
How to Design Stable Machine Learned Solvers
For Scalar Hyperbolic PDEs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Machine learned partial differential equation (PDE) solvers trade the robustness1

of classical numerical methods for potential gains in accuracy and/or speed. A key2

challenge for machine learned PDE solvers is to maintain physical constraints that3

will improve robustness while still retaining the flexibility that allows these methods4

to be accurate. In this paper, we show how to design solvers for scalar hyperbolic5

PDEs that are stable by construction. We call our technique ‘global stabilization.’6

Unlike classical numerical methods, which guarantee stability by putting local7

constraints on the solver, global stabilization adjusts the time-derivative of the8

discrete solution to ensure that global invariants and stability conditions are satis-9

fied. Although global stabilization can be used to ensure the stability of any scalar10

hyperbolic PDE solver that uses method of lines, it is designed for machine learned11

solvers. Global stabilization’s unique design choices allow it to guarantee stability12

without degrading the accuracy of an already-accurate machine learned solver.13

1 Introduction14

Scientists and engineers are interested in solving partial differential equations (PDEs). Many PDEs15

cannot be solved analytically, and must be approximated using discrete numerical algorithms. We16

refer to these discrete numerical algorithms as PDE solvers. The fundamental challenge for PDE17

solvers is to balance between two competing objectives: first, to find an accurate approximation to18

the solution of the equation, and second, to do so with as few computational resources as possible.19

In recent years, scientists and engineers have attempted to use machine learning (ML) to design20

new and better PDE solvers [41, 2, 45, 31, 16, 44, 3, 42]. On certain problems, machine learned21

PDE solvers have achieved high accuracy at low computational cost [22, 39, 24, 13, 26]. However,22

these high-performing machine learned PDE solvers suffer from at least two major problems. First,23

they struggle to generalize to conditions outside of the training data. Second, they tend to have no24

guarantees of stability and as a result the solution sometimes blows up as t→ ∞. For examples of this25

second problem, see fig. 3a of [2] and fig. 9a of [45]. Consequently, [2] and [45] write that “figuring26

out how to guarantee stability” of machine learned PDE solvers is an “important topic for future work.”27

We consider scalar hyperbolic PDEs written in conservation form, given by28

∂u

∂t
+∇ · f(u) = 0. (1)

For an introduction to the mathematical properties of, classical numerical methods for solving, and29

motivation for studying eq. (1), see [30]. If machine learned solvers for eq. (1) were somehow30

perfectly accurate, then stability (see section 2) would not be a concern because the solver would31

simply give the correct answer for all t. But, for a variety of reasons, machine learned solvers are not32

and will never be perfectly accurate. Some amount of error is inevitable, so the question becomes:33

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

how can we constrain the machine learned solver to give us the sorts of errors that we are willing34

to tolerate? Although the answer to this question is problem dependent, we take the view that with35

machine learned numerical methods, as with well-designed classical numerical methods, the solution36

should be guaranteed not to blow up as t→ ∞ (see section 3).37

The purpose of this paper is to demonstrate how to design machine learned solvers for eq. (1)38

that ensure stability (see sections 4 and 5) without degrading the accuracy of the solution. These39

solvers guarantee both mass conservation and stability as t → ∞ for a subset of PDEs that are40

highly relevant in the physical sciences and engineering. We call our technique ‘global stabilization.’41

In particular, the global stabilization technique can be used as a ‘hard’ constraint on the model42

architecture of so-called ‘hybrid’ machine learned solvers (see section 6). We present the global43

stabilization technique in 1D and 2D for rectangular uniform grids with periodic boundary conditions44

(BCs). We note that the method can also be used when the right hand side (RHS) of eq. (1) is nonzero45

(see appendix A) and for non-periodic BCs and non-uniform grid spacing (see appendix B).46

2 Stability of Scalar Hyperbolic PDEs47

Conservation properties: eq. (1) implies that the scalar
∫
u(x, t) dx is time-invariant, which we call48

‘conservation of mass.’ In a 1D periodic system with x ∈ [0, L], an integral over x makes the invari-49

ance apparent: d
dt

∫ L

0
u(x, t) dx =

∫ L

0
∂u
∂t dx = −

∫ L

0
∂f
∂x dx = f(0)−f(L) = 0. In words: the total50

rate of change of u is equal to the flux through the boundaries; for a periodic system this equals zero.51

Stability properties: we begin with the entropy inequality [30, 38] given by52

∂S(u)

∂t
+∇ · F (u) ≥ 0. (2)

Equation (2) is satisfied for any concave entropy function S(u), so long as the entropy flux F is53

defined as F (u) :=
∫ u

S′(u)f ′(u) du. Integrating eq. (2) over x for a 1D periodic system where54

x ∈ [0, L] shows that the total entropy is non-decreasing: d
dt

∫
S(u) dx ≥ F (0) − F (L) = 0.55

By choosing S(u) = −||u||p, where ||u||p is defined as the ℓp-norm ||u||p := (
∫
|u|p dx)1/p for56

1 ≤ p < ∞, we have the first stability property of eq. (1), which is that the ℓp-norm of u is non-57

increasing: d
dt ||u||p ≤ 0 for 1 ≤ p <∞. Taking the limit as p→ ∞ gives a second stability property,58

which is that the ℓ∞-norm of u is non-increasing: d
dt ||u||∞ ≤ 0. There is a third stability property,59

called the ‘total variation diminishing’ (TVD) property, which is derived in [30]. For continuous u,60

the TVD property is that d
dt

∫ L

0

∣∣∂u
∂x

∣∣ dx ≤ 0.61

3 Stability of Discrete Numerical Methods for Scalar Hyperbolic PDEs62

[30] writes that “the central philosophy of numerical analysis is to devise numerical schemes that63

preserve stability properties of the underlying continuous problem.” We now review how classical64

techniques preserve stability properties.65

The standard approach of solving time-dependent PDEs is to discretize the PDE in space,66

which generates a system of ordinary differential equations (ODEs), then to integrate those67

ODEs in time. This approach is called method of lines (MOL). A very common approach68

for solving conservation-form PDEs is by using some type of finite-volume (FV) method. FV69

methods divide the spatial domain into a number of cells, then use a scalar value to represent70

the solution average within each cell. For example, on the 1D domain x ∈ [0, L] with uni-71

form cell width, a FV method divides the domain into N cells of width ∆x = L/N where72

the left and right boundaries of the jth cell for j = 1, . . . , N are xj−1/2 = (j − 1)∆x and73

xj+1/2 = j∆x respectively. FV methods also use a scalar value uj(t) to represent the solution74

average within each cell where uj(t) :=
∫ xj+1/2

xj−1/2
u(x, t) dx. The standard FV equations for the75

time-derivative of uj in 1D and ui,j in 2D are simply discrete versions of the continuity equation:76

∂uj
∂t

+
fj+ 1

2
− fj− 1

2

∆x
= 0 (3a)

∂ui,j
∂t

+
fx
i+ 1

2 ,j
− fx

i− 1
2 ,j

∆x
+
fy
i,j+ 1

2

− fy
i,j− 1

2

∆y
= 0. (3b)

77

fj+1/2 is the flux at the cell boundary xj+1/2 and fxi+1/2,j and fyi,j+1/2 are the aver-78

2

age x-directed and y-directed fluxes through the right and top cell boundaries, e.g.,79

fxi+1/2,j
:= 1

∆y

∫ y=yj+1/2

y=yj−1/2
x̂ · f(xi+1/2, y) dy. In 1D, eq. (3a) can be derived by applying the80

integral
∫ xj+1/2

xj−1/2
(...) dx to eq. (1) for all j ∈ 1, . . . , N ; a similar calculation in 2D gives eq. (3b). So81

long as fj+1/2, fxi+1/2,j and fyi,j+1/2 are exact for all t, then uj and uij will be exact for all t. Thus,82

the key challenge for a FV scheme is to accurately reconstruct the flux at cell boundaries.83

For the rest of this paper, we consider solvers that use MOL and the FV method. We will also assume84

that the ODE integration is stable; this can usually be done by using a strong stability preserving85

Runge Kutta (SSPRK) ODE integration method [12, 11] and choosing the timestep to satisfy a CFL86

condition. We also restrict ourselves to rectangular, periodic grids with uniform cell size.87

Conservation properties: FV schemes conserve a discrete analogue
∑N

j=1 uj∆x of the continuous88

invariant
∫
u dx by construction. In 1D, we can see this with a short proof: d/dt

∑N
j=1 uj∆x =89

∆x
∑N

j=1
∂uj/∂t = −

∑N
j=1(fj+1/2 − fj−1/2) = fN+1/2 − f1/2. The rate of change of the discrete90

mass is equal to the flux of u through the boundaries; in a periodic system this equals 0.91

