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Abstract

Approximating invariant subspaces of generalized eigenvalue problems (GEPs) is
a fundamental computational problem at the core of machine learning and sci-
entific computing. It is, for example, the root of Principal Component Analysis
(PCA) for dimensionality reduction, data visualization, and noise filtering, and of
Density Functional Theory (DFT), arguably the most popular method to calcu-
late the electronic structure of materials. Given Hermitian H,S ∈ Cn×n, where
S is positive-definite, let Πk be the true spectral projector on the invariant sub-
space that is associated with the k smallest (or largest) eigenvalues of the GEP
HC = SCΛ, for some k ∈ [n]. We show that we can compute a matrix Π̃k

such that ∥Πk − Π̃k∥2 ≤ ϵ, in O
(
nω+η polylog(n, ϵ−1, κ(S), gap−1

k )
)

bit oper-
ations in the floating point model, for some ϵ ∈ (0, 1), with probability 1 − 1/n.
Here, η > 0 is arbitrarily small, ω ≲ 2.372 is the matrix multiplication expo-
nent, κ(S) = ∥S∥2∥S−1∥2, and gapk is the gap between eigenvalues k and k+1.
To achieve such provable “forward-error” guarantees, our methods rely on a new
O(nω+η) stability analysis for the Cholesky factorization, and a smoothed analy-
sis for computing spectral gaps, which can be of independent interest. Ultimately,
we obtain new matrix multiplication-type bit complexity upper bounds for PCA
problems, including classical PCA and (randomized) low-rank approximation.

1 Introduction

Generalized eigenvalue problems (GEPs) arise naturally in a plethora of applications in machine
learning, scientific computing, and engineering. Given a pair of matrices H and S, often referred to
as a matrix pencil, the problem of interest has the following form

HC = SCΛ, (1)

where C and Λ are the unknown eigenvector and eigenvalue matrices, respectively. Of particular
importance are the so-called “Hermitian definite” or simply “definite” GEPs/pencils, in which case
H is Hermitian and S is Hermitian and positive-definite. In many important applications, the quan-
tity of interest is an (arbitrarily large) subset of eigenvectors, defining an invariant subspace, rather
than the entire C and Λ solutions of the GEP.

In data science and machine learning, invariant subspaces play a central role in many problems,
including Spectral Clustering [111, 124], Language Models [73], Image Processing [118, 11], Rec-
ommendation Systems [46], Principal Components Analysis (PCA) [45, 79, 122], Support Vector
Machines [99], and many others [50, 35, 96, 12]. We particularly focus on PCA applications, which
can take the form of a GEP as in Eq. (1) where H is the sample covariance and S the identity.
In more advanced settings, H and S can be defined over a kernel [122, 20]; See Section 4 and
Appendix G for more details. Another closely related application comes from Density Functional
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Theory [88] (DFT), which is not a machine learning problem per se, but it is probably the most com-
monly used method (it was awarded the Nobel prize in Chemistry in 1998) to compute the electronic
and structural properties of materials. In this case, H is the Hamiltonian and S the overlap matrix
(cf. Appendix F). The spectral projector on the invariant subspace corresponding to the smallest
generalized eigenvalues (occupied energies) directly provides the density matrix and the electron
density. Obtaining them often presents a challenge from the computational point of view.

1.1 Problem definition

The main focus of this work is the computation of spectral projectors on invariant subspaces that are
associated with a subset of the spectrum of Hermitian definite GEPs. As the Abel-Ruffini theorem
excludes exact computation, even in exact arithmetic, we seek for approximate computations, as
described in the following Problem 1.1.
Problem 1.1 (Spectral projector). Given a Hermitian definite GEP HC = SCΛ of size n, an
integer 1 ≤ k ≤ n− 1, and accuracy ϵ ∈ (0, 1), compute a matrix Π̃k ∈ Cn×n such that∥∥∥Π̃k −Πk

∥∥∥ ≤ ϵ, (2)

where Πk is the true spectral projector on the invariant subspace associated with the k smallest or
largest eigenvalues.

Before proposing algorithms to solve Problem 1.1, we first make some clarifications and define
useful concepts.

Type of approximation: The approximation of the form of Equation (2) is commonly called a
“forward approximation” or “forward error” in numerical analysis. It quantifies the distance between
the true solution of the problem and the one returned by an algorithm. It is a stronger and harder to
achieve notion of approximation than the related “backward error.” For details see Appendix A.1.

Model of computation: While many finite precision models of computation exist in the litera-
ture, all algorithms in this work are analyzed in the floating point model of computation, which is
also the prominent model implemented in existing computers. Each real number α is rounded to a
floating point number fl(α) = (1 + θ)α, where θ ∈ C satisfies |θ| ≤ u ∈ R>0. The machine preci-
sion u bounds also the errors introduced by arithmetic operations {+,−,×, /}, and the expression
log(1/u) gives the number of bits required to achieve the desired precision. More details can be
found in Appendix A.2.

Bit complexity: The complexity of numerical algorithms is often measured in terms of the arith-
metic operations executed, commonly referred to as arithmetic complexity. A more realistic notion
is the bit complexity, which bounds the number of boolean operations. In the floating point model, it
is straightforward to translate the arithmetic to the bit complexity if we have an upper bound on the
number of bits. For instance, arithmetic operations on b bits can be typically carried out in O(b2) bit
operations, or even faster by using more advanced algorithms [123, 55, 68].

Matrix multiplication time: In two seminal works [39, 40], it was demonstrated that matrix mul-
tiplication and other fundamental problems in Numerical Linear Algebra can be solved in the float-
ing point model with nearly O(nω+η) bit-complexity (up to polylogarithmic factors), where η is an
arbitrarily small positive number and ω is the matrix multiplication exponent, to-date bounded by
ω ≲ 2.372 [47, 141, 6]. Hereafter, we will use the notation TMM(n) = nω+η .

1.2 Existing algorithms

Here we give a brief overview of existing algorithms. We refer to Appendix A.7 for more details.
GEPs in general can be solved using classic eigensolvers and related techniques in Õ(n3) floating
operations, e.g., by reducing the matrix (or pencil) to tridiagonal form with similarity transforma-
tions and applying the shifted QR algorithm on the tridiagonal matrix, or by using a divide-and-
conquer method (see [37, 109, 75, 8, 9, 64, 42, 10, 113] and references therein). Significant pro-
gresses beyond the Õ(n3) bit complexity barrier have been made [40, 39, 15, 95, 25, 41, 107, 121].
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Regarding the computation of eigenvalues, two notable examples are the Õ(TMM(n)) algorithm of
[95] for the largest eigenvalye, and the Õ(n2) algorithm of [107] for the spectral norm.

The first to have addressed the problem of computing invariant subspaces in nearly O(TMM(n)) in
floating point is [39] (see also [14, 13]). The authors described an iterative algorithm for the Schur
decomposition, and showed that each individual step is numerically stable, and it takes O(TMM(n)
operations. An end-to-end bound on the number of iterations to achieve a backward approximate
solution was left open. More recently, the seminal work of [15] extended the analysis to obtain an
end-to-end Õ(TMM(n)) complexity to approximately diagonalize a matrix, and [41, 121] provided
a rigorous analysis for the generalized eigenproblem case. In Corollary 1.7 and Proposition 1.1 of
[15], it was also outlined how to translate the backward diagonalization error to a forward error for
the eigenvectors. The reported bound, however, has two main limitations: it relies on simplicity of
the spectrum, which is a strict assumption, and it requires as input an over-estimate on the eigenvec-
tor condition number of the problem, which is unknown, and [15] does not describe how to compute
it (see Appendix B.1 for more details). In this work we describe how to overcome these limitations
and provide a novel, end-to-end, provably accurate analysis (in the sense of Eq. (2)) for arbitrary
invariant subspaces of definite GEPs with Õ(TMM(n)) boolean complexity.

1.3 Contributions and methods

Our main contribution, summarized in the following Theorem 1.1 and Algorithm 1, is an end-to-end
analysis to solve Problem 1.1 in nearly O(TMM(n)) time.

Theorem 1.1. Let (H,S) be a Hermitian definite pencil of size n with ∥H∥, ∥S−1∥ ≤ 1, λ1 ≤
λ2 ≤ . . . ≤ λn its eigenvalues, gapk = λk+1 − λk and κ(S) = ∥S∥∥S−1∥. Algorithm 1

Π̃k ← PROJECTOR(H,S, k, ϵ),

takes as inputs H, S, an integer k ∈ [n− 1], an error parameter ϵ ∈ (0, 1) and returns a matrix Π̃k

such that

Pr
[∥∥∥Π̃k −Πk

∥∥∥ ≤ ϵ] ≥ 1− 1/n,

where Πk is the true spectral projector on the invariant subspace that is associated with the k
smallest (or largest) eigenvalues. The algorithm executes

O
(
TMM(n)

(
log( n

gapk
) log( 1

gapk
) + log(nκ(S)) log(κ(S)) + log

(
log( κ(S)

ϵ gapk
)
)))

floating point operations with O
(
log(n)

(
log4( n

gapk
) + log4(nκ(S)) + log3( 1

ϵ gapk
) log( κ(S)

ϵ gapk
)
))

bits of precision. Internally, the algorithm needs to generate a total of at most Õ(n) standard normal
floating point numbers using additional O(log(log(n))) bits.

To achieve the results of Theorem 1.1, we provide a novel O(TMM(n))-type complexity analysis of
several problems in numerical linear algebra that can be of independent interest.

In brief, our methodology is as follows. We first observe that if we can determine reasonable
“guesses” for the spectral gap (g̃apk) and for the midpoint (µ̃k) between the λk and λk+1 eigen-
values then we can efficiently compute the spectral projector by approximating the sign function

sgn(µ̃k − S−1H),

using the analysis of [15] for the Newton iteration. The matrix 1
2 (I + sgn(µ̃k − S−1H)) indeed

transforms in exact arithmetic all eigenvalues that are smaller than µ̃k to 1 and the ones larger
than µ̃k to zero. As will be proved in Proposition 2.1, in Section 2, this approach is sufficient to
provide an accurate spectral projector Π̃k in floating point. As a consequence, the problem reduces
to approximating the aforementioned midpoint and gap. As a baseline, in Appendix B.1 we prove
that this can be done in nearly O(TMM(n)) with iterative inversion [39] and diagonalization [15] or,
similarly, by iteratively calling generalized diagonalization [41]. However, this approach presents
two drawbacks: It does not take advantage of the inherent symmetry of the problem, and, at the
same time, it performs a full diagonalization when we are only interested in the gap between two
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specific eigenvalues, which is seemingly redundant. We formally prove this claim by designing a
novel approach that achieves better complexity, typically by a factor of O(log(n)) (cf. Section 3.4).
Importantly, no explicit diagonalization is necessary.

