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Abstract

Humans are remarkably adept at collaboration, able to infer the strengths and weak-
nesses of new partners in order to work successfully towards shared goals. To build
AI systems with this capability, we must first understand its building blocks: does
such flexibility require explicit, dedicated mechanisms for modelling others—or
can it emerge spontaneously from the pressures of open-ended cooperative inter-
action? To investigate this question, we train simple model-free RNN agents to
collaborate with a population of diverse partners. Using the ‘Overcooked-AI’ envi-
ronment, we collect data from thousands of collaborative teams, and analyse agents’
internal hidden states. Despite a lack of additional architectural features, inductive
biases, or auxiliary objectives, the agents nevertheless develop structured internal
representations of their partners’ task abilities, enabling rapid adaptation and gen-
eralisation to novel collaborators. We investigated these internal models through
probing techniques, and large-scale behavioural analysis. Notably, we find that
structured partner modelling emerges when agents can influence partner behaviour
by controlling task allocation. Our results show that partner modelling can arise
spontaneously in model-free agents—but only under environmental conditions that
impose the right kind of social pressure.

1 Introduction

While humans are certainly impressive ‘solo’ learners and problem-solvers, our capacity for coopera-
tion and collaboration is even more remarkable—enabling us to achieve goals beyond the reach of
any single individual, and leverage the complementary abilities of others while sharing or mitigating
the costs of action. In particular, humans display exceptional flexibility in adapting to unfamiliar
partners and task contexts. Indeed, it could be argued that this capacity for flexible collaboration is
one of the primary contributors to the success of our species—without it, it is hard to see how our
ancestors could have developed the culture and civilisation that persist to this day [1, 2, 3]. As we
develop artificial agents that will operate alongside us, occupying our homes and workplaces, it is
crucial that they too can share in this collaborative process [4].

One explanation for the powerful flexibility of human collaboration lies in our well-developed ‘Theory
of Mind’ (ToM)—our general faculty for inferring and representing the latent mental properties (such
as goals, beliefs, desires or intentions) that drive others’ behaviour [5]. As with many other social
contexts, effective collaboration with diverse partners requires an individual to not only react to the
actions of others, but also attempt to predict, and where appropriate to influence them—processes
which rely on the formation of predictive representations (‘mental models’) of other agents’ decision-
making [6, 7, 8]. In collaborative contexts, we can use our ToM to infer and represent the varying
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strengths and weaknesses of different partners [9, 10, 11]. For example, imagine being assigned to
work with unfamiliar classmates on a group project for a machine learning class. Effectively dividing
up the different tasks will require representations of each contributor’s abilities: who will be best
suited to implement the code, write the report, and deliver the presentation.

In this paper, we examine whether artificial agents, when trained to collaborate with different partners
but without explicit mechanisms for agent modelling, spontaneously develop internal representations
of their partners’ abilities. We investigate this question in a fully cooperative setting, where agents
optimise a shared goal (i.e., a single reward function), but have no prior knowledge of each other’s
attributes or action policies. Crucially, we train reinforcement learning agents with generic recurrent
architectures and only task reward supervision—there are no auxiliary objectives or architectural
priors pushing agents to model one another. This stands in contrast to prior work, such as Rabinowitz
et al.’s ‘Machine Theory of Mind’ framework, which relies on specialised components optimised
explicitly to infer other agents’ internal states [12]. We find that despite these minimal inductive
biases, agents develop structured, internal representations that (i) encode the different competencies
of their partners; (ii) generalise to previously unseen collaborators; and (iii) emerge selectively,
depending on agents’ ability to control task allocation. Together, our findings suggest that partner
modelling can arise within artificial agents solely from the demands of flexible cooperation, without
explicit incentives or specialised architectures.

2 Related work

2.1 Ad hoc teamwork

The field of ad hoc teamwork (AHT) deals with the problem of developing agents that learn to
collaborate ‘on the fly’ with previously unseen ‘teammates’, without any prior coordination [13].
AHT shares some basic elements with the field of multi-agent reinforcement learning (MARL);
but where MARL typically assumes control of all agents in the environment, in AHT we control
only a single agent (often called the ‘AHT agent’ or ‘learner’; we will use ‘ego agent’ throughout),
with teammates’ actions governed by either simple heuristics or pre-trained (frozen) RL policies.
AHT also considers only settings where all agents share a common cooperative objective—while
individual agents might have additional goals or small differences in reward function, they are never
in conflict with one another. The focus of research in AHT has mainly been on producing agents
that can adapt to the varying ‘play styles’ (policies) of different partners or human collaborators
[14]. In contrast to self-play training (where agents co-adapt to each other), ad hoc agents must
generalise to novel partners under zero shot (no prior interaction) or few shot (minimal adaptation
rounds) conditions. AHT can thus be viewed in large part as the problem of rapidly inferring a
novel teammate’s underlying parameters or characteristics. Accordingly, many approaches have
involved explicit inference and representation of these characteristics; traditionally via forms of
Bayesian belief-updating over a discrete teammate space [15, 16, 17, 18], or more recently using
neural-network-based encoders to learn latent representations of teammate policies [12, 19, 20]. In
contrast, our work uses the AHT setting to study implicit, emergent partner modelling in simple RNN
agents without additional architectural components or auxiliary objectives.

2.2 Agent modelling

While many AHT approaches leverage some method for representing different teammates, the
problem of modelling other agents in a shared environment is not unqiue to the AHT setting [21].
Recent work on agent modelling has primarily employed deep neural network-based approaches,
where a dedicated module is optimised explicitly to produce useful representations of other agents’
properties via some auxiliary objective. These representations can then be used to condition the
controlled agent’s own action policy [21, 22], allowing them to adapt their behaviour directly to the
properties of the different agents with whom they must interact. For example, He et al. [23] extend
the DQN architecture with an additional network that produces representations of the opponent policy.
In contrast, Raileanu et al. [24] avoid having to maintain a separate model of other agents by using the
learner’s own current policy to infer others’ goals via maximum likelihood. Numerous other works
have employed some form of encoder-decoder architecture, typically trained via a reconstruction loss
to learn latent embeddings that facilitate behaviour prediction [25, 12, 19, 26, 27, 28].

2



Beyond these explicit modelling approaches, a parallel line of work has examined social influence
and coordination in multi-agent RL. For example, Jaques et al. [29] show that giving agents intrinsic
motivation to shape others’ behaviour improves cooperative outcomes, while work on zero-shot
coordination demonstrates that agents trained with diverse partners can adapt to unseen teammates
without additional training [30, 31]. These studies highlight the general idea that social prediction
and adaptation are key to successful collaboration.