Stability properties: Although FV schemes inherit a discrete analogue of conservation of mass by92

construction, they do not automatically inherit discrete analogues of any of the stability properties93

of the continuous system eq. (1). Instead, FV methods ensure stability through careful choice of flux.94

The only known way of inheriting discrete analogues of all three stability properties of eq. (1) (non-95

increasing ℓp-norm, non-increasing ℓ∞-norm, and TVD) is to use a consistent monotone flux function96

(see [30] for definitions of consistency and monotonicity). An example of a monotone flux function97

for the linear advection equation f = cu is the upwind flux; for non-linear f(u) examples of mono-98

tone flux functions include the Godunov flux and the Lax-Friedrichs flux. Unfortunately, Godunov’s99

famous theorem from 1959 implies that monotone schemes can be at most first-order accurate [10];100

this means that while monotone schemes are great at stability, they are usually not very accurate. For-101

tunately, for a solver of eq. (1) to be stable it only has to inherit a discrete analogue of one of the three102

stability properties of the continuous equation [8]. This was one of the insights leading Van Leer’s103

seminal paper introducing the MUSCL scheme [43]. MUSCL inherits a discrete analogue of the TVD104

property (which guarantees stability and prevents spurious oscillations by adding numerical diffusion105

to extremum and steep gradients) while retaining higher-order accuracy. Spurious oscillations are un-106

physical oscillations which develop around steep gradients [19] while numerical diffusion is implicit107

or explicit diffusion added to a high-order method, usually to preserve a stability property [28].108

3.1 The Energy Method for Stability Analysis109

As we learned in section 3, for a numerical method to be stable, it must inherit one or more of the110

stability properties of eq. (1). The energy method is a technique that analyzes whether a numerical111

method inherits a discrete analogue of the non-increasing ℓp-norm property. p = 2 is usually chosen.112

Advantages of the energy method are that it can be used to analyze the stability of discrete methods113

for solving eq. (1) even when f(u) is non-linear, when BCs are non-periodic [8], and with certain114

systems of hyperbolic PDEs [23, 18]. Using the energy method, in the time-continuous limit a115

1D discrete numerical algorithm for eq. (1) will be ℓ2-norm stable if d
dt

∑N
j=1(uj)

2∆x ≤ 0 for116

all t. Some simple algebra gives d
dt∆x

∑N
j=1

u2
j/2 = ∆x

∑N
j=1 uj

∂uj

∂t . Using eq. (3a), this equals117

−
∑N

j=1 uj(fj+1/2 − fj−1/2). Performing summation by parts gives118

d

dt

∆x

2

N∑

j=1

(uj)
2 =

N∑

j=1

fj+1/2

(
uj+1 − uj

)
≤ 0. (4)

A discrete FV solver in 1D will be ℓ2-norm stable if eq. (4) is satisfied for all t. For non-periodic119

BCs eq. (4) includes a term which depends on the flux through the boundaries (see appendix B).120

4 Global Stabilization of Flux Predicting FV Schemes121

We now introduce ‘global stabilization,’ a technique that guarantees the ℓ2-stability of any FV scheme122

given by eq. (3a) or (3b). In section 6, we will discuss how to use global stabilization as a constraint123

on the model architecture of machine learned solvers. To derive this method in 1D with periodic124

3

BCs, we begin with the energy method-based ℓ2-norm stability condition eq. (4). Let us now define125

dℓold
2 /dt :=

∑N
j=1 fj+ 1

2
(uj+1 − uj) as the original rate of change of the discrete ℓ2-norm, and dℓnew

2 /dt126

as the desired rate of change of the discrete ℓ2-norm. We also define uj := {uj}Nj=1 as a vector127

representation of the discrete solution. We can change the time-derivative of the discrete ℓ2-norm128

from dℓold
2 /dt to dℓnew

2 /dt by making the following transformation to fj+1/2:129

fj+ 1
2
⇒ fj+ 1

2
+

(dℓ
new
2 /dt − dℓold

2 /dt)Gj+1/2(uj)∑N
k=1Gk+1/2(uk)(uk+1 − uk)

(5)

for any scalar dℓnew
2 /dt and any non-constant, finite function Gj+1/2(uj) in which130 ∑N

k=1Gk+1/2(uk)(uk+1 − uk) ̸= 0. As the reader can verify by plugging eq. (5) into131

eq. (4), eq. (5) modifies fj+1/2 in a way that adds a constant (dℓnew
2 /dt − dℓold

2 /dt) to eq. (4) via132

cancellation of the denominator. Note that Gj+1/2(uj) is a hyper parameter that determines how133

each fj+1/2 is modified and dℓnew
2 /dt is a user-defined quantity which sets the rate of change of the134

discrete ℓ2-norm. We want dℓnew
2 /dt ≤ 0 for stability. A similar calculation in 2D reveals that the rate135

of change of the discrete ℓ2-norm is given by136

d

dt

∑

i,j

u2i,j
2

∆x∆y = ∆y
∑

i,j

fxi+ 1
2 ,j

(ui+1,j − ui,j) + ∆x
∑

i,j

fy
i,j+ 1

2

(ui,j+1 − ui,j) ≤ 0. (6)

We define dℓold,x
2 /dt := ∆y

∑
i,j f

x
i+ 1

2 ,j
(ui+1,j −ui,j) and dℓold,y

2 /dt := ∆x
∑

i,j f
y

i,j+ 1
2

(ui,j+1−ui,j).137

Equation (6) will be satisfied if the following transformations are made to fx
i+ 1

2 ,j
and fy

i,j+ 1
2

:138

fxi+ 1
2 ,j

⇒ fxi+ 1
2 ,j

+
(dℓ

new,x
2 /dt − dℓold,x

2 /dt)Gx
i+1/2,j(uij)

∆y
∑

k,lG
x
k+1/2,l(ukl)(uk+1,l − uk,l)

(7a)

139

fy
i,j+ 1

2

⇒ fy
i,j+ 1

2

+
(dℓ

new,y
2 /dt − dℓold,y

2 /dt)Gy
i,j+1/2(uij)

∆x
∑

k,lG
y
k,l+1/2(ukl)(uk,l+1 − uk,l)

(7b)

for any scalars dℓnew,x
2 /dt and dℓnew,y

2 /dt where dℓnew,x
2 /dt + dℓnew,y

2 /dt ≤ 0 and any non-constant, finite140

functions Gx
i+1/2,j(uij) and Gy

i,j+1/2(uij) for which
∑

k,lG
x
k+1/2,l(ukl)(uk+1,l − uk,l) ̸= 0 and141 ∑

k,lG
y
k,l+1/2(ukl)(uk,l+1 − uk,l) ̸= 0. Equations (5), (7a) and (7b) ensure for scalar conservation142

form PDEs in 1D and 2D that the discrete ℓ2-norm will be non-increasing in the time-continuous limit.143

In our experiments we set Gj+1/2(uj) = (uj+1 − uj), Gx
i+1/2,j(uij) = (ui+1,j − ui,j), and144

Gy
i,j+1/2(uij) = (ui,j+1−ui,j). These choices have a simple physical interpretation: they correspond145

to the addition of a spatially constant diffusion coefficient everywhere in space [27]. Possible alterna-146

tives include setting Gj+1/2(uj) = (uj+1 − uj)
β for β > 1 or Gj+1/2(uj) = αj+1/2(uj+1 − uj) for147

αj+1/2 ∈ R. Choosing large β increases the amount of numerical diffusion added at discontinuities148

and decreases the amount of diffusion added in smooth regions, while αj+1/2 is a spatially dependent149

scalar which determines a spatially varying distribution of added numerical diffusion.150

Global stabilization allows the user to control the rate of change of the ℓ2-norm; this can either151

stabilize an unstable method or reduce or eliminate numerical diffusion from a stable method.152

Figure 1 demonstrates how global stabilization can stabilize an unstable scheme. On the inviscid153

Burgers equation the centered flux fj+1/2 = (u2
j+u2

j+1)/4, shown in red, is unstable and inaccurate.154

We apply global stabilization to the centered flux with dℓnew
2 /dt = 0, shown in blue. This leads to exact155

conservation of the ℓ2-norm and a stable numerical method. Our initial condition is u(x) = sinx.156

Note that the globally stabilized centered flux solution in fig. 1 conserves both the discrete mass and157

the discrete ℓ2-norm, but does not maintain a discrete analogue of the total variation diminishing158

(TVD) property [8] of the scalar Burgers equation. As a result, the globally stable solution permits159

high-k oscillations to develop; these spurious oscillations are often seen in schemes that do not have160

enough numerical diffusion to damp high-k modes that develop near steep gradients [36].161

Figure 2 demonstrates how global stabilization can reduce or eliminate numerical damping from162

a stable scheme. We solve the 2D incompressible Euler equations in vorticity form, given by163

∂χ

∂t
+∇ · (uχ) = 0, u = ∇ψ × êz , −∇2ψ = χ. (8)

4

∂u
∂t + ∂

∂x

(
u2

2

)
= 0t = 0.0 t = 0.167 t = 0.333 t = 0.5

Exact
solution

Centered flux
(unstable)

Globally stabilized
centered flux

Figure 1: Global stabilization turns an unstable solver into a stable solver. While centered flux
fj+1/2 = (u2

j+u2
j+1)/4 is an unstable choice of flux (red) on the inviscid Burgers equation and blows

up by t = 0.5, global stabilization (blue) ensures that the discrete ℓ2-norm is conserved.

