
SARA: Singular-Value Based Adaptive Low-Rank Adaption

Anonymous ACL submission

Abstract

Low-Rank Adaptation (LoRA) as a parameter-001
efficient fine-tuning (PEFT) method is widely002
used for not adding inference overhead. It as-003
sumes that weight changes during fine-tuning004
can be approximated by low-rank matrices. De-005
spite the recent progress, existing methods suf-006
fer from three drawbacks: 1) Lacking differ-007
entiation of ranks for each layer of the model;008
2) The rank values need to be manually ver-009
ified; 3) Ignore the relationship between in-010
trinsic rank and the initial pre-trained matrix.011
In this work, we first analyze the relationship012
between the performance of different layers013
and their pre-trained matrix using SVD. Based014
on this, we design the Singular-Value Based015
Adaptive Low-Rank Adaption (SARA), which016
adaptively finds the suitable rank for each layer017
during initialization. Additionally, we explore018
the Mixture-of-SARA (Mo-SARA), which sig-019
nificantly reduces the number of parameters020
by fine-tuning only multiple parallel sets of021
singular values controlled by a router. Exten-022
sive experiments on various complex tasks have023
demonstrated the state-of-the-art performance024
and parameter efficiency of our methods.025

1 Introduction026

Large language models have demonstrated impres-027

sive generative capabilities, achieving excellent028

performance across various natural language pro-029

cessing (NLP) tasks (Touvron et al., 2023; Qin030

et al., 2023; Kojima et al., 2022). However, as031

the model size increases, the cost of full-parameter032

fine-tuning to adapt the model to downstream tasks033

becomes increasingly prohibitive. To address this034

issue, PEFT methods have garnered increasing at-035

tention (Houlsby et al., 2019; Li and Liang, 2021).036

Among them, the LoRA (Hu et al., 2021) method,037

which leverages the concept of matrix ‘intrinsic038

rank’ by freezing the original model parameters and039

fine-tuning only a small number of newly added,040

representative parameters, has been widely adopted.041

Figure 1: An overview of our methods, (a) perform-
ing SVD on the pre-trained weights and determining
the number k of values that account for a proportion
threshold τ of the total sum of singular values; (b) the
method of adding a truncated singular value matrix to
the pre-trained weights based on k; and (c) the extreme
method of fine-tuning only mixture of parallel singular
values. Λ and v, as diagonal matrix, only require a one-
dimensional vector for storage.

Its primary advantage is it does not add extra com- 042

putational overhead during inference. 043

Existing LoRA-like methods, however, as shown 044

in Table 1, still suffer from three drawbacks: 1) 045

Lacking differentiation of ranks for each layer of 046

the model. As different layers in transformers 047

have varying degrees of importance (Jawahar et al., 048

2019; Tenney et al., 2019; Jawahar et al., 2019). 049

2) The rank values need to be manually verified 050

which fails to determine the most suitable rank for 051

each specific model. 3) Ignore the relationship 052

between intrinsic rank and the initial pre-trained 053

matrix. LoRA leverages the concept of intrinsic 054

rank which is related to singular value decomposi- 055

tion (SVD), and the singular diagonal value matrix 056

is characterized by a small number of leading val- 057

1

ues accounting for a large proportion of the total058

sum. We perform SVD on the initial pre-trained059

model matrices, as shown in Figure 1a. We focus060

on the number k of values in the singular value that061

cumulatively account for a certain threshold τ of062

the total sum and our analysis reveals that the k063

value of each layer in the model correlates with the064

performance of that layer! Thus, we argue that k065

can reflect the most suitable intrinsic rank for each066

layer easily during initialization as the magnitude067

of singular values represent the significance of it,068

and existing works ignore this phenomenon.069

To alleviate these aforementioned problems, we070

propose a Singular-Value Based Adaptive Low-071

Rank Adaption (SARA) method, as shown in Fig-072

ure 1b. SARA calculates the most suitable rank for073

each layer based on the importance threshold τ dur-074

ing initialization and fine-tunes the newly added075

truncated singular value matrices. Additionally,076

we explore an extreme method, Mixture-of-SARA077

(Mo-SARA), which significantly reduces the num-078

ber of trainable parameters to the limit. As shown079

in Figure 1c, Mo-SARA only fine-tunes k diago-080

nal values as well as a diagonal matrixv used to081

accelerate convergence. They just require a one-082

dimensional vector for storage to significantly re-083

duce the number of trainable parameters. More-084

over, leveraging the concept of Mixture-of-Experts085

(MoE) (Jacobs et al., 1991), we innovatively train086

multiple singular value matrices in parallel, to lever-087

age the entire truncated singular value matrix sepa-088

rately, achieving comparable performance.089

Experimental results show that our improved090

methods can adaptively find suitable ranks, achiev-091

ing better performance even with fewer trainable092

parameters while retaining the advantages of LoRA093

and achieving state-of-the-art performance.094

In summary, our contributions are:095

1.We analyze the interactions between different096

layers and pre-trained matrices by SVD, discover-097

ing more suitable intrinsic rank, providing a new098

research perspective for the entire PEFT field to099

address the issue of inter-layer inconsistency.100

2.We propose the SARA method, which can101

adaptively calculate the suitable rank for each layer102

during initialization, extending the performance of103

LoRA, and can be combined with other methods.104

3.We further propose the Mo-SARA, which ex-105

plores leveraging the entire SARA process with106

only singular values and paralleling these values,107

significantly reducing the number of trainable pa-108

rameter by an order of magnitude.109

Methods Rank-
Differ

Adaptive-
Rank

Intrinsic Rank
&Matrix-Relation

LoRA ✗ ✗ ✗
PiSSA ✗ ✗ ✓
AdaLoRA ✓ ✓ ✗
DyLoRA ✓ ✓ ✗
DoRA ✗ ✗ ✗
VeRA ✗ ✗ ✗
SARA ✓ ✓ ✓

Table 1: Comparisons with LoRA-like methods from the
perspective of whether assign different ranks to different
layers, whether adaptively allocate ranks, and whether
consider the relationship between intrinsic rank and pre-
trained matrix. The methods include LoRA(Hu et al.,
2021), PiSSA (Meng et al., 2024), AdaLoRA(Zhang
et al., 2023), DyLoRA(Valipour et al., 2023), DoRA(Liu
et al., 2024), VeRA(Kopiczko et al., 2023).