2.3 Emergent representations in model-free RL

In contrast to the explicit approach common across most agent modelling research, a different line of
work has explored the implicit representations that emerge spontaneously in model-free RL agents
trained only to achieve a particular high-level task. For example, multiple works have investigated the
representations that develop within RL agents trained on simple navigation tasks, finding for example
that agents encode target distance, reachability, and progress from their starting location [32], and
that structured ‘mental maps’ of the environment emerge in the memories of ‘blind’ RNN agents [33].
Other research has explored the information encoded by model-free puzzle-solving or game-playing
agents, isolating goal representations in maze-solving networks [34], humanlike chess concepts in
AlphaZero [35], and planning-like abilities in RNN agents trained to play sokoban [36].

Our work is also closely connected to the meta-learning literature. Recurrent policies trained across
many tasks or partners can act as implicit meta-learners, encoding past experience in hidden states
to support rapid adaptation [37]. This view frames recurrence as a way for agents to learn about
collaborators, not just task features. Our findings extend this perspective by showing that such implicit
meta-learning can give rise to partner-specific internal models under the right collaborative pressures.

2.4 Cognitive and economic perspectives

Work in cognitive science, anthropology, and economics converges on the idea that prediction
underpins intelligence and collaboration. Clark [38] argues that perception and action are driven by
hierarchical prediction. Byrne and Whiten’s ‘Machiavellian Intelligence’ hypothesis [? ] proposes
that human intelligence evolved to anticipate others’ behaviour. Harsanyi [39] formalised this idea
in economics through Bayesian games, where agents reason about hidden partner traits. Grosz and
Kraus [40] further emphasise the need for shared predictive structures to coordinate group plans. Our
results align with these perspectives, showing that predictive partner models can arise spontaneously
in simple recurrent agents under collaborative pressure.

2.5 Attention

Recent work uses attention-based architectures to study social reasoning. Long et al. [41] analyse
collaboration via attention weights, while Decision Transformer [42] frames RL as sequence mod-
elling. In contrast, we use a simple RNN to show that structured partner representations can emerge
without strong inductive biases. Future work could apply attention mechanisms to probe whether
agents implicitly track partner positions or trajectories.

3 Problem Formulation

As is standard in the AHT literature, we formulate the problem as a two-agent partially observable
Markov decision process (POMDP). This is defined by the tuple M = ⟨S,O1,O2,A1,A2, P, r, γ⟩,
where Oi and Ai denote the observation and action spaces of agent i ∈ {1, 2} (with O⃗ = O1 ×
O2, A⃗ = A1×A2), S is the environment state space, P : S×A⃗ 7→ ∆(S) denotes the state transition
function, r : S × A⃗ 7→ R is the shared reward function, and γ is the discount factor. At each timestep
t the ego agent (agent 1) receives an snapshot of the environment o1t ∈ O1—information from which
may be retained in future timesteps as part of internal memory state ht with a recurrent function
ht = f(ht−1, o

1
t ). The ego agent acts according to its learned policy π(a1t | ht) and the partner

(agent 2) acts according to its (fixed) pre-trained policy π2, governed by latent parameters z∗ ∈ Z ,
sampled from distribution p(z∗) at the beginning of each episode. These traits, such as how quickly
a given partner can perform each task, are not directly observable to the ego agent—rather, as in
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Figure 1: An illustration of our task setting, based on the ‘cramped room’ layout of Overcooked-AI.
The ego agent (green) has a learned internal representation of how competent (fast) their partner
(blue) is at each of the two subtasks; it uses this representation to determine which subtask the partner
should work on.

the context of human theory of mind, they must be inferred (explicitly or implicitly) from observed
behaviour.

The ego agent is trained only to maximise the expected cumulative reward across episodes,
maxπ Ez∗∼p(z∗) Eτ∼π,π2(z∗)

[∑T
t=0 γ

trt

]
, where τ denotes a trajectory of states, observations,

and actions sampled from the ego policy π and partner policy π2(z
∗) under the transition dynamics

P . Each episode involves a different partner sampled from a distribution over latent traits z∗ ∈ Z .
Importantly, no explicit architectural mechanisms or auxiliary objectives encourage modelling of
these latent traits. We are interested in whether, under these minimal conditions, internal partner
models nevertheless emerge implicitly within the ego agent’s recurrent state ht.

4 Methods

4.1 Environment

Critical to any test of our hypothesis is that the environment imposes collaborative pressure; i.e. the
ego agent’s optimal policy depends on the latent characteristics of their partner, and so modelling those
characteristics is conducive to achieving high joint reward. We provide this through Overcooked-AI
[43], a fully cooperative environment where agents work together to prepare soups, tasked with
maximising the throughput r = ∆Soup

∆Time (for additional results in a second cooperative environment,
see Appendix A). Each agent must navigate a shared kitchen to gather ingredients, cook them, and
serve the completed soups — making success heavily dependent on coordination and division of
labour. The environment difficulty can be modified via different recipes, which vary in complexity
and number of ingredients, and different kitchen layouts, which introduce specific constraints (e.g.
encouraging agents to pass items to perform the task successfully, or forcing agents to navigate
around each other in cramped spaces). Figure 1 illustrates one such layout.

4.2 Agent Architecture

The ego agent’s policy is implemented as a gated recurrent unit (GRU) [44] recurrent neural network
(RNN). At each timestep t, the agent processes an observation ot and updates its hidden state via
ht = GRU(ot, ht−1). The hidden state ht acts as a general dynamic memory, evolving as the
interaction unfolds. The ego policy is trained using Proximal Policy Optimisation (PPO) [45],
implemented in JAX [46] to facilitate efficient parallel training.
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4.3 Experimental Design

Achieving high reward in the Overcooked-AI environment requires agents to successfully coordinate
two different subtasks: preparing ingredients (‘task 1’), and serving soup (‘task 2’). We train our ego
agent alongside a distribution of partners who vary in how competent they are at the two subtasks
(operationalised as how frequently they can take actions towards each task). To introduce a direct
connection between partner properties and optimal ego agent behaviour, we grant the ego agent
control over which subtask its partner is working towards at any given time. Our hypothesis is that
effective task allocation will require the ego agent to learn how to recognise and represent the abilities
of different partners—that is, after training, the RNN hidden state dynamics should be optimised to
encode how fast a given partner is at tasks 1 and 2 (as illustrated in Figure 1).

