
to [21]) and compare the performance with JointVAE [9] and CascadeVAE [21]. The observed values
are reported in the table in Figure 4. We observed a comparable performance to both baselines. We
also observed that the distance between the modes in the GMM prior is a deciding factor in better
clustering performance. Figure 4 (right) shows the performance comparison of both image generation
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Table 1: Quantitative evaluation results across datasets. Samp. refers to the FID of the generated
samples from the prior distribution or by fitting a Gaussian to the learned models trained without
prior, GMM refers to the FID computed by fitting GMM on the learned model, Rec. refers to the
reconstruction FID on test samples and Inter. refers to the Interpolation FID.

Dataset MNIST FASHION MNIST

Samp. GMM Rec. Inter. Samp. GMM Rec. Inter.

VAE 27.27 20.52 21.59 21.05 50.50 36.22 33.33 44.12
GMVAE 21.35 − 20.64 20.21 40.23 − 38.79 38.54
WAE 20.20 12.90 14.07 16.19 39.66 28.01 24.84 35.01
CV-VAE 32.12 28.62 29.61 30.76 57.57 38.28 35.10 47.73
2sVAE 26.99 − 23.77 22.13 46.47 − 31.93 41.06
RAE 17.72 14.15 14.69 15.57 47.26 29.59 24.54 34.77

Ours 13.11 12.82 8.99 12.82 33.70 26.62 19.56 29.17

Dataset SVHN CELEBA

Samp. GMM Rec. Inter. Samp. GMM Rec. Inter.

VAE 61.01 58.23 59.13 50.29 68.01 61.63 52.55 58.39
GMVAE 49.74 − 48.65 47.15 65.35 − 64.22 64.92
WAE 58.08 34.87 29.62 27.16 58.91 49.17 41.14 47.08
CV-VAE 51.01 54.19 48.53 47.65 57.61 52.72 45.32 50.87
2sVAE 45.84 − 44.27 40.23 53.12 − 44.78 47.64
RAE 42.35 35.12 31.04 27.30 52.33 48.23 41.61 46.58

Ours 37.42 36.46 31.27 24.87 49.79 44.79 39.48 47.13

MNIST FASHIOMNIST

Figure 3: Clustering performance on MNIST and FASHION-MNIST images with a 10 component
GMM prior. Each row in the figure shows randomly generated images from different Gaussian
components of the GMM prior. Similar looking images are mapped into same clusters.

and clustering performance with increasing distance between different modes in the GMM prior. The
result shows that with increasing distance, the clustering performance is improved wheres the quality
of the generated images gets reduced. Our experimental analysis indicates that natural clustering
happens with the multi-modal GMM prior in our method.

4.3 Modelling discrete data structures

In this section, we investigate the ability of our model to generate complex discrete data structures
such as arithmetic expressions and molecules. The objective of this experiments is to analyze the
model performance on shaping the latent space of such structured discrete spaces effectively. The
learned latent space of the model is traversed to generate new samples with the desired properties
by performing Bayesian Optimization (BO). We perform experiments in two sequence optimization
problems similar to [25].
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Method Acc(↑)

MNIST FASHION-MNIST

JointVAE 78.33 51.51
CascadeVAE 84.19 57.72
Ours 85.53 56.24

2 4 6 8 10 12 14 16
Distance between modes

78
79
80
81
82
83
84
85
86

Ac
cu

ra
cy

14

16

18

20

FI
D

FID
Classification accuracy

Figure 4: Image clustering: (left) Unsupervised classification results on MNIST and FASHION-
MNIST images, (right) Image clustering(Accuracy) and generation performance(FID) on MNIST
images with increase in the distance between modes in the GMM prior.

Arithmetic Expression Given a dataset of 50, 000 univariate (functions of x) arithmetic expressions
following a formal grammar [25], the task is to find the expression that best fits a target dataset. This
is done by minimizing log(1 + MSE), where the MSE is computed between values of the generated
expression and the target points. For our evaluation, we choose similar target data points as in [25].

Chemical Design Given the ZINC250k dataset of drug molechules [20], the objective is to generate
new drug like molecules. The drug likeliness of a molecule is quantified by the water-octanol partition
coefficient, which is maximized in our line of experiments.

Results We extend the architecture and experimental settings of [25] to include our proposed
losses during training. For baseline comparison, we consider Grammar VAE (GVAE) [25], Char-
acter VAE (CVAE) [17], Grammar constant variance VAE (GCVVAE) [12] and Grammar based
RAE (GRAE) [12] frameworks. The three best scores found by our method for arithmetic expressions
and the molecule experiments are reported in Table 2. Our model performs comparatively better than
the considered baselines and achieves the best first score for both tasks. In addition to the optimization
performance, it is also important to consider the validity of the new samples generated by the models.
A well-structured latent space should yield valid samples following the defined grammar/rules of the
used dataset. Our model achieves better validation and average scores as shown in Table 3 except
for GCVVAE which achieves a better average score in the arithmetic expression task. All reported
values are evaluated by averaging across 5 BO trials.