To minimize the complexity of our algorithm, it is crucial to leverage symmetry. To that end we use
the Cholesky factorization of S in the spirit of the Cholesky-QR algorithm [37]. We highlight that,
while other factorizations have been solved in O(TMM(n)) in floating point, an end-to-end analysis
for Cholesky remains open. In exact arithmetic, for example, the LU of a Hermitian definite matrix
directly provides its Cholesky and [39] showed that the LU factorization of non-symmetric matri-
ces can be obtained in O(TMM(n)). However, when considering arithmetic errors, the relationship
between LU and Cholesky does not hold in floating point, as demonstrated by the counter-example
of Appendix C.5. Other fast Cholesky algorithms have been proposed for special classes of ma-
trices, e.g., for matrices with well-defined separators [58, 94, 61] and graph Laplacians [91, 92].
However, they do not generalize to arbitrary dense matrices. Our analysis is the first to improve the
classic O(n3) floating point Cholesky algorithms [84, 71] for the general case, with provable error
bounds. In the following Theorem 1.2 we summarize our new analysis of the Cholesky factorization
Algorithm 2 (see also Appendix C). We note that the algorithm itself is not new, only its analysis.
Theorem 1.2. Given a Hermitian positive-definite matrix M, there exists an algorithm L ←
CHOLESKY(M), listed in Algorithm 2, which requires O(TMM(n)) arithmetic operations. This
algorithm is logarithmically stable, in a sense that, there exist global constants c1, c2, c3, such that
for all ϵ ∈ (0, 1), if executed in a floating point machine with precision

u ≤ uCHOLESKY := ϵ
1

c1nc2κ(M)c3 logn
,

which translates into O
(
log(n) log(κ(M)) + log( 1ϵ )

)
required bits of precision, then it does not

break down due to arithmetic errors, and the solution returned satisfies ∥LL∗ −M∥ ≤ ϵ∥M∥.

This stand-alone result fulfills the definition of “logarithmic-stability,” a notion of numerical stability
that is commonly used in the related literature [39, 15]. Given this new Cholesky analysis, the
following transformation of the GEP to a regular Hermitian eigenvalue problem:

HC = SCΛ⇒ L∗HL(L−1C) = (L−1C)Λ,

can be carried out accurately in O(TMM(n)) in floating point, with provable forward-error bounds
for all eigenvalues of the transformed problem. Here, L is the Cholesky factor of S−1 instead of
S. Specifically, in Proposition C.3 in Appendix C.4, we prove that the corresponding Algorithm 4,
H̃← REDUCE(H,S, ϵ), returns a Hermitian matrix H̃ such that, for any given accuracy ϵ ∈ (0, 1),∣∣∣λi(H̃)− λi(S−1H)

∣∣∣ ≤ ϵ,∀i ∈ [n].

The symmetry induced by the Cholesky transformation is crucial to design an efficient algorithm
for the spectral gap. As described in Section 3, and analyzed in Appendices D and E, any spectral
gap or eigenvalue of a Hermitian definite pencil can be approximated by an iterative algorithm that
uses only “counting-queries”, i.e., queries that ask how many eigenvalues are smaller than a given
threshold. This way we completely avoid diagonalization, thus leading to a lower complexity.

To perform the counting queries efficiently, the transformed matrix H̃ must be regularized with small
random perturbations, in the spirit of smoothed analysis [128], which has recently drawn attention
in the context of matrix algorithms [31, 25, 15, 41, 104] (see Appendix D for the analysis). These
aforementioned works typically require a guarantee on the minimum eigenvalue gap of the perturbed
matrix, e.g., [104] uses a Minami-type bound [105], while in [15, 41] the entire pseudospectrum of
the perturbed matrix must be shattered with respect to a grid. The latter is even more challenging to
achieve than a minimum gap and it requires Õ(n2) random bits. Our algorithm is significantly less
demanding in terms of randomness: All we need is the Wegner estimate [138, 4] for the density-of-
states of random Hermitian operators, and only Õ(n) random bits in total.

Finally, in Section 4, we apply our main results to prove the first matrix multiplication-type upper
bounds for the bit complexity of PCA algorithms. Specifically, for the standard PCA formulation,
we show that we can first compute the spectral projector and then use deflation to obtain a basis for
the desired low-dimensional embedding in nearly matrix multiplication time. We then apply similar
arguments to the seminal Block-Krylov PCA algorithm of [106].
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PROJECTOR

Input: Hermitian definite pencil H ∈ Hn, S ∈ Hn
++, gap index k, accuracy ϵ.

Requires: ∥H∥ ≤ 1, ∥S−1∥ ≤ 1, k ∈ [n− 1].

Algorithm: Π̃← PROJECTOR(H,S, k, ϵ).

1: µ̃k, g̃apk ← GAP(H,S, k, 1
8
, 1
2n

).

2: κ̃← COND(S, 1
4
, 1
2n

). ▷ This is skipped when S = I.

3: Π̃← PURIFY(H,S, µ̃k, g̃apk, κ̃, ϵ).

4: return Π̃.

Output: Approximate projector Π̃ on the invariant subspace associated with the k smallest eigenvalues.

Ensures: ∥Π̃−Π∥ ≤ ϵ with probability at least 1− 1/n.

Algorithm 1: PROJECTOR.

CHOLESKY

Input: Matrix M =
(
A B∗

B C

)
∈ Hn

++.

Requires: M is positive-definite, u ≤ ϵ 1

c1n
c2κ(M)c3 log(n) for some constants c1, c2, c3 and ϵ ∈ (0, 1).

Algorithm: L← CHOLESKY(M).

1: if n = 1 :

2: return L =
√

M1,1.

3: else

4: L11 ← CHOLESKY(A). ▷ L11L
∗
11 = A+ECH

A .

5: BAi← MM (B, INV (A)) . ▷BAi = B
(
A−1 +EINV

1

)
+EMM

2 = BA−1 +EBAi.

6: L21 ← MM (BAi,L11) . ▷ L21 =
(
BA−1 +EBAi

)
L11 +EMM

3 = BA−1L11 +EL21 .

7: S̃← C− HERM(MM(BAi,B∗)). ▷ S̃ = C−
(
(BAi)B∗ +EMM

4

)
+ESUB

5 = S+ES ,

▷ where ES = BEINV
1 B∗ +EMM

2 B∗ +EMM
4 +ESUB

5 .

8: L22 ← CHOLESKY(S̃). ▷ L22L
∗
22 = S̃+ECH

S̃
.

9: return L =

L11

L21 L22

.

Output: Lower triangular Cholesky factor L ∈ Cn×n.

Ensures: ∥LL∗ −M∥ ≤ ϵ∥M∥, L is lower triangular, and LL∗ is Hermitian and positive-definite.

Algorithm 2: CHOLESKY(M).

1.4 Notation

Matrices are denoted by bold capital letters and vectors by bold small letters. For real or complex
constants we typically use Greek letters, or the Latin letters c, C. The vector ei denotes the i-th
column of the standard basis. A∗ is the conjugate transpose of A and A† denotes the pseudoinverse.
The 2-norm is the default for matrices and vectors. κ(A) = ∥A∥∥A†∥ is the two-norm condition
number of A. For the error analysis of the various algorithms, we use EOP

i to denote the error
matrices that are introduced by the floating point errors of the i-th operation OP. The letters ϵ
and δ typically denote (scalar) error quantities and failure probabilities, respectively. [n] is the set
{1, 2, ..., n}. We denote by Hn ⊂ Rn the set of Hermitian matrices of size n × n, Hn

+ the set of
Hermitian positive semi-definite matrices and Hn

++ the set of Hermitian positive definite matrices.
For a matrix A and a scalar z we write z ± A as a shorthand for zI ± A. Λ(A) and Λ(A,B)
denote the spectrum of a matrix A and a matrix pencil (A,B), respectively. The eigenvalues and
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singular values are always sorted in ascending order by default: λ1 ≤ λ2 ≤ . . . ≤ λn. Λϵ(A) is the
ϵ-pseudospectrum of A (see Definition A.2).

2 Computing spectral projectors with the sign function

Given a Hermitian definite pencil (H,S), our ultimate goal is to compute a forward error approx-
imation of the spectral projector that is associated with the k smallest eigenvalues, as described in
Problem 1.1. Algorithm 3 solves this problem provably and efficiently, but it requires that we al-
ready have a suitable approximation of the eigenvalue gap that separates the desired subspace from
the rest of the eigenspace. The algorithm is called PURIFY since it is inspired by “purification”
techniques in DFT, referring to the removal of the unoccupied orbitals. The computation of the gap
and the midpoint is in fact the bottleneck of our main algorithm, however, we still show that they
can be computed efficiently in Section 3, and, importantly, without diagonalizing any matrices. The
properties of Algorithm 3 are stated in Proposition 2.1.

Proposition 2.1. Let H ∈ Hn with ∥H∥ ≤ 1, S ∈ Hn
++ with ∥S−1∥ ≤ 1, k ∈ [n−1] and ϵ ∈ (0, 1).

Let µk = λk+λk+1

2 and gapk = λk − λk+1, where λ1 ≤ . . . ≤ λn are the generalized eigenvalues
of the Hermitian definite pencil (H,S) and assume that we want to compute Πk which is the true
spectral projector associated with the k smallest eigenvalues. If we have access to

µ̃k ∈ µk ± 1
8 gapk g̃apk ∈ (1± 1

8 ) gapk, κ̃ ∈ [κ(S), Cκ(S)],

for some constant C > 1, then Algorithm 3 computes Π̃k ← PURIFY(H,S, µ̃k, g̃apk, κ̃, ϵ) such

that ∥Π̃k − Πk∥ ≤ ϵ, in O
(
TMM(n)

(
log( 1

gapk
) + log(log( κ(S)

ϵ gapk
))
))

floating point operations

using O
(
log(n) log3( 1

gapk
) log( κ(S)

ϵ gapk
)
)

bits of precision.

Proof. The full proof of Proposition 2.1 can be found in Appendix B. We briefly summarize it here.
The main idea is to use the sign function algorithm from [15], SGN, to approximate sgn(µ̃k −
S−1H). If we already know that µ̃k is a reasonable approximation of µk, and that it is located
inside the correct eigenvalue gap, then, in exact arithmetic, our problem is equivalent to computing
sgn(µk − S−1H). The result can be used to filter the desired spectral projector, often referred as
“purification” in the context of DFT. The main challenge is to ensure that all propagated numerical
errors, success probabilities, and input parameters for all algorithms are well-defined and bounded.
To obtain the final forward errors we must rely on matrix similarity arguments, the properties of the
pseudospectrum, the eigenvalue bounds of Weyl and Kahan from Fact A.1, and Lemma B.1, which
gives explicit bounds on the sign function under small floating point perturbations.

The rest of the paper is devoted to the analysis of our new algorithm for the spectral gap and the mid-
point based on eigenvalue counting queries, described in Theorem 3.1. For comparison purposes, in
Appendix B.1 we analyze a diagonalization-based algorithm for the same task (which is a new result
itself), specifically, using the state-of-the-art EIG algorithm of [15]. We compare the two algorithms
in Section 3.4, demonstrating that our counting-based algorithm is indeed faster.