2 Related Works 110

2.1 PEFT Methods 111

Traditional PEFT methods focuing on freezing 112

the original pre-trained parameters and fine-tuning 113

only a subset of newly added parameters. Typi- 114

cally, adapters (Houlsby et al., 2019; Patel et al., 115

2021) involve serially connecting a set of newly 116

added tunable parameters within the model; prefix- 117

tuning add virtual tokens to the model inputs (Li 118

and Liang, 2021); LoRA (Hu et al., 2021) assume 119

that the model parameter matrix only requires fine- 120

tuning a matrix of rank r, and replace the original 121

matrix with two matrices that increase and decrease 122

dimensions, respectively, for fine-tuning. 123

Among these methods, LoRA is widely used 124

while it can be directly added alongside the original 125

matrix without requiring additional inference time 126

and generally achieves better performance across 127

various tasks. Consequently, the LoRA method has 128

numerous improvements. 129

2.2 LoRA’s Variants 130

Several works focus on the modification of the 131

structure of LoRA. For example, PiSSA (Meng 132

et al., 2024), which is the most similar method to 133

ours, sets a fixed rank, performs SVD on the ma- 134

trix, and fine-tunes only the low-rank components. 135

Dora (Liu et al., 2024) improves performance by 136

decomposing the original matrix into weight and 137

direction components and fine-tuning them sepa- 138

rately; VeRA (Kopiczko et al., 2023) method re- 139

duces the number of trainable parameters based on 140

the LoRA by randomly initializing and freezing the 141

dimensionality expansion/reduction matrices and 142

only fine-tuning two diagonal matrices added after 143

2

them. A common issue with these works is that144

they overlook the fact that each model and each145

layer’s weight matrix has a different intrinsic rank,146

making a globally uniform rank setting inefficient147

for fine-tuning.148

Other works noticed this issue. AdaLoRA149

(Zhang et al., 2023) and DyLoRA (Valipour et al.,150

2023) calculate the suitable rank during training.151

However, they overlook leveraging the relationship152

between intrinsic rank and the pre-trained matrix153

to compute the rank simply and efficiently.154

Unlike previous works, in this paper, we find155

an effective method to adaptively find the suitable156

rank layer-by-layer through the SVD of pre-trained157

matrix during initialization. We also propose a158

MoE-like method, which leverages a larger num-159

ber of parameters for fine-tuning with a minimal160

parameter. These methods only require little com-161

putation time during initialization and retain all the162

advantages of LoRA, even achieving state-of-the-163

art performance. For the second method, only a164

minimal number of parameters need to be stored.165

3 Correlation Analysis Between Layer166

Performance and Singular Values167

As mentioned above, different layers exhibit vary-168

ing degrees of importance and for the LoRA169

method, each model adapts to downstream tasks170

with different ranks.171

To study the inter-layer different importance of172

LoRA, we conduct a case study experiment on173

LLaMA-7B (Touvron et al., 2023) based on previ-174

ous work (Hu et al., 2023). We divide 32 layers175

of the model into four parts and fine-tune each176

part separately using LoRA method, testing their177

average accuracy on six mathematical reasoning178

datasets. As shown in the bar chart in Figure2, the179

overall performance is excellent in the lower layers180

and poorer in the upper layers.181

Since the rank concept is related to SVD, we182

perform SVD on the pretrained Q and V matrices183

used in the classical LoRA method and analyze the184

singular values. Because the decomposed singular185

values are arranged in descending order and a small186

proportion of the leading values account for a large187

portion of the total sum, we calculate the number188

of singular values k needed to account for various189

proportion thresholds τ . (specific details on obtain-190

ing k can be referenced to algorithm 1.) As shown191

in the line chart in Figure 2, under all different pro-192

portion choices, the value of k decreases initially as193

Figure 2: The impact of different layers on the average
accuracy of mathematical reasoning tasks and the k of
different threshold τ (mean value obtained from Q and
V matrix SVD.)

the model goes from lower layers to higher layers 194

and then increases, which is exactly opposite to the 195

trend of performance change across layers. 196

We believe that this is because, to achieve similar 197

effects, the lower layers require a lower ‘intrinsic 198

rank’ while the upper layers require a higher one. 199

This corresponds to our calculated k values. There- 200

fore, allocating the same rank to all layers leads to 201

shortcomings in certain layers, thus affecting the 202

overall efficiency of the model, and it is necessary 203

to allocate ranks to each layer according to the cor- 204

responding k values to avoid the bottleneck effect. 205

Based on this, we design an improved method and 206

conduct tests to compare the effects between layers, 207

which will be presented bellow. 208

4 Method 209

4.1 Motivation 210

Based on the above findings, we define the number 211

of singular values that represent a certain propor- 212

tion of the total sum as k to reflect the intrinsic rank. 213

Specifically, we use proportion threshold τ which 214

can reflect the layer’s importance instead of rank 215

to set the hyperparameters conceptually similar to 216

(Schotthöfer et al., 2022), and add a new truncated 217

singular value matrix parallel to the original matrix. 218

Through this method, we can adaptively determine 219

the intrinsic rank of each layer during initialization. 220

4.2 SARA 221

The LoRA(Hu et al., 2021) method is based on 222

the assumption that changes in the matrix dur- 223

ing fine-tuning have a low ‘intrinsic rank’. It in- 224

volves adding a dimensionality reduction matrix 225

A ∈ Rd×r and a dimensionality expansion matrix 226

B ∈ Rr×d with a fixed scaling λ parallel to the 227

original weight matrixW0 ∈ Rd×d, using these as 228

3

the only trainable matrices. The calculation for-229

mula is as follows:230

h = x(W0 +∆W) = x(W0 + λAB) (1)231

SVD decomposes a matrix into three parts, we232

represent it with the formula shown in Equation 2.233

W = UΛV ≈ UkΛkVk (2)234

The U ∈ Rd×d and V ∈ Rd×d are the left and235

right singular value matrices, respectively. Matrix236

Λ ∈ Rd×d is called the singular diagonal value237

matrix with non-negative singular values on the238

diagonal, arranged in descending order. A small239

proportion of the leading values accounts for a240

large portion of the total sum of the singular val-241

ues. Therefore, a truncated singular value matrix242

is commonly used to approximate and reduce the243

original matrix.244

In this way, Uk = U [:, : k], Λk = Λk[: k, :245

k], Vk = Vk[: k, :], where k < d needs to be246

determined in advance.247

Thus, in our methods, we use a randomly initial-248

ized truncated singular value matrix to represent249

the part of the original matrix that needs to change250

during fine-tuning, adding it parallel to the original251

matrix. It further explore the ‘intrinsic rank’ from252

the pre-trained weights of the original matrix using253

SVD during initialization. The calculation formula254

is shown as follows:255

h = x(W0 + UkΛkVk) (3)256

where the underlined part represents the trainable257

truncated singular value matrix, and the calculation258

of k is shown in the following algorithm 1:

Algorithm 1 Calculate k Value

Require: Wpretrain ∈ Rd×d, thresholdτ ∈
(0, 1)

1: U,Λ, V ← SVD(Wpretrain)
2: total←

∑
Λ

3: target← τ × total
4: cumulative← 0, k ← 0
5: while cumulative < τ do
6: cumulative← cumulative+ Λ(k, k)
7: k ← k + 1
8: end while
9: return(k)