Within this framework, we carry out three experiments to probe different dimensions of partner
modelling:

4.3.1 Experiment 1: Does the pressure to allocate subtasks drive the emergence of partner
modelling?

This experiments tests whether placing the responsibility for subtask allocation to the ego agent
encourages it to develop internal representations of its partner’s capabilities. In particular, we
ask whether the ego agent can learn to reliably allocate tasks effectively by representing different
partners’ ability profiles? To test this, we generate a distribution of partners, each characterised by a
two-dimensional vector v = [v1, v2] denoting the cooldown interval (i.e, the number of timesteps
between consecutive actions) for each subtask. These cooldowns can be interpreted as inverse
proxies for subtask skill: a lower vi reflects higher proficiency in subtask i, allowing the partner to
act more frequently. The ego agent is trained alongside a population of partners with vi sampled
independently from the set {1, 2, 3, 4, 7, 9}. During evaluation, the ego agent is paired with partners
whose cooldowns are sampled from a different set, {0, 2, 3, 8, 10}. While some individual cooldown
values overlap (e.g. 2 and 3), the pairs of cooldowns (v1, v2) used for training and evaluation are
disjoint, ensuring that no test partner configuration was encountered during training. The ego agent
has a constant cooldown of 2 for both tasks, allowing for a balance between dominating the tasks (if
too fast) and slowing learning (if too slow), and is equipped with an additional action that allows it to
dictate which subtask the partner contributes to at each timestep.

4.3.2 Experiment 2: Can agents adapt online to new partners within an episode?

Successful collaboration in the real world often requires us to deal with sudden, unexpected changes.
In this experiment, we examine whether our ego agent can adapt dynamically to different partners
within a single episode. During each training episode, there is a 50% probability that the partner
is ‘switched’ at a random timestep between 30 and 70% of the 600-timestep duration (the random
dynamics ensure that the agent cannot memorise a fixed timing pattern). To ensure non-triviality, the
post-switch partner is always sampled with a mirrored ability profile (i.e. if the initial partner is faster
at task 1, the new partner is faster at task 2, and vice versa). When evaluating the agent after training,
we simplify the analysis by performing the switch in every episode, always at exactly t = 300, and
only in a single direction (faster at task 1 → faster at task 2).

4.3.3 Experiment 3: Can blind agents develop partner models from task reward alone?

Inspired by the findings of Wijmans et al. [33], who showed that ‘blind’ agents trained for PointGoal
navigation develop internal map-like representations of their environment despite having access only
to proprioceptive feedback, we ask a related question—can blind versions of our Overcooked agents,
trained purely to maximise cooperative task reward, still develop internal models of their partners’
capabilities?

To investigate this, we remove all visual input from our ego agents and restrict them to receiving only
egocentric signals (information only about their current grid cell, including their location, orientation,
and any objects they are holding). Importantly, they are unable to perceive their partner’s location, or
directly observe their behaviour.

To generate variation in partner competence, we first train a high-performance onion-preparing agent
in self-play, and then inject controlled levels of noise into its policy. This produces a range of partner
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behaviours from reliably competent to frequently erratic. The ego agent must infer where on this
spectrum each partner lies purely from its own direct experiences and task rewards. Full details of the
partner generation and evaluation procedures are provided in the Appendix.

4.4 Evaluation Overview

To investigate how and when internal partner models emerge, we analyse agent behaviour across
five Overcooked-AI layouts (see Appendix). Our evaluation is motivated by three key questions:
(i) Can the ego agent collaborate effectively with previously unseen partners? (ii) Do hidden states
encode partner traits such as speed or competence (iii) Does the agent update its internal model in
response to mid-episode changes in partner attributes? To address these questions, we analyse overall
reward (total number of soups delivered), adaptation curves (how quickly reward accumulates over
time), linear probe accuracy (how well partner traits can be ‘decoded’ from RNN hidden states by
optimising a single linear layer with input size dim(h) and output size 1) and UMAP projections [47]
(capturing the structure of hidden states). We also compare against three baselines, each designed
to isolate a different factor affecting partner modelling: a feedforward MLP, which lacks memory;
a single-partner RNN, trained on a fixed partner to assess the role of training diversity; and a non-
influential RNN, trained across the full distribution of partners but without the ability to influence
their behaviour. A more detailed description of each baseline is provided in the Appendix.

5 Results

5.1 Collaborative agents adapt to unseen partners

To establish the importance of modelling different partners to our chosen environment, we compare
the performance of our RNN ego agent policies against two simpler baselines: a purely feed-forward
MLP policy, and an RNN policy trained alongside only a single constant partner. Figure 2 shows
the results of this comparison across five different layouts. We find that the RNN policy trained
against diverse partners outperforms both the MLP policy and the single-partner-trained RNN variant;
presumably by virtue of a learned ability to model partner parameters. The single exception to
this is fivebyfive_v1, in which the MLP agent achieved the highest reward—possibly due to the
fact that fivebyfive_v1 is a simpler layout, requiring less spatial coordination and allowing simpler
behavioural strategies to perform well. Importantly, the higher performance of the multi-partner-RNN
with respect to the single-partner RNN does not reflect simple memorisation of different partners,
since the partners encountered in evaluation were unseen during training. In addition to superior
performance, we find that evaluation episodes with the (multi-partner-trained) RNN ego agent yield
a higher correlation between which task the partner spends most time on, and which task they’re
fastest at (Figure 2C)—suggesting that the ego agent’s task allocation decisions are informed by a
representation of different partners’ ability profiles.

5.2 Agent memory encodes partners’ abilities (when there is pressure to do so)

A key idea behind our experimental design is that having the ability to influence which subtask a
partner performs will pressure the ego agent to learn hidden representations that encode the task
speeds of different partners. To investigate the hypothesis further, we trained RNN policies under
three different conditions: our ‘full’ setup including both partner diversity and task influence, plus the
‘single-partner’ and ‘non-influential’ variants described in Section 4.4. For each condition, we then
extracted the trained agent’s hidden states during evaluation episodes alongisde 46 different unique
partners in 5 different layouts (with 20 seeds per condition/layout/partner).