Table 2: Best scores found by each method
for arithmetic expression and molecule exper-
iments. Baseline values reported from [12].

Method Expressions Molecules

1st(↓) 2nd(↓) 3rd(↓) 1st(↑) 2nd(↑) 3rd(↑)

GVAE 0.10 0.46 0.52 3.13 3.10 2.37
CVAE 0.45 0.48 0.61 2.75 0.82 0.63
GCVVAE 0.39 0.40 0.43 3.22 2.83 2.63
GRAE 0.39 0.39 0.43 3.74 3.52 3.14

Ours 0.03 0.40 0.41 4.15 3.84 3.12

Table 3: Fraction of valid samples and their corre-
sponding average scores for arithmetic expression
and molecule experiments for each method. Baseline
values reported from [12].
Method Expressions Molecules

Frac. valid (↑) Avg. score (↓) Frac. valid (↑) Avg. score (↑)

GVAE 0.99 ± 0.01 3.26 ± 0.20 0.28 ± 0.04 -7.89 ± 1.90
CVAE 0.82 ± 0.07 4.74 ± 0.25 0.16 ± 0.04 -25.64 ± 6.35
GCVVAE 0.99 ± 0.01 2.85 ± 0.08 0.76 ± 0.06 -6.40 ± 0.80
GRAE 1.00 ± 0.00 3.22 ± 0.03 0.72 ± 0.09 -5.62 ± 0.71

Ours 1.00 ± 0.00 3.32 ± 0.04 0.72 ± 0.03 -5.08 ± 1.30

4.4 Ablation study and hyperparameter sensitivity analysis

We perform an ablation study on the regularization loss terms in the proposed model. When the
model is trained without the KS distance loss for MNIST images, we observed an FID of 49.82 and
when trained without the covariance matching loss, we observed an FID of 38.45. These values are
significantly worse than the FID that we achieve when training with the weighted combination of
both regularization losses i.e 13.11. These empirical evaluations show that the combination of the
two regularization terms facilitates a better prior-posterior match and hence better image generation.
Please refer to the Appendix for qualitative evaluation of the ablation study on MNIST images.
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Figure 5: Hyperparameter sensitivity analy-
sis - FID of the MNIST generated samples
when model is trained with different number
of components in the GMM prior.

From a conceptual point of view, the most important
hyperparameters of our model are (a) the weights of
the different terms in the training objective and (b)
the number of components in the prior. In section 3.4,
we propose an explicit way how to fix the weights
in the loss function. We investigate the sensitivity
of our model performance to the number of compo-
nents in the GMM prior. We trained our model on the
MNIST dataset using a GMM prior with 1, 5, 10, 15,
20 and 25 modes respectively. The observed FID
scores for the respective number of components are
shown in Figure 5. The result show that with increas-
ing number of components in the chosen prior, the
performance of our model improves significantly. As
a consequence, choosing a large number of compo-
nents can be beneficial for practical considerations.

5 Limitations and Future Work

One limitation of our work is the necessity to chose the prior distribution in advance. We showed that
fixing a suitable number of modes for the GMM is important to provide better sampling quality. Also,
by considering marginal CDFs, we simplified the original distance metric from the KS test. While
reducing computational complexity during training, this comes at the cost of an additional loss term.
Further, our proposed addition of the KS distance is not suitable for matching higher order moments
of the latent representations to the target prior, which at least from a conceptual point of view can lead
to a mismatch to the prior. Further, our loss only facilitates matching empirical marginal CDFs of
latent representations to the marginal CDFs of the prior evaluated at latent vectors. As a consequence,
our regularization loss might be a less stable training signal for small batch sizes in high dimensions.

Using the Frobenius norm in the covariance matching loss reflects our assumption that the latent
dimensions should all be independent from each other and should all simultaneously match the prior’s
values. The choice for the MSE for covariance matching loss is purely based on its prevalence in
the literature. Additionally, this makes all three loss terms (reconstruction loss, KS distance loss and
the covariance matching loss) behave similarly, as they are all squares. While we did not investigate
any other metrics for matrix comparison in this scenario, exploring other options for the covariance
matching is an interesting area for future studies. We have not considered the case where there exists
class imbalance in the dataset. We would expect the model to separate the classes if the imbalance
is weak and the classes are sufficiently different such that the reconstruction loss outweighs the
regularization penalty for the mismatch. Extending our prior to accommodate for this by introducing
a weighted GMM prior is also a very interesting direction for future work.

6 Conclusion

Recent studies have illustrated the effectiveness of flexible priors in VAEs to learn more meaningful
latent representations. Following recent work that highlights the potential of deterministic alternatives
to the variational formulation in VAEs, we propose a simple deterministic autoencoding framework
with more powerful regularizers to accommodate for expressive multi-modal priors. In particular, we
derive a novel deterministic regularization scheme from a strong metric on probability distributions.
The proposed approach can be readily applied to effectively shape the latent space of existing
autoencoding frameworks towards multi-modal Gaussian priors. Our experimental evaluations show
that the proposed training objective yields comparable sampling quality to those of variational
autoencoders and achieves better performance in modelling complex discrete data structures.
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