3 Fast spectral gaps with counting queries

Our core algorithm efficiently approximates spectral gaps based on “eigenvalue counting queries”
only, thus avoiding an explicit (and expensive) diagonalization. To give some intuition on the main
idea, consider the following simplified version of the problem.
Problem 3.1 (Gap finder). Let λ1 ≤ . . . ≤ λn in [−1, 1] be n (unknown) real values (e.g., they can
be the eigenvalues of the original matrix pencil) µk = λk+λk+1

2 , and gapk = λk+1 − λk, for some
k ∈ [n − 1]. Given k and some error parameter ϵ ∈ (0, 1/2) as input, we want to approximate µk

and gapk up to additive ϵ gapk, i.e., we look for µ̃k = µk ± ϵ gapk and g̃apk ∈ (1± ϵ) gapk. Only
queries of the following form can be performed: We fix a parameter γ ∈ (0, 1/2), which distorts all
λi to some (unknown) λ′i ∈ [λi− γ, λi + γ]. We can then choose any value h ∈ [−1− γ, 1+ γ] and
ask how many values λ′i are smaller than h. For each γ, we can query arbitrarily many different
values for h, and each h-query costs q(1/γ) = O(polylog(1/γ)).
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The query cost is arbitrary to avoid trivial solutions by setting γ = 0. The following proposition is
proved in Appendix E:

Proposition 3.1. Problem 3.1 can be solved iteratively by executing a total of O(log( 1
ϵ gapk

)) iter-
ations and Θ(1) queries per iteration, where each query costs at most q( 1

ϵ gapk
).

3.1 Smoothed analysis of eigenvalue counting

To use the counting query model of Problem 3.1 and Proposition 3.1 to compute the spectral gap
of a matrix pencil, we need a “black-box” method to count eigenvalues that are smaller than a
threshold. We first describe a straightforward, deterministic algorithm COUNT(X̃, h, ε) for this
task (see Lemma E.1), which takes as input a Hermitian matrix X̃, a scalar h, and a parameter ε,
with the requirement that σmin(h − X̃) > ε. It returns the precise number of eigenvalues of X̃
that are smaller than h. The runtime of the algorithm depends on log(1/ε), and must therefore be
minimized. For this we resort to smoothed analysis: We apply a random perturbation to ensure that
ε is at least polynomial in 1/n, up to some other factors detailed in Appendix D.

To build a random “regularizer,” in Definition D.1 we introduce a random oracle that samples num-
bers from a standard normal distribution and returns their floating point representation using a pre-
specified number of bits. Based on this simple oracle, we can design a floating point algorithm
X̃← REGULARIZE(A, γ, δ) which has the following properties described in Proposition 3.2:

Proposition 3.2. Let A with ∥A∥ ≤ 1 be a Hermitian matrix, γ, δ ∈ (0, 1/4) two given parameters,
and X̃ ← REGULARIZE(A, γ, δ). Let g be an arbitrary (but fixed) grid of points in [−2, 2] with
cardinality |g| = T . For every element hi ∈ g consider the matrices Mi = hi − X̃ and M̃ =

hi − X̃ + Ei, where Ei denote the diagonal floating point error matrices induced by the shift. All
the following hold simultaneously with probability 1− 2δ if we use O(log(Tn

γδ )) bits of precision:

∥X̃∥ ≤ 4/3,
∣∣∣λi(X̃)− λi(A)

∣∣∣ ≤ 9
16γ, σmin(M̃i) ≥ γδ

4nT
√

4π ln(4n/δ)
.

Proof. The main result that we use in the proof can be traced back to the Wegner estimate for the
density-of-states of Hermitian operators under random diagonal disorder [138]. See Appendix D
and in particular D.2 for more details.

3.2 Computing the gap and the midpoint

We can now describe the algorithm GAP in Theorem 3.1, that computes the k-th gap and the mid-
point of a Hermitian definite pencil. The same methodology can be extended to approximate any
singular value, as described in Proposition E.2 in Appendix E.3.

Theorem 3.1 (GAP). Let H ∈ Hn, S ∈ Hn
++ and ∥H∥, ∥S−1∥ ≤ 1, which define a Hermitian

definite pencil (H,S). Given k ∈ [n− 1], accuracy ϵ ∈ (0, 1), and failure probability δ ∈ (0, 1/2),
there exists an algorithm

µ̃k, g̃apk ← GAP(H,S, k, ϵ, δ)

which returns µ̃k = µk ± ϵ gapk and g̃apk = (1 ± ϵ) gapk, where µk = λk+λk+1

2 and gapk =
λk − λk+1. The algorithm requires

O
(
TMM(n) log(

1
δϵ gapk

) log( 1
ϵ gapk

)
)

arithmetic operations using O
(
log(n)

(
log4( n

δϵ gapk
) + log(κ(S))

))
bits, where λi are the eigen-

values of (H,S). If κ(S) is unknown, additional O(TMM(n) log(
nκ(S)

δ ) log(κ(S))) floating point
operations and O(log(n) log4(nκ(S)δ )) bits are sufficient to compute it with Corollary E.1.

Proof. The full proof builds upon the results that are detailed in Appendices D and E. A summary is
the following. We first fix our initial error parameter γ0 = 1/8 and call H̃ = REDUCE

(
H,S, γ0

4

)
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(Algorithm 4), which internally uses CHOLESKY to reduce the GEP to a regular Hermitian one.
From Proposition C.3, a Hermitian matrix H̃ is returned such that |λi(H̃)− λi(H,S)| ≤ γ0

4 .

Next, we use the same counting query model as in Proposition 3.1. We first regularize H̃ using
X̃ ← REGULARIZE(H̃, γ0

2 , δ0), where δ0 = δ/2 is the initial failure probability. Conditioning on
success of Proposition 3.2 (with probability 1− δ0), for all i ∈ [n], it holds that |λi(X̃)− λi(H̃)| ≤
9γ0/16. Summing the two eigenvalue error bounds, we conclude that all eigenvalues of (H,S),
which initially lie in [−1, 1], are distorted by at most γ0 in X̃. We now have all necessary tools to
go back to the counting query model of Proposition 3.1: In the first step we construct a grid g =
{−1,−7/8,−6/8, . . . , 7/8, 1, 9/8}. Clearly, |g| = Θ(1). Since we conditioned on the success of
Proposition 3.2, the regularization ensures that for every hj ∈ g it holds that σmin(hj−X̃+E) ≥ ε0
with ε0 = γ0δ0

8|g|n
√

π ln(4n/δ0)
. This allows us to efficiently execute COUNT(X̃, hj , ε0) for every hj .

At the end of the first iteration, we have computed two intervals Ik and Ik+1, where Ik contains
λk and Ik+1 contains λk+1, and each interval has size at most 1, i.e., half the size of [−1, 1]. We
continue by halving at each step both γ and δ, constructing the corresponding grids as per the proof
of Proposition 3.1, and counting eigenvalues over the grid. In each iteration after the first one,
we keep track of two intervals Ik and Ik+1, and two corresponding grids gk and gk+1 with size
|gk| = |gk+1| = Θ(1). We therefore only need to execute a constant number of COUNT queries,
and in each iteration the size of the intervals Ik and Ik+1 is halved. The algorithm terminates
after a total of m = O

(
log( 1

ϵ gapk
)
)

iterations and finally provides the advertised complexity, bit
requirements, failure probability, and approximation guarantees.

3.3 Sketch proof of Theorem 1.1

The proof of our main Theorem 1.1 directly follows from Theorem 3.1 together with Proposition
2.1 as well as the algorithm SIGMAK (described in Appendix E.3) which is used to compute the
condition number of S. The full proof can be found in Appendix E.4.

3.4 Comparison with diagonalization

We can now compare Theorem 3.1 with a diagonalization-based approach that is detailed in Propo-
sition B.2. We fix δ = O(1/n) so that both algorithms succeed with the same probability.

For ϵ, gapk, κ
−1(S) ∈ Ω(poly(1/n)), the total arithmetic complexity of the algorithm of Theo-

rem 3.1 is O(TMM(n) log
2(n)) using O(log5(n)) bits. For the same parameters, Proposition B.2

requires need a total of O(TMM(n) log
3(n)) arithmetic operations, and O(log5(n)) bits. Thus, in

total, Algorithm 3.1 is faster by a factor of O(log(n)).

In the extreme case where ϵ, gapk, κ(S) = Θ(1), Theorem 3.1 countsO(TMM(n) log(n)) arithmetic
operations and O(log5(n)) bits, while Proposition B.2 requires O(TMM(n) log

2(n)) operations, and
O(log5(n)) bits. Thus, Proposition B.2 is again slower by a factor of O(log(n)). Interestingly, in
this case Theorem 3.1 is faster than even a single call to EIG, which requires O(TMM(n) log

2(n))
arithmetic operations. We conclude that, at least based on the currently existing algorithms, diago-
nalization is redundant for the computation of spectral gaps and invariant subspaces.

3.5 Application in DFT

In Appendix F we demonstrate how our main results can be directly applied to approximate density
matrices and electron densities of atomic systems in DFT. Even though is not a machine learning
problem per se, we decided to dedicate a section in the Appendix due to its importance: DFT
calculations persistently occupy supercomputing clusters and the corresponding software libraries
and literature receive tens of thousands of citations annually at the time of this writing [89, 59, 60,
127, 74]. Our work is the first analysis to provide forward-error guarantees in finite precision for
these problems in nearly matrix multiplication time.
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4 PCA

Since its introduction in the early twentieth century [116, 72], Principal Component Analysis is one
of the most important tools in statistics, data science, and machine learning. It can be used, for
example, to visualize data, to reduce dimensionality, or to remove noise from data; cf. [79, 45]
for reviews on the vast bibliography. In its simplest formulation, given a (centered) data matrix
X ∈ Rm×n, the goal is to learn a k-dimensional embedding Ck, where k < n, that maximizes the
sample variance, which can be written as an optimization problem

Ck = arg max
C⊤C=Ik×k

tr(C⊤HC), (3)

where H = X⊤X ∈ Rn×n is the sample covariance. It can be shown that the solution Ck corre-
sponds to the principal k singular vectors of H, i.e. the ones that correspond to the largest k singular
values. Evidently, since the sample covariance is always symmetric and positive semi-definite, this
can be written as a Hermitian eigenvalue problem

HC = CΛ,

(which is indeed a definite GEP as in Equation (1) with S = I). By solving for Ck, we can project
the data in k dimensions by computing XCk, preserving as much of the variance in k dimensions
as possible. To compute Ck we can directly use our main results. However, the solution of Equa-
tion (3) is an actual orthonormal basis for the invariant subspace rather than the spectral projector
that Theorem 1.1 returns. This can be addressed with deflation: Once we have the spectral projec-
tor Π̃k, assuming that the approximation is sufficiently tight, we can apply a subsequent deflation
step based on a rank-revealing QR factorization to obtain a k-dimensional basis. This can be done
deterministically in O(n3) time [66] or in randomized O(nω) [39, 15].