(a)

1.0

1.5

E
ne

rg
y

0.5

0

E
ns

tro
ph

y

t=0 t=30 t=60
0

0.5

1.0

Vo
rti
ci
ty
 c
or
re
la
tio

n

MUSCL 1024x1024
MUSCL 128x128
GS 128x128 no damping
GS 128x128 reduced damping

(b)

Figure 2: Applying global stabilization to a stable FV scheme can reduce or eliminate numerical
diffusion, but at the cost of introducing spurious high-k oscillations. (a) Images of the vorticity
χ evolving under the incompressible Euler equations. The first and second columns show the
baseline MUSCL scheme at high and low resolution. The third and fourth columns show the baseline
MUSCL scheme with global stabilization (GS), either with no numerical damping or with numerical
damping reduced by 75%. (b) Energy, enstrophy, and vorticity correlation over time. We use vorticity
correlation as a benchmark measure of accuracy.

Our baseline choice of flux is the second-order TVD MUSCL scheme with monotonized central164

(MC) flux limiters [40, 43]. We use a linear finite element (FE) solver for the poisson equation [1]165

and a strong stability preserving RK3 ODE integrator [12]. Note that eq. (8) exactly conserves both166

the energy 1
2

∫
u2 dx dy and the enstrophy

∫
χ2 dx dy [37].167

In each column of fig. 2a, we see the time-evolution of the vorticity χ according to four schemes.168

The baseline MUSCL schemes (1st and 2nd columns) decay the discrete ℓ2-norm, while the MUSCL169

schemes with global stabilization (GS, 3rd and 4th colums) either exactly conserve ℓ2-norm by setting170
dℓnew,x

2 /dt = dℓnew,y
2 /dt = 0 (no damping) or reduce the rate of numerical diffusion by 75% by setting171

dℓnew,x
2 /dt = 1

4
dℓold,x

2 /dt and dℓnew,y
2 /=1

4
dℓold,y

2 /dt (reduced damping). In the 3rd column, we again find that172

ensuring ℓ2-norm conservation introduces spurious high-k oscillations. In fig. 2b, bottom row, we plot173

the vorticity correlation between the high resolution baseline and each of the four schemes. Vorticity174

correlation has been used previously as a benchmark measure of accuracy for eq. (8) [22]. We find175

that global stabilization with no damping underperforms relative to the baseline at the same resolution,176

while global stabilization with reduced damping performs similarly. In fig. 2b, middle and top rows,177

we plot the discrete enstrophy
∑

i,j

∫
χ2
i,j∆x∆y and discrete energy 1

2

∑
i,j

∫
(uij)

2∆x∆y. The178

baselines decay energy and enstrophy, while the globally stabilized schemes do not conserve energy179

and either exactly conserve enstrophy (no damping) or decay enstrophy (reduced damping).180

5

5 Global Stabilization of MOL Schemes with Arbitrary Time-Derivative181

In section 4, we considered schemes that predict the flux f at cell boundaries. Using the energy182

method, we found that we could adjust the flux prediction to ensure global stability. However, some183

machine learned PDE solvers may use an alternative form for the time-derivative which does not184

involve predicting the flux at cell boundaries. Thus, we now consider the more general problem of185

how to stabilize MOL-based solvers for eq. (1) with arbitrary time-derivative. Suppose that the rate186

of change of the cell average uj in 1D or ui,j in 2D is given by187

∂uj
∂t

= Nj(uj) (9a)
∂ui,j
∂t

= Ni,j(uij) (9b)188

where Nj(uj) and Ni,j(uij) are arbitrary functions and uj and uij are again vector representations189

of the discrete solution. Note that eqs. (9a) and (9b) do not guarantee mass conservation by190

construction. Ensuring stability and mass conservation therefore requires modifying Nj and Ni,j .191

In 1D, we have ∆x
∑N

j=1
∂uj

∂t = ∆x
∑

j Nj = 0 and ∆x
∑N

j=1 uj
∂uj

∂t = ∆x
∑

j ujNj ≤ 0. These192

imply that the discrete mass will be conserved if ⟨Nj⟩ :=
∑N

j=1Nj = 0 and the discrete ℓ2-norm193

will decay if ⟨uj |Nj⟩ :=
∑N

j=1 ujNj ≤ 0. The bracket notation ⟨. . . ⟩ denotes the mean value over194

the domain while the inner product notation ⟨. . . | . . . ⟩ denotes a sum over all domain cells. These195

conditions will be satisfied if the following transformation is applied to Nj :196

Uj := uj − ⟨uj⟩ Mj :=Nj − ⟨Nj⟩ Nj ⇒Mj +
dℓnew

2

dt Gj(uj)

⟨Uj |Gj(uj)⟩
− ⟨Uj |Mj⟩

⟨Uj |Uj⟩
Uj (10)

for any dℓnew
2 /dt ≤ 0 and any smooth function Gj(uj) where ⟨Gj(uj)⟩ = 0 and ⟨Gj(uj)|Uj⟩ ≠ 0.197

The choice Gj(uj) = (∇2u)j = uj+1 + uj−1 − 2uj adds a spatially constant diffusion coefficient.198

6 Stable Machine Learned PDE Solvers199

The purpose of this paper is to demonstrate how to design stable machine learned solvers. Global200

stabilization can be applied to (a) ‘hybrid’ MOL-based machine learned solvers for eq. (1) (b) that201

use ML to approximate the divergence term ∇ · f(u) in the time-continuous limit.202

Regarding (a), the defining feature of a hybrid machine learned solver is that it inherits one or more203

of the properties of classical numerical methods. See section 7 for examples of papers that use hybrid204

solvers. Usually this involves MOL, i.e., discretizing the domain into a number of grid cells and205

using some sort of time-stepping procedure or ODE integration to advance the solution in time.206

Regarding (b), approximating the divergence term is usually the most difficult element of a numerical207

method, so it is fairly common to replace this term with a machine-learned approximation. Some208

hybrid solvers may use the FV method and use ML to approximate the flux across cell boundaries209

fj+1/2. Other hybrid solvers may use the more general time-derivative function eq. (9a). Note that210

global stabilization can also be used when the RHS of eq. (1) is non-zero (see appendix A).211

Recall that global stabilization requires setting the value of dℓnew
2 /dt. According to eq. (4), for stability212

we want the discrete ℓ2-norm of the exact solution to be non-increasing for all t. Thus, in algorithm 1213

we propose a practical method for choosing dℓnew
2 /dt when applying global stabilization to machine214

learned PDE solvers that satisfy the conditions (a) and (b). Algorithm 1 can be used to ensure stability215

of machine learned solvers that predict fj+1/2 in eq. (3a) or to ensure mass conservation and stability216

of solvers that use equation eq. (9a). Algorithm 1 does not change the output of the machine learned217

PDE solver if the solver tries to decay the discrete ℓ2-norm, but sets dℓnew
2 /dt = 0 if the solver tries to218

increase the discrete ℓ2-norm. Intuitively, algorithm 1 is an error correcting algorithm that adjusts the219

output of the machine learned solver only if that output moves the solution towards instability.220

6.1 Towards a Deeper Understanding of Global Stabilization221

Readers familiar with classical numerical methods, which ensure stability via locally-derived con-222

straints on the flux fj+1/2, might ask: why put global, rather than local, constraints on the flux fj+1/2?223

It is of course possible to guarantee stability of machine learned numerical methods by putting local224

constraints on the flux. One could, for example, develop a TVD method by applying a flux limiter225

6

Algorithm 1 A stable machine learned MOL-based PDE solver in 1D

1: Inputs: Initial condition {uj(t0)}Nx
j=1, ODE integrator, ML predictor for fj+ 1