259
Since the singular value matrix is a diagonal vec-260

tor, we only need to store a one-dimensional vector,261

which allows us to reduce parameter storage.262

The magnitude of the singular values can indi- 263

cate the significance of the data. Therefore, we 264

remove the scaling part λ in the original LoRA 265

method, as our singular values effectively act as 266

more fine-grained, learnable scaling factors. For 267

∆W in SARA, each element is expressed as shown 268

in Equation 4: 269

∆Wij ≈
k∑

r=1

uirSrvrj (4) 270

Here, uir and vrj represent Uk(i, r) and Vk(r, j), 271

respectively; Sr represents Λk(r, r). 272

4.3 Mo-SARA 273

In singular values, the larger singular values corre- 274

spond to the main directions of variation in the data, 275

while the smaller singular values can be regarded 276

as noise or less important variations. Based on this, 277

we believe that for different downstream tasks, it is 278

sufficient to only adjust the singular values under 279

the same eigenvector mappings. 280

Additionally, inspired by MoE (Jacobs et al., 281

1991), we believe multiple singular value diagonal 282

matrices can be trained in parallel and selected 283

through a routing mechanism to learn different 284

tasks. Therefore, we explore an extreme improve- 285

ment method for the trainable parameters, called 286

Mixture-of-SARA(Mo-SARA). In this method, we 287

keep the left and right singular vectors of the com- 288

puted truncated singular value matrix unchanged 289

and randomly initialize multiple singular value di- 290

agonal matrices for learning. To accelerate conver- 291

gence referencing (Hu et al., 2021), where matrix 292

B is initialized to 0, we also add a diagonal matrix 293

v ∈ Rd×d initialized to zero after the truncated 294

singular value matrix. The formula for this method 295

is shown in Equation 5: 296

h = xW0 +
∑

gi ⊙ (xUkΛkiVkv) (5) 297

where the gate g=[g1,g2...gm] with values in the 298

range (0,1) is computed as follows: 299

g = softmax(xUk(Wg1Wg2)) (6) 300

Here, we use the value of the input x ∈ Rl×d 301

with a length of l and dimension d after passing 302

through the left singular matrix Uk as the input, 303

and generate token-level gating g ∈ Rl×m through 304

an MLP layer composed of two gating matrices 305

Wg1 ∈ Rk×1 and Wg2 ∈ R1×m. (We use two one- 306

dimensional linear layers to minimize the number 307

of parameters while achieving effective results.) 308

4

Method Params(%) SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
LLaMA-7B

Prefix 1.2E-1 42.50 23.53 58.23 60.00 66.67 15.91 44.47
Adapter 2.9 53.50 23.53 74.68 86.36 75.49 20.08 55.61
Parallel 2.9 63.00 25.49 75.95 86.36 83.33 23.11 59.54
LoRA 7.8E-2 58.50 23.53 75.95 92.73 88.24 24.24 60.53
PiSSA 7.8E-2 58.00 19.61 82.28 85.45 87.25 28.7 60.23
Mo-SARA 8.5E-3 55.00 23.53 70.89 90.91 87.25 26.14 58.95
SARA 7.1E-2 60.00 35.29 79.75 89.09 84.31 24.62 62.18

LLaMA-13B
Prefix 9.4E-2 58.00 29.41 72.15 78.18 82.35 22.73 57.14
Adapter 2.4 55.00 31.37 73.42 78.18 69.61 17.05 54.10
Parallel 2.4 69.00 17.65 81.01 93.64 86.27 27.27 62.47
LoRA 6.3E-2 66.00 21.57 82.28 95.45 89.22 36.74 65.21
PiSSA 6.9E-2 65.50 33.33 83.54 92.73 88.24 33.71 66.18
Mo-SARA 6.9E-3 66.50 25.49 82.28 95.45 89.22 34.09 65.50
SARA 6.3E-2 71.50 27.45 81.01 93.64 88.24 36.36 66.37

GPT-J-6B
Prefix 1.1E-1 41.50 9.80 67.09 75.45 71.57 9.85 45.88
Adapter 1.9 43.00 13.73 56.96 76.36 64.71 9.85 44.10
Parallel 2.8 42.50 19.61 56.96 78.18 66.67 12.88 46.13
LoRA 7.6E-2 47.00 5.88 65.82 72.73 76.47 11.36 46.54
PiSSA 7.6E-2 46.50 25.49 67.09 73.64 74.51 12.12 49.89
Mo-SARA 8.6E-3 45.50 15.69 64.56 82.73 78.43 11.74 49.77
SARA 7.0E-2 50.50 27.45 65.82 79.09 74.51 12.50 51.65

Table 2: The results on six different mathematical reasoning datasets. The answer is the accuracy of calculations
obtained using the zero-shot learning method on LLaMA-7B/13B, and GPT-J presented in the table.(bold: the best
score; underline: the second best)

This method only requires the storage of one-309

dimensional parameters as it can expand to a diago-310

nal singular value matrix only during computation.311

Even with multiple parallel sets, it still requires a312

few parameters to store, and each set can leverage313

the singular values to move the entire truncated314

singular value matrix, obtaining better efficiency.315

5 Experiment316

In this section, (1) we compare our methods with317

the PEFT methods as well as the latest LoRA-like318

methods, especially PiSSA (Meng et al., 2024),319

which is similar to us, across a wide range of320

tasks, including mathematical reasoning, common-321

sense inference, and E2E tasks, covering a total322

of 15 datasets. (2) Subsequently, we validate our323

method’s ability to address the issue of inconsistent324

layer importance mentioned above. (3) We then325

conduct ablation experiments to discuss the effect326

of each component of our methods. (4) Next, we ex-327

amine the parameter sensitivity of our methods and328

the impact of the number of parallel heads on Mo-329

SARA. (5) Finally, we show the routing learned by330

the Mo-SARA across various tasks, demonstrating331

the effectiveness of this mechanism.332

In order to ensure the accuracy of the perfor-333

mance for other methods as much as possible, we334

compare different methods across various datasets.335

The detailed hyperparameter and experimental set-336

tings for all experiments in this section can be 337

found in Appendix A. 338

5.1 Mathematical Reasoning 339

We compare our methods with five PEFT methods, 340

including LoRA (Hu et al., 2021), Prefix (Li and 341

Liang, 2021), Adapter(Houlsby et al., 2019), Paral- 342

lel Adapter(Parallel) (Patel et al., 2021), and PiSSA 343

(Meng et al., 2024), using three LLMs: LLaMA- 344

7B/13B (Touvron et al., 2023), and GPT-J (Wang 345

and Komatsuzaki, 2021), across six mathematical 346

reasoning sub-tasks which are (1) the SVAMP (Pa- 347

tel et al., 2021), (2) the AQuA (Ling et al., 2017) 348

dataset, (3) the AddSub (Hosseini et al., 2014) 349

dataset, (4) the MultiArith (Roy and Roth, 2016) 350

dataset, (5) the SingleEQ (Koncel-Kedziorski et al., 351

2015) dataset, and (6) the GSM8K (Cobbe et al., 352

2021) dataset. We largely follow the open-source 353

work (Hu et al., 2023) in terms of experiments and 354

hyperparameter settings, combining the six tasks 355

to create a unified training dataset and testing ac- 356

curacy on each task separately. To ensure a fair 357

comparison, we adjust the threshold for k in our 358

method during initialization to achieve a similar 359

number of trainable parameters. The table below 360

lists the proportion of trainable parameters to the 361

total parameters for each method. 362

Table 2 shows that our SARA method signifi- 363

cantly outperforms various baseline methods across 364

5

Method Params(%) ARC-c ARC-e Boolq WinoG PIQA SIQA OBQA HellaS Avg.
ChatGPT - 79.9 89.8 73.1 66.1 85.4 68.5 74.8 78.5 77.0