Figure 3A shows, for each condition and layout, a 2D UMAP projection of these hidden states
(averaged over the final 50 timesteps of each rollout), coloured by the difference in task speeds for
each partner (task 1 speed − task 2 speed). We can see that for the multi-partner-trained RNN, there
is a high degree of structure, with less for the single-partner-trained variant, and less still for the
non-influential variant. For each condition and layout, we also trained single-layer linear probes at
different values of t to predict partner task speeds from hidden states averaged over (0, t]. Figure 3B
shows the accuracy of these probes on a test set of held-out partners: we see that, for the initial
hidden states at t = 0, our linear probes perform no better than a baseline trained on random data.
As the episodes progress and the ego agent is able to interact with and observe each partner, probe
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Figure 2: Comparison between different ego agent policies in the overcooked environment. Each
policy was evaluated in five different layouts against 8 different combinations of partner speed
parameters, over 10 seeds. (A) average episode reward, per-layout and overall (B) throughput (rate
of soup production), per-layout and overall, with shaded areas giving bootstrapped 95% confidence
intervals (C) correlation between how much faster the partner agent was at task 1 vs task 2 and the
proportion of time the partner spent performing task 1 (over all layouts). Shaded areas show 95%
confidence intervals over the slope; a higher correlation indicates more efficient task allocation.

accuracy increases across all three conditions—but is highest for the multi-partner-trained RNN, and
significantly impaired for the non-influential RNN.

These results offer convincing evidence, first of all, that our ego agent has learned to encode
meaningful information about different partners in memory, without being explicitly trained to do
so. They also demonstrate the importance of environmental pressure to the emergence of these
representations. In particular, when the ego agent is stripped of its ability to influence partners’
behaviour directly, its hidden states contain significantly less information about partner task abilities
(as measured by linear decodeability)—strikingly, even less than those of the ego agent that only
ever encountered a single partner during training! For a replication of these results in a second
environment, see Appendix A.

5.3 Agents can adapt online to new partners

So far, we have established that our RNN ego agents, once trained, can adapt to different partners
across different episodes. A stronger version of flexible cooperation involves adapting to new partners
‘online’, without the environment or internal agent state being reset. To test this, we train an ego agent
alongside partners whose task speeds may change up to once per episode. Across three layouts, we
then evaluate this agent over a number of 600-timestep rollouts where they are paired initially with a
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Figure 3: A comparison of the hidden states of RNN ego agents trained under different conditions.
(A) UMAP embeddings of RNN hidden states averaged over the final 50 timesteps of each episode,
coloured by the partner’s difference in task speeds (speed 1 − speed 2), for five different layouts
of the Overcooked environment. (B) Mean test accuracy of linear probes trained to recover partner
speeds from sets of RNN hidden states accumulated up to different timesteps (with shaded areas
giving bootstraped 95% confidence intervals).

partner that is fast at task 1 and slow at task 2, then switched at t = 300 to a partner with the opposite
profile.

To measure how well our agent copes with this scenario, we track the average soup throughput over
time. From the results in Figure 2B, we expect that the throughput should initially increase to a steady
state; we anticipate that it will then drop sharply at t = 300 as the partner’s task speeds are reversed.
After this point, if the ego agent is capable of adapting online to the new partner, the throughput
should increase once more to a new steady state; if not, it should remain low. Figure 4A shows that
for all three tested layouts, the throughput does indeed increase again after t = 300, demonstrating
the presence of online adaptation 3. As further evidence, Figure 4B shows that, on average, the
partner is directed to allocate their time mostly to task 1 for t < 300 and mostly to task 2 for t > 300.
Finally, we also visualise in Figure 4C how the ego agent’s hidden states are affected by the switch.
UMAP projections of hidden states averaged over t < 300 align roughly with the distribution of
embeddings for ‘baseline’ episodes with (constant) partners fast at task 1 and slow at task 2; over

3We note that the throughput does not fully recover post-switch due to an asymmetry in the subtask
complexities: because task 1 requires more steps than task 2 to execute, the overall team efficiency is higher
when the partner is fast at task 1 and slow at task 2 than the reverse.
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Figure 4: A demonstration of online adaptation. (A) Average throughput (rate of soup delivery)
during episodes where the partner is switched halfway through from being faster at task 1 to faster at
task 2. (B) From the same episodes, the average proportion of time spent by the partner performing
each subtask before and after the switch. (C) UMAP embeddings of the average pre-switch and
post-switch RNN hidden states from each episode. Also shown are the distributions (approximated
via KDE) for embeddings of hidden states from non-switch baseline episodes with partners matching
the pre- and post-switch speeds respectively.

t > 300, they move to match the distribution for episodes with partners slow at task 1 and fast at task
2 (see supplementary videos for visual examples of this adaptation).

5.4 Partner modelling emerges even in blind AI agents

We find that structured partner modelling also emerges in blind agents – trained without any architec-
tural biases toward modelling their partner. Despite relying purely on egocentric observations and
scalar task reward, these agents generalise to new partners and outperform both a recurrent agent
trained on a single partner and a memoryless MLP baseline. Evaluated across five Overcooked layouts
(with six novel partners per layout and 10 random seeds per permutation), the blind RNN agents
trained with collaborators with a diverse range of competencies achieved an average throughput of
9.43 soups per episode. This compares to just 5.8 for the single-partner RNN and 1.08 for the MLP.
These results show that the interaction structure and memory can enable adaptive behaviour to the
capabilities of partner agents – even under harsh observational conditions. Further details, including
corresponding videos and a breakdown of the results, are included in the supplementary materials.

6 Discussion

In this paper, we have studied the question of whether representations of other agents’ relevant at-
tributes can emerge simply as a result of environmental pressure to collaborate effectively with diverse
partners. In the absence of dedicated architectural features or auxiliary objectives, we found that
RNN agents trained to play a version of the cooperative game ‘Overcooked’ nevertheless developed
structured internal representations of their partners’ task abilities. In an additional experiment, we
showed that these representations enable agents to adapt online to new partners within the same
episode. Finally, we also demonstrated that the development of structured representations is signifi-
cantly weakened when agents are denied the ability to influence partner behaviour. Taken as a whole,
our results serve to illustrate the idea that social intelligence can emerge from specific environmental
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pressures acting in concert with general mechanisms for learning and memory, rather than necessarily
relying on unique architectures. We believe that this is important to bear in mind as we seek to
develop artificial agents that bridge the gap towards humanlike social cognition and behaviour.

It is notable that structured partner modelling also emerged in blind agents trained without visual
input, relying solely on egocentric signals and task reward. Despite having no explicit access to their
partner’s actions or state, these "blind" agents developed internal representations that enabled them
to effectively collaborate with partners displaying a diverse range of competencies. This emerged
despite minimal inductive biases and limited observational input. This indicates that the structure of
the interaction itself is sufficient to drive the emergence of partner-aware policies.