In Appendix G.1 we prove the following Theorem 4.1 for Algorithm 7, which builds upon our
main Theorem 1.1, the algorithm of Proposition E.2 to approximate ∥X−Xk∥, and the DEFLATE
algorithm of [19], to solve the standard PCA problem of Eq. (3). Following the existing literature,
the result is stated for real matrices, but it can be trivially adapted to the complex case as well.
Theorem 4.1 (PCA). Let X ∈ Rm×n be a centered data matrix, H the n × n symmetric sample
covariance matrix, i.e., H = X⊤X, ∥H∥ ≤ 1, k ∈ [n] a target rank, and ϵ ∈ (0, 1) an accuracy

parameter. Given H, we can compute a matrix C̃k with k columns such that ∥X − XC̃kC̃
⊤
k ∥ ≤

(1 + ϵ)∥X−XCkC
⊤
k ∥, where Ck ∈ Rn×k contains the top-k (right) singular vectors of X in

O
(
TMM(n)

(
log( n

σk+1
) log( 1

σk+1
) + log( n

gapk
) log( 1

gapk
) + log(log( n

ϵσk+1 gapk
))
))

arithmetic operations using O
(
log(n)

(
log4( n

ϵ gapk
) + log4( n

σk+1
)
)
+ log( 1

ϵσk+1
)
)

bits of preci-

sion, with probability at least 1−O(1/n).

4.1 Block-Krylov PCA

In some applications, the target dimension k might be small, i.e., k ≪ n. This condition has
driven a whole area of research in so-called low-rank approximation algorithms for PCA [53, 120,
33, 67, 100, 106, 30, 29, 5]. Such approaches are also suitable for kernel PCA, since they rely on
matrix-vector products and therefore the kernel matrix does not need to be explicitly formed. The
techniques from the previous section can be directly applied to obtain new bit complexity upper
bounds for existing state-of-the-art algorithms, which are typically analyzed in exact arithmetic.
They internally rely on the computation of the principal singular vectors of submatrices, which
can be improved with our methods. Specifically, in Appendix G.2 we summarize a floating point
analysis of the Block-Krylov Iteration algorithm (see Algorithm 8), essentially, providing a matrix
multiplication-type upper bound on the bit complexity with only a polylogarithmic dependence on
the singular value gap. In a nutshell, we directly obtain the following result:
Theorem 4.2 (Bit complexity analysis of Block-Krylov PCA). Let X be a data matrix X ∈ Rm×n,
∥X∥ ≤ 1, k ∈ [n] a target rank, ϵPCA ∈ (0, 1) an accuracy parameter, and q = Θ

(
log(n)√
ϵPCA

)
. Let

TMMX(k) denote the complexity to stably multiply X or X⊤ with a dense matrix with k columns
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from the right (see Def. G.1). Using the Steps 1-6 that are detailed in Appendix G.3 as a floating
point implementation of Algorithm 8, we can compute a matrix Z̃k ∈ Rm×k that satisfies∥∥∥Z̃kZ̃

⊤
k − ZkZ

⊤
k

∥∥∥ ≤ O(ϵPCA),

with high probability, where Zk is an approximate basis for the top-k principal components of X,
returned by Algorithm 8 in exact arithmetic. The total cost is at most

O
(
qTMMX(k) log(

κ(K)
gapk(M) ) +m(qk)ω−1 log( 1

gapk(M) ) + (qk)ω polylog( qk
gapk(M) )

)
floating point operations, using O

(
polylog( mqκ(K)

ϵPCA gapk
)
)

bits of precision. K,M are as in Alg. 8.

Proof. The full proof can be found in Thm. G.2, Appendix G.3. The main idea is to apply the count-
ing query methodology to compute the condition number of the Block-Krylov matrix K, as well as
the k-th spectral gap and the midpoint of the reduced matrix M in Line 5 of Alg. 8. Thereafter, we
can compute a spectral projector and an approximate basis for the top-k singular vectors of M using
PURIFY and DEFLATE, similar to the analysis of classical PCA in the previous section.

5 Open problems

We mention some open problems and interesting future directions.

(i) Bit requirement of SGN: The major bottleneck for the bit requirements of our main algo-
rithms comes from the SGN algorithm of [15]. An inverse-free Newton-Schultz iteration [83],
or the implicit repeated squaring of [41, 121] can potentially give significant improvements.

(ii) Sparse algorithms: In applications like DFT it commonly occurs that the matrices have spe-
cial structure, i.e., they are banded and/or sparse. It remains open whether Problem 1.1 can be
provably solved faster than our reported results in finite precision for these special cases (recall
that the tridiagonal QR algorithm requires O(n3) operations to return the eigenvectors). An
end-to-end stability analysis of existing fast eigensolvers would be the place to start [65, 137].

(iii) Distributed PCA: The techniques for Block-Krylov PCA can be potentially applied to dis-
tributed or streaming PCA algorithms, which are also based on randomized low-rank approx-
imations. E.g., in the distributed PCA algorithm of [31], it is straightforward to replace the
SVD computation on the server by a counting query iteration. The full analysis of such an
approach is left as future work.

6 Conclusion

In this work we provided an end-to-end analysis to approximate spectral projectors on k-
dimensional invariant subspaces of Hermitian definite matrix pencils (H,S) that require at most
O
(
TMM(n) polylog(n, ϵ

−1, κ(S), gap−1
k )
)

bit operations in the floating point model of computa-
tion. This is the first end-to-end analysis that improves the Õ(n3) complexity of classic eigensolvers
for both the regular and the generalized case. To achieve this result we introduced a new method to
approximate spectral gaps by querying the number of eigenvalues that are smaller than a threshold,
and therefore completely avoid an explicit diagonalization of any matrix or pencil. This approach re-
quired proving that the Cholesky factorization can be stably computed in O(TMM(n)) floating point
operations, a novel result per se. Our results have direct implications on PCA problems, providing
matrix multiplication type upper bounds for the bit complexity of classical and Block-Krylov PCA.
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A Preliminaries

In this section the model of computation is defined and basic linear algebra principles are summa-
rized. Further details can be found in standard textbooks such as [70, 64].

A.1 Forward and backward approximation

In numerical analysis, a “forward-error” often measures the distance between the true solution to a
problem and the solution returned by a numerical algorithm. A related notion is the so-called “back-
ward error” or “backward approximation.” For more details we can refer to the standard textbook
of Higham [70]. In this case, the solution returned is the exact solution of a “nearby problem,” and
the backward error quantifies the distance of the original problem to this nearby problem. In PCA,
for example, a backward-approximation could be defined by C̃k = argminC⊤C=Ik×k

tr(C⊤H̃C).
The backward error would be given ∥H − H̃∥ for some norm. An algorithm is backward stable if
the backward error is always well-defined and bounded. A forward error type of approximation is
often harder to achieve. A common rule-of-thumb states that

forward error ≲ backward error× condition number of the problem.

However, this does not generally hold for eigenvalue problems. For example, Proposition 1.1 in [15]
can be used to transformed a backward approximate diagonalization error to a forward error for the
eigenvectors, but the bound depends on the minimum eigenvalue gap between any eigenvalue pair.
As the authors point in Remark 1.2, special treatment is needed in terms of the invariant subspaces
in the presence of multiple eigenvalues, which are thoroughly analyzed in this work.

A.2 Floating point model

We assume a standard floating point model of computation and borrow its axioms from [70, Chapter
2]. There is a fixed number of bits to represent floating point numbers, specifically, one bit is
reserved for the sign s, p bits are used for the exponent e, and t bits are used for the significand m.

A real number α ∈ R is rounded to a floating point number

fl(α) = s× 2e−t ×m.

The sign s is + if the corresponding bit is one, and − if the bit is zero. The exponent e is stored as a
binary number in the so-called biased form, and its range is e ∈ [−M,M ], where M = 2p−1. The
significand m is an integer that satisfies 2t−1 ≤ m ≤ 2t − 1, where the lower bound is enforced to
ensure that the system is normalized, i.e. the first bit of m is always 1. We can therefore write fl(α)
in a more intuitive representation

fl(α) = ±2e ×
(
m1

2 + m2

22 + . . .+ mt

2t

)
,

where the first bit m1 of m is always equal to one for normalized numbers. The range of normalized
numbers is therefore [2−M , 2M (2−2−t)]. Numbers that are smaller than 2−M are called subnormal
and they will be ignored for simplicity, since we can either add more bits in the exponent, or account
for them in the failure probability when the numbers are random (the latter strategy is used for
example in Lemma D.1). Similarly, numbers that are larger than 2M (2 − 2−t) are assumed to be
numerically equal to infinity, denoted by INF.

From [70, Theorem 2.2], for all real numbers α in the normalized range it holds that

fl(α) = (1 + θ)α,

where θ ∈ R satisfies |θ| ≤ 2−t := u, where u is the machine precision. Clearly, t = O(log(1/u)),
in which case we can always obtain a bound for the number of required bits of a numerical algorithm
if we have an upper bound for the precision u. We will write the same for complex numbers which
are represented as a pair of normalized floating point numbers.

The floating point implementation of each arithmetic operation ⊙ ∈ {+,−,×, /} also satisfies

fl(α⊙ β) = (1 + θ)(α⊙ β), |θ| ≤ u. (4)
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Divisions and multiplications with 1 and 2 do not introduce errors (for the latter we simply in-
crease/decrease the exponent). We assume that we also have an implementation of

√
· such that

fl(
√
α) = (1 + θ)

√
α where |θ| ≤ u. From [70, Lemma 3.1], we can bound products of errors as

n∏
i=1

(1 + θi)
ρi = 1 + ηn,

where ρi = ±1 and |ηn| ≤ nu
1−nu .

The above can be extended also for complex arithmetic (see [70, Lemma 3.5]), where the bound
becomes |θ| ≤ O(u), but we will ignore the constant prefactor for simplicity.

Operations on matrices can be analyzed in a similar manner. Let ⊗ denote the element-wise multi-
plication between two matrices and ⊘ the element-wise division. The floating point representation
of a matrix A satisfies

fl(A) = A+∆⊗A, |∆i,j | ≤ u.

It can be shown that ∥∆∥ ≤ u
√
n∥A∥.

For any operation ⊙ ∈ {+,−,⊗,⊘} and matrices A and B it holds that

fl(A⊙B) = A⊙B+∆⊗ (A⊙B), |∆i,j | ≤ u, ∥∆⊗ (A⊙B)∥ ≤ u
√
n∥A⊙B∥. (5)

A.3 Spectral decomposition, pseudospectrum, and eigenvalue bounds

We first recall the definition of the spectral decomposition of a diagonalizable matrix.

Definition A.1 (Spectrum and spectral decomposition). A matrix A is diagonalizable if there exist
invertible matrix V and diagonal matrix Λ such that A = VΛV−1. This is called the spectral
decomposition of A. The set Λ(A) = {Λi,i|i = 1, . . . , n} is the spectrum of A.

The spectral theorem states that Hermitian matrices (or, more generally, normal matrices) can be
always diagonalized by unitary transformations.

Theorem A.1 (Spectral theorem). If A ∈ Cn×n is Hermitian, then there exists orthogonal matrix
Q ∈ Cn×n such that A = QΛQ∗, where Λ is a diagonal matrix with real diagonal elements.

In the sections that follow we need to bound the (forward) errors on the eigenvalues of matrices
under perturbations that are introduced due to the finite precision arithmetic. Such bounds can be
derived by the classic Bauer-Fike theorem the following (cf. [24, 48] for more details).