2
or Nj

2: while t < Tf do
3: Choose ∆t, compute {fj+ 1

2
}Nx
j=1 or {Nj}Nx

j=1 using ML predictor
4: if using eq. (3a) then
5: if dℓold

2 /dt =
∑

j fj+ 1
2
(uj+1 − uj) > 0 then

6: Set {fj+ 1
2
}Nx
j=1 according to eq. (5) with dℓnew

2 /dt = 0

7: else if using eq. (9a) then
8: if ⟨Mj |uj⟩ ≤ 0 then
9: SetNj =Mj

10: else
11: SetNj according to eq. (10) with dℓnew

2 /dt = 0

12: Advance time t by ∆t and state {uj+1}Nx
j=1 according to ODE integrator

13: Output: {uj(Tf)}Nx
j=1

to a machine learned solver that predicts fj+1/2. The problem with doing this is that (a) the goal of226

machine learned solvers is to use fewer computational resources than classical numerical methods,227

which requires solving the equations at coarser resolution, i.e., larger ∆x (see the discussion of LES228

models in section 7), (b) at coarse resolution a high proportion of grid cells are either extremum or229

have sharp gradients, (c) local constraints like flux limiters add numerical diffusion to extremum and230

sharp gradients, and (d) the magnitude of numerical diffusion goes like (∆x)2 [27]. The implication231

of (a), (b), (c), and (d) is that TVD-stable machine learned numerical methods operating at coarser232

resolution than classical solvers will add large amounts of numerical diffusion to many of the grid233

cells which will rapidly degrade the accuracy of the solution. Improving accuracy at coarse resolution234

requires a solver that has the freedom to make flexible predictions; simultaneously ensuring stability235

requires finding a way to do so while adding less numerical diffusion than standard techniques.236

Because algorithm 1 uses global constraints, it is able maintain flexibility while adding the minimum237

amount of numerical diffusion necessary to ensure ℓ2-norm stability.238

In fact, the whole point of the global stabilization method is that it can guarantee the stability of a239

solver without degrading the accuracy of an already-accurate solver. This is possible because (a)240

numerical diffusion is only added if the machine learned solver violates the non-increasing ℓ2-norm241

property of the solution, (b) a highly accurate machine learned solver is unlikely to violate this242

property within its training distribution, and (c) even if it does so the additional numerical diffusion is243

the minimum required to correct the violation. (a) and (c) are implied by algorithm 1, while (b) is244

discussed in appendix C. In other words, for a well-engineered machine learned PDE solver we can245

expect the effects of global stabilization to be infrequent, small, and applied only when necessary.246

This is what we find in fig. 3 when we apply global stabilization to a machine learned PDE solver247

trained to find an accurate solution to the 1D advection equation f(u) = u by predicting fj+1/2 at248

each cell boundary. Figure 3 shows that while global stabilization (ML GS) has a negligible impact249

on the accuracy of the machine learned solver (ML), using a TVD flux limiter to guarantee stability250

(ML MC Limiter) leads to much worse accuracy. Further details are in appendix D.251

7 Related Work252

LES models and backscattering: The objective of large eddy simulation (LES) is identical to253

that of many machine learned numerical solvers: both attempt to find an accurate approximation254

to the solution of the PDE with fewer computational resources than classical numerical methods.255

Both also attempt to do so without resolving the smallest scales of the problem, relying on either256

an explicit or implicit subgrid model to do so [2, 45, 22, 39, 42, 25, 34, 14, 15, 29, 3, 44, 32]. Of257

particular relevance to the stability of subgrid models (both in LES and ML) are the concepts of258

‘forward-scatter’ and ‘backscatter’. In 2D LES turbulence, forward-scattering involves the transfer of259

enstrophy from resolved to unresolved scales, while backscattering involves the transfer of enstrophy260

from unresolved to resolved scales. Analysis across a wide range of flows demonstrates two important261

facts [35]. First, to be accurate a subgrid model must allow both forward-scatter and backscatter. In262

7

N=128N=64N=32N=16

10−5

10−3

10−1

M
SE

t=1t=1t=1t=1 ML
ML GS
MUSCL
ML MC
Limiter

(a)

t=0 t=10
-2%

-1%

0%

1%

Ch
an

ge
 in
 ℓ 2
-n
or
m

N=16

Exact
ML
ML GS
ML MC Limiter

(b)

Figure 3: (a) Mean squared error (MSE) for t = 1 as a function of N for four schemes used to solve
1D advection. (b) The percent change in the discrete ℓ2-norm for a single example drawn from the
training distribution.

the context of scalar hyperbolic PDEs, this means that to be accurate a subgrid model must allow a263

discrete analogue of the entropy inequality in eq. (2) to be locally violated. Second, averaged over the264

entire domain there is always more forward-scatter than backscatter. If on average there were more265

backscatter than forward-scatter, then the subgrid model would be unstable [14]. Global stabilization266

can thus be interpreted as a way of constraining a subgrid model to ensure that on average there is267

always at least as much forward-scatter as backscatter.268

Machine learned finite volume solvers: [2, 45, 22] use machine learned finite volume solvers to269

solve a variety of 1D and 2D PDEs. Almost all of these PDEs can be written in conservation form with270

added diffusion and forcing terms. These ‘hybrid’ solvers conserve mass by construction but not the271

discrete ℓ2-norm and therefore do not guarantee stability; instead, they promote stability by unrolling272

the loss function over multiple timesteps. [22] trains a hybrid solver for the 2D incompressible Euler273

equations that “remains stable during long simulations.” This impressive result is likely facilitated by274

the addition of physical diffusion to the PDE, which decays the ℓ2-norm at each timestep.275

Other machine learned solvers: [25, 42, 34, 22] use convolutional neural networks to correct276

errors in low-resolution simulations; these hybrid solvers promote stability and improve accuracy by277

unrolling the loss function over multiple timesteps. [39] solves 2D and 3D hyperbolic PDEs using the278

‘fully learned’ update equation ui,j(t+∆t) = ui,j(t)+Ni,j(ui,j(t),∆t)) where Ni,j is a the output279

of a convolutional neural network; this update equation is similar to eq. (9b) except with a discrete-280

time update instead of continuous-time ODE integration. [39] attempts to ensure stability by adding281

noise to the training distribution and by using very large timesteps. For scalar conservation form PDEs,282

this fully learned update equation will be stable if ⟨N⟩ = 0 and ⟨u|N⟩+⟨N |N⟩ ≤ 0. [4] argues that283

instability in machine learned iterative numerical algorithms arises due to a distribution shift where284

the distribution of training data differs from the outputs of the solver during inference due to small285

errors that accumulate over time. [4] uses the update equation ui,j(t + ℓ∆t) = ui,j(t) + ℓ∆tN ℓ
i,j286

for 1 ≤ ℓ ≤ K where N ℓ
i,j is the output of a message passing graph neural network that predicts the287

next K timesteps. [4] attempts to ensure stability by modifying the loss function, adding random288

noise, and by predicting multiple timesteps into the future. A variety of papers have attempted to289

promote stability of dynamical systems that result from data-driven reduced order models, including290

by adding sparsity-promoting priors to a loss function [20, 9] and by constraining the eigenvalues of291

a learned Koopman operator [33].292

KEP schemes: Kinetic energy preserving (KEP) and entropy preserving (EP) schemes can be used293

in the numerical study of hyperbolic equations. Like global stabilization, KEP and EP schemes294

rely on the energy method for stability analysis and use summation by parts [17, 18, 6]. Unlike295

global stabilization, these schemes construct locally conservative algorithms which add just enough296

numerical damping at shocks to eliminate spurious oscillations.297

8 Limitations298

There are four main limitations of our work. First, we only consider rectangular grids, periodic BCs,299

and scalar hyperbolic PDEs in conservation form. In particular, we do not consider systems of hyper-300

bolic PDEs. Although many physically relevant equations can be written as scalar hyperbolic PDEs –301

including Hamiltonian systems, the incompressible Euler equations, and the Vlasov-Poisson equation302

8

– many more are systems of hyperbolic PDEs – including the compressible Euler equations, the303

magnetohydrodynamic (MHD) equations, the Einstein field equations, the shallow-water equations,304

the Navier-Stokes equations, and the Vlasov-Maxwell equations. Fortunately, the energy method can305

be extended to non-periodic BCs (see appendix B) and certain systems of PDEs [23, 18]. Furthermore,306

it is standard practice in the numerical methods community to first use the scalar conservation law307

eq. (1) to introduce a new method before later extending the method to systems of PDEs [7]. We308

anticipate that our method could be extended to many physically relevant systems of hyperbolic PDEs309

in a manner similar to KEP and EP schemes [17, 18].310

Second, our method works with MOL in the continuous-time limit. The timestep ∆t must be chosen311

to satisfy a CFL condition and be small enough to ensure accuracy of the ODE integration. Some312

machine learned solvers use large ∆t or predict multiple timesteps at once or don’t use MOL;313

algorithm 1 cannot be used to stabilize these solvers.314

Third, while global stabilization is designed to solve the problem of ensuring stability of machine315

learned solvers for eq. (1) without degrading accuracy, it does not solve the problem of finding316

accurate machine learned solvers for eq. (1). Algorithm 1 prevents instability by adjusting the317

time-derivative if the solver makes an ℓ2-norm increasing violation, but a solver which frequently318

commits such violations is likely to perform poorly. Alternatively, a solver could make no ℓ2-norm319

increasing violations but decay the ℓ2-norm too quickly. Or, it could decay the ℓ2-norm at the correct320

rate but give inaccurate results. Building accurate, fast, and robust machine learned PDE solvers will321

require not only well-designed numerical methods but also well-engineered learning systems which322

consistently make accurate predictions about the time evolution of the solution.323