LLaMA-7B
Prefix 1.1E-1 54.0 72.9 64.3 72.1 76.8 73.9 60.6 42.1 64.6
Adapter 9.9E-1 57.1 74.5 63.0 75.7 79.2 76.3 72.4 67.9 70.8
Parallel 3.5 57.3 73.7 67.9 78.9 76.4 78.8 75.2 69.8 72.2
LoRA 8.3E-1 61.3 77.8 68.9 78.8 80.7 77.4 74.8 78.1 74.7
PiSSA 8.5E-1 62.4 77.0 68.1 78.2 79.2 76.0 76.2 81.5 74.8
DoRA 8.4E-1 66.2 81.9 69.7 81.0 83.4 78.6 79.2 87.2 78.4
Mo-SARA 8.5E-3 54.5 74.5 62.8 71.8 76.0 73.8 65.8 50.3 66.2
SARA 8.3E-1 65.8 81.6 70.9 82.6 83.6 78.8 81.4 82.9 78.5

LLaMA-13B
Prefix 3.1E-2 62.9 79.5 65.3 68.6 75.4 72.1 68.0 55.2 68.4
Adapter 8.0E-1 67.3 82.5 71.8 82.4 83 79.2 81.8 88.1 79.5
Parallel 2.9 71.2 84.2 72.5 84.1 84.9 79.8 82.4 92.1 81.4
LoRA 6.7E-1 68.3 82.8 72.1 83.5 80.5 83.7 82.4 90.5 80.5
PiSSA 6.7E-1 66.0 81.5 70.3 81.4 83.7 79.2 81.0 90.4 79.2
DoRA 6.8E-1 69.6 84.2 72.4 84.2 84.9 81.5 82.8 92.4 81.5
Mo-SARA 6.9E-3 61.6 78.7 67.9 76.9 80.2 76.3 72.6 76.4 73.8
SARA 6.8E-1 69.8 84.1 73.2 84.9 83.9 80.6 84.6 92.2 81.7

Table 3: The results on 8 commonsense inference datasets, with ChatGPT and baseline results taken from (Hu et al.,
2023), the DoRA method results sourced from (Liu et al., 2024).(bold: the best score; underline: the second best)

a wide range of models, achieving up to an 11%365

improvement over the LoRA method. Addition-366

ally, our Mo-SARA method achieves remarkable367

results with an order of magnitude fewer trainable368

parameters, even surpassing all baselines on the369

LLaMA-13B and GPT-J models.370

5.2 Commonsense Inference371

For commonsense reasoning, which includes eight372

downstream tasks as follows:(1) the ARC-c and373

(2) the ARC-e are the Challenge Set and Easy Set374

of ARC (Clark et al., 2018), (3) the Boolq (Clark375

et al., 2019), (4) the WinoGrande (Sakaguchi et al.,376

2021), (5) the PIQA (Bisk et al., 2020), (6) the377

SIQA (Sap et al., 2019), (7) the OBQA (Mihaylov378

et al., 2018), and (8) the HellaSwag (Zellers et al.,379

2019). We conduct experiments on the LLaMA-380

7B/13B (Touvron et al., 2023) models to extend the381

comparison with DoRA (Liu et al., 2024) and the382

results obtained with GPT-3.5-turbo API through383

zero-shot CoT (Wei et al., 2022). We also largely384

follow this work (Hu et al., 2023).385

The results in Table 3 show that SARA achieves386

better results across a variety of models and387

datasets, with up to a 5% improvement over the388

LoRA method. Our Mo-SARA method, despite in-389

herently using fewer training parameters, achieves390

comparable results on this task with almost two391

orders of magnitude fewer parameters, even sur-392

passing the performance of the prefix method.393

5.3 E2E Benchmark394

To further validate the performance of our meth-395

ods through broader comparisons, we also conduct396

experiments on E2E (Novikova et al., 2017). We 397

follow the experimental setup from (Hu et al., 2021) 398

and use GPT-2 Medium (Radford et al., 2019) 399

model. In addition to LoRA, we compare new 400

variants of the LoRA method, including Adalora 401

(Zhang et al., 2023), Dylora (Valipour et al., 2022), 402

and Vera (Kopiczko et al., 2023). For VeRA 403

method, we use all the experimental settings men- 404

tioned in the paper (Kopiczko et al., 2023). 405

The experimental results are shown in Table 4. It 406

can be seen that our SARA method achieves better 407

results with fewer trainable parameters. In partic- 408

ular, our Mo-SARA method outperforms VeRA 409

(Kopiczko et al., 2023) with fewer parameters. 410

5.4 Improvement of SARA across Layers 411

We use the SARA method, dividing 32 layers of 412

LLaMA-7B into four parts for separate fine-tuning 413

to verify our method’s effectiveness in allocating 414

ranks using singular values, addressing the issue of 415

poorer results caused by inconsistent importance 416

across layers. As shown in the Figure 3, our method 417

consistently outperforms in each fine-tuning part, 418

reducing the variance among layer results and ad- 419

dressing the problem posed in section 3. 420

5.5 Ablation Study 421

To analyze the impact of each component of SARA, 422

we set up two groups of ablation experiments. 423

These experiments verify whether it is necessary 424

to initialize the up-projection matrix V to zero as 425

in the original LoRA method and whether it is nec- 426

essary to add the singular value diagonal matrix 427

Λ. We conduct experiments using LLaMA-7B on 428

6

Method Params BLEU NIST METEOR ROUGE-L CIDEr
FT 1 354.92M 68.2 8.62 46.2 71.0 2.47
AdptL1 0.37M 66.3 8.41 45.0 69.8 2.40
AdptL1 11.09M 68.9 8.71 46.1 71.3 2.47
AdptH1 11.09M 67.3 8.50 46.0 70.7 2.44
DyLoRA2 0.39M 69.2 8.75 46.3 70.8 2.46
AdaLoRA3 0.38M 68.2 8.58 44.1 70.7 2.35
LoRA1 0.35M 70.4 8.85 46.8 71.8 2.53
VeRA 0.098M 69.1 8.71 46.3 70.8 2.43
Mo-SARA 0.094M 69.4 8.77 46.4 71.1 2.48
SARA 0.33M 70.4 8.84 46.7 72.3 2.55