There are many bounds in the literature describing the effect of perturbations on the eigenvalues.
We summarize some classic results in the following proposition and refer to Bhatia’s monograph for
a detailed overview [28].

Fact A.1. Let A and B be two n × n matrices. The following bounds are known between the
eigenvalues λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A) of A and λ1(B) ≤ . . . ≤ λn(B) of B:

A B bound reference
Hermitian Hermitian |λi(A)− λi(B)| ≤ ∥A−B∥ [139]

Hermitian Non-Hermitian |λi(A)− λi(B)| ≤ O(log(n))∥A−B∥ [81, 117]

Pseudospectral analysis is useful when the aforementioned bounds are not applicable.

Definition A.2 (Pseudospectrum). For some ϵ > 0, the ϵ-pseudospectrum of a matrix M ∈ Cn×n

is defined as:

Λϵ(M) := {λ ∈ C : λ ∈ Λ(M+E) for some ∥E∥ < ϵ}
=
{
λ ∈ C :

∥∥(λI−M)−1
∥∥ > 1/ϵ

}
where Λ(M) is the spectrum of M.

Recall some useful properties from the seminal book of Trefethen and Embree [135].
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Proposition A.1 (Collective results from [135]). Let D(z, r) denote the open disk of radius r in the
complex plane centered at z ∈ C, M and E be two n× n matrices, and ϵ > ∥E∥ be a positive real
number. The following hold:

(i) Λϵ−∥E∥(M) ⊆ Λϵ(M+E) ⊆ Λϵ+∥E∥(M) ([135, Thm 52.4]),

(ii) Any bounded connected component of Λϵ(M) has a nonempty intersection with Λ(M), i.e., it
contains at least one eigenvalue ([135, Thm 4.3]),

(iii)
⋃

iD(λi, ϵ) ⊆ Λϵ(M) ⊆
⋃

iD(λi, ϵκV(M)) ([135, Thms 4.3 and 52.2]).

A.4 Eigenvector condition number of definite pencils

Some approximation bounds throughout the paper depend on the eigenvector condition number of
the generalized eigenproblem (1). For arbitrary GEPs a bound for this quantity might not always
exist, but a straightforward bound exists for the Hermitian definite case. To obtain such a bound we
define the eigenvector condition number of a diagonalizable matrix as follows:

κV(A) := inf
VDV−1=A
D: diagonal

∥V ∥∥V −1∥.

Proposition A.2. Let H ∈ Hn and S ∈ Hn
++, and consider the definite GEP HC = SCΛ. Then

κV(S−1H) ≤
√
κ(S).

Proof. Since S is Hermitian positive-definite, it can be written as S = LL∗ for some matrix L.
Then we can transform the GEP to a Hermitian eigenproblem, specifically

L−1HL−∗L∗C = L∗CΛ.

Since LL∗ = S we have that ∥L∥2 = ∥LL∗∥ = ∥S∥ and similarly ∥L−1∥2 = ∥S−1∥, which means
that κ(L) =

√
κ(S). Since L−1HL−∗ is Hermitian, it can be diagonalized by a unitary matrix, i.e.

there exists Ĉ such that ∥L∗Ĉ∥ = ∥(L∗Ĉ)−1∥ = 1 and L∗Ĉ diagonalizes L−1HL−∗. For Ĉ we
have that

∥Ĉ∥ = ∥L−∗L∗Ĉ∥ ≤ ∥L−∗∥∥L∗Ĉ∥ = ∥L−∗∥.

Similarly,

∥Ĉ
−1
∥ = ∥Ĉ

−1
L−∗L∗∥ ≤ ∥Ĉ

−1
L−∗∥∥L∗∥ = ∥(L∗C)−1∥∥L∗∥ = ∥L∗∥.

Undoing the transformation, we can see that Ĉ also satisfies:

HĈ = SĈΛ,

i.e. Ĉ diagonalizes S−1H since Ĉ
−1

S−1HĈ = Λ. We conclude that κV(S−1H) ≤ κ(Ĉ) ≤
∥L∥∥L−1∥ =

√
κ(S).

A.5 Imported floating point algorithms for fast linear algebra

Before we dive into the details, we recall the concept of “fast matrix multiplication”, pioneered
by Strassen [134], who showed that two square matrices can be multiplied in O(nω), where ω =
log2 7 ≈ 2.807 < 3, in real arithmetic. Since then, the matrix multiplication exponent ω has been
significantly reduced, the record to date being ω ≤ 2.371552 [47, 141]. In two seminal works [40,
39], Demmel, Dumitriu, Holtz, and Kleinberg, proved that any fast matrix multiplication algorithm
can be executed numerically stably in a floating point machine with almost the same arithmetic
complexity as in real arithmetic. They also showed that other problems in Numerical Linear Algebra
can be reduced to such matrix multiplications, including inversion, LU and QR factorizations, and
solving linear systems of equations. Our algorithms build on the existing results for stable fast
matrix multiplication [40], inversion [39], as well as backward-approximate diagonalization and the
matrix sign function [15]. We import the corresponding results from the aforementioned works in
the following theorems.
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Theorem A.2 (MM, stable fast matrix multiplication [40]). For every η > 0, there exists a fast ma-
trix multiplication algorithm MM which takes as input two matrices A,B ∈ Cn×n and a machine
precision u > 0 and returns C← MM(A,B) such that

∥C−AB∥ ≤ µMM(n) · u∥A∥∥B∥,

on floating point machine with precision u, where µMM(n) = ncη , for some constant cη independent
of n. Such an algorithm is called µMM(n)-stable, and it requires TMM(n) = O(nω+η) arithmetic
operations, where ω is the exponent of matrix multiplication in real arithmetic.

Theorem A.3 (INV, logarithmically-stable fast inversion [39]). For every η > 0, there exists a
fast inversion algorithm INV which takes as input an invertible matrix A ∈ Cn×n and a machine
precision u > 0 and returns C← INV(A) such that

∥C−A−1∥ ≤ µINV(n) · u · κ(A)cINV log(n)∥A−1∥,

on floating point machine with precision u, where µINV(n) = O(ncη+log(10)), for some constants
cINV ≤ 8 and cη independent of n. Such an algorithm is called (µINV(n), cINV)-stable, and it
requires TINV(n) = O(TMM(n)) arithmetic operations, where TMM(n) is the same as in Theorem
A.2.

Sign function and deflation. The next result that we import is a floating point algorithm for the
matrix sign function, which, for a diagonalizable matrix A = VΛV−1 such that Λ(A) does not
interesect with the imaginary axis, is defined as sgn(A) = V sgn(Λ)V−1, where sgn(Λ) is a
diagonal matrix and each diagonal entry contains the sign of the real part of the corresponding
eigenvalue. To state the main result, we first recall the definition of the Circles of Apollonius.

Definition A.3 (Circles of Apollonius, imported from Section 4.1 of [15]). Let α ∈ (0, 1). The
Circles of Apollonius Cα are defined as Cα = C+

α ∪ C−
α ,

C+
α = {z ∈ C : |m(z)| ≤ α}, C+

α = {z ∈ C : |m(z)|−1 ≤ α},

wherem(z) = 1−z
1+z is the Möbius transformation taking the right half-plane to the unit disk. The disk

C+
α is centered at 1+α2

1−α2 and has radius 2α
1−α2 , and C−

α is its reflection with respect to the imaginary
axis.

Theorem A.4 (SGN, imported Theorem 4.9 from [15]). There is a deterministic algorithm
SGN(A, α, η, ϵ) which takes as input a matrix A ∈ Cn×n, an accuracy parameter ϵ ∈ (0, 1/12),
and parameters η ∈ (0, 1), 0 < 1 − α < 1/100, such that it is guaranteed that Λη(A) ⊂ Cα. The
algorithm returns a matrix S̃ such that

∥S̃− sgn(A)∥ ≤ ϵ,

as long as the machine precision satisfies

u ≤ uSGN :=
α2N+1(cINV log(n)+3)

µINV(n)
√
nN

,

corresponding to at most

O
(
log(n) log3( 1

1−α )
(
log( 1ϵ ) + log( 1η )

))
bits of precision. Here

N = ⌈log( 1
1−α ) + 3 log(log( 1

1−α )) + log(log( 1
ϵη )) + 7.79⌉

denotes the number of iterations that the algorithm executes. The arithmetic complexity is

O(NTMM(n))).

In PCA, we will need to be able to compute a basis for the column space of an approximate spectral
projector. For this, we recall the following algorithm.
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Theorem A.5 (DEFLATE, imported Theorem 5.3 of [15]). There exists a randomized algorithm
C̃k ← DEFLATE(Π̃k, k, β, ϵ), which takes as input a matrix Π̃k, a rank parameter k ∈ [n], a
parameter β such that ∥Π̃k − Πk∥ ≤ β, for some projector matrix Πk of rank-k, and a desired
accuracy ϵ, and returns a (complex) matrix C̃k such that, there exists a matrix Ck with k columns
that forms an orthonormal basis for im(Πk), and

∥C̃k −Ck∥ ≤ ϵ.

The algorithm succeeds with probability at least 1− (20n)3
√
β

ϵ2 . The number of arithmetic operations
is at mostO(TMM(n)), and it requiresO(log(n)+log( 1ϵ )) bits of precision. Internally, the algorithm
generates O(n2) random numbers to form a n× n complex Ginibre matrix.1

Computing an orthonormal basis and the spectral norm. Lastly, we recall the following two
results. The first one is for the QR factorization from [39], which we adapt suitably for our analysis,
specifically, to compute an orthonormal basis for the column space of a rectangular matrix.
Theorem A.6 (Basis computation, follows from Section 4 in [39]). Let A ∈ Rm×n,m ≥ n.
There exists an algorithm Q̃, R̃ = QR(A), which returns a matrix Q̃ ∈ Rm×n and an upper
triangular matrix R̃ ∈ Rn×n in O(mnω−1) floating point operations using O(log(nκ(A)

ϵQR
)) bits,

where ϵQR ∈ (0, 1) is a given accuracy. The matrix Q̃ satisfies

∥Q− Q̃Φ∥ ≤ ϵQR,

for some orthogonal matrix Φ ∈ Rn×n, where Q has orthonormal columns and A = QR is the
true economy-QR of A.

Proof. We first scale A′ ← A/M , where M is the smallest power of two that is larger than
n∥A∥max. This ensures that Ω(1/n) ≤ ∥A′∥ ≤ 1. Since we scale by a power of 2, then there
are no floating point errors and the orthonormal basis from the QR factorization remains the same
(only the upper triangular factor is scaled).

We now use the corresponding algorithm of [39] on A′. It returns three matrices: an upper triangular
matrix R̃ ∈ Rn×n, a matrix W ∈ Rm×n with ∥W∥ ∈ O(n), and a matrix Y ∈ Rn×m with
∥Y∥ ∈ O(n). The matrix Ψ = I−WY⊤ + EΨ exactly satisfies ΨΨ⊤ = I, and the error matrix

satisfies ∥EΨ∥ ∈ O(poly(n)u). Moreover, Ψ
(

R̃
0m−n×n

)
= Â, where Â = A′+EA and ∥EA∥ ≤

O(poly(n)u)∥A′∥ ≤ O(poly(n)u). Note that ∥R̃∥ ≤ ∥Â∥ ≤ ∥A′∥+ ∥EA∥ ≤ 1 +O(poly(n)u).
The total cost of the algorithm is O(mnω−1) floating point operations (ignoring the negligible term
η > 0 in the exponent).