While we feel our work represents a valuable contribution to the study of emergent partner modelling,
we highlight various limitations that might serve as starting points for future research. First and
foremost, our experiments used only a single cooperative environment (Overcooked-AI)—while
we are confident that our results will generalise to other environments and task settings, an obvious
target for future work is to confirm this empirically. Of particular interest would be open-ended
environments that allow us to study how partner representations evolve over time in a more continuous
setting; or those with more complex or overlapping subtasks. Relatedly, future work might study
whether our findings scale to more than one teammate—we believe that they should, provided that the
environment imposes sufficient pressure (i.e. all teammates’ behaviour is relevant to task completion).
That said, inference will become more demanding with additional agents, and so the ego agent may
learn to rely on shortcuts such as modelling the average behaviour of its teammates.

A further limitation is that we have restricted ourselves to studying relatively simple forms of
representation. In the real world, people engage in highly complex modelling of their social partners,
including through hierarchical representations that deal with how others are perceiving them in turn.
It would be interesting to investigate whether these simple, general agent architectures are capable of
acquiring such sophisticated capabilities, and under what environmental conditions. Related to this is
the fact that our implementation of ‘influence’ was very strong, essentially taking the form of direct
control. Humans typically influence their collaborators in much more nuanced ways—future work
might reduce this gap via some form of communication system, where the partner learns to follow (or
ignore) high-level instructions from the ego agent.

Aside from these limitations, a further avenue is to explore transformer-based agents, where attention
may offer a natural probe of whether agents implicitly track their partners’ positions or strategies.
Another direction is to test whether internal partner representations can be transferred between agents
and tasks via hidden state initialisation. For example, one could evaluate whether seeding an agent’s
memory with the final hidden state from a previous rollout improves adaptation when encountering
the same partner; probing the portability and generality of the learned representations. Comparing
‘transplanted’ and ‘cold-start’ agents would provide insight into the extent to which internal partner
models support efficient reuse and generalisation. Another possible avenue would involve direct
comparisons between the implicit partner modelling approach we study here and various explicit
methods: we expect that the latter would perform better in the specific modelling contexts they were
trained for, at the cost of reduced flexibility to changes in task environment or partner attribute space.

Finally, while our primary motivation is the desire for artificial agents capable of collaborating
flexibly with humans, we believe that a version of our approach might also be used to shed light on
the evolutionary differences in collaborative and cooperative behaviour observed across different
animal species. To this end, future work might explore using large-scale evolutionary simulations to
further study the interplay of environmental pressures and agent architectures; an approach which has
recently proven fruitful for investigating other social behaviours such as altruism [48].

7 Acknowledgements

This work was supported by the EPSRC CDT in RAS (EP/L016834/1) and the National Defense
Science and Engineering Graduate (NDSEG) Fellowship Program awarded to E.M. We thank J. Shah
and many others for their invaluable support and expertise.

10



References
[1] Michael Tomasello, Alicia P Melis, Claudio Tennie, Emily Wyman, and Esther Herrmann. Two

key steps in the evolution of human cooperation: The interdependence hypothesis. Current
Anthropology, 53(6):673–692, 2012.

[2] Sarah Blaffer Hrdy. Mothers and Others: The Evolutionary Origins of Mutual Understanding.
Harvard University Press, Cambridge, MA, 2009.

[3] Joseph Henrich. The Secret of Our Success: How Culture Is Driving Human Evolution,
Domesticating Our Species, and Making Us Smarter. Princeton University Press, 2018.

[4] Ruaridh Mon-Williams, Gen Li, Ran Long, Wenqian Du, and Christopher G Lucas. Embodied
large language models enable robots to complete complex tasks in unpredictable environments.
Nature Machine Intelligence, pages 1–10, 2025.

[5] Ian A Apperly and Stephen A Butterfill. Do humans have two systems to track beliefs and
belief-like states? Psychological review, 116(4):953, 2009.

[6] Chris Baker, Rebecca Saxe, and Joshua Tenenbaum. Bayesian theory of mind: Modeling joint
belief-desire attribution. In Proceedings of the annual meeting of the cognitive science society,
volume 33, 2011.

[7] Rebecca Saxe and Nancy Kanwisher. People thinking about thinking people: the role of
the temporo-parietal junction in “theory of mind”. In Social neuroscience, pages 171–182.
Psychology Press, 2013.

[8] Mark K Ho, Rebecca Saxe, and Fiery Cushman. Planning with theory of mind. Trends in
Cognitive Sciences, 26(11):959–971, 2022.

[9] Yang Xiang, Natalia Vélez, and Samuel J Gershman. Collaborative decision making is grounded
in representations of other people’s competence and effort. Journal of Experimental Psychology:
General, 152(6):1565, 2023.

[10] Yang Xiang, Natalia Vélez, and Samuel J Gershman. Optimizing competence in the service of
collaboration. Cognitive Psychology, 150:101653, 2024.

[11] Carolyn Baer and Darko Odic. Mini managers: Children strategically divide cognitive labor
among collaborators, but with a self-serving bias. Child Development, 93(2):437–450, 2022.

[12] Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, S. M. Ali Eslami, and Matthew
Botvinick. Machine theory of mind. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 4218–4227. PMLR, 10–15 Jul 2018.

[13] Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan
Sridharan, Peter Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. In
European conference on multi-agent systems, pages 275–293. Springer, 2022.

[14] Yancheng Liang, Daphne Chen, Abhishek Gupta, Simon S Du, and Natasha Jaques. Learning
to cooperate with humans using generative agents. arXiv preprint arXiv:2411.13934, 2024.

[15] Piotr J. Gmytrasiewicz and Prashant Doshi. A framework for sequential planning in multi-agent
settings. J. Artif. Int. Res., 24(1):49–79, July 2005.

[16] Samuel Barrett, Peter Stone, and Sarit Kraus. Empirical evaluation of ad hoc teamwork in the
pursuit domain. In The 10th International Conference on Autonomous Agents and Multiagent
Systems - Volume 2, AAMAS ’11, page 567–574. International Foundation for Autonomous
Agents and Multiagent Systems, 2011.

[17] Stefano V. Albrecht and Subramanian Ramamoorthy. A game-theoretic model and best-response
learning method for ad hoc coordination in multiagent systems. In Proceedings of the 2013
International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’13, page
1155–1156, 2013.

