SARA: Singular-Value Based Adaptive Low-Rank Adaption

Anonymous ACL submission

Abstract

Low-Rank Adaptation (LoRA) as a parameter-
efficient fine-tuning (PEFT) method is widely
used for not adding inference overhead. It as-
sumes that weight changes during fine-tuning
can be approximated by low-rank matrices. De-
spite the recent progress, existing methods suf-
fer from three drawbacks: 1) Lacking differ-
entiation of ranks for each layer of the model;
2) The rank values need to be manually ver-
ified; 3) Ignore the relationship between in-
trinsic rank and the initial pre-trained matrix.
In this work, we first analyze the relationship
between the performance of different layers
and their pre-trained matrix using SVD. Based
on this, we design the Singular-Value Based
Adaptive Low-Rank Adaption (SARA), which
adaptively finds the suitable rank for each layer
during initialization. Additionally, we explore
the Mixture-of-SARA (Mo-SARA), which sig-
nificantly reduces the number of parameters
by fine-tuning only multiple parallel sets of
singular values controlled by a router. Exten-
sive experiments on various complex tasks have
demonstrated the state-of-the-art performance
and parameter efficiency of our methods.

1 Introduction

Large language models have demonstrated impres-
sive generative capabilities, achieving excellent
performance across various natural language pro-
cessing (NLP) tasks (Touvron et al., 2023; Qin
et al., 2023; Kojima et al., 2022). However, as
the model size increases, the cost of full-parameter
fine-tuning to adapt the model to downstream tasks
becomes increasingly prohibitive. To address this
issue, PEFT methods have garnered increasing at-
tention (Houlsby et al., 2019; Li and Liang, 2021).
Among them, the LoORA (Hu et al., 2021) method,
which leverages the concept of matrix ‘intrinsic
rank’ by freezing the original model parameters and
fine-tuning only a small number of newly added,
representative parameters, has been widely adopted.

Singular Values

Pretrained
Weight sV d
D——>
——

e B s e RFY -], € P i
:

=

m

]
E
X
e

Q strozen
(b) : SAVA O :trainate (c) :Mo-SAVA

Figure 1: An overview of our methods, (a) perform-
ing SVD on the pre-trained weights and determining
the number £ of values that account for a proportion
threshold 7 of the total sum of singular values; (b) the
method of adding a truncated singular value matrix to
the pre-trained weights based on k; and (c) the extreme
method of fine-tuning only mixture of parallel singular
values. A and v, as diagonal matrix, only require a one-
dimensional vector for storage.

Its primary advantage is it does not add extra com-
putational overhead during inference.

Existing LoRA-like methods, however, as shown
in Table 1, still suffer from three drawbacks: 1)
Lacking differentiation of ranks for each layer of
the model. As different layers in transformers
have varying degrees of importance (Jawahar et al.,
2019; Tenney et al., 2019; Jawahar et al., 2019).
2) The rank values need to be manually verified
which fails to determine the most suitable rank for
each specific model. 3) Ignore the relationship
between intrinsic rank and the initial pre-trained
matrix. LoRA leverages the concept of intrinsic
rank which is related to singular value decomposi-
tion (SVD), and the singular diagonal value matrix
is characterized by a small number of leading val-

ues accounting for a large proportion of the total
sum. We perform SVD on the initial pre-trained
model matrices, as shown in Figure 1a. We focus
on the number £ of values in the singular value that
cumulatively account for a certain threshold 7 of
the total sum and our analysis reveals that the &
value of each layer in the model correlates with the
performance of that layer! Thus, we argue that k&
can reflect the most suitable intrinsic rank for each
layer easily during initialization as the magnitude
of singular values represent the significance of it,
and existing works ignore this phenomenon.

To alleviate these aforementioned problems, we
propose a Singular-Value Based Adaptive Low-
Rank Adaption (SARA) method, as shown in Fig-
ure 1b. SARA calculates the most suitable rank for
each layer based on the importance threshold 7 dur-
ing initialization and fine-tunes the newly added
truncated singular value matrices. Additionally,
we explore an extreme method, Mixture-of-SARA
(Mo-SARA), which significantly reduces the num-
ber of trainable parameters to the limit. As shown
in Figure 1c, Mo-SARA only fine-tunes & diago-
nal values as well as a diagonal matrixv used to
accelerate convergence. They just require a one-
dimensional vector for storage to significantly re-
duce the number of trainable parameters. More-
over, leveraging the concept of Mixture-of-Experts
(MoE) (Jacobs et al., 1991), we innovatively train
multiple singular value matrices in parallel, to lever-
age the entire truncated singular value matrix sepa-
rately, achieving comparable performance.

Experimental results show that our improved
methods can adaptively find suitable ranks, achiev-
ing better performance even with fewer trainable
parameters while retaining the advantages of LoRA
and achieving state-of-the-art performance.

In summary, our contributions are:

1.We analyze the interactions between different
layers and pre-trained matrices by SVD, discover-
ing more suitable intrinsic rank, providing a new
research perspective for the entire PEFT field to
address the issue of inter-layer inconsistency.

2.We propose the SARA method, which can
adaptively calculate the suitable rank for each layer
during initialization, extending the performance of
LoRA, and can be combined with other methods.

3.We further propose the Mo-SARA, which ex-
plores leveraging the entire SARA process with
only singular values and paralleling these values,
significantly reducing the number of trainable pa-
rameter by an order of magnitude.

Rank- Adaptive- Intrinsic Rank
Methods Differ Rank &Matrix-Relation
LoRA X X X
PiSSA X X v
AdaLoRA v v X
DyLoRA v v X
DoRA X X X
VeRA X X X
SARA v v v

Table 1: Comparisons with LoRA-like methods from the
perspective of whether assign different ranks to different
layers, whether adaptively allocate ranks, and whether
consider the relationship between intrinsic rank and pre-
trained matrix. The methods include LoRA(Hu et al.,
2021), PiSSA (Meng et al., 2024), AdaLLoRA(Zhang
etal., 2023), DyLoRA(Valipour et al., 2023), DoRA(Liu
et al., 2024), VeRA(Kopiczko et al., 2023).

2 Related Works
2.1 PEFT Methods

Traditional PEFT methods focuing on freezing
the original pre-trained parameters and fine-tuning
only a subset of newly added parameters. Typi-
cally, adapters (Houlsby et al., 2019; Patel et al.,
2021) involve serially connecting a set of newly
added tunable parameters within the model; prefix-
tuning add virtual tokens to the model inputs (Li
and Liang, 2021); LoRA (Hu et al., 2021) assume
that the model parameter matrix only requires fine-
tuning a matrix of rank r, and replace the original
matrix with two matrices that increase and decrease
dimensions, respectively, for fine-tuning.

Among these methods, LoRA is widely used
while it can be directly added alongside the original
matrix without requiring additional inference time
and generally achieves better performance across
various tasks. Consequently, the LORA method has
numerous improvements.

2.2 LoRA’s Variants

Several works focus on the modification of the
structure of LoRA. For example, PiISSA (Meng
et al., 2024), which is the most similar method to
ours, sets a fixed rank, performs SVD on the ma-
trix, and fine-tunes only the low-rank components.
Dora (Liu et al., 2024) improves performance by
decomposing the original matrix into weight and
direction components and fine-tuning them sepa-
rately; VeRA (Kopiczko et al., 2023) method re-
duces the number of trainable parameters based on
the LoRA by randomly initializing and freezing the
dimensionality expansion/reduction matrices and
only fine-tuning two diagonal matrices added after

them. A common issue with these works is that
they overlook the fact that each model and each
layer’s weight matrix has a different intrinsic rank,
making a globally uniform rank setting inefficient
for fine-tuning.

Other works noticed this issue. AdalLoRA
(Zhang et al., 2023) and DyLoRA (Valipour et al.,
2023) calculate the suitable rank during training.
However, they overlook leveraging the relationship
between intrinsic rank and the pre-trained matrix
to compute the rank simply and efficiently.

Unlike previous works, in this paper, we find
an effective method to adaptively find the suitable
rank layer-by-layer through the SVD of pre-trained
matrix during initialization. We also propose a
MoE-like method, which leverages a larger num-
ber of parameters for fine-tuning with a minimal
parameter. These methods only require little com-
putation time during initialization and retain all the
advantages of LoRA, even achieving state-of-the-
art performance. For the second method, only a
minimal number of parameters need to be stored.

3 Correlation Analysis Between Layer
Performance and Singular Values

As mentioned above, different layers exhibit vary-
ing degrees of importance and for the LoRA
method, each model adapts to downstream tasks
with different ranks.

To study the inter-layer different importance of
LoRA, we conduct a case study experiment on
LLaMA-7B (Touvron et al., 2023) based on previ-
ous work (Hu et al., 2023). We divide 32 layers
of the model into four parts and fine-tune each
part separately using LoORA method, testing their
average accuracy on six mathematical reasoning
datasets. As shown in the bar chart in Figure2, the
overall performance is excellent in the lower layers
and poorer in the upper layers.

Since the rank concept is related to SVD, we
perform SVD on the pretrained () and V' matrices
used in the classical LoORA method and analyze the
singular values. Because the decomposed singular
values are arranged in descending order and a small
proportion of the leading values account for a large
portion of the total sum, we calculate the number
of singular values k£ needed to account for various
proportion thresholds 7. (specific details on obtain-
ing k can be referenced to algorithm 1.) As shown
in the line chart in Figure 2, under all different pro-
portion choices, the value of k decreases initially as

Average Accuracy 0.5 0.6 - 0.7

Relation between k and Average Accuacy

B

o D e . 1600

o .

/ 1400

20 / 1200
/ 1000

‘ ~

800

Average Accuracy
w
8

400

200

012345678 910111213141516171819202122232425262728293031
Layers

Figure 2: The impact of different layers on the average
accuracy of mathematical reasoning tasks and the k of
different threshold 7 (mean value obtained from) and
V matrix SVD.)

the model goes from lower layers to higher layers
and then increases, which is exactly opposite to the
trend of performance change across layers.

We believe that this is because, to achieve similar
effects, the lower layers require a lower ‘intrinsic
rank’ while the upper layers require a higher one.
This corresponds to our calculated & values. There-
fore, allocating the same rank to all layers leads to
shortcomings in certain layers, thus affecting the
overall efficiency of the model, and it is necessary
to allocate ranks to each layer according to the cor-
responding k values to avoid the bottleneck effect.
Based on this, we design an improved method and
conduct tests to compare the effects between layers,
which will be presented bellow.

4 Method

4.1 Motivation

Based on the above findings, we define the number
of singular values that represent a certain propor-
tion of the total sum as k to reflect the intrinsic rank.
Specifically, we use proportion threshold 7 which
can reflect the layer’s importance instead of rank
to set the hyperparameters conceptually similar to
(Schotthofer et al., 2022), and add a new truncated
singular value matrix parallel to the original matrix.
Through this method, we can adaptively determine
the intrinsic rank of each layer during initialization.

4.2 SARA

The LoRA(Hu et al., 2021) method is based on
the assumption that changes in the matrix dur-
ing fine-tuning have a low ‘intrinsic rank’. It in-
volves adding a dimensionality reduction matrix
A € R¥" and a dimensionality expansion matrix
B € R™? with a fixed scaling \ parallel to the
original weight matrixWy € R%*?, using these as

the only trainable matrices. The calculation for-
mula is as follows:

h=xWy+AW) =x(Wy+ AAB) (1)

SVD decomposes a matrix into three parts, we
represent it with the formula shown in Equation 2.

W = UAV ~ UkAka (2)

The U € R¥9 and V € R are the left and
right singular value matrices, respectively. Matrix
A € R4 is called the singular diagonal value
matrix with non-negative singular values on the
diagonal, arranged in descending order. A small
proportion of the leading values accounts for a
large portion of the total sum of the singular val-
ues. Therefore, a truncated singular value matrix
is commonly used to approximate and reduce the
original matrix.

In this way, U, = U[:,: k], Ay = Ag[: k,:
k], Vi, = Vi[: k,:], where k < d needs to be
determined in advance.

Thus, in our methods, we use a randomly initial-
ized truncated singular value matrix to represent
the part of the original matrix that needs to change
during fine-tuning, adding it parallel to the original
matrix. It further explore the ‘intrinsic rank’ from
the pre-trained weights of the original matrix using
SVD during initialization. The calculation formula
is shown as follows:

h = JJ(W() + UkAka) 3)

where the underlined part represents the trainable
truncated singular value matrix, and the calculation
of k is shown in the following algorithm 1:

Algorithm 1 Calculate k Value
€ R4 thresholdr €

Require: Wy, cirain

(0,1)
1: U, A,V < SVD(Whpretrain)

2: total < > A

3: target < 7 X total

4: cumulative < 0,k < 0

5. while cumulative < 7 do

6: cumulative « cumulative + A(k, k)
7. k+k+1

8: end while

9: return(k)

Since the singular value matrix is a diagonal vec-
tor, we only need to store a one-dimensional vector,
which allows us to reduce parameter storage.

The magnitude of the singular values can indi-
cate the significance of the data. Therefore, we
remove the scaling part A in the original LoRA
method, as our singular values effectively act as
more fine-grained, learnable scaling factors. For
AW in SARA, each element is expressed as shown
in Equation 4:

k
AWZ']' ~ Z uirSTvTj (4)

r=1

Here, u;, and v, represent Uy (¢,) and Vi (r, j),
respectively; S, represents Ay (r, 7).

4.3 Mo-SARA

In singular values, the larger singular values corre-
spond to the main directions of variation in the data,
while the smaller singular values can be regarded
as noise or less important variations. Based on this,
we believe that for different downstream tasks, it is
sufficient to only adjust the singular values under
the same eigenvector mappings.

Additionally, inspired by MoE (Jacobs et al.,
1991), we believe multiple singular value diagonal
matrices can be trained in parallel and selected
through a routing mechanism to learn different
tasks. Therefore, we explore an extreme improve-
ment method for the trainable parameters, called
Mixture-of-SARA(Mo-SARA). In this method, we
keep the left and right singular vectors of the com-
puted truncated singular value matrix unchanged
and randomly initialize multiple singular value di-
agonal matrices for learning. To accelerate conver-
gence referencing (Hu et al., 2021), where matrix
B is initialized to 0, we also add a diagonal matrix
v € R initialized to zero after the truncated
singular value matrix. The formula for this method
is shown in Equation 5:

h=aWo+ Y gi® @UhyViv) (5)

where the gate g=[g1,92...gm] With values in the
range (0,1) is computed as follows:

g = softmax(zUy(We,Wy,)) (6)

Here, we use the value of the input z € R!*¢
with a length of / and dimension d after passing
through the left singular matrix Uy as the input,
and generate token-level gating g € R'™ through
an MLP layer composed of two gating matrices
Wy, € R¥1 and W, € R!™. (We use two one-
dimensional linear layers to minimize the number
of parameters while achieving effective results.)

Method Params(%) SVAMP AQuA AddSub MultiArith SingleEQ GSMSK Avg.
LLaMA-7B
Prefix 1.2E-1 42.50 23.53 58.23 60.00 66.67 15.91 44.47
Adapter 2.9 53.50 23.53 74.68 86.36 75.49 20.08 55.61
Parallel 2.9 63.00 25.49 75.95 86.36 83.33 23.11 59.54
LoRA 7.8E-2 58.50 23.53 75.95 92.73 88.24 24.24 60.53
PiSSA 7.8E-2 58.00 19.61 82.28 85.45 87.25 28.7 60.23
Mo-SARA 8.5E-3 55.00 23.53 70.89 90.91 87.25 26.14 58.95
SARA 7.1E-2 60.00 35.29 79.75 89.09 84.31 24.62 62.18
LLaMA-13B
Prefix 9.4E-2 58.00 29.41 72.15 78.18 82.35 22.73 57.14
Adapter 2.4 55.00 31.37 73.42 78.18 69.61 17.05 54.10
Parallel 24 69.00 17.65 81.01 93.64 86.27 27.27 62.47
LoRA 6.3E-2 66.00 21.57 82.28 95.45 89.22 36.74 65.21
PiSSA 6.9E-2 65.50 33.33 83.54 92.73 88.24 33.71 66.18
Mo-SARA 6.9E-3 66.50 25.49 82.28 95.45 89.22 34.09 65.50
SARA 6.3E-2 71.50 27.45 81.01 93.64 88.24 36.36 66.37
GPT-J-6B

Prefix 1.1E-1 41.50 9.80 67.09 75.45 71.57 9.85 45.88
Adapter 1.9 43.00 13.73 56.96 76.36 64.71 9.85 44.10
Parallel 2.8 42.50 19.61 56.96 78.18 66.67 12.88 46.13
LoRA 7.6E-2 47.00 5.88 65.82 72.73 76.47 11.36 46.54
PiSSA 7.6E-2 46.50 25.49 67.09 73.64 74.51 12.12 49.89
Mo-SARA 8.6E-3 45.50 15.69 64.56 82.73 78.43 11.74 49.77
SARA 7.0E-2 50.50 27.45 65.82 79.09 74.51 12.50 51.65

Table 2: The results on six different mathematical reasoning datasets. The answer is the accuracy of calculations
obtained using the zero-shot learning method on LLaMA-7B/13B, and GPT-J presented in the table.(bold: the best

score; underline: the second best)

This method only requires the storage of one-
dimensional parameters as it can expand to a diago-
nal singular value matrix only during computation.
Even with multiple parallel sets, it still requires a
few parameters to store, and each set can leverage
the singular values to move the entire truncated
singular value matrix, obtaining better efficiency.

5 Experiment

In this section, (1) we compare our methods with
the PEFT methods as well as the latest LoRA-like
methods, especially PiISSA (Meng et al., 2024),
which is similar to us, across a wide range of
tasks, including mathematical reasoning, common-
sense inference, and E2E tasks, covering a total
of 15 datasets. (2) Subsequently, we validate our
method’s ability to address the issue of inconsistent
layer importance mentioned above. (3) We then
conduct ablation experiments to discuss the effect
of each component of our methods. (4) Next, we ex-
amine the parameter sensitivity of our methods and
the impact of the number of parallel heads on Mo-
SARA. (§) Finally, we show the routing learned by
the Mo-SARA across various tasks, demonstrating
the effectiveness of this mechanism.

In order to ensure the accuracy of the perfor-
mance for other methods as much as possible, we
compare different methods across various datasets.
The detailed hyperparameter and experimental set-

tings for all experiments in this section can be
found in Appendix A.

5.1 Mathematical Reasoning

We compare our methods with five PEFT methods,
including LoRA (Hu et al., 2021), Prefix (Li and
Liang, 2021), Adapter(Houlsby et al., 2019), Paral-
lel Adapter(Parallel) (Patel et al., 2021), and PiSSA
(Meng et al., 2024), using three LLMs: LLaMA-
7B/13B (Touvron et al., 2023), and GPT-J (Wang
and Komatsuzaki, 2021), across six mathematical
reasoning sub-tasks which are (1) the SVAMP (Pa-
tel et al., 2021), (2) the AQuA (Ling et al., 2017)
dataset, (3) the AddSub (Hosseini et al., 2014)
dataset, (4) the MultiArith (Roy and Roth, 2016)
dataset, (5) the SingleEQ (Koncel-Kedziorski et al.,
2015) dataset, and (6) the GSM8K (Cobbe et al.,
2021) dataset. We largely follow the open-source
work (Hu et al., 2023) in terms of experiments and
hyperparameter settings, combining the six tasks
to create a unified training dataset and testing ac-
curacy on each task separately. To ensure a fair
comparison, we adjust the threshold for % in our
method during initialization to achieve a similar
number of trainable parameters. The table below
lists the proportion of trainable parameters to the
total parameters for each method.

Table 2 shows that our SARA method signifi-
cantly outperforms various baseline methods across

Method Params(%) ARC-c ARC-e Boolq WinoG PIQA SIQA OBQA HellaS Avg.
ChatGPT - 79.9 89.8 73.1 66.1 85.4 68.5 74.8 78.5 77.0
LLaMA-7B
Prefix 1.1E-1 54.0 72.9 64.3 72.1 76.8 73.9 60.6 42.1 64.6
Adapter 9.9E-1 57.1 74.5 63.0 75.7 79.2 76.3 72.4 67.9 70.8
Parallel 3.5 57.3 73.7 67.9 78.9 76.4 78.8 75.2 69.8 72.2
LoRA 8.3E-1 61.3 77.8 68.9 78.8 80.7 77.4 74.8 78.1 74.7
PiSSA 8.5E-1 62.4 77.0 68.1 78.2 79.2 76.0 76.2 81.5 74.8
DoRA 8.4E-1 66.2 81.9 69.7 81.0 83.4 78.6 79.2 87.2 78.4
Mo-SARA 8.5E-3 54.5 74.5 62.8 71.8 76.0 73.8 65.8 50.3 66.2
SARA 8.3E-1 65.8 81.6 70.9 82.6 83.6 78.8 81.4 829 78.5
LLaMA-13B
Prefix 3.1E-2 62.9 79.5 65.3 68.6 75.4 72.1 68.0 55.2 68.4
Adapter 8.0E-1 67.3 82.5 71.8 82.4 83 79.2 81.8 88.1 79.5
Parallel 2.9 71.2 84.2 72.5 84.1 84.9 79.8 82.4 92.1 81.4
LoRA 6.7E-1 68.3 82.8 72.1 83.5 80.5 83.7 82.4 90.5 80.5
PiSSA 6.7E-1 66.0 81.5 70.3 81.4 83.7 79.2 81.0 90.4 79.2
DoRA 6.8E-1 69.6 84.2 72.4 84.2 84.9 81.5 82.8 92.4 81.5
Mo-SARA 6.9E-3 61.6 78.7 67.9 76.9 80.2 76.3 72.6 76.4 73.8
SARA 6.8E-1 69.8 84.1 73.2 84.9 83.9 80.6 84.6 922 81.7

Table 3: The results on 8 commonsense inference datasets, with ChatGPT and baseline results taken from (Hu et al.,
2023), the DoRA method results sourced from (Liu et al., 2024).(bold: the best score; underline: the second best)

a wide range of models, achieving up to an 11%
improvement over the LoRA method. Addition-
ally, our Mo-SARA method achieves remarkable
results with an order of magnitude fewer trainable
parameters, even surpassing all baselines on the
LLaMA-13B and GPT-J models.

5.2 Commonsense Inference

For commonsense reasoning, which includes eight
downstream tasks as follows:(1) the ARC-c and
(2) the ARC-e are the Challenge Set and Easy Set
of ARC (Clark et al., 2018), (3) the Boolq (Clark
et al., 2019), (4) the WinoGrande (Sakaguchi et al.,
2021), (5) the PIQA (Bisk et al., 2020), (6) the
SIQA (Sap et al., 2019), (7) the OBQA (Mihaylov
et al., 2018), and (8) the HellaSwag (Zellers et al.,
2019). We conduct experiments on the LLaMA-
7B/13B (Touvron et al., 2023) models to extend the
comparison with DoRA (Liu et al., 2024) and the
results obtained with GPT-3.5-turbo API through
zero-shot CoT (Wei et al., 2022). We also largely
follow this work (Hu et al., 2023).

The results in Table 3 show that SARA achieves
better results across a variety of models and
datasets, with up to a 5% improvement over the
LoRA method. Our Mo-SARA method, despite in-
herently using fewer training parameters, achieves
comparable results on this task with almost two
orders of magnitude fewer parameters, even sur-
passing the performance of the prefix method.

5.3 E2E Benchmark

To further validate the performance of our meth-
ods through broader comparisons, we also conduct

experiments on E2E (Novikova et al., 2017). We
follow the experimental setup from (Hu et al., 2021)
and use GPT-2 Medium (Radford et al., 2019)
model. In addition to LoRA, we compare new
variants of the LoRA method, including Adalora
(Zhang et al., 2023), Dylora (Valipour et al., 2022),
and Vera (Kopiczko et al., 2023). For VeRA
method, we use all the experimental settings men-
tioned in the paper (Kopiczko et al., 2023).

The experimental results are shown in Table 4. It
can be seen that our SARA method achieves better
results with fewer trainable parameters. In partic-
ular, our Mo-SARA method outperforms VeRA
(Kopiczko et al., 2023) with fewer parameters.

5.4 Improvement of SARA across Layers

We use the SARA method, dividing 32 layers of
LLaMA-7B into four parts for separate fine-tuning
to verify our method’s effectiveness in allocating
ranks using singular values, addressing the issue of
poorer results caused by inconsistent importance
across layers. As shown in the Figure 3, our method
consistently outperforms in each fine-tuning part,
reducing the variance among layer results and ad-
dressing the problem posed in section 3.

5.5 Ablation Study

To analyze the impact of each component of SARA,
we set up two groups of ablation experiments.
These experiments verify whether it is necessary
to initialize the up-projection matrix V' to zero as
in the original LoORA method and whether it is nec-
essary to add the singular value diagonal matrix
A. We conduct experiments using LLaMA-7B on

Method Params BLEU NIST METEOR ROUGE-L CIDEr
FT? 354.92M 68.2 8.62 46.2 71.0 247
Adpt*? 0.37M 66.3 8.41 45.0 69.8 2.40
Adpt™! 11.09M 68.9 8.71 46.1 71.3 247
AdptH? 11.09M 67.3 8.50 46.0 70.7 2.44
DyLoRA? 0.39M 69.2 8.75 46.3 70.8 2.46
AdaLoRA® 0.38M 68.2 8.58 44.1 70.7 2.35
LoRA! 0.35M 70.4 8.85 46.8 71.8 2.53
VeRA 0.098M 69.1 8.71 46.3 70.8 243
Mo-SARA 0.094M 69.4 8.77 46.4 71.1 248
SARA 0.33M 70.4 8.84 46.7 72.3 2.55

Table 4: The results on the E2E dataset, with the results for (},2,3) taken from previous work. '(Hu et al.,

2021),2(Zhang et al., 2023),3(Valipour et al., 2023)

Comparison of LoRA and SARA for Different Layers

LorA
60 saRA

Average Accuracy

01234567 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 3: Average accuracy of SARA and LoRA meth-
ods across layers in mathematical reasoning tasks.

mathematical reasoning tasks, as shown in the ta-
ble 5. It can be seen that our approach of directly
adding the truncated singular value matrix next to
the original matrix yields better results and ddding
singular value diagonal matrix almost does not in-
crease the parameter count.

We also study the structure of adding a new trun-
cated singular value matrix parallel to the original
matrix behaves without our rank adaptation method
as shown in Table 5, it shows the effectiveness of
methods assigning different ranks to different lay-
ers.

Additionally, we conduct a set of experiments on
the scaling value A of the original LoRA to show
that the original LoRA is also sensitive to the A
and our method of replacing scaling with singular
values A to some extent addresses this issue. The
results can be seen in Appendix C.

For Mo-SARA, we try to omit the diagonal ma-
trix v (for a fair comparison of parameter quantities,
we parallel 10 heads to increase the number of train-
able parameters.), which is added after the singular
value matrix for fast convergence, and also placing
v in front of the truncated singular value matrix.
The experimental results are shown in Table 5. It
can be seen that, regardless of its position, a diago-
nal matrix for fast convergence plays a significant
role. At the same time, even when only fine-tuning
the singular value part, it still achieves decent re-
sults with a small parameter count, proving the

LoRA
—o— SARA

584 r=5

Average Accuracy

0.2 0.4 0.6 0.8 1.0 12
Number of Trainable Parameters le7

Figure 4: Average accuracy of the SARA and LoRA
methods on mathematical reasoning tasks with different
trainable parameters. The thresholds 7 for determining
k in the SARA method [0.006, 0.01, 0.016, 0.02] and
the r values used to adjust the parameter count in the
LoRA method [, 10, 15, 20] are indicated in the figure.
effect of this component for fine-tuning, consistent
with our hypothesis.

5.6 Robustness of the SARA Method

We conduct experiments using LLaMA-7B on
mathematical tasks to compare the trends of SARA
and LoRA under different trainable parameter sizes.
The experimental results are shown in Figure 4. It
can be seen that our method outperforms the LoRA
method under all trainable parameter sizes and ex-
hibits similar trends to the LoRA method. This
demonstrates that our approach of assigning dif-
ferent ranks to different layers during initialization
offers greater advantages.

5.7 Analysis Under Parameter Limits

To explore methods for further reducing trainable
parameters, we conduct experiments on the Mo-
SARA using LLaMA-7B with mathematical rea-
soning tasks.

Threshold 7: We design four sets of experi-
ments without parallel structure. The threshold 7
for determining k is set incrementally to 0.1, 0.3,
0.5, and 0.7. The parameter counts and results are
shown in Figure 5, displaying a trend of initial in-
crease followed by a gradual decrease. Thus, in

Method Params(%) SVAMP AQuA AddSub MultiArith SingleEQ GSMSK Avg.

SARA 7.1E-2 60.00 35.29 79.75 89.09 84.31 24.62 62.18
wlo A 7.1E-2 47.50 17.65 65.82 80.00 72.55 12.88 49.40
V=0 7.1E-2 58.00 17.65 74.68 90.00 86.27 26.52 58.85
w/o A,V=0 7.1E-2 60.00 23.53 77.22 88.18 80.39 21.21 58.42
w/o rank adapt ~ 7.8E-2 61.50 17.65 77.22 90.91 78.43 24.24 58.32
Mo-SARA 8.5E-3 55.00 23.53 70.89 90.91 87.25 26.14 58.95
w/o v 9.0E-3 49.00 25.49 69.62 80.00 75.49 18.18 52.88
v in front 8.5E-3 57.00 21.57 73.42 91.82 86.27 23.48 58.93

Table 5: Ablation of SARA and Mo-SARA methods on the mathematical reasoning tasks with LLaMA-7B.

our experiments, we use 0.5 as the threshold for
determining k& in the Mo-SARA method.

59

Mo-SARA(1head) Line Mo-SARA(1head)

58
291.9K 324,1K

@
4

360.7K

«
4

269,9K

Average Accuracy
o ow
g 9

«
&

«
&

«
&

01 03 05 0.7
Threshold

Figure 5: Average accuracy of Mo-SARA (1 head) on
mathematical reasoning tasks under different thresholds
T, the bar chart displays the trainable parameters above.

Parallel Heads: We further explore the choice

of parallel heads for the parallel structure, using
soft routing to control 3, 5, 7, and 9 groups of par-
allel singular values and compare the results with
that without parallel structure. As shown in Figure
6, the experimental results demonstrate a stable in-
crease in performance as parallel heads increases,
gradually approaching the results of the original
LoRA method with nearly ten times the parameter
count. Considering the balance between parameter
count and performance, we adopt a structure with
5 parallel groups in main experiments.

Comparison of Different Heads for Mo-SARA

60

"
&

Mo-SARA(1 head)
Mo-SARA(3 head)
Mo-SARA(S head)
Mo-SARA(7 head)
Mo-SARA(9 head)
LoRA

SARA

Average Accuracy

w
£

52

"> r»

50
000 001 002 003 004 005 006 007 008

Trainable Parameters (%)

Figure 6: Average accuracy of Mo-SARA on mathemat-
ical reasoning tasks with different numbers of parallel
heads, compared to SARA and LoRA methods.

5.8 Analysis of Routing Effects

To explore the effect of using mixture parallel struc-
ture in the Mo-SARA method, we employ the
model trained on LLaMA-7B to extract the first

question across various test tasks. The routing re-
sults of the first model pass are averaged across
‘batch’ and ‘length’ dimensions to obtain the rout-
ing’s heatmap. Figure7 illustrates the routing re-
sults of the Mo-SARA method applied alongside
the Q-matrix in mathematical reasoning and com-
monsense inference tasks. It is observed that for dif-
ferent tasks, the routing mechanism learns different
allocation strategies, assigning different weights to
each set of singular values, and each of them also
learns the tasks it excels at. This indicates the role
of the routing in assisting the Mo-SARA method
in parallelizing and leveraging the entire singular
value matrix for fine-tuning.

SVAMP_Q_Metric

02 4 68 1012141615202224262830
Layers

OBQA_Q_Metric

Iyn
I II Il 02

02 4 68 10121A1618202224262830
Layers

a

Router Index
Router Index

00

Figure 7: The heatmap of routing generated by the
model trained with the Mo-SARA on mathematical and
commonsense inference tasks through test tasks.

6 Conclution

In this work, we analyze the relationship between
the SVD results of pre-trained model parameters
and provide a new perspective for addressing the
varying importance across layers. During the ex-
ploration, we propose an effective method, SARA,
which can adaptively find the most suitable rank
for each layer during initialization. We further in-
troduce the Mo-SARA, which only fine-tunes the
routing mechanism and the mixture of singular val-
ues, significantly reducing the trainable parameters.
Various experiments on 15 datasets demonstrate
our methods’ higher performance while retaining
the advantages of the LoRA method, advancing
the field of PEFT by improving performance and
largely reducing trainable parameters.

7 Limitation

Although our method retains the advantages of the
LoRA method, allowing the additional parameter
parts to be directly loaded alongside the original
matrix without extra inference overhead, there is
still a small time cost during training initialization.
In the future, we will investigate methods to accel-
erate SVD decomposition to further speed up our
model’s training process. Meanwhile, our proposed
Mo-SARA method adopts a mechanism similar to
MoE(Jacobs et al., 1991), using a token-level soft
routing approach for the gating mechanism, which
selects all experts and performs a weighted sum
based on the gating. Although we have not con-
ducted extensive research on the choice of gating
methods, we have already achieved excellent re-
sults as presented. In the future, we will study more
MOoE methods, to further explore the potential of
PEFT methods with minimal parameter sizes.

8 Ethic Statement

The main purpose of this paper is to explore effec-
tive fine-tuning methods in low-resource scenarios.
By using SVD, we investigate the relationship be-
tween pre-trained matrices and the performance
of different layers in the model, and propose two
efficient fine-tuning methods that significantly re-
duces the number of trainable parameters. All the
models and datasets we used are open source, SO
we believe that the work in this paper does not pose
any potential threats.

References

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-7439.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924-2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523-533, Doha, Qatar. Association for Com-
putational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhigiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou-
janya Poria. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651-3657, Florence, Italy. Association for
Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199—

22213.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585-597.

Dawid Jan Kopiczko, Tijmen Blankevoort, and
Yuki Markus Asano. 2023. Vera: Vector-
based random matrix adaptation. arXiv preprint
arXiv:2310.11454.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language

https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158—167, Vancouver,
Canada. Association for Computational Linguistics.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
Pissa: Principal singular values and singular vectors
adaptation of large language models. arXiv preprint
arXiv:2404.02948.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. arXiv preprint arXiv:1706.09254.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver? arXiv preprint arXiv:2302.06476.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Subhro Roy and Dan Roth. 2016.
eral arithmetic word problems.
arXiv:1608.01413.

Solving gen-
arXiv preprint

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiga: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

10

Steffen Schotthdfer, Emanuele Zangrando, Jonas Kusch,
Gianluca Ceruti, and Francesco Tudisco. 2022. Low-
rank lottery tickets: finding efficient low-rank neural
networks via matrix differential equations. Advances
in Neural Information Processing Systems, 35:20051-
20063.

Tan Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019. What do you learn
from context? probing for sentence structure in con-
textualized word representations. In International
Conference on Learning Representations.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter
efficient tuning of pre-trained models using dynamic
search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2023. DyLoRA:
Parameter-efficient tuning of pre-trained models us-
ing dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 3274-3287, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512.

A Experimental Details

Data Usage: The datasets used in this paper come
from the open-source work of previous research
papers(Hu et al., 2023, 2021). For the mathematical
reasoning tasks, all six datasets are combined by
randomly selecting 80% of each, resulting in a total

https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239

of 3260 data points for training. Testing is then
performed on the remaining data for each dataset.
For commonsense inference tasks, 170k version
of this work(Hu et al., 2023) are used for training,
amalgamating the training datasets from all 8 sub-
tasks to create this final training dataset, and testing
is conducted on their individual testing dataset for
each task. For the tasks above, during training and
testing, a prompt is added to the data: *Below is
an instruction that describes a task, paired with
an input that provides further context. Write a
response that appropriately completes the request.’
For the E2E dataset, we directly adopte the training
and testing datasets used in this work(Hu et al.,
2021).

Hyperparameter Settings: In addition to the
hyperparameters mentioned in the text experiments,
all other experimental hyperparameters are consis-
tent with those of the main experiment. The experi-
mental hyperparameters of the main experiments
for mathematical reasoning, commonsense infer-
ence, and E2E tasks are shown in Tables 6, 7and 8,
respectively. The hyperparameters for most base-
line experiments are based on references from (Hu
etal., 2023) and 2(Hu et al., 2021), along with their
provided open-source code.

All of our methods and PiSSA (Meng et al.,
2024) are consistent with the original LoRA
method (Hu et al., 2021), with the added matrices
being parallel to the Q and V matrices. The random
initialization mentioned in our method follows the
Kaiming uniform approach.

Model Usage: In this paper, we utilize four
models: LLaMA-7B/13B (Touvron et al., 2023),
GPTJ-6B (Wang and Komatsuzaki, 2021), and
GPT-2(Radford et al., 2019). All training and
testing experiments are conducted using a single
Nvidia A40, Nvidia RTX4090 or NVIDIA L20.

B Relationship between Layers and k
under Different Thresholds.

We follow the method described in section 3 to
calculate the k-values obtained from matrix SVD
decomposition under different thresholds ranging
from 0.1 to 0.9, observing the impact as the number
of layers changes. The results for the Q and V
matrices are shown in Figures 8, respectively. All
k-values show a trend of initially decreasing around
the eighth layer and then increasing as the model’s
depth increases, which is the opposite of the model
performance trend with layer variation, consistent

11

with what we mentioned in section 3.

reshold 0.1 Threshold 0.4
Threshold 0.2 —— Threshold 0.5 ~—e— Threshold 0.8
Threshold 0.3 —e— Threshold 0.6 —e— Threshold 0.9

—e— Threshold 0.7

Change in k by Layer for Q Matrix

ST T T U b
Layers
reshold 0.1 Threshold 0.4 reshold 0.7

Threshold 0.2 —— Threshold 0.5 ~—e— Threshold 0.8
Threshold 0.3 —e— Threshold 0.6 —e— Threshold 0.9

Change in k by Layer for V Matrix

e PR S e]
/ e e

T 5 T 1
Layers

Figure 8: Average accuracy of the LoORA method on
mathematical reasoning tasks at different A scaling ra-
tios compared to the SARA method.

C Analysis of the LoORA Method under
Different A\ Hyperparameters.

We modify the A values in the LoRA method into
four sets and conduct experiments using LLaMA-
7B on the mathematical reasoning tasks. The ex-
perimental results are shown in the figure9. The
original LoRA method is also sensitive to the A
hyperparameter values, yielding different results
under the four different settings, all of which are
lower than those obtained by our SARA method.
This indicates that the LoRA method requires val-
idation to find the optimal A values for different
tasks, while our approach, which replaces scaling
with singular values, partially addresses this issue
for adding singular values allows for a more fine-
grained determination of the appropriate scaling
factor

D Heatmaps of routing across layers for
various test tasks using the Mo-SARA
method.

The experiments for obtaining this heatmaps is con-
sistent with that described in Section 5.8 of the
paper.

The results from the following figures, Figure
10 and Figure 11 show that mathematical reason-

o
o

62.18 ~~" SARA
''''''''''''''''''''''''''' LoRA ™

59.82 60.06

=

o
o
4
o
w

o
vl

Average Accuracy
B w
[o

IS
o

35 - , , .
1 2 3 4
A Values

Figure 9: Average accuracy of the LoRA method on
mathematical reasoning tasks at different A values com-
pared to the SARA method.

ing tasks and commonsense inference tasks exhibit
similar routing distributions respectively, and for
each layer, there is typically a predominant routing
value. This indicates that different sets of singular
values play similar roles across different test sets
for models trained on the same training set, with
each layer being dominated by a specific set of
singular values.

E Supplementary Results for Each
Dataset.

Specific results of the experimental supplements
on each dataset are presented in the following table
9,10,11, 12, 13 as shown.

F Scientific Artifacts

The datasets we use include the mathematical rea-
soning dataset SVAMP (Patel et al., 2021), AQuA
(Ling et al., 2017), AddSub (Hosseini et al., 2014),
MultiArith (Roy and Roth, 2016), the SingleEQ
(Koncel-Kedziorski et al., 2015), GSM8K (Cobbe
et al., 2021), and the commonsense inference
dataset ARC (Clark et al., 2018), Boolq (Clark
et al., 2019), WinoGrande (Sakaguchi et al., 2021),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
and OBQA (Mihaylov et al., 2018). The pre-trained
models we utilize are LLaMA-7B/13B (Touvron
et al., 2023), and GPT-J-6B (Wang and Komat-
suzaki, 2021), as well as E2E task(Novikova et al.,
2017). All the aforementioned datasets and models
are open-source, and our work is solely for scien-
tific research purposes, aligning with their original
intent.

SVAMP_Q_Metric

<

ya !

012345678 910111213141516171819202122232425262728293031
Layers

SVAMP_V_Metric

et

012345678 910111213141516171819202122232425262728293031

Router Index

Rcuter Index

Figure 10: SVAMP Heatmaps.

OBQA_Q_Metric

N II

012345678 910111213141516171&19202122232425262723293031
Layers

OBQA_V_Metric

"I'l-f".'l

0123 4 5678 910111213141516171819202122232425262723293031

Router Index
2 3

1

0

Rcuter Index

o

Figure 11: OBQA Heatmaps.

12

Hyperparameters Prefix LoRA Adapter Parallel PiSSA SARA Mo-SARA

LLaMA-7B
Rank r - 10 - - 10 - -
A - 2 - - 1 - -
Virtual Tokens 30 - - - - - -
Bottleneck Size - - 256 256 - - -
Thresholdr - - - - - 0.01 0.5
Parallel Heads - - - - - - 5
Dropout 0.05
Optimizer AdamW
LR 3e-4 3e-4
LR Scheduler Linear
Batch size 16
Warmup Steps 100
Epochs 3
Training Seed 42

LLaMA-13B
Rank r - 10 - - 11 - -
A - 2 - - 1 - -
Virtual Tokens 30 - - - - - -
Bottleneck Size - - 256 256 - - -
Threshold - - - - - 0.009 0.5
Parallel Heads - - - - - - 5
Dropout 0.05
Optimizer AdamW
LR 3e-2 3e-4 3e-4 3e-4 3e-4 le-2 3e-2
LR Scheduler Linear
Batch size 16
Warmup Steps 100
Epochs 3
Training Seed 42

GPT-J-6B

Rank r - 10 - - 10 - -
A - 2 - - 1 - -
Virtual Tokens 30 - - - - - -
Bottleneck Size - - 256 256 - - -
Threshold 7 - - - - - 0.009 0.5
Parallel Heads - - - - - - 5
Dropout 0.05
Optimizer AdamW
LR 3e-4 3e-4
LR Scheduler Linear
Batch size 16
Warmup Steps 100
Epochs 3
Training Seed 42

Table 6: Hyperparameters for Mathematical Reasoning Tasks

13

Hyperparameters LLaMA-7B LLaMA-13B
PiSSA SARA Mo-SARA PiSSA SARA Mo-SARA

Rank r 11 - - 11 - -
A 1 - - 1 - -
Threshold 7 - 0.09 0.8 - 0.075 0.5
Parallel Heads - - 5 - - 5
Dropout 0.05

Optimizer AdamW

LR 3e-4 le-3 3e-2 3e-4 le-3 3e-2
LR Scheduler Linear

Batch size 16

Warmup Steps 100

Epochs 3

Table 7: Hyperparameters for Commensense Inference Tasks

Hyperparameters VeRA SARA Mo-SARA

Threshold 7 - 0.012 0.5
Parallel Heads - - 3
Optimizer AdamW

LR le-1 8e-3 Te-2
LR Scheduler Linear

Batch size 16

Weight Decay 0.01

Lable Smooth 0.1

Rank 1024 - -
LoRA « 1024 - -
Warmup Steps 500

Epochs 5

Training Seed 314

Table 8: Hyperparameters for E2E Task

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.

LoRA(0-7) 48.50 11.76 73.42 74.55 79.41 19.32 51.16
LoRA(8-15) 49.50 25.49 69.62 84.55 85.29 20.45 55.82
LoRA(16-23) 40.50 25.49 69.62 70.00 76.47 14.39 49.41
LoRA(24-31) 30.50 25.49 62.03 42.73 61.76 9.09 38.60
SARA(0-7) 56.00 29.41 73.42 71.82 82.35 21.59 55.77
SARA(8-15) 54.00 27.45 74.68 77.27 82.35 22.73 56.41
SARA(16-23) 43.50 31.37 74.68 82.73 73.53 13.64 53.24
SARA(24-31) 37.00 15.69 68.35 64.55 63.73 6.06 42.56

Table 9: Supplement to the average accuracy of SARA and LoRA methods across different layers in mathematical
reason- ing tasks(Figure 3).

Method SVAMP AQuA AddSub MultiArith SingleEQ GSMSK Avg.

LoRA(r=5) 51.50 23.53 73.42 90.91 87.25 23.48 58.35
LoRA(r=10) 58.50 23.53 75.95 92.73 88.24 24.24 60.53
LoRA(r=15) 60.00 17.65 78.48 93.64 86.27 23.86 59.98
LoRA(r=20) 58.50 19.61 79.75 89.09 87.25 26.14 60.06
SARA(0.006) 55.00 19.61 74.68 85.45 88.24 28.41 58.57
SARA(0.01) 60.00 35.29 79.75 89.09 84.31 24.62 62.18
SARA(0.016) 61.50 23.53 78.48 89.09 82.35 26.52 60.24
SARA(0.02) 59.50 25.49 82.28 85.45 84.31 24.62 60.28

Table 10: Supplement to the average accuracy of the SARA and LoRA methods on mathematical reasoning tasks
with different trainable parameter counts.(Figure 4)

14

Method SVAMP AQuA AddSub MultiArith SingleEQ GSMSK Avg.

Threshold=0.1 51.50 27.45 69.62 84.55 82.35 23.86 56.56
Threshold=0.3 55.00 25.49 77.22 85.45 82.35 23.86 58.23
Threshold=0.5 56.00 23.53 73.42 89.09 84.31 23.48 58.31
Threshold=0.7 56.50 15.69 73.42 90.91 85.29 23.86 57.61

Table 11: Supplement to the average accuracy of Mo-SARA (1 head) on mathematical reasoning tasks under
different thresholds.(Figure5)

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.

Mo-SARA(1 head) 56.00 23.53 73.42 89.09 84.31 23.48 58.31
Mo-SARA(3 head) 54.50 21.57 75.95 89.09 85.29 23.86 58.38
Mo-SARA(S head) 55.00 23.53 70.89 90.91 87.25 26.14 58.95
Mo-SARA(7 head) 55.50 23.53 75.95 90.00 85.29 25.00 59.21
Mo-SARA(9 head) 53.00 25.49 78.48 88.18 86.27 24.62 59.34

Table 12: Supplement to the average accuracy of Mo-SARA on mathematical reasoning tasks with different
numbers of parallel heads, compared to SARA and LoRA methods.(Figure 6)

Method SVAMP AQuA AddSub MultiArith SingleEQ GSMSK Avg.

A=1 52.50 23.53 74.68 90.91 87.25 22.73 58.60
A=2 58.50 23.53 75.95 92.73 88.24 24.24 60.53
A=3 58.00 19.61 74.68 93.64 87.25 25.76 59.82
A=4 58.00 21.57 74.68 93.64 88.24 24.24 60.06

Table 13: Supplement to the average accuracy of the LoRA method on mathematical reasoning tasks at different A
values(Figure 9)

15

	Introduction
	Related Works
	PEFT Methods
	LoRA's Variants

	Correlation Analysis Between Layer Performance and Singular Values
	Method
	Motivation
	SARA
	Mo-SARA

	Experiment
	Mathematical Reasoning
	Commonsense Inference
	E2E Benchmark
	Improvement of SARA across Layers
	Ablation Study
	Robustness of the SARA Method
	Analysis Under Parameter Limits
	Analysis of Routing Effects

	Conclution
	Limitation
	Ethic Statement
	Experimental Details
	Relationship between Layers and k under Different Thresholds.
	Analysis of the LoRA Method under Different Hyperparameters.
	Heatmaps of routing across layers for various test tasks using the Mo-SARA method.
	Supplementary Results for Each Dataset.
	Scientific Artifacts