Fourth, for some scalar hyperbolic PDEs a solver might be stable according to the definition in324

section 2 but not result in a physically meaningful solution as t → ∞ unless additional physical325

constraints are satisfied. In appendix E, we give an example of this issue and illustrate how this forth326

limitation might be addressed by demonstrating that for some equations it may be possible to develop327

global stabilization schemes that enforce additional conservation laws.328

9 Conclusion329

Stability is a very desirable property of a PDE solver. Machine learned PDE solvers have tried a330

variety of techniques to encourage stability (see section 7). To some extent, these techniques have331

been successful, as high-performing solvers have demonstrated the ability to give stable and accurate332

predictions for hundreds or thousands of timesteps. However, none of these techniques are capable of333

guaranteeing stability.334

In this paper, we show how to design machine learned PDE solvers for scalar hyperbolic PDEs335

that are stable by construction. The main result of our paper is the ‘global stabilization’ technique.336

This can be used as an error-correcting algorithm to guarantee both mass conservation and ℓ2-norm337

stability of hybrid machine learned PDE solvers (see section 6), even when the time-derivative is an338

arbitrary function (see section 5).339

As we have seen, it is impossible to design highly accurate numerical methods that inherit all of340

the properties of eq. (1); this is implied by Godunov’s theorem (see section 3). We have also seen341

that it is often not even desirable for a numerical method to inherit the properties of the continuous342

equation, as doing so can significantly degrade the quality of the solution (see the discussion of343

backscattering in section 7 as well as fig. 2). The conclusion is that designers of numerical methods344

must determine which properties of the continuous system should be preserved by the discrete system345

and which properties either cannot be preserved or degrade the accuracy of the discrete system. Global346

stabilization preserves conservation of mass and ℓ2-norm stability, but allows the time-derivative347

to depend on the global solution which violates the property of hyperbolic PDEs that information348

propagates at finite speed. While we would prefer our numerical methods to maintain this property if349

possible, the benefit of not doing so is that global stabilization can ensure stability without degrading350

the accuracy of an already-accurate machine learned solver (see section 6.1 and appendix D).351

We believe that for machine learned PDE solvers to have real-world impact, they must be sufficiently352

robust and reliable to be trusted. Global stabilization, by guaranteeing stability, is a step towards the353

development of robust and reliable machine learned PDE solvers which could have real-world impact.354

9

References355

[1] L. Agbezuge. Finite element solution of the poisson equation with dirichlet boundary conditions356

in a rectangular domain. Rochester Institute of Technology, Rochester, NY, 2006. 5357

[2] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. Learning data-driven discretizations358

for partial differential equations. Proceedings of the National Academy of Sciences, 116(31):359

15344–15349, 2019. doi: 10.1073/pnas.1814058116. URL https://www.pnas.org/doi/360

abs/10.1073/pnas.1814058116. 1, 7, 8, 15361

[3] A. Beck, D. Flad, and C.-D. Munz. Deep neural networks for data-driven les closure models.362

Journal of Computational Physics, 398:108910, 2019. ISSN 0021-9991. doi: https://doi.org/363

10.1016/j.jcp.2019.108910. URL https://www.sciencedirect.com/science/article/364

pii/S0021999119306151. 1, 7365

[4] J. Brandstetter, D. Worrall, and M. Welling. Message passing neural pde solvers, 2022. URL366

https://arxiv.org/abs/2202.03376. 8367

[5] C. Cercignani. The boltzmann equation. In The Boltzmann equation and its applications, pages368

40–103. Springer, 1988. 16369

[6] P. Chandrashekar. Kinetic energy preserving and entropy stable finite volume schemes for370

compressible euler and navier-stokes equations. Communications in Computational Physics, 14371

(5):1252–1286, 2013. 8372

[7] B. Cockburn and C.-W. Shu. Tvb runge-kutta local projection discontinuous galerkin finite373

element method for conservation laws. ii. general framework. Mathematics of computation, 52374

(186):411–435, 1989. 9375

[8] D. R. Durran. Numerical methods for wave equations in geophysical fluid dynamics. Texts in376

applied mathematics. Springer, New York, 1999. ISBN 0387983767. 3, 4377

[9] N. B. Erichson, M. Muehlebach, and M. W. Mahoney. Physics-informed autoencoders for378

lyapunov-stable fluid flow prediction, 2019. URL https://arxiv.org/abs/1905.10866. 8379

[10] S. Godunov and I. Bohachevsky. Finite difference method for numerical computation of380

discontinuous solutions of the equations of fluid dynamics. Matematičeskij sbornik, 47(3):381

271–306, 1959. 3382

[11] S. Gottlieb. On high order strong stability preserving runge-kutta and multi step time discretiza-383

tions. Journal of scientific computing, 25(1):105–128, 2005. 3384

[12] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretization385

methods. SIAM Review, 43(1):89–112, 2001. doi: 10.1137/S003614450036757X. URL386

https://doi.org/10.1137/S003614450036757X. 3, 5, 15387

[13] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R. Kimmel. Learning to optimize multigrid388

PDE solvers. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th Inter-389

national Conference on Machine Learning, volume 97 of Proceedings of Machine Learning390

Research, pages 2415–2423. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.391

press/v97/greenfeld19a.html. 1392

[14] Y. Guan, A. Chattopadhyay, A. Subel, and P. Hassanzadeh. Stable a posteriori LES of 2d393

turbulence using convolutional neural networks: Backscattering analysis and generalization to394

higher re via transfer learning. Journal of Computational Physics, 458:111090, jun 2022. doi:395

10.1016/j.jcp.2022.111090. URL https://doi.org/10.1016%2Fj.jcp.2022.111090. 7,396

8397

[15] Y. Guan, A. Subel, A. Chattopadhyay, and P. Hassanzadeh. Learning physics-constrained398

subgrid-scale closures in the small-data regime for stable and accurate les, 2022. URL https:399

//arxiv.org/abs/2201.07347. 7400

[16] J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon. Learning neural pde solvers with401

convergence guarantees, 2019. URL https://arxiv.org/abs/1906.01200. 1402

10

https://www.pnas.org/doi/abs/10.1073/pnas.1814058116
https://www.pnas.org/doi/abs/10.1073/pnas.1814058116
https://www.pnas.org/doi/abs/10.1073/pnas.1814058116
https://www.sciencedirect.com/science/article/pii/S0021999119306151
https://www.sciencedirect.com/science/article/pii/S0021999119306151
https://www.sciencedirect.com/science/article/pii/S0021999119306151
https://arxiv.org/abs/2202.03376
https://arxiv.org/abs/1905.10866
https://doi.org/10.1137/S003614450036757X
https://proceedings.mlr.press/v97/greenfeld19a.html
https://proceedings.mlr.press/v97/greenfeld19a.html
https://proceedings.mlr.press/v97/greenfeld19a.html
https://doi.org/10.1016%2Fj.jcp.2022.111090
https://arxiv.org/abs/2201.07347
https://arxiv.org/abs/2201.07347
https://arxiv.org/abs/2201.07347
https://arxiv.org/abs/1906.01200

[17] A. Jameson. The construction of discretely conservative finite volume schemes that also globally403

conserve energy or entropy. Journal of Scientific Computing, 34(2):152–187, 2008. 8, 9404

[18] A. Jameson. Formulation of kinetic energy preserving conservative schemes for gas dynamics405

and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube406

using entropy and kinetic energy preserving schemes. Journal of Scientific Computing, 34(2):407

188–208, 2008. 3, 8, 9408

[19] V. John and P. Knobloch. On spurious oscillations at layers diminishing (sold) methods for409

convection–diffusion equations: Part i–a review. Computer methods in applied mechanics and410

engineering, 196(17-20):2197–2215, 2007. 3411

[20] A. A. Kaptanoglu, J. L. Callaham, A. Aravkin, C. J. Hansen, and S. L. Brunton. Promoting412

global stability in data-driven models of quadratic nonlinear dynamics. Physical Review Fluids,413