11



[18] Stefano V. Albrecht, Jacob W. Crandall, and Subramanian Ramamoorthy. Belief and truth in
hypothesised behaviours. Artificial Intelligence, 235:63–94, 2016.

[19] Georgios Papoudakis and Stefano V Albrecht. Variational autoencoders for opponent modeling
in multi-agent systems. arXiv preprint arXiv:2001.10829, 2020.

[20] Arrasy Rahman, Ignacio Carlucho, Niklas HÃ¶pner, and Stefano V. Albrecht. A general learning
framework for open ad hoc teamwork using graph-based policy learning. Journal of Machine
Learning Research, 24(298):1–74, 2023.

[21] Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A compre-
hensive survey and open problems. Artificial Intelligence, 258:66–95, 2018.

[22] Ruaridh Mon-Williams, Theodoros Stouraitis, and Sethu Vijayakumar. A behavioural trans-
former for effective collaboration between a robot and a non-stationary human. In 2023 32nd
IEEE International Conference on Robot and Human Interactive Communication (RO-MAN),
pages 1150–1157. IEEE, 2023.

[23] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé, III. Opponent modeling in deep
reinforcement learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 1804–1813. PMLR, 20–22 Jun 2016.

[24] Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself
in multi-agent reinforcement learning. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 4257–4266. PMLR, 10–15 Jul 2018.

[25] Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In Jennifer Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 1802–1811. PMLR, 10–15 Jul 2018.

[26] Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep
interactive bayesian reinforcement learning via meta-learning. In Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, page
1712–1714, 2021.

[27] Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent
representations to influence multi-agent interaction. In Jens Kober, Fabio Ramos, and Claire
Tomlin, editors, Proceedings of the 2020 Conference on Robot Learning, volume 155 of
Proceedings of Machine Learning Research, pages 575–588. PMLR, 16–18 Nov 2021.

[28] Georgios Papoudakis, Filippos Christianos, and Stefano V. Albrecht. Agent modelling under
partial observability for deep reinforcement learning. In Proceedings of the 35th International
Conference on Neural Information Processing Systems, NIPS ’21, 2021.

[29] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega,
DJ Strouse, Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation
for multi-agent deep reinforcement learning. In International conference on machine learning,
pages 3040–3049. PMLR, 2019.

[30] Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via search in
cooperative partially observable games. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7187–7194, 2020.

[31] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pages 4399–4410. PMLR,
2020.

[32] Kshitij Dwivedi, Gemma Roig, Aniruddha Kembhavi, and Roozbeh Mottaghi. What do
navigation agents learn about their environment? . In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10266–10275, 2022.

12



[33] Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, and Dhruv Batra. Emer-
gence of maps in the memories of blind navigation agents. In The Eleventh International
Conference on Learning Representations, 2023.

[34] Ulisse Mini, Peli Grietzer, Mrinank Sharma, Austin Meek, Monte MacDiarmid, and Alexan-
der Matt Turner. Understanding and controlling a maze-solving policy network, 2023.

[35] Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Martin Wattenberg,
Demis Hassabis, Been Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowl-
edge in alphazero. Proceedings of the National Academy of Sciences, 119(47):e2206625119,
2022.

[36] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane
Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,
and Timothy Lillicrap. An investigation of model-free planning. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 2464–2473. PMLR,
09–15 Jun 2019.

[37] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[38] Andy Clark. Whatever next? predictive brains, situated agents, and the future of cognitive
science. Behavioral and brain sciences, 36(3):181–204, 2013.

[39] John C Harsanyi. Games with incomplete information played by “bayesian” players, i–iii part i.
the basic model. Management science, 14(3):159–182, 1967.

[40] Barbara J Grosz and Sarit Kraus. Collaborative plans for complex group action. Artificial
Intelligence, 86(2):269–357, 1996.

[41] Qian Long, Ruoyan Li, Minglu Zhao, Tao Gao, and Demetri Terzopoulos. Inverse attention
agents for multi-agent systems. arXiv preprint arXiv:2410.21794, 2024.

[42] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[43] Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garðar
Ingvarsson, Timon Willi, Ravi Hammond, Akbir Khan, Christian Schroeder de Witt, Alexandra
Souly, Saptarashmi Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange,
Shimon Whiteson, Bruno Lacerda, Nick Hawes, Tim Rocktäschel, Chris Lu, and Jakob Nicolaus
Foerster. Jaxmarl: Multi-agent rl environments and algorithms in jax. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

[44] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Association for
Computational Linguistics.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[46] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[47] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29):861, 2018.

13



[48] Max Taylor-Davies, Gautier Hamon, Timothé Boulet, and Clément Moulin-Frier. Emergent
kin selection of altruistic feeding via non-episodic neuroevolution. In Pablo García-Sánchez,
Emma Hart, and Sarah L. Thomson, editors, Applications of Evolutionary Computation, pages
496–509, 2025.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately represent the
paper’s empirical contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our Discussion section includes some limitations of the current work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

15



Justification: Our paper does not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed information for reproduceability will be provided in the (supplemen-
tary) technical appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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to have some path to reproducing or verifying the results.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These details will be provided in the (supplementary) technical appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All results figures include confidence intervals where appropriate.
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• The answer NA means that the paper does not include experiments.
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This information will be provided in the (supplementary) technical appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We are not aware of any particular societal impacts of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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being used as intended and functioning correctly, harms that could arise when the
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the authors of the Overcooked-AI environment, which is the
only existing asset we use.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
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Appendix

A CoinGame results

To ensure that our findings generalise beyond the specific environment of Overcooked, we con-
ducted some preliminary experiments using a modified version of the JaxMARL suite’s CoinGame
environment [43].

A.1 Environment

In our version of CoinGame, two agents (the ego agent and one partner) must work together to collect
red and blue coins within a small gridworld (see Figure 5A). At any given timestep, the partner is in
either ‘red mode’ (tries only to collect red coins while ignoring blue) or ‘blue mode’ (vice versa).
Different partners are characterised by a two-dimensional ‘skill profile’ [sr, sb], which controls their
probability of successfully executing actions when in each mode (the ego agent has sr = sb = 1). As
in our Overcooked experiments, the ego agent can exert influence by switching their partner’s mode.
The ego agent is rewarded based on the total number of coins collected (nred + nblue) over an episode;
they are thus incentivised to find the most efficient ‘division of labour’ between themselves and their
partner.