Using W and Y, we can construct an approximate basis Q̃ as follows. Let Yn ∈ Rn×n contain the

first n columns of Y. We can compute the matrix Q̃ =

(
In

0m−n×n

)
−MM(W,Yn) in O(mnω−1)

floating point operations by performing the multiplication in blocks of size n × n. We can write
Q̃ = Q̂+EQ̂ where Q̂ contains the first n columns of Ψ and ∥EQ̂∥ ∈ O(poly(n)u).

Note that R̃ satisfies Q̂R̃ = A′ + EA. Since Q̂ has orthonormal columns, the singular values
of R̃ satisfy σi(R̃) = σi(Q̂R̃) = σi(A

′ + EA) ∈ σi(A
′) ± ∥EA∥, where the last comes from

the stability of singular values which is a consequence of Weyl’s inequality in Fact A.1. Now, if
∥EA∥ ≤ 1

4σmin(A
′), which is achieved by setting u ≤ c 1

poly(n)κ(A) for some constant c, then R̃ is

full rank, and it holds that ∥R̃
−1
∥ = 1/σmin(R̃) ≤ 4

3σmin(A′) ≤ O(n)κ(A).

Since R̃ remains full rank, we have that Q̂R̃ = Â⇒ Q̂ = A′R̃
−1

+EAR̃
−1

. If we write the true
economy-QR of A′ as A′ = QR, then we can see that ∥RR̃

−1
∥ = ∥QRR̃

−1
∥ = ∥AR̃

−1
∥ =

1We highlight that our Gaussian sampling oracle in Definition D.1 is slightly different than the one described
in [15], but it should be straightforward to adapt the analysis using either of the two definitions.
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∥Q̂ − EAR̃
−1
∥. This implies that ∥RR̃

−1
∥ ∈ [1 − ∥EAR̃

−1
∥, 1 + ∥EAR̃

−1
∥]. With similar

arguments we obtain

∥R̃R−1∥ ∈ [1− ∥EAR−1∥, 1 + ∥EAR−1∥].

We previously argued that ∥R∥, ∥R̃∥ ≤ O(1), and ∥R−1∥, ∥R̃
−1
∥ ≤ O(n)κ(A). Thus, if we fur-

ther enforce ∥EA∥ ≤ ϵ1c1
1

poly(n)κ(A) for some constant c1, then max{∥EAR̃
−1
∥, ∥EAR−1∥} ≤

ϵ1, for some ϵ1 ∈ (0, 1/4), which means that all the singular values of RR̃
−1

are inside the inter-

val [1 − 2ϵ1, 1 + 2ϵ1]. In other words, RR̃
−1

is approximately orthogonal. Indeed, we can write

RR̃
−1

= Φ + EΦ where ΦΦ⊤ = I and all the singular values of EΦ are inside [−2ϵ1, 2ϵ1]. In

particular, Φ = UV⊤, where U,V come from the SVD of RR̃
−1

= UΣV⊤.

We can now go back to Q̃. From the above, Q̂ can be written as

Q̂ = ÂR̃
−1

+EAR̃
−1

= QΦ+QEΦ +EAR̃
−1
,

which ultimately gives

Q̃ = Q̂+EQ̂ = QΦ+QEΦ +EAR̃
−1

+EQ̂.

This means that Q̃ is just a rotation of the true Q plus some additive error terms that we can control
with u. In particular,

∥Q̃−QΦ∥ ≤ ∥QEΦ +EAR̃
−1

+EQ̂∥

≤ ϵ1 +O(poly(n)u)∥R̃
−1
∥+O(poly(n)u)

≤ O(ϵ1),

where in the last we applied the required bound for u ≤ ϵ1c1 1
poly(n)κ(A) .

Combining everything, we conclude that if the machine precision satisfies

u ≤ ϵQR
1

poly(n)κ(A)
,

then we can compute a matrix Q̃ in O(mnω−1) floating point operations such that there exists
orthogonal matrix Φ satisfying

∥Q̃−QΦ∥ ≤ ϵQR,

using O(log(nκ(A)/ϵQR)) bits of precision.

The second result is for the computation of the spectral norm of the matrix from [107] using the
Lanczos algorithm.
Theorem A.7 (Imported variant of Theorem 18 from the full version of [107]). Let A ∈ Rm×n and
δ ∈ (0, 1/2) a failure probability parameter. We can compute a vector y such that, with probability
at least 1− δ,

9
10∥A∥ ≤

∥Ay∥
∥y∥ ≤ ∥A∥,

in O (mn log(n) log(1/δ)) floating point operations using O(log(n)) bits of precision. Internally
the algorithm generates O(n log(1/δ)) random bits.

We can obtain the following corollary.

Corollary A.1 (Spectral norm). Let B ∈ Cm×n. We can compute a value Σ̃ ∈ Θ(∥B∥) with
probability at least 1−2δ inO (mn log(n) log(1/δ)) floating point operations usingO(log(n)) bits
of precision.

Proof. Let R be the real part of B and Z be the imaginary part. We can approximate R ∈
[ 9
10∥R∥, ∥R∥] and Z ∈ [ 9

10∥Z∥, ∥Z∥] using the algorithm of Theorem A.7. We then set Σ̃ =
R+ Z ∈ [0.9(∥R∥+ ∥Z∥), ∥R∥+ ∥Z∥]. Using the triangle inequality we have that

0.9∥B∥ ≤ 0.9(∥R∥+ ∥Z∥) ≤ Σ̃ ≤ ∥R∥+ ∥Z∥ ≤ 2∥B∥,
or, in other words, Σ̃ ∈ [0.9∥B∥, 2∥B∥].
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A.6 Symmetrization

There are certain cases where it is crucial to ensure that the result of a floating point multiplication
or inversion remains Hermitian. The following proposition states that we can always “symmetrize”
a floating point matrix with small additional errors.

Proposition A.3 (HERM). Let C be a Hermitian matrix and C′ = C+E for some (non-Hermitian)
matrix E, such that ∥C − C′∥ = ∥E∥. Consider the matrix HERM(C′), where HERM(A) is an
algorithm that replaces the strictly lower triangular part of A with the strictly upper triangular part
of A. Then HERM(C′) is Hermitian and it holds that:

∥C− HERM(C′)∥ ≤ cHERM log(n) · ∥E∥,

for some constant cHERM.

Proof. For any matrix A, the upper triangular part of A, denoted as ∆U (A), satisfies the following
inequality:

∥∆U (A)∥ ≤ c log(n) · ∥A∥,

for some constant c. The same holds for the lower triangular part ∆L(A). For the diagonal part
diag(A)) it holds that ∥ diag(A)∥ ≤ ∥A∥ (see [27] for proofs). Let C′′ = HERM(C′). By the
definition of HERM(·), the matrix C′′ can be written as C′′ = ∆U (C

′) + ∆U (C
′)∗ − diag(C′) =

C+ (∆U (E) + ∆U (E)∗ − diag(E)). Therefore

∥C′′ −C∥ = ∥∆U (E) + ∆U (E)∗ − diag(E)∥ ≤ 2c log(n)∥E∥+ ∥E∥ ≤ cHERM log(n)∥E∥,

for some constant cHERM.

We can directly use this to derive bounds for matrix multiplication where the result is a Hermitian
matrix and for Hermitian matrix inversion.

Corollary A.2 (Symmetrized matrix multiplication). Let A and B be two matrices and C = AB
be a Hermitian matrix. If MM is a µMM-stable matrix multiplication algorithm then the matrix

C′ = HERM(MM(A,B))

is Hermitian and it satisfies

∥C′ −C∥ ≤ cHERM log(n) · u∥A∥∥B∥ · µMM(n).

Proof. Straightforward combination of Theorem A.2 and Proposition A.3.

Corollary A.3 (Symmetrized inversion). Let A be an invertible Hermitian matrix. If INV is a
(µINV, cINV)-stable inversion algorithm then the matrix

C = HERM(INV(A))

is Hermitian and it satisfies

∥C−A−1∥ ≤ cHERM log(n) · µINV(n) · u · κ(A)cINV logn∥A−1∥.

In addition, if u satisfies

u ≤ ϵ 1

cHERM log(n) · µINV(n) · κ(A)cINV log(n)+1

for some ϵ ∈ (0, 1/2), then both of the following hold:

∥C−A−1∥ ≤ ϵ∥A−1∥,
1

2
κ(A) ≤ κ(C) ≤ 2κ(A).
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Proof. The first part is straightforward combination of Theorem A.3 and Proposition A.3. For the
second part, we directly bound

(1− ϵ)∥A−1∥ ≤ (1− ϵ 1
κ(A) )∥A

−1∥ ≤ ∥C∥ ≤ (1 + ϵ 1
κ(A) )∥A

−1∥ ≤ (1 + ϵ)∥A−1∥

⇒ 1
2∥A

−1∥ ≤ ∥C∥ ≤ 2∥A−1∥.

Note that ∥C − A−1∥ ≤ ϵ 1
κ(A)∥A

−1∥ = ϵ 1
∥A∥ = ϵσmin(A

−1). Since C and A−1 are both
Hermitian then from Weyl’s inequality

(1− ϵ)σmin(A
−1) ≤ σmin(C) ≤ (1 + ϵ)σmin(A

−1)

⇒ 1
2σmin(A

−1) ≤ σmin(C) ≤ 2σmin(A
−1)

where we conclude that
1
4κ(A) ≤ κ(C) ≤ 4κ(A).

Remark A.1. Throughout this paper, to simplify our bounds, we assume that

1 ≤ µMM(n), µINV(n), cINV log(n), cHERM log(n).

Moreover, we define a global upper bound µ such that

µMM(n), cHERM log(n)µMM(n), µINV(n) ≤ µ(n) ≤ O(nc
′
η ),

where, from Theorem A.2, c′η is a constant that does not depend on n.

A.7 Existing algorithms for invariant subspaces and the (generalized) eigenproblem

We give a brief overview of some results related to the computation of spectral projectors, eigen-
vectors, and invariant subspaces for the Hermitian definite generalized eigenproblem. Many more
details can be found in standard textbooks and references therein [42, 119, 64, 135, 115], as well
as the recent overview of [129] for the complexity of the eigenproblem. For further reading we
can highlight some influential works from the enormous bibliography on eigenvalue algorithms and
perturbation bounds [44, 43, 8, 130, 131, 132, 133, 75, 108, 9, 26, 76, 77, 37, 2, 113, 112].