6(9), sep 2021. doi: 10.1103/physrevfluids.6.094401. URL https://doi.org/10.1103%414

2Fphysrevfluids.6.094401. 8415

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint416

arXiv:1412.6980, 2014. 15417

[22] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer. Machine learning418

accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences,419

118(21):e2101784118, 2021. doi: 10.1073/pnas.2101784118. URL https://www.pnas.org/420

doi/abs/10.1073/pnas.2101784118. 1, 5, 7, 8421

[23] L. Lehner, D. Neilsen, O. Reula, and M. Tiglio. The discrete energy method in numerical422

relativity: towards long-term stability. Classical and Quantum Gravity, 21(24):5819, 2004. 3, 9423

[24] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.424

Fourier neural operator for parametric partial differential equations, 2020. URL https://425

arxiv.org/abs/2010.08895. 1426

[25] B. List, L.-W. Chen, and N. Thuerey. Learned turbulence modelling with differentiable fluid427

solvers, 2022. URL https://arxiv.org/abs/2202.06988. 7, 8428

[26] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh. Learning algebraic multigrid using graph429

neural networks, 2020. URL https://arxiv.org/abs/2003.05744. 1430

[27] L. G. Margolin and N. M. Lloyd-Ronning. Artificial viscosity – then and now, 2022. URL431

https://arxiv.org/abs/2202.11084. 4, 7432

[28] A. E. Mattsson and W. J. Rider. Artificial viscosity: back to the basics. International Journal433

for Numerical Methods in Fluids, 77(7):400–417, 2015. 3434

[29] R. Maulik, O. San, A. Rasheed, and P. Vedula. Subgrid modelling for two-dimensional435

turbulence using neural networks. Journal of Fluid Mechanics, 858:122–144, 2019. doi:436

10.1017/jfm.2018.770. 7437

[30] S. Mishra, U. Fjordholm, and R. Abgrall. Numerical methods for conservation laws and related438

equations. Lecture notes for Numerical Methods for Partial Differential Equations, ETH, 57:58,439

2019. 1, 2, 3440

[31] A. T. Mohan, N. Lubbers, D. Livescu, and M. Chertkov. Embedding hard physical constraints441

in neural network coarse-graining of 3d turbulence, 2020. URL https://arxiv.org/abs/442

2002.00021. 1443

[32] N. Nguyen-Fotiadis, M. McKerns, and A. Sornborger. Machine learning changes the rules for444

flux limiters, 2021. URL https://arxiv.org/abs/2108.11864. 7445

[33] S. Pan and K. Duraisamy. Physics-informed probabilistic learning of linear embeddings of446

nonlinear dynamics with guaranteed stability. SIAM Journal on Applied Dynamical Systems,447

19(1):480–509, jan 2020. doi: 10.1137/19m1267246. URL https://doi.org/10.1137%448

2F19m1267246. 8449

11

https://doi.org/10.1103%2Fphysrevfluids.6.094401
https://doi.org/10.1103%2Fphysrevfluids.6.094401
https://doi.org/10.1103%2Fphysrevfluids.6.094401
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2202.06988
https://arxiv.org/abs/2003.05744
https://arxiv.org/abs/2202.11084
https://arxiv.org/abs/2002.00021
https://arxiv.org/abs/2002.00021
https://arxiv.org/abs/2002.00021
https://arxiv.org/abs/2108.11864
https://doi.org/10.1137%2F19m1267246
https://doi.org/10.1137%2F19m1267246
https://doi.org/10.1137%2F19m1267246

[34] J. Pathak, M. Mustafa, K. Kashinath, E. Motheau, T. Kurth, and M. Day. Using machine450

learning to augment coarse-grid computational fluid dynamics simulations, 2020. URL https:451

//arxiv.org/abs/2010.00072. 7, 8452

[35] U. Piomelli, W. H. Cabot, P. Moin, and S. Lee. Subgrid-scale backscatter in turbulent and453

transitional flows. Physics of Fluids A: Fluid Dynamics, 3(7):1766–1771, 1991. doi: 10.1063/1.454

857956. URL https://doi.org/10.1063/1.857956. 7455

[36] S. Premasuthan, C. Liang, and A. Jameson. Computation of flows with shocks using the456

spectral difference method with artificial viscosity, i: Basic formulation and application.457

Computers & Fluids, 98:111–121, 2014. ISSN 0045-7930. doi: https://doi.org/10.1016/458

j.compfluid.2013.12.013. URL https://www.sciencedirect.com/science/article/459

pii/S0045793013004933. 4460

[37] T. G. Shepherd. Symmetries, conservation laws, and hamiltonian structure in geophysical fluid461

dynamics. In Advances in Geophysics, volume 32, pages 287–338. Elsevier, 1990. 5462

[38] C.-W. Shu. Discontinuous galerkin methods: general approach and stability. Numerical463

solutions of partial differential equations, 201, 2009. 2464

[39] K. Stachenfeld, D. B. Fielding, D. Kochkov, M. Cranmer, T. Pfaff, J. Godwin, C. Cui, S. Ho,465

P. Battaglia, and A. Sanchez-Gonzalez. Learned coarse models for efficient turbulence simula-466

tion, 2021. URL https://arxiv.org/abs/2112.15275. 1, 7, 8467

[40] P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws.468

SIAM Journal on Numerical Analysis, 21(5):995–1011, 1984. doi: 10.1137/0721062. URL469

https://doi.org/10.1137/0721062. 5470

[41] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating eulerian fluid simulation471

with convolutional networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th472

International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning473

Research, pages 3424–3433. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.474

press/v70/tompson17a.html. 1475

[42] K. Um, R. Brand, Y. Fei, P. Holl, and N. Thuerey. Solver-in-the-loop: Learning from differen-476

tiable physics to interact with iterative pde-solvers, 2020. URL https://arxiv.org/abs/477

2007.00016. 1, 7, 8, 15478

[43] B. van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel to479

godunov’s method. Journal of Computational Physics, 32(1):101–136, 1979. ISSN 0021-9991.480

doi: https://doi.org/10.1016/0021-9991(79)90145-1. URL https://www.sciencedirect.481

com/science/article/pii/0021999179901451. 3, 5482

[44] R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu. Towards physics-informed deep483

learning for turbulent flow prediction, 2019. URL https://arxiv.org/abs/1911.08655.484

1, 7485

[45] J. Zhuang, D. Kochkov, Y. Bar-Sinai, M. P. Brenner, and S. Hoyer. Learned discretizations486

for passive scalar advection in a two-dimensional turbulent flow. Phys. Rev. Fluids, 6:064605,487

Jun 2021. doi: 10.1103/PhysRevFluids.6.064605. URL https://link.aps.org/doi/10.488

1103/PhysRevFluids.6.064605. 1, 7, 8, 14489

Checklist490

1. For all authors...491

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s492

contributions and scope? [Yes] We claim in the abstract and introduction that we493

demonstrate how to design PDE solvers for scalar hyperbolic PDEs that are stable by494

construction. This claim is accurate.495

(b) Did you describe the limitations of your work? [Yes] Yes, in Section 8 (Limitations)496

we discussed four limitations of our work.497

12

https://arxiv.org/abs/2010.00072
https://arxiv.org/abs/2010.00072
https://arxiv.org/abs/2010.00072
https://doi.org/10.1063/1.857956
https://www.sciencedirect.com/science/article/pii/S0045793013004933
https://www.sciencedirect.com/science/article/pii/S0045793013004933
https://www.sciencedirect.com/science/article/pii/S0045793013004933
https://arxiv.org/abs/2112.15275
https://doi.org/10.1137/0721062
https://proceedings.mlr.press/v70/tompson17a.html
https://proceedings.mlr.press/v70/tompson17a.html
https://proceedings.mlr.press/v70/tompson17a.html
https://arxiv.org/abs/2007.00016
https://arxiv.org/abs/2007.00016
https://arxiv.org/abs/2007.00016
https://www.sciencedirect.com/science/article/pii/0021999179901451
https://www.sciencedirect.com/science/article/pii/0021999179901451
https://www.sciencedirect.com/science/article/pii/0021999179901451
https://arxiv.org/abs/1911.08655
https://link.aps.org/doi/10.1103/PhysRevFluids.6.064605
https://link.aps.org/doi/10.1103/PhysRevFluids.6.064605
https://link.aps.org/doi/10.1103/PhysRevFluids.6.064605

(c) Did you discuss any potential negative societal impacts of your work? [No] The498

NeurIPS Ethics Guidelines writes that “As ML research and applications have increas-499

ing real-world impact, the likelihood of meaningful social benefit increases, as does500

the attendant risk of harm." With these guidelines in mind, we include a paragraph at501

the end of Section 9 (Conclusion) about the possible real-world impacts of our paper.502

We do not, however, speculate on the possible negative impacts of such solvers because503

we find it difficult to speculate on what such impacts could be.504

(d) Have you read the ethics review guidelines and ensured that your paper conforms to505

them? [Yes]506

2. If you are including theoretical results...507

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We believe we508

did so.509

(b) Did you include complete proofs of all theoretical results? [Yes] Yes, although there are510

a few places we do not list out every step in a derivation for the purpose of simplicity.511

This happens in equation (6), where we write “a similar calculation in 2D. . . ” as well512

as in line 276, where we do not explicitly write out an integration by parts to compute513

the energy.514

3. If you ran experiments...515

(a) Did you include the code, data, and instructions needed to reproduce the main ex-516

perimental results (either in the supplemental material or as a URL)? [Yes] We are517

including these in the supplemental material.518

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they519

were chosen)? [N/A]520

(c) Did you report error bars (e.g., with respect to the random seed after running experi-521

ments multiple times)? [No] We included a random seed in the initialization of figures522

2a and 3a, but did not include error bars. We believe that error bars on figures 2b and 3b523

would be distracting and unnecessary, as the purpose of these figures is to demonstrate524

qualitative relationships between variables rather than quantitative results.525

(d) Did you include the total amount of compute and the type of resources used (e.g., type526

of GPUs, internal cluster, or cloud provider)? [No] We did not include the total amount527

of compute for our three simple experiments. The amount of compute required was528

quite small. Generating the 1024x1024 data takes an hour or two on a laptop CPU, but529

the other experiments run in a few minutes on a laptop CPU.530

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...531

(a) If your work uses existing assets, did you cite the creators? [N/A]532

(b) Did you mention the license of the assets? [N/A]533

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]534

535

(d) Did you discuss whether and how consent was obtained from people whose data you’re536

using/curating? [N/A]537

(e) Did you discuss whether the data you are using/curating contains personally identifiable538

information or offensive content? [N/A]539

5. If you used crowdsourcing or conducted research with human subjects...540

(a) Did you include the full text of instructions given to participants and screenshots, if541

applicable? [N/A]542

(b) Did you describe any potential participant risks, with links to Institutional Review543

Board (IRB) approvals, if applicable? [N/A]544

(c) Did you include the estimated hourly wage paid to participants and the total amount545

spent on participant compensation? [N/A]546

A Conservation Form PDEs with Nonzero Right Hand Side547

Classical methods for ensuring stability work even when the right hand side (RHS) of eq. (1) is548

non-zero. Thus, it should not be surprising that the global stabilization method can be used even549

13

when the right hand side (RHS) of eq. (1) is non-zero. This is because the only term which usually550

contributes to numerical instability is the divergence term. Using a stable method to approximate551

eq. (1) is sufficient to ensure stability so long as the RHS terms don’t contribute to numerical552

instability. Usually they do not.553

For example, suppose we have the model equation ∂u/∂t + ∇ · f(u) = D∇2u + F (x, t) where554

D ∈ R is a non-negative diffusion coefficient and F (x, t) is a forcing function. We can approximate555

the diffusion term using a standard approximation of the laplacian operator, we know that this can556

only decrease the ℓ2-norm. Likewise, we can approximate the forcing term using a quadrature; this557

forcing term can contribute to physical instability but will not contribute to numerical instability.558

The only term which contributes to numerical instability is the divergence term; we can apply global559

stabilization to the approximation of this term.560

B Generalization to Non-Periodic BCs and Non-Uniform Grid Spacing561

We begin by modifying eq. (5) for non-periodic boundary conditions. We begin by calculating the562

ℓ2-norm stability condition according to the energy method:563

d

dt
∆x

N∑

j=1

u2
j/2 = ∆x

N∑

j=1

uj
∂uj
∂t

= −
N∑

j=1

uj(fj+1/2 − fj−1/2).

Next, we perform summation by parts:564

d

dt

∆x

2

N∑

j=1

(uj)
2 =

N−1∑

j=1

fj+1/2

(
uj+1 − uj

)
≤ fN+1/2uN − f1/2u1.

This stability condition will be satisfied if the following transformation is made to fj+1/2:565

fj+ 1
2
⇒ fj+ 1

2
+

(dℓ
new
2 /dt − dℓold

2 /dt)Gj+1/2(uj)∑N−1
k=1 Gk+1/2(uk)(uk+1 − uk)

(11)

where dℓnew
2 /dt ≤ fN+1/2uN − f1/2u1 and we define dℓold

2 /dt :=
∑N−1

j=1 fj+ 1
2
(uj+1 − uj).566

Next, we modify eq. (5) for non-uniform grid spacing. We begin by calculating the ℓ2-norm stability567

condition according to the energy method:568

d

dt

1

2

N∑

j=1

∆xj(uj)
2 =

N∑

j=1

∆xjuj
∂uj
∂t

= −
N∑

j=1

uj(fj+1/2 − fj−1/2) =

N∑

j=1

fj+1/2

(
uj+1 − uj

)
≤ 0

As we can see, the ℓ2-norm stability condition is unchanged for non-uniform grid spacing. Thus,569

eq. (5) is unchanged for non-uniform grid spacing.570

Similar calculations can be performed to generalize the 2D expressions eqs. (7a) and (7b) to non-571

perioidic boundary conditions and non-uniform grid spacing.572

C Coarse Graining and the ℓ2-Norm of the Training Data573

The ℓ2-norm of the continuous exact solution to eq. (1) uexact(x, t) has non-increasing ℓ2-574

norm
∫ L

0
(uexact(x, t))2dx. It turns out that the coarse-grained exact solution uexact

j (t) =575 ∫ xj+1/2

xj−1/2
uexact(x, t)dx almost always has a non-increasing discrete ℓ2-norm

∑N
j=1(u

exact
j (t))2∆x576

as well. For linear f(u) (i.e., the advection equation) the discrete ℓ2-norm of the exact solution can577

be, depending on the initial conditions, either (a) constant (see, for example, fig. 3b) (b) oscillatory578

(see, for example, fig. 6 of [45]) or (c) monotonically decreasing with high probability (see, for579

example, fig. 7 of [45]). For non-linear f(u), the continuous solution uexact(x, t) develops high-k580

modes and/or structures on a scale smaller than the grid size. These modes cannot be represented581

by the scalar uexact
j (t) and are replaced via coarse-graining by a low-dimensional representation of582

the solution which has lower ℓ2-norm with high probability. The result of coarse graining is that for583

14

non-linear f(u) the discrete ℓ2-norm of the exact solution is (d) monotonically decreasing with high584

probability (see, for example, fig. 2b).585

We assume that the training data used to train a machine learned solver is the coarse-grained exact586

solution. We can expect that the rate of change of the discrete ℓ2-norm of the machine learned587

solution will be equal to the rate-of-change of the discrete ℓ2-norm of the training data plus ϵ, where588

ϵ is some small error.589

For (c) and (d), the discrete ℓ2-norm of the training data is monotonically decreasing, so we can590

expect a machine learned solver to also have decreasing discrete ℓ2-norm with high probability so591

long as ϵ is small. For (a), the discrete ℓ2-norm of the training data is constant and so we can expect a592

machine learned solver to have non-increasing discrete ℓ2-norm when ϵ < 0 and increasing discrete593

ℓ2-norm when ϵ > 0. Although for (a) a machine learned solver may frequently increase the ℓ2-norm,594

this increase is likely to be small so long as ϵ is likely to be small (see, for example, fig. 3b). For595

(b), the discrete ℓ2-norm of the training data oscillates and so a machine learned solver is likely to596

increase the discrete ℓ2-norm.597

In summary, for non-linear f(u) a machine learned solver is unlikely to increase the discrete ℓ2-norm598

within its training distribution. For linear f(u), so long as the discrete ℓ2-norm of the training data599

doesn’t oscillate in time, we can expect a machine learned solver either to be unlikely to increase the600

ℓ2-norm or to do so by only a small amount ϵ.601

D Global Stabilization of Machine Learned Solver for 1D Advection602

We apply global stabilization to a machine learned solver for the 1D advection equation ∂u
∂t +c

∂u
∂x = 0603

for c ∈ R. Our choice of solver uses a convolutional neural network (CNN) to predict coefficients604

of a stencil of width 4 which reconstructs the solution uj+1/2 and flux fj+1/2 = cuj+1/2 at each cell605

boundary at each timestep; this so-called ‘data-driven discretization’ approach was introduced in [2].606

We use periodic boundary conditions on the domain x ∈ [0, 1] with N grid cells and uniform cell607

width ∆x = 1/N and set c = 1.608

Both the training data and the test data are given by the coarse-grained exact solution uj(t) =609 ∫ xj+1/2

xj−1/2
uexact(x, t)dx where uexact(x, t) is known analytically using uexact(x, t) = u0(x − ct) and610

u0(x) is the initial condition at t = 0. The initial condition is drawn from a sum-of-sines distribution611

u0(x) =

Nmodes∑

i=1

Ai sin
(
2πki + ϕi

)

where Nmodes ∼ {2, 3, 4, 5, 6} and ki ∼ {0, 1, 2, 3} are uniform draws from a set while Ai ∼612

[−0.5, 0.5] and ϕi ∼ [0, 2π] are draws from uniform distributions. The loss function L is given by613

computing the mean squared error (MSE) unrolled over N unroll = 8 timesteps [42]:614

L =
∆x

N unroll

N unroll∑

k=1

N∑

j=1

(
uj(t+ k∆t)− uexact

j (t+ k∆t)
)2
.

We use a SSPRK3 ODE integrator [12] and choose the timestep ∆t using a CFL condition with615

a safety factor of 0.1. Our training data uses 200 samples from t ∈ [0, 1]. We train with a batch616

size of 8 and use the ADAM optimizer [21] for 1000 training iterations with a learning rate of617

3 × 10−3 followed by 1000 training iterations with a learning rate of 3 × 10−4. Our CNN has618

three convolutional layers of width 32, kernel size 5, and ReLU non-linearity followed by a linear619

convolutional output with kernel size 4 for each of the 4 stencil coefficients at each cell boundary.620

We also ensure that our stencil coefficients sum to 1 at each cell boundary.621

Figure 3a shows the MSE for 0 < t < 1 as a function of the number of grid cells N for four schemes622

used to solve the 1D advection equation: the baseline MUSCL scheme with monotonized central623

(MC) flux limiters (MUSCL), the original machine learned solver (ML), the machine learned solver624

with global stabilization (ML GS), and the machine learned solver with a flux limiter (ML MC625

Limiter). Our test set is the average over 50 data points drawn from the same distribution as the626

training set. We see that the MSE of the globally stabilized solver is almost identical to the MSE of627

the original machine learned solver, while using a TVD flux limiter to stabilize the solver leads to a628

15

t=1 2 5 10 20 50 t=100

10−5

10−3

10−1

M
SE

N=16

ML
ML GS
ML MC Limiter

Figure 4: MSE for N = 16 as a function of time. Global stabilization has a negligible impact on the
accuracy of the machine learned solver for small t and improves accuracy at large t.

MSE which is significantly worse than the original machine learned solver and a MSE which is only629

slightly better than the baseline MUSCL scheme.630

Figure 3b shows the percent change in the discrete ℓ2-norm for a single example drawn from the631

training distribution. While the exact solution uexact
j has constant discrete ℓ2-norm, the machine632

learned solver allows the discrete ℓ2-norm to both increase and decrease. The globally stabilized633

machine learned solver, however, can only decrease the ℓ2-norm. Meanwhile, the flux-limited634

machine learned solver rapidly decays the discrete ℓ2-norm.635

Note that in fig. 3b the exact solution has a constant discrete ℓ2-norm. While algorithm 1 sets636
dℓnew

2 /dt ≤ 0, for the 1D advection equation with a sum-of-sines initial condition we are able to set637
dℓnew

2 /dt = 0 at each timestep because the exact solution has constant discrete ℓ2-norm. Instead, to638

illustrate the properties of algorithm 1 we set dℓnew
2 /dt ≤ 0.639

Figure 4 shows the MSE for N = 16 as a function of time t for three of the schemes used to640

solve the 1D advection equation. Our test set is the average over 20 data points drawn from the641

same distribution as the training set. We see that the average error of the machine learned solver642

grows without bound because some fraction of the datapoints blow up as t→ ∞, while the globally643

stabilized and flux-limited machine learned solvers have bounded error as t→ ∞.644

E Energy-Conserving Global Stabilization645

Consider the Boltzmann equation ∂f
∂t + p

m ·∇f =
(
∂f
∂t

)
coll from kinetic physics which describes646

the evolution of the particle distribution function f in phase space (x,p) due to collisions with647

other particles [5]. Because f conserves particles
∫
f dx dp, momentum

∫
fp dx dp, and energy648

1
2m

∫
f p2 dx dp while maintaining f ≥ 0 and increasing the entropy −

∫
f log f dx dp, then as649

t→ ∞ f must evolve towards a Gaussian distribution. Yet if global stabilization were applied naively650

to a Boltzmann equation solver without preserving the right combination of these invariants, then f651

could evolve towards a flat distribution function or some other physically incorrect state. Thus, while652

global stabilization may be useful, it is not by itself always going to be sufficient to ensure that the653

solution evolves to the correct state as t→ ∞.654

To demonstrate how additional conservation laws might be enforced, we again consider the in-655

compressible euler equations in eq. (8) but now attempt to enforce an additional conservation law:656

conservation of energy. Recall that in fig. 2b, energy was not conserved by any of the schemes657

considered. Energy will be conserved if
∫
u · ∂u

∂t dx dy =
∫
ψ ∂χ

∂t dx dy =
∑

i,j ψ̄i,jNi,j∆x∆y = 0658

and is expressed most simply as ⟨ψ̄i,j |Ni,j⟩ = 0 where ψ̄i,j is the cell average of ψ and Ni,j is the659

time-derivative in the ith, jth cell. Conservation of mass, conservation of energy, and ℓ2-stability will660

therefore all be guaranteed for eq. (8) if the following transformation is applied toNi,j :661

Ui,j = χi,j − ⟨χi,j⟩ Mi,j =Ni,j − ⟨Ni,j⟩ ϕ̄i,j = ψ̄i,j − ⟨ψ̄i,j⟩

Wi,j = Ui,j −
⟨Ui,j |ϕ̄i,j⟩
⟨ϕ̄i,j |ϕ̄i,j⟩

ϕ̄i,j Pi,j =Mi,j −
⟨Mi,j |ϕ̄i,j⟩
⟨ϕ̄i,j |ϕ̄i,j⟩

ϕ̄i,j

662

Ni,j ⇒ Pi,j +
dℓnew

2 /dt

⟨Wi,j |G(χi,j)⟩
G(χi,j)−

⟨Wi,j |Pi,j⟩
⟨Wi,j |Wi,j⟩

Wi,j (12)

16

(a)

1.0

1.25

E
ne

rg
y

0.5

0

E
ns

tro
ph

y

t=0 t=30 t=60
0

0.5

1.0

Vo
rti
ci
ty
 c
or
re
la
tio
n

MUSCL 1024x1024
MUSCL 128x128
GS EC 128x128 normal damping
GS EC 128x128 no damping

(b)

Figure 5: Global stabilization can be modified to enforce energy conservation as well as stability for
the incompressible Euler equations. (a) Images of the vorticity χ at three different times. The first
and second columns show the baseline MUSCL scheme at high and low resolution. The third and
fourth columns show the baseline MUSCL scheme with energy conserving global stabilization (GS
EC), either with no numerical damping or with the normal rate of damping. (b) Energy, enstrophy,
and vorticity correlation over time.

for any dℓnew
2 /dt ≤ 0 and any non-constant scalar function Gi,j(χi,j) for which ⟨Gi,j(χi,j)⟩ = 0,663

⟨Gi,j(χi,j)|ψ̄i,j⟩ = 0 and ⟨Wi,j |Gi,j(χi,j)⟩ ≠ 0. A simple choice isGi,j(χi,j) =Wi,j .664

In fig. 5, we examine how the energy conserving global stabilization (GS EC) scheme in eq. (12)665

affects the baseline MUSCL scheme. The third column and fourth columns of fig. 5a set dℓnew
2 /dt = 0666

(no damping) and dℓnew
2 /dt = ⟨χi,j |Pi,j⟩ (normal damping). As we can see in figs. 5a and 5b, the667

energy-conserving schemes do conserve energy as predicted. Thus, for some equations it may be668

possible to develop global stabilization schemes that enforce additional conservation laws.669

17

	Introduction
	Stability of Scalar Hyperbolic PDEs
	Stability of Discrete Numerical Methods for Scalar Hyperbolic PDEs
	The Energy Method for Stability Analysis

	Global Stabilization of Flux Predicting FV Schemes
	Global Stabilization of MOL Schemes with Arbitrary Time-Derivative
	Stable Machine Learned PDE Solvers
	Towards a Deeper Understanding of Global Stabilization

	Related Work
	Limitations
	Conclusion
	Conservation Form PDEs with Nonzero Right Hand Side
	Generalization to Non-Periodic BCs and Non-Uniform Grid Spacing
	Coarse Graining and the –Norm of the Training Data
	Global Stabilization of Machine Learned Solver for 1D Advection
	Energy-Conserving Global Stabilization