A.2 Experimental procedure

As in our main Experiment 1 (5.1) we trained ego agents for 1e7 timesteps under four conditions:

1. MLP (ego agent uses a simple MLP in place of an RNN)
2. No-influence RNN (ego agent has no control over which coin type the teammate pursues)
3. Single-partner RNN (ego agent only exposed to a single partner type during training)
4. Multi-partner RNN (ego agent paired with multiple partner types during training and has

influence)

During training, the single-agent RNN was always paired with a teammate with skill profile
[0.2, 0.8]; in all other cases partners were sampled uniformly from the set

{
[x, 1 − x] ∀ x ∈

{0.2, 0.4, 0.6, 0.8}
}

. During evaluation, partners were always sampled uniformly from the set{
[x, 1− x] ∀ x ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

}
. The ego agent thus never encountered during evaluation

a partner they had previously seen in training. From these evaluation episodes we recorded the
total number of coins collected, the number of timesteps where the teammate was pursuing the
‘correct’ coin colour (based on their skill profile), and the hidden states of the ego agent RNN (where
applicable). As with our experiments in Overcooked, the hidden states were analysed via UMAP
projections and linear probe accuracy.

A.3 Results

Looking at Figure 5B, we see that the multi-partner-RNN ego agent outperforms the single-partner-
RNN agent, which in turn outperforms the no-influence-RNN and the MLP agents—replicating the
trend we observed in our Overcooked results. Also corroborating our previous results is Figure 6,
which shows that hidden states extracted from the multi-partner-RNN are more structured with
respect to partner skill profiles than those from the single-partner or no-influence variants. Finally,
we computed the correlation to partner skill profile of individual RNN hidden unit activations. As
Figure 7 shows, we found multiple units with strong positive or negative correlations (16/32 with
|corr| ≥ 0.5); as well as some units with close-to-zero correlation (likely encoding task/environment
information unrelated to partner properties).
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CoinGame environmentA Comparison of ego agent performanceB

Figure 5: (A) An example CoinGame environment layout at episode start. The two coloured circles
are coins, the red square is a teammate currently in ‘collect red coins’ mode and the black square
represents the ego agent. (B) A comparison of the evaluation performance of different ego agents
trained in the CoinGame environment, showing the mean total number of coins collected by ego agent
and teammate (left) and the mean proportion of time spent by the teammate pursuing the ‘correct’
coin colour (i.e. the one matched to their highest skill level). Error bars give bootstrapped 95%
confidence intervals over 5 random training seeds.

UMAP projections of RNN hidden statesA Linear probe accuracy vs episode timestepB
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Figure 6: (A) UMAP embeddings of RNN hidden states averaged over the final 50 timesteps of each
episode, coloured by partner skill profile. (B) Mean test accuracy of linear probes trained to recover
partner skill from sets of RNN hidden states accumulated up to different timesteps (with shaded areas
giving bootstraped 95% confidence intervals).

B Additional details

B.1 Training setup

B.1.1 Ego agent training

The ego policy is trained on a single GPU using Proximal Policy Optimisation (PPO), running syn-
chronously across 256 parallel Overcooked-AI environment instances. Both agent and environment
are implemented in JAX with jax.jit for accelerated gradient updates and rollout collection. Each
rollout lasts 400 timesteps in Experiments 1 and 3, and 600 timesteps in Experiment 2, and agents
are rewarded for every successful soup delivery. Training runs for 15 million timesteps against a
distribution of partner agents. For the first 5 million timesteps, a decayed reward shaping is used
to aid policy learning (rewarding the agent for putting onions in the pot and for cooking the soup
when it contains the correct ingredients). For experiments 1 and 2, partner agents could at any given
timestep perform one of two subtasks: (1) placing ingredients into a pot, or (2) serving soup (which
involved picking up a bowl, ladling the soup, and delivering it). Each subtask is handled by a separate,
pre-trained neural network that specialises in the specific behaviour. The RNN ego agent has an
additional action that allows it to set the partner’s current subtask. For experiment 3 (with the blind
agent), the ego policy is trained against a distribution of partners who perform subtask 1 to varying
competencies. We randomised the starting state of each episode during both training and testing. The
RNN hyperparameters used for the experiments are shown in Table 1.

B.1.2 Partner agent training

Each partner policy consists of two feed-forward subtask networks trained independently in self-play
using PPO with reward shaping. To obtain subtask-specific policies, each network was paired with a
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Figure 7: Top: correlation coefficients between individual hidden unit values and partner skill profile
computed over 1000 evaluation episodes. Bottom: normalised average value of each hidden unit for
each distinct partner.

Table 1: RNN training hyperparameters
Parameter Value
FC_DIM_SIZE 128
GRU_HIDDEN_DIM 128
ACTIVATION relu
LR 5e-4
ANNEAL_LR True
LR_WARMUP 0.05
NUM_ENVS 256
NUM_STEPS 256
UPDATE_EPOCHS 4
NUM_MINIBATCHES 64
TOTAL_TIMESTEPS 1e7
CLIP_EPS 0.2
ENT_COEF 0.01
GAMMA 0.99
GAE_LAMBDA 0.95
SCALE_CLIP_EPS False
VF_COEF 1.0
MAX_GRAD_NORM 0.25

partner that always performed the other subtask. To ensure robustness we introduced randomness
during training: the subtask network had a 30% probability of waiting on any given step and a
30% probability that its partner would take a random action. This prevented over-fitting to specific
interaction patterns or timings and ensured that the learned policies could operate independently. We
found that this approach allowed us to produce policies for the partner agent faster than relying on
manually specified rules or heuristics.

After training, these subtask networks were combined to form the full partner agents capable of
performing both subtasks. To create a distribution of partner behaviours with varying speeds, we
controlled the speed at which each subtask policy could be executed when interacting with the ego
agent. For example, a partner agent might be able to execute the ingredient placement policy every
four timesteps and the serving policy every two timesteps. This enables us to simulate a range of
partners with different speeds and proficiency across the two tasks, while utilising the same robust
underlying subtask policies.

For experiment 3, we created a distribution of partners with different competencies by adding a
certain probability of the partner taking a random action at any given timestep (e.g, a competent
partners might have a 5% chance of acting randomly; an incompetent partner might have a 95%
chance).
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B.2 Agent architectural design

The architecture includes both input and output fully connected (FC) layers. After the convolutional
neural network (CNN) processes the observation, an FC layer maps the resulting embedding to the
hidden size of the GRU. The GRU’s output is then passed through separate two-layer multilayer
perceptrons (MLPs) for the actor and critic heads, which generate action logits and a scalar value
estimate, respectively. Observations are pre-processed to ensure each agent has a local, self-centred
view of its environment. Furthermore, the CNN output is normalised before being fed into the GRU
to stabilise training and improve performance.