The prominent classic method to solve the Hermitian (generalized or regular) eigenproblem is to use
numerically stable Householder transformations to reduce a Hermitian matrix to tridiagonal form,
and then apply a tridiagonal shifted QR algorithm to diagonalize the tridiagonal matrix, which gives
both the eigenvalues and the eigenvectors. The paramount QR algorithm was originally proposed in
[51, 52, 90], its convergence for the symmetric case was analyzed in [140, 38] in exact arithmetic,
and the non-symmetric was recently analyzed in floating point in [18, 16, 17]. Other classical
algorithms for computing invariant subspaces include [97, 98, 10, 9].

With the aforementioned procedure, the floating point complexity is about Õ(n3) floating point
operations, potentially up to polylog(1/ϵ, 1/ gapk) factors. It is known that for Hermitian definite
pencils (H,S) one can extend this procedure such that, simultanteously, H will become (Hermitian)
tridiagonal and S the identity [36]. The Hermitian tridiagonal matrix can be further reduced with
similarity transformations to a symmetric tridiagonal matrix, in which case one can apply again
tridiagonal symmetric QR. Using standard perturbation bounds as the ones used in this work one
can potentially obtain provable forward errors invariant subspaces.

While there exist works that overcome the Õ(n3) worst-case complexity barrier for some compu-
tations related to the eigenproblem, none of them provide end-to-end forward errors for individual
invariant subspaces. [114] showed that the eigenvalues of a matrix can be computed in O(nω) arith-
metic operations, however, it becomes O(nω+1) boolean operations in rational arithmetic (up to
some other omitted factors), and therefore slower than standard Õ(n3) floating point eigensolvers.
[25] proposed a quantum-inspired method for approximate diagonalization in a backward-error
sense, with O(nω+1) bit complexity. [15] proved that backward-approximate diagonalization can
be solved in Õ(nω) bit complexity in floating point by using smoothed analysis, improving both
the Õ(n3) classic algorithms for the Hermitian case and the O(poly(n/ϵ)) algorithm of [7] for
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the non-Hermitian case. This was extended for the generalized eigenproblem case in [41]. As
already mentioned in the introduction, to obtain forward errors for eigenvectors from the backward-
approximate solution, the corresponding bounds that are reported in [15, 41] require the existence
of a minimum eigenvalue gap in the original matrix, while the analysis for invariant subspaces was
left as an open problem. Our work completes this analysis, and takes a step even further, by show-
ing that (at least based on existing results), explicit diagonalization is redundant for approximating
individual invariant subspaces.

B Proof of Proposition 2.1

PURIFY

Input: Hermitian definite pencil H ∈ Hn, S ∈ Hn
++, approximate condition number κ̃ of S, approximate

values µ̃k, g̃apk, accuracy ϵ ∈ (0, 1/12).

Requires: ∥H∥ ≤ 1, ∥S−1∥ ≤ 1, κ̃ ∈ Θ(κ(S)), µ̃k ∈ µk ± 1
8
gapk, and g̃apk ∈ (1 ± 1

8
) gapk, where

µk =
λk+λk+1

2
and gapk = λk − λk+1 for some k ∈ [n− 1].

Algorithm: P̃← PURIFY(H,S, µ̃k, g̃apk, κ̃, ϵ).

1: SINV ← INV(S). ▷ SINV = S−1 +EINV
1

2: H̃← MM(SINV,H). ▷ H̃ = SINVH+EMM
2

3: M̃← µ̃k − H̃+E
(−)
3 .

4: C̃← SGN
(
M̃, ϵ

16·199 ,
g̃apk
32

)
. ▷ C̃ = sgn(M̃) +ESGN

4

5: Π̃← 1
2

(
1 + C̃

)
+E

(+)
5

6: return Π̃.

Output: Approximate spectral projector Π̃.

Ensures: ∥Π̃−Π∥ ≤ ϵ.

Algorithm 3: PURIFY.

For the analysis of Algorithm 3 we first recall that, in exact arithmetic, small perturbations do not
have a severe influence in the sign function of a matrix.

Lemma B.1. Let H ∈ Hn, S ∈ Hn
++, where µ is a scalar, and M = µ − S−1H and M̃ =

µ − S−1H + E. If ∥E∥ ≤ ϵ |λmin(M)|2π
128κV(M) for some ϵ ∈ (0, 1), where |λmin(M)| is the smallest

eigenvalue of M in absolute value, then ∥ sgn(M)− sgn(M̃)∥ ≤ ϵ.

Proof. The proof uses standard techniques from holomorphic functional calculus and the properties
of the pseudospectrum, but it is stated for completeness. A similar proof, for example, can be found
in [9] for general matrices A (i.e. in that proof A can have complex eigenvalues).

Recall that for a matrix A that has no eigenvalues on the imaginary axis, it holds that
sgn(A) = P+(A)−P−(A),

where P−(A) is the spectral projector on the subspace spanned by the eigenvectors corresponding
to eigenvalues with negative real part, and P+(A) is the corresponding spectral projector to the
positive halfplane. Then

∥ sgn(M)− sgn(M̃)∥ = ∥P+(M) +P−(M)−P+(M+E)−P−(M+E)∥
≤ ∥P+(M)−P+(M+E)∥+ ∥P−(M)−P−(M+E)∥.

S−1H has real eigenvalues because it is similar to a Hermitian matrix, i.e. Λ(S−1H) = Λ(L∗HL)
where L is the lower triangular Cholesky factor of S−1. Thus M has also real eigenvalues. From
Proposition A.1 (i) and (iii)

Λ∥E∥(M̃) ⊆ Λ2∥E∥(M) ⊆
⋃
i

D

(
λi(M), 2∥E∥κV(M)

)
.
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If ∥E∥ ≤ ϵ1
|λmin(M)|
4κV(M) for some ϵ1 ∈ (0, 1) then |λmin(M̃)| ≥ |λmin(M)|/2 and |λmax(M̃)| ≤

|λmax(M)|+ |λmin(M)|/2.

Let R be a rectangle whose bottom-left corner is located at −i|λmin(M)| and its top-right corner at
2+ |λmin(M)|+ i|λmin(M)|. Any point on the boundary of R has a distance of at least |λmin(M)|
from Λ(M) and at least at least |λmin(M)|/2 from Λ(M̃). From holomorphic functional calculus
we have that

P+(A) =

∮
∂R

(z −M)−1dz,

where in this case ∂R denotes a positively oriented rectifiable curve over the boundary of the rect-
angle. Using the resolvent identity (z−M)−1− (z−M′)−1 = (z−M)−1(M−M′)(z−M′)−1,
for P+ we have

∥P+(M)−P+(M+E)∥ =
∥∥∥∥ 1

2πi

∮
∂R

(z −M)−1dz − 1

2πi

∮
∂R

(z −M+E)−1dz

∥∥∥∥
=

∥∥∥∥ 1

2πi

∮
∂R

(z −M)−1 − (z −M+E)−1dz

∥∥∥∥
=

∥∥∥∥ 1

2πi

∮
∂R

(z −M)−1(z −M− (z −M+E))(z −M+E)−1dz

∥∥∥∥
=

∥∥∥∥ 1

2πi

∮
∂R

(z −M)−1E(z −M+E)−1dz

∥∥∥∥
≤ 1

2π

∮
∂R

∥∥(z −M)−1E(z −M+E)−1
∥∥ dz

≤ 1

2π
length(R) · ∥E∥ · sup

z∈∂R
∥(z −M)−1∥ sup

z∈∂R
∥(z −M+E)−1∥

≤ 1

2π
(6|λmin(M)|+ 4) · ϵ1

|λmin(M)|
4κV(M)

· 1

|λmin(M)|
· 2

|λmin(M)|

≤ ϵ1
4

πκV(M)|λmin(M)|

Since |λmin(M)| ≤ 2, then if we set ϵ1 ≤ ϵ |λmin(M)|π
16 (which satisfies ϵ1 < 1), where ϵ is the

desired final accuracy, this gives

∥P+(M)−P+(M+E)∥ ≤ ϵ/2.

The same can be obtained for P−. Putting everything together, if ∥E∥ ≤ ϵ |λmin(M)|2π
128κV(M) for some

ϵ ∈ (0, 1) ensures that ∥sgn(M+E)− sgn(M)∥ ≤ ϵ. From Proposition A.2 κV(M) ≤
√
κ(S),

which gives the final bound.

We can now prove Proposition 2.1, which we restate for readability.

Proposition B.1 (Restatement of Proposition 2.1). Let H ∈ Hn with ∥H∥ ≤ 1, S ∈ Hn
++ with

∥S−1∥ ≤ 1, k ∈ [n − 1] and ϵ ∈ (0, 1). Let µk = λk+λk+1

2 and gapk = λk − λk+1, where
λ1 ≤ . . . ≤ λn are the generalized eigenvalues of the Hermitian definite pencil (H,S) and assume
that we want to compute Πk which is the true spectral projector associated with the k smallest
eigenvalues. If we have access to

µ̃k ∈ µk ± 1
8 gapk g̃apk ∈ (1± 1

8 ) gapk, κ̃ ∈ [κ(S), Cκ(S)],

for some constant C > 1, then Algorithm 3 computes Π̃k ← PURIFY(H,S, µ̃k, g̃apk, κ̃, ϵ) such

that ∥Π̃k − Πk∥ ≤ ϵ, in O
(
TMM(n)

(
log( 1

gapk
) + log(log( κ(S)

ϵ gapk
))
))

floating point operations

using O
(
log(n) log3( 1

gapk
) log( κ(S)

ϵ gapk
)
)

bits of precision.
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Proof. Using the notation of Algorithm 3, we have that H̃ = S−1H + EINV
1 H + EMM

2 . Let us
initially set

u = ϵ0
1

µ(n)κ̃cINV log(n)
≤ ϵ0

1

µ(n)κ(S)cINV log(n)
, (6)

for some ϵ0 ∈ (0, 1/8) (to be determined later). From Theorems A.3 and A.2, and from the assump-
tion that ∥H∥, ∥S−1∥ ≤ 1 we have that

∥EINV
1 ∥ ≤ uµINV(n)κ(S)

cINV log(n)∥S−1∥ ≤ ϵ0,

∥EMM
2 ∥ ≤ uµMM(n)∥H∥∥SINV∥ ≤ uµMM(n)∥H∥

(
∥S−1∥+ ∥EINV

1 ∥
)
≤ ϵ0(1 + ϵ0) ≤ 2ϵ0.

We next have M̃← µ̃k − H̃+E
(−)
3 = µ̃k −S−1H+EINV

1 H+EMM
2 +E

(−)
3 = µ̃k −S−1H+B,

where E
(−)
3 is a diagonal error matrix with

∥E(−)
3 ∥ ≤ u∥µ̃k|∥H̃∥ ≤ u∥S−1H+EINV

1 H+EMM
2 ∥ ≤ u(1 + ϵ0 + 2ϵ0) ≤ 4u≪ 4ϵ0,

and B = EINV
1 H+EMM

2 +E
(−)
3 . We can bound the norm of B as:

∥B∥ ≤ 7ϵ0.

Now we need to apply Lemma B.1 to argue that
∥∥sgn(µk − S−1H)− sgn(µ̃k − S−1H+B)

∥∥ ≤
ϵ1, for some ϵ1 ∈ (0, 1). To satisfy the requirements of the lemma, we need to ensure that ∥B∥ ≤
ϵ1

π|λ2
min(µ̃k−S−1H)|
128
√

κ(S)
. This can be achieved by setting

ϵ0 = ϵ1
π|λ2min(µ̃k − S−1H)|

7 · 128
√
κ(S)

.

However, we do not know |λmin(µ̃k − S−1H)| and κ(S). To circumvent this, we can use the
assumption that µ̃k is well-placed close to the center of gapk, which implies that

|λmin(µ̃k − S−1H)| ≥ 3
8 gapk ≥

1
3 g̃apk,

and also use the assumption that κ(S) ≤ κ̃. This means that we can set

ϵ0 = ϵ1
π

7 · 128
√
κ̃
· 1
9
g̃ap

2
k, (7)

which implies the desired bound for B:

∥B∥ ≤ 7 · ϵ1
π

7 · 128
√
κ̃
· 1
9
g̃ap

2
k ≤ ϵ1

π|λ2min(µ̃k − S−1H)|
128
√
κ(S)

.

We can now apply Lemma B.1 to argue that∥∥sgn(µ̃k − S−1H)− sgn(µ̃k − S−1H+B)
∥∥ ≤ ϵ1.

By assumption we know that µ̃k = µk ± 1
8 gapk which means that sgn(µ̃k − S−1H) = sgn(µk −

S−1H), and therefore ∥∥sgn(µk − S−1H)− sgn(µ̃k − S−1H+B)
∥∥ ≤ ϵ1.

To not interrupt the flow, we will skip for now the analysis of SGN and we will leave it for the end of
the proof. From Theorem A.4 we know that the result returned by SGN satisfies ∥C̃− sgn(M̃)∥ ≤
ϵSGN, where we have full control over ϵSGN since it is passed as an argument to SGN, and therefore
it can be set to ϵSGN = ϵ1. Denoting C = sgn(µk − S−1H) and EC = C̃−C, we have∥∥∥C̃− sgn(µk − S−1H)

∥∥∥ = ∥EC∥ ≤ ϵ1 + ϵSGN = 2ϵ1.
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We now proceed to the line 5 of Algorithm 3, which computes Π̃ ← 1
2

(
1 + C̃

)
+ E

(+)
5 , where

E
(+)
5 is a diagonal error matrix with norm bounded by

∥E(+)
5 ∥ ≤ u∥C̃∥ ≤ u(1 + ϵ1 + ϵSGN) ≤ 3u≪ 3ϵ1.

Then we can write Π̃ = 1
2 (1 +C+EC) + E

(+)
5 = Π + 1

2EC + E
(+)
5 = Π + EΠ, where

Π = 1
2 (1 +C) and EΠ = 1

2EC +E
(+)
5 . Combining with the above:

∥EΠ∥ ≤ 4ϵ1,

in which case we can set ϵ1 = ϵ
4 , where ϵ is the desired accuracy, to guarantee forward error of at

most ϵ for the spectral projector Π̃.

Gathering all the requirements for the machine precision (except for SGN, which is detailed below)
from Equations (6) and (7), and the assumption on κ̃ and g̃apk it suffices to set

u ≤ ϵ

4

π

7 · 128
√
κ̃
· 1
9
g̃ap

2
k

1

µ(n)κ̃cINV log(n)
,

which translates to

O (log(1/u)) = O
(
log
(√

κ̃µ(n)κ̃cINV log(n)

ϵg̃ap2
k

))
= O

(
log(n) log(κ(S)) + log

(
n

ϵ gapk

))
(8)

bits of precision.

We finally proceed with the analysis of SGN. To use Theorem A.4 for the convergence of SGN, we
need to find the appropriate parameters αSGN, ηSGN to call it. These parameters must be such that
ΛηSGN

(M̃) ⊆ CαSGN
, and 99

100 < αSGN < 1. From the properties of the pseudospectrum, specifically,
from Proposition A.1 (i), we know that for any η > 0

Λη(M̃) = Λη(µ̃k − S−1H+B) ⊆ Λη+∥B∥(µ̃k − S−1H) ⊆ Λη+Bmax
(µ̃k − S−1H),

where Bmax is the upper bound for ∥B∥ that we obtained above:

∥B∥ ≤ ϵ1
πg̃ap

2
k

9 · 128
√
κ̃
:= Bmax.

For ηSGN = Bmax and from Proposition A.1 (iii) we obtain

ΛBmax
(M̃) ⊆ Λ2Bmax

(µ̃k − S−1H)

⊆
⋃
i

D
(
µ̃k − λi(S−1H), 2BmaxκV(µ̃k − S−1H)

)
⊆
⋃
i

D
(
µ̃k − λi(S−1H), 2ϵ1

πg̃ap2
k

9·128
√
κ̃
κV(S−1H)

)
.

where we used the fact that κV(S−1H) ≤
√
κ(S). We can get a rough upper bound

2ϵ1
πg̃ap2

k

9·128
√
κ̃
κV(S−1H) ≤ ϵ1 2π·92

9·128·82
√

κ(S)

√
κ(S) gap2k ≤ ϵ1

gap2
k

128 ,

which gives

ΛBmax
(M̃) ⊆

⋃
i

D
(
µ̃k − λi(S−1H), ϵ1

gap2
k

128

)
.

It suffices to find the appropriate αSGN such that the Apollonian circles CαSGN
will contain the disks

of the pseudospectrum. Since the smallest singular value of µ̃k − S−1H is lower bounded by
3
8 gapk, the leftmost positive point where any pseudospectral disk intersects with the real axis is
3
8 gapk −ϵ1

gap2
k

128 ≥ gapk(
3
8 −

1
128 ) = gapk

47
128 >

g̃apk

4 . Similarly for the negative halfplane, the
rightmost negative point where a disk intersects with the real axis is − g̃apk

4 . Denoting by ζ = g̃apk

8 ,
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it suffices to set αSGN = 1−ζ
1+ζ = 8−g̃apk

8+g̃apk
. Clearly, αSGN < 1 for all∞ > gapk > 0. For the lower

bound, to ensure αSGN > 99/100 we need that g̃apk <
8

199 . To achieve this we can simply scale
the input matrices by a constant, since, by assumption, ∥S−1H∥ ≤ 1, and therefore gapk ≤ 2. To
conclude, we have all the required parameters to call SGN.

We can now go back to the complexity analysis. We are running

C̃← SGN
(
M̃, αSGN, ηSGN, ϵSGN

)
,

where

αSGN =
8− g̃apk
8 + g̃apk

, ηSGN = Bmax = ϵ1
πg̃ap

2
k

9 · 128
√
κ̃
, ϵSGN = ϵ1 =

ϵ

4
.

We now invoke Theorem A.4. The number of iterations is bounded by

N = O
(
log( 1

1−αSGN
) + log(log( 1

ηSGNϵSGN
))
)

= O
(
log( 1

g̃apk
) + log(log( κ̃

ϵg̃apk
))
)

= O
(
log( 1

gapk
) + log(log( κ(S)

ϵ gapk
))
)
.

The number of required bits is

O
(
log(n) log3( 1

1−αSGN
) log( 1

ηSGNϵSGN
)
)
= O

(
log(n) log3( 1

g̃apk
) log

(
κ̃

ϵg̃apk

))
= O

(
log(n) log3( 1

gapk
) log

(
κ(S)
ϵ gapk

))
,

which dominates the previous bit bound of Equation 8.

It remains to bound the arithmetic complexity. There is a constant number of inversions, matrix
multiplications, and scalar-matrix operations, which in total take at most O(TMM(n)) floating point
operations. Thus, the dominant factor is the call to SGN, which amounts to

O
(
TMM(n)

(
log( 1

gapk
) + log(log( κ(S)

ϵ gapk
))
))

arithetic operations using the aforementioned number of bits.

B.1 Spectral gaps with diagonalization

The straightforward approach to compute the desired spectral gaps is to iteratively compute
S−1H and diagonalize it, until the eigenvalues are well approximated. If we compute A ←
MM(INV(S),H), then we can write A = S−1H + E, for some error matrix E. The next step
is to approximate gapk(S

−1H) and µk(S
−1H). For this one could use the recent state-of-the-art

backward-approximate diagonalization algorithm of [15].

Theorem B.1 (EIG, imported Theorem 1.6 from [15]). There exists a randomized algorithm
EIG(A, ϵEIG) which takes any matrix A ∈ Cn×n with ∥A∥ ≤ 1 and a desired accuracy param-
eter ϵEIG > 0 as inputs and returns a diagonal D and an invertible matrix V such that

∥A−VDV−1∥ ≤ ϵEIG and κ(V) ≤ 32n2.5/ϵEIG,

in

O
(
TMM(n) log

2( n
ϵEIG

)
)

arithmetic operations on a floating point machine with

O(log4(n/ϵEIG) log(n))

bits of precision, with probability at least 1− 14/n.
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Applying EIG on A we can obtain a backward-approximate diagonalization. But we are not fin-
ished yet, since we are interested in each individual eigenvalue. To translate the backward error to
a forward error for the eigenvalues, and, ultimately, the spectral gap, one can try to use Corollary
1.7 and Proposition 1.1 of [15]. However, this approach has two main limitations. First, it relies on
simplicity of the spectrum, i.e., it assumes that the minimum gap between any pair of eigenvalues
is larger than zero. This assumption is quite restrictive, since the desired gap might be well-defined
even at the presence of other multiple eigenvalues. For example, in DFT applications it is not un-
common to have eigenenergies with algebraic multiplicity larger than one, and at the same time have
a large band-gap that separates the occupied from the unoccupied orbitals. The second limitation is
that the aforementioned Corollary 1.7 requires as an input parameter an actual over-estimate for the
minimum eigenvalue gap. Even if such a gap exists, it is not described how to estimate it.

For diagonalizable matrices, we can leverage the following Corollary B.1, which is an immediate
consequence of Kahan’s inequality (Fact A.1), and it overcomes the aforementioned limitations.
Corollary B.1. If X is diagonalizable and it has real eigenvalues then for any Z the following
bound holds for the eigenvalues of X:

|λi(X)− λi(Z)| ≤ O(log(n))κV(X)∥X− Z∥.

Proof. Write X = WΛW−1 where W diagonalizes X and is chosen such that κ(W) = κV(X).
This is always possible since if W is any matrix that diagonalizes X then Λ is similar to X and
since X has real eigenvalues then Λ has to be real, and therefore symmetric. Then we can write

∥Λ−W−1ZW∥ ≤ ∥W∥∥W−1∥∥X− Z∥ = κ(W)∥X− Z∥.

Since Λ is symmetric, and since W−1ZW is similar to Z then from Kahan’s inequality (Fact A.1)

|λi(X)− λi(Z)| =
∣∣λi(Λ)− λi(W−1ZW)

∣∣ ≤ O(log(n))∥Λ−W−1ZW∥
≤ O(log(n))κ(W)∥X− Z∥
= O(log(n))κV(X)∥X− Z∥.

Now we need to use this to get a bound for the computed generalized eigenvalues after INV and EIG.

Proposition B.2 (EIG-based gap). Given a definite pencil (H,S) with ∥