Table 4: The results on the E2E dataset, with the results for (1,2 ,3) taken from previous work. 1(Hu et al.,
2021),2(Zhang et al., 2023),3(Valipour et al., 2023)

Figure 3: Average accuracy of SARA and LoRA meth-
ods across layers in mathematical reasoning tasks.

mathematical reasoning tasks, as shown in the ta-429

ble 5. It can be seen that our approach of directly430

adding the truncated singular value matrix next to431

the original matrix yields better results and ddding432

singular value diagonal matrix almost does not in-433

crease the parameter count.434

We also study the structure of adding a new trun-435

cated singular value matrix parallel to the original436

matrix behaves without our rank adaptation method437

as shown in Table 5, it shows the effectiveness of438

methods assigning different ranks to different lay-439

ers.440

Additionally, we conduct a set of experiments on441

the scaling value λ of the original LoRA to show442

that the original LoRA is also sensitive to the λ443

and our method of replacing scaling with singular444

values Λ to some extent addresses this issue. The445

results can be seen in Appendix C.446

For Mo-SARA, we try to omit the diagonal ma-447

trix v (for a fair comparison of parameter quantities,448

we parallel 10 heads to increase the number of train-449

able parameters.), which is added after the singular450

value matrix for fast convergence, and also placing451

v in front of the truncated singular value matrix.452

The experimental results are shown in Table 5. It453

can be seen that, regardless of its position, a diago-454

nal matrix for fast convergence plays a significant455

role. At the same time, even when only fine-tuning456

the singular value part, it still achieves decent re-457

sults with a small parameter count, proving the458

Figure 4: Average accuracy of the SARA and LoRA
methods on mathematical reasoning tasks with different
trainable parameters. The thresholds τ for determining
k in the SARA method [0.006, 0.01, 0.016, 0.02] and
the r values used to adjust the parameter count in the
LoRA method [5, 10, 15, 20] are indicated in the figure.

effect of this component for fine-tuning, consistent 459

with our hypothesis. 460

5.6 Robustness of the SARA Method 461

We conduct experiments using LLaMA-7B on 462

mathematical tasks to compare the trends of SARA 463

and LoRA under different trainable parameter sizes. 464

The experimental results are shown in Figure 4. It 465

can be seen that our method outperforms the LoRA 466

method under all trainable parameter sizes and ex- 467

hibits similar trends to the LoRA method. This 468

demonstrates that our approach of assigning dif- 469

ferent ranks to different layers during initialization 470

offers greater advantages. 471

5.7 Analysis Under Parameter Limits 472

To explore methods for further reducing trainable 473

parameters, we conduct experiments on the Mo- 474

SARA using LLaMA-7B with mathematical rea- 475

soning tasks. 476

Threshold τ : We design four sets of experi- 477

ments without parallel structure. The threshold τ 478

for determining k is set incrementally to 0.1, 0.3, 479

0.5, and 0.7. The parameter counts and results are 480

shown in Figure 5, displaying a trend of initial in- 481

crease followed by a gradual decrease. Thus, in 482

7

Method Params(%) SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
SARA 7.1E-2 60.00 35.29 79.75 89.09 84.31 24.62 62.18
w/o Λ 7.1E-2 47.50 17.65 65.82 80.00 72.55 12.88 49.40
V =0 7.1E-2 58.00 17.65 74.68 90.00 86.27 26.52 58.85
w/o Λ,V =0 7.1E-2 60.00 23.53 77.22 88.18 80.39 21.21 58.42
w/o rank adapt 7.8E-2 61.50 17.65 77.22 90.91 78.43 24.24 58.32
Mo-SARA 8.5E-3 55.00 23.53 70.89 90.91 87.25 26.14 58.95
w/o v 9.0E-3 49.00 25.49 69.62 80.00 75.49 18.18 52.88
v in front 8.5E-3 57.00 21.57 73.42 91.82 86.27 23.48 58.93

Table 5: Ablation of SARA and Mo-SARA methods on the mathematical reasoning tasks with LLaMA-7B.

our experiments, we use 0.5 as the threshold for483

determining k in the Mo-SARA method.484

Figure 5: Average accuracy of Mo-SARA (1 head) on
mathematical reasoning tasks under different thresholds
τ , the bar chart displays the trainable parameters above.

Parallel Heads: We further explore the choice485

of parallel heads for the parallel structure, using486

soft routing to control 3, 5, 7, and 9 groups of par-487

allel singular values and compare the results with488

that without parallel structure. As shown in Figure489

6, the experimental results demonstrate a stable in-490

crease in performance as parallel heads increases,491

gradually approaching the results of the original492

LoRA method with nearly ten times the parameter493

count. Considering the balance between parameter494

count and performance, we adopt a structure with495

5 parallel groups in main experiments.496

Figure 6: Average accuracy of Mo-SARA on mathemat-
ical reasoning tasks with different numbers of parallel
heads, compared to SARA and LoRA methods.

5.8 Analysis of Routing Effects497

To explore the effect of using mixture parallel struc-498

ture in the Mo-SARA method, we employ the499

model trained on LLaMA-7B to extract the first500

question across various test tasks. The routing re- 501

sults of the first model pass are averaged across 502

‘batch’ and ‘length’ dimensions to obtain the rout- 503

ing’s heatmap. Figure7 illustrates the routing re- 504

sults of the Mo-SARA method applied alongside 505

the Q-matrix in mathematical reasoning and com- 506

monsense inference tasks. It is observed that for dif- 507

ferent tasks, the routing mechanism learns different 508

allocation strategies, assigning different weights to 509

each set of singular values, and each of them also 510

learns the tasks it excels at. This indicates the role 511

of the routing in assisting the Mo-SARA method 512

in parallelizing and leveraging the entire singular 513

value matrix for fine-tuning. 514

Figure 7: The heatmap of routing generated by the
model trained with the Mo-SARA on mathematical and
commonsense inference tasks through test tasks.

6 Conclution 515

In this work, we analyze the relationship between 516

the SVD results of pre-trained model parameters 517

and provide a new perspective for addressing the 518

varying importance across layers. During the ex- 519

ploration, we propose an effective method, SARA, 520

which can adaptively find the most suitable rank 521

for each layer during initialization. We further in- 522

troduce the Mo-SARA, which only fine-tunes the 523

routing mechanism and the mixture of singular val- 524

ues, significantly reducing the trainable parameters. 525

Various experiments on 15 datasets demonstrate 526

our methods’ higher performance while retaining 527

the advantages of the LoRA method, advancing 528

the field of PEFT by improving performance and 529

largely reducing trainable parameters. 530

8

7 Limitation531

Although our method retains the advantages of the532

LoRA method, allowing the additional parameter533

parts to be directly loaded alongside the original534

matrix without extra inference overhead, there is535

still a small time cost during training initialization.536

In the future, we will investigate methods to accel-537

erate SVD decomposition to further speed up our538

model’s training process. Meanwhile, our proposed539

Mo-SARA method adopts a mechanism similar to540

MoE(Jacobs et al., 1991), using a token-level soft541

routing approach for the gating mechanism, which542

selects all experts and performs a weighted sum543

based on the gating. Although we have not con-544

ducted extensive research on the choice of gating545

methods, we have already achieved excellent re-546

sults as presented. In the future, we will study more547

MoE methods, to further explore the potential of548

PEFT methods with minimal parameter sizes.549

8 Ethic Statement550

The main purpose of this paper is to explore effec-551

tive fine-tuning methods in low-resource scenarios.552

By using SVD, we investigate the relationship be-553

tween pre-trained matrices and the performance554

of different layers in the model, and propose two555

efficient fine-tuning methods that significantly re-556

duces the number of trainable parameters. All the557

models and datasets we used are open source, so558

we believe that the work in this paper does not pose559

any potential threats.560

References561

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,562
et al. 2020. Piqa: Reasoning about physical com-563
monsense in natural language. In Proceedings of the564
AAAI conference on artificial intelligence, volume 34,565
pages 7432–7439.566

Christopher Clark, Kenton Lee, Ming-Wei Chang,567
Tom Kwiatkowski, Michael Collins, and Kristina568
Toutanova. 2019. BoolQ: Exploring the surprising569
difficulty of natural yes/no questions. In Proceedings570
of the 2019 Conference of the North American Chap-571
ter of the Association for Computational Linguistics:572
Human Language Technologies, Volume 1 (Long and573
Short Papers), pages 2924–2936, Minneapolis, Min-574
nesota. Association for Computational Linguistics.575

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,576
Ashish Sabharwal, Carissa Schoenick, and Oyvind577
Tafjord. 2018. Think you have solved question an-578
swering? try arc, the ai2 reasoning challenge. arXiv579
preprint arXiv:1803.05457.580

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 581
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 582
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 583
Nakano, et al. 2021. Training verifiers to solve math 584
word problems. arXiv preprint arXiv:2110.14168. 585

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren 586
Etzioni, and Nate Kushman. 2014. Learning to solve 587
arithmetic word problems with verb categorization. 588
In Proceedings of the 2014 Conference on Empirical 589
Methods in Natural Language Processing (EMNLP), 590
pages 523–533, Doha, Qatar. Association for Com- 591
putational Linguistics. 592

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 593
Bruna Morrone, Quentin De Laroussilhe, Andrea 594
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 595
Parameter-efficient transfer learning for nlp. In In- 596
ternational Conference on Machine Learning, pages 597
2790–2799. PMLR. 598

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 599
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 600
and Weizhu Chen. 2021. Lora: Low-rank adap- 601
tation of large language models. arXiv preprint 602
arXiv:2106.09685. 603

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee- 604
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou- 605
janya Poria. 2023. Llm-adapters: An adapter family 606
for parameter-efficient fine-tuning of large language 607
models. arXiv preprint arXiv:2304.01933. 608

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, 609
and Geoffrey E Hinton. 1991. Adaptive mixtures of 610
local experts. Neural computation, 3(1):79–87. 611

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 612
2019. What does BERT learn about the structure of 613
language? In Proceedings of the 57th Annual Meet- 614
ing of the Association for Computational Linguistics, 615
pages 3651–3657, Florence, Italy. Association for 616
Computational Linguistics. 617

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 618
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 619
guage models are zero-shot reasoners. Advances in 620
neural information processing systems, 35:22199– 621
22213. 622

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish 623
Sabharwal, Oren Etzioni, and Siena Dumas Ang. 624
2015. Parsing algebraic word problems into equa- 625
tions. Transactions of the Association for Computa- 626
tional Linguistics, 3:585–597. 627

Dawid Jan Kopiczko, Tijmen Blankevoort, and 628
Yuki Markus Asano. 2023. Vera: Vector- 629
based random matrix adaptation. arXiv preprint 630
arXiv:2310.11454. 631

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 632
Optimizing continuous prompts for generation. In 633
Proceedings of the 59th Annual Meeting of the Asso- 634
ciation for Computational Linguistics and the 11th 635
International Joint Conference on Natural Language 636

9

https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Processing (Volume 1: Long Papers), pages 4582–637
4597, Online. Association for Computational Lin-638
guistics.639

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-640
som. 2017. Program induction by rationale genera-641
tion: Learning to solve and explain algebraic word642
problems. In Proceedings of the 55th Annual Meet-643
ing of the Association for Computational Linguistics644
(Volume 1: Long Papers), pages 158–167, Vancouver,645
Canada. Association for Computational Linguistics.646

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo647
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting648
Cheng, and Min-Hung Chen. 2024. Dora: Weight-649
decomposed low-rank adaptation. arXiv preprint650
arXiv:2402.09353.651

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.652
Pissa: Principal singular values and singular vectors653
adaptation of large language models. arXiv preprint654
arXiv:2404.02948.655

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish656
Sabharwal. 2018. Can a suit of armor conduct elec-657
tricity? a new dataset for open book question answer-658
ing. arXiv preprint arXiv:1809.02789.659

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.660
2017. The e2e dataset: New challenges for end-to-661
end generation. arXiv preprint arXiv:1706.09254.662

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.663
2021. Are NLP models really able to solve simple664
math word problems? In Proceedings of the 2021665
Conference of the North American Chapter of the666
Association for Computational Linguistics: Human667
Language Technologies, pages 2080–2094, Online.668
Association for Computational Linguistics.669

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao670
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is671
chatgpt a general-purpose natural language process-672
ing task solver? arXiv preprint arXiv:2302.06476.673

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,674
Dario Amodei, Ilya Sutskever, et al. 2019. Language675
models are unsupervised multitask learners. OpenAI676
blog, 1(8):9.677

Subhro Roy and Dan Roth. 2016. Solving gen-678
eral arithmetic word problems. arXiv preprint679
arXiv:1608.01413.680

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-681
ula, and Yejin Choi. 2021. Winogrande: An adver-682
sarial winograd schema challenge at scale. Commu-683
nications of the ACM, 64(9):99–106.684

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan685
LeBras, and Yejin Choi. 2019. Socialiqa: Com-686
monsense reasoning about social interactions. arXiv687
preprint arXiv:1904.09728.688

Steffen Schotthöfer, Emanuele Zangrando, Jonas Kusch, 689
Gianluca Ceruti, and Francesco Tudisco. 2022. Low- 690
rank lottery tickets: finding efficient low-rank neural 691
networks via matrix differential equations. Advances 692
in Neural Information Processing Systems, 35:20051– 693
20063. 694

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, 695
Adam Poliak, R. Thomas McCoy, Najoung Kim, Ben- 696
jamin Van Durme, Samuel R. Bowman, Dipanjan 697
Das, and Ellie Pavlick. 2019. What do you learn 698
from context? probing for sentence structure in con- 699
textualized word representations. In International 700
Conference on Learning Representations. 701

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 702
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 703
Baptiste Rozière, Naman Goyal, Eric Hambro, 704
Faisal Azhar, et al. 2023. Llama: Open and effi- 705
cient foundation language models. arXiv preprint 706
arXiv:2302.13971. 707

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan 708
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter 709
efficient tuning of pre-trained models using dynamic 710
search-free low-rank adaptation. arXiv preprint 711
arXiv:2210.07558. 712

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan 713
Kobyzev, and Ali Ghodsi. 2023. DyLoRA: 714
Parameter-efficient tuning of pre-trained models us- 715
ing dynamic search-free low-rank adaptation. In Pro- 716
ceedings of the 17th Conference of the European 717
Chapter of the Association for Computational Lin- 718
guistics, pages 3274–3287, Dubrovnik, Croatia. As- 719
sociation for Computational Linguistics. 720

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6 721
billion parameter autoregressive language model. 722

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 723
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 724
et al. 2022. Chain-of-thought prompting elicits rea- 725
soning in large language models. Advances in neural 726
information processing systems, 35:24824–24837. 727

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 728
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 729
machine really finish your sentence? arXiv preprint 730
arXiv:1905.07830. 731

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 732
Pengcheng He, Yu Cheng, Weizhu Chen, and 733
Tuo Zhao. 2023. Adaptive budget allocation for 734
parameter-efficient fine-tuning. arXiv preprint 735
arXiv:2303.10512. 736

A Experimental Details 737

Data Usage: The datasets used in this paper come 738

from the open-source work of previous research 739

papers(Hu et al., 2023, 2021). For the mathematical 740

reasoning tasks, all six datasets are combined by 741

randomly selecting 80% of each, resulting in a total 742

10

https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239

of 3260 data points for training. Testing is then743

performed on the remaining data for each dataset.744

For commonsense inference tasks, 170k version745

of this work(Hu et al., 2023) are used for training,746

amalgamating the training datasets from all 8 sub-747

tasks to create this final training dataset, and testing748

is conducted on their individual testing dataset for749

each task. For the tasks above, during training and750

testing, a prompt is added to the data: ’Below is751

an instruction that describes a task, paired with752

an input that provides further context. Write a753

response that appropriately completes the request.’754

For the E2E dataset, we directly adopte the training755

and testing datasets used in this work(Hu et al.,756

2021).757

Hyperparameter Settings: In addition to the758

hyperparameters mentioned in the text experiments,759

all other experimental hyperparameters are consis-760

tent with those of the main experiment. The experi-761

mental hyperparameters of the main experiments762

for mathematical reasoning, commonsense infer-763

ence, and E2E tasks are shown in Tables 6, 7and 8,764

respectively. The hyperparameters for most base-765

line experiments are based on references from (Hu766

et al., 2023) and 2(Hu et al., 2021), along with their767

provided open-source code.768

All of our methods and PiSSA (Meng et al.,769

2024) are consistent with the original LoRA770

method (Hu et al., 2021), with the added matrices771

being parallel to the Q and V matrices. The random772

initialization mentioned in our method follows the773

Kaiming uniform approach.774

Model Usage: In this paper, we utilize four775

models: LLaMA-7B/13B (Touvron et al., 2023),776

GPTJ-6B (Wang and Komatsuzaki, 2021), and777

GPT-2(Radford et al., 2019). All training and778

testing experiments are conducted using a single779

Nvidia A40, Nvidia RTX4090 or NVIDIA L20.780

B Relationship between Layers and k781

under Different Thresholds.782

We follow the method described in section 3 to783

calculate the k-values obtained from matrix SVD784

decomposition under different thresholds ranging785

from 0.1 to 0.9, observing the impact as the number786

of layers changes. The results for the Q and V787

matrices are shown in Figures 8, respectively. All788

k-values show a trend of initially decreasing around789

the eighth layer and then increasing as the model’s790

depth increases, which is the opposite of the model791

performance trend with layer variation, consistent792

with what we mentioned in section 3.

Figure 8: Average accuracy of the LoRA method on
mathematical reasoning tasks at different λ scaling ra-
tios compared to the SARA method.

793

C Analysis of the LoRA Method under 794

Different λ Hyperparameters. 795

We modify the λ values in the LoRA method into 796

four sets and conduct experiments using LLaMA- 797

7B on the mathematical reasoning tasks. The ex- 798

perimental results are shown in the figure9. The 799

original LoRA method is also sensitive to the λ 800

hyperparameter values, yielding different results 801

under the four different settings, all of which are 802

lower than those obtained by our SARA method. 803

This indicates that the LoRA method requires val- 804

idation to find the optimal λ values for different 805

tasks, while our approach, which replaces scaling 806

with singular values, partially addresses this issue 807

for adding singular values allows for a more fine- 808

grained determination of the appropriate scaling 809

factor 810

D Heatmaps of routing across layers for 811

various test tasks using the Mo-SARA 812

method. 813

The experiments for obtaining this heatmaps is con- 814

sistent with that described in Section 5.8 of the 815

paper. 816

The results from the following figures, Figure 817

10 and Figure 11 show that mathematical reason- 818

11

Figure 9: Average accuracy of the LoRA method on
mathematical reasoning tasks at different λ values com-
pared to the SARA method.

ing tasks and commonsense inference tasks exhibit819

similar routing distributions respectively, and for820

each layer, there is typically a predominant routing821

value. This indicates that different sets of singular822

values play similar roles across different test sets823

for models trained on the same training set, with824

each layer being dominated by a specific set of825

singular values.826

E Supplementary Results for Each827

Dataset.828

Specific results of the experimental supplements829

on each dataset are presented in the following table830

9, 10,11, 12, 13 as shown.831

F Scientific Artifacts832

The datasets we use include the mathematical rea-833

soning dataset SVAMP (Patel et al., 2021), AQuA834

(Ling et al., 2017), AddSub (Hosseini et al., 2014),835

MultiArith (Roy and Roth, 2016), the SingleEQ836

(Koncel-Kedziorski et al., 2015), GSM8K (Cobbe837

et al., 2021), and the commonsense inference838

dataset ARC (Clark et al., 2018), Boolq (Clark839

et al., 2019), WinoGrande (Sakaguchi et al., 2021),840

PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),841

and OBQA (Mihaylov et al., 2018). The pre-trained842

models we utilize are LLaMA-7B/13B (Touvron843

et al., 2023), and GPT-J-6B (Wang and Komat-844

suzaki, 2021), as well as E2E task(Novikova et al.,845

2017). All the aforementioned datasets and models846

are open-source, and our work is solely for scien-847

tific research purposes, aligning with their original848

intent.849

Figure 10: SVAMP Heatmaps.

Figure 11: OBQA Heatmaps.

12

Hyperparameters Prefix LoRA Adapter Parallel PiSSA SARA Mo-SARA
LLaMA-7B

Rank r - 10 - - 10 - -
λ - 2 - - 1 - -
Virtual Tokens 30 - - - - - -
Bottleneck Size - - 256 256 - - -
Thresholdτ - - - - - 0.01 0.5
Parallel Heads - - - - - - 5
Dropout 0.05
Optimizer AdamW
LR 3e-2 3e-4 3e-4 3e-4 3e-4 3e-3 3e-2
LR Scheduler Linear
Batch size 16
Warmup Steps 100
Epochs 3
Training Seed 42

LLaMA-13B
Rank r - 10 - - 11 - -
λ - 2 - - 1 - -
Virtual Tokens 30 - - - - - -
Bottleneck Size - - 256 256 - - -
Threshold τ - - - - - 0.009 0.5
Parallel Heads - - - - - - 5
Dropout 0.05
Optimizer AdamW
LR 3e-2 3e-4 3e-4 3e-4 3e-4 1e-2 3e-2
LR Scheduler Linear
Batch size 16
Warmup Steps 100
Epochs 3
Training Seed 42

GPT-J-6B
Rank r - 10 - - 10 - -
λ - 2 - - 1 - -
Virtual Tokens 30 - - - - - -
Bottleneck Size - - 256 256 - - -
Threshold τ - - - - - 0.009 0.5
Parallel Heads - - - - - - 5
Dropout 0.05
Optimizer AdamW
LR 3e-2 3e-4 3e-4 3e-4 3e-4 3e-3 3e-2
LR Scheduler Linear
Batch size 16
Warmup Steps 100
Epochs 3
Training Seed 42

Table 6: Hyperparameters for Mathematical Reasoning Tasks

13

Hyperparameters LLaMA-7B LLaMA-13B
PiSSA SARA Mo-SARA PiSSA SARA Mo-SARA

Rank r 11 - - 11 - -
λ 1 - - 1 - -
Threshold τ - 0.09 0.8 - 0.075 0.5
Parallel Heads - - 5 - - 5
Dropout 0.05
Optimizer AdamW
LR 3e-4 1e-3 3e-2 3e-4 1e-3 3e-2
LR Scheduler Linear
Batch size 16
Warmup Steps 100
Epochs 3

Table 7: Hyperparameters for Commensense Inference Tasks

Hyperparameters VeRA SARA Mo-SARA
Threshold τ - 0.012 0.5
Parallel Heads - - 3
Optimizer AdamW
LR 1e-1 8e-3 7e-2
LR Scheduler Linear
Batch size 16
Weight Decay 0.01
Lable Smooth 0.1
Rank 1024 - -
LoRA α 1024 - -
Warmup Steps 500
Epochs 5
Training Seed 314

Table 8: Hyperparameters for E2E Task

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
LoRA(0-7) 48.50 11.76 73.42 74.55 79.41 19.32 51.16
LoRA(8-15) 49.50 25.49 69.62 84.55 85.29 20.45 55.82
LoRA(16-23) 40.50 25.49 69.62 70.00 76.47 14.39 49.41
LoRA(24-31) 30.50 25.49 62.03 42.73 61.76 9.09 38.60
SARA(0-7) 56.00 29.41 73.42 71.82 82.35 21.59 55.77
SARA(8-15) 54.00 27.45 74.68 77.27 82.35 22.73 56.41
SARA(16-23) 43.50 31.37 74.68 82.73 73.53 13.64 53.24
SARA(24-31) 37.00 15.69 68.35 64.55 63.73 6.06 42.56

Table 9: Supplement to the average accuracy of SARA and LoRA methods across different layers in mathematical
reason- ing tasks(Figure 3).

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
LoRA(r=5) 51.50 23.53 73.42 90.91 87.25 23.48 58.35
LoRA(r=10) 58.50 23.53 75.95 92.73 88.24 24.24 60.53
LoRA(r=15) 60.00 17.65 78.48 93.64 86.27 23.86 59.98
LoRA(r=20) 58.50 19.61 79.75 89.09 87.25 26.14 60.06
SARA(0.006) 55.00 19.61 74.68 85.45 88.24 28.41 58.57
SARA(0.01) 60.00 35.29 79.75 89.09 84.31 24.62 62.18
SARA(0.016) 61.50 23.53 78.48 89.09 82.35 26.52 60.24
SARA(0.02) 59.50 25.49 82.28 85.45 84.31 24.62 60.28

Table 10: Supplement to the average accuracy of the SARA and LoRA methods on mathematical reasoning tasks
with different trainable parameter counts.(Figure 4)

14

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
Threshold=0.1 51.50 27.45 69.62 84.55 82.35 23.86 56.56
Threshold=0.3 55.00 25.49 77.22 85.45 82.35 23.86 58.23
Threshold=0.5 56.00 23.53 73.42 89.09 84.31 23.48 58.31
Threshold=0.7 56.50 15.69 73.42 90.91 85.29 23.86 57.61

Table 11: Supplement to the average accuracy of Mo-SARA (1 head) on mathematical reasoning tasks under
different thresholds.(Figure5)

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
Mo-SARA(1 head) 56.00 23.53 73.42 89.09 84.31 23.48 58.31
Mo-SARA(3 head) 54.50 21.57 75.95 89.09 85.29 23.86 58.38
Mo-SARA(5 head) 55.00 23.53 70.89 90.91 87.25 26.14 58.95
Mo-SARA(7 head) 55.50 23.53 75.95 90.00 85.29 25.00 59.21
Mo-SARA(9 head) 53.00 25.49 78.48 88.18 86.27 24.62 59.34

Table 12: Supplement to the average accuracy of Mo-SARA on mathematical reasoning tasks with different
numbers of parallel heads, compared to SARA and LoRA methods.(Figure 6)

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
λ=1 52.50 23.53 74.68 90.91 87.25 22.73 58.60
λ=2 58.50 23.53 75.95 92.73 88.24 24.24 60.53
λ=3 58.00 19.61 74.68 93.64 87.25 25.76 59.82
λ=4 58.00 21.57 74.68 93.64 88.24 24.24 60.06

Table 13: Supplement to the average accuracy of the LoRA method on mathematical reasoning tasks at different λ
values(Figure 9)

15

	Introduction
	Related Works
	PEFT Methods
	LoRA's Variants

	Correlation Analysis Between Layer Performance and Singular Values
	Method
	Motivation
	SARA
	Mo-SARA

	Experiment
	Mathematical Reasoning
	Commonsense Inference
	E2E Benchmark
	Improvement of SARA across Layers
	Ablation Study
	Robustness of the SARA Method
	Analysis Under Parameter Limits
	Analysis of Routing Effects

	Conclution
	Limitation
	Ethic Statement
	Experimental Details
	Relationship between Layers and k under Different Thresholds.
	Analysis of the LoRA Method under Different Hyperparameters.
	Heatmaps of routing across layers for various test tasks using the Mo-SARA method.
	Supplementary Results for Each Dataset.
	Scientific Artifacts