B.3 Evaluation details

B.3.1 Throughput

The throughput (rate of soup production, used in Figures 2 and 4) is given by ∆Soup
∆Time . To obtain a

point estimate of the throughput at time t, we fit the slope of the cumulative reward curve over the
sliding window [t− 25, t+ 25] by the method of least squares.

B.3.2 UMAP projections

To obtain 2D embeddings of RNN hidden states (as seen in Figures 3 and 4), we use the official
Python implementation of the UMAP algorithm (https://umap-learn.readthedocs.io/en/latest/), with
hyperparameters min_dist=1.0 and n_neighbors=N-1 where N is the number of hidden state
datapoints being projected. These hyperparameters were selected to ensure focus on the ‘global’,
high-level structure of the embedding space wrt the partner parameters, rather than small-scale
localised clusterings. For all other hyperparameters we use the library default values.

B.3.3 Linear probe analysis

For our linear probe analysis (used in Figure 3), we optimise a linear layer to perform the classification
task x⃗t 7→ y where x⃗ is the averaged RNN hidden states up to time t from a single episode, and y
is the partner’s speed at either task 1 or 2 for that episode. We train probes separately for different
values of t as well as ego agents trained under different conditions. Each probe is trained for a total
of 1e3 steps using the Adam optimiser with a learning rate of 1e-2. We use a train-test split of 80-20
over rollout seeds (i.e. where we have 20 seeds per partner speed combination, we randomly assign
16 of those seeds to the train set and 4 to the test set). We report the distance-aware classification
accuracy over the test set. For comparison, we train a ‘baseline’ probe under identical conditions
using random x⃗ (sampled from the standard Normal distribution with the same shape as the hidden
states) and the true y labels.

B.4 Other experiment details

B.4.1 Experiments 1-2

To reduce the chance of poor policy convergence due to a random seed, we ran the entire training
process over five random seeds per environment layout, and selected the ego agent policy that
achieved the highest average episode return at the end of training. During testing, we paired the ego
agent with 24 different partners not encountered during training and collected 20 episode rollouts
per partner (over 20 random seeds, which randomised the starting state), for a total of 2400 different
rollouts. The seeds that achieved the highest return are as follows:

Table 2: Best performing seed (1–5) for each layout and model
MLP RNN RNN Online RNN Single Partner

Cramped Room 2 3 5 2
FiveByFive 4 2 4 5
Coord Ring 2 3 5 1
Cramped Room V3 1 2 2 5
Cramped Room V4 2 2 2 5
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For experiments 1 and 2, we used an ego agent with a fixed cooldown interval of 2 (across both
subtasks). We found that if the speed of the ego agent was higher than this, then it would experience
less pressure to model the partner agent, converging to a policy that was independent of partner
properties. Conversely, at lower speeds, the ego agent struggled to converge to an effective policy.

B.4.2 Experiment 3

In Experiment 3, we test if a ‘blind’ ego agent that only receives local observations of its own square
(position, orientation, and held object) can implicitly model the competence of its partner. For the
partner policy, we use the ingredient-preparation subnetwork (subtask 1). During training, the ego
agent is paired with a distribution of partners that vary in their probability of taking random actions
(versus optimal actions); representing different levels of competence. For testing, we introduce
six novel partners with fixed randomness levels ∈ {0, 0.05, 0.1, 0.9, 0.95, 1}. This allows us to
investigate whether the ego agent adapts its behaviour to both highly competent and highly erratic
partners. We hypothesise that the ego will collaborate efficiently with skilled partners, while taking
on more of the task when paired with less capable ones.

B.5 Environment layouts

For both training and evaluation, we use five environment layouts with different spatial constraints:
cramped room, coord ring, fivebyfive, cramped_room_v3, and cramped_room_v4. All layouts were
chosen on the basis that they incentivise agents to work together rather than independently, and are
no larger than 5x5 tiles (to ensure convergence to successful policies). The five layouts are depicted
in Figure 8.

(a) Cramped Room (b) FiveByFive (c) Coord Ring
(d) Cramped Room
V3

(e) Cramped Room
V4

Figure 8: Layouts used in the Experiments

B.6 Baselines

To isolate the conditions under which partner modelling emerges, we utilise three baselines that allow
us to disentangle the effects of training diversity, memory, partner information and architecture on
collaborative performance. First, to see if memory plays a role, we include a feedforward network
(FFN) MLP baseline. This tests whether memory is necessary for adapting to diverse partners (poor
performance would suggest that memory is important in partner modelling). We next consider a
single partner specialist, which is a GRU recurrent agent trained with one partner. This baseline
probes whether exposure to diverse partners is necessary to develop a generalisable partner model
- poor performance in this baseline would outline that training diversity is cruical for emergent
modelling. Finally, we used a non-influential - an RNN trained over a distribution of partners, but
without the ability to influence them. During rollout with the non-influential RNN, the partner mode
was switched halfway through training to allow the ego agent to retain memory of the partner’s ability
in both subtasks.

B.7 Illustrative videos of agent–partner interactions

To illustrate the experiments and interaction dynamics, we include example videos from the RNN
policy trained on a distribution of partners. Although many policies are trained throughout the
experiments, these examples are used to highlight the kind of adaptations (and occasional failures to
adapt) that emerge under novel test conditions. Videos are included to show the ego agent interacting
with two previously unseen partners (using one random seed per layout) in each experiment. In
Experiment 1, the agent interacts with a fixed partner throughout the episode — one that is competent
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(i.e., speed 1) at ingredient preparation and one at serving. In Experiment 2, the partner switches
partway through the episode (at time step 300), from a skilled ingredient preparation partner to a
skilled serving partner, or vice versa. During training, partner switches occur at variable times or not
at all, so the agent cannot anticipate when or whether a change will occur. In Experiment 3, the blind
ego agent is paired with both an unskilled partner and a competent one (at ingredient preparation) -
to visualise the large variations in partner ability. These videos are provided in the supplementary
materials and demonstrate how the trained policy generalises to new human collaborators.

B.8 Compute

All experiments were run on A100 GPUs, totalling 462 GPU-hours. Policy training used 225 GPU
hours for all three experiments. A total of 37,400 rollouts were simulated, totalling 207 GPU-hours.

B.9 Code availability

The full code for this paper is available at: https://github.com/ruaridhmon/emergent_
partner_modelling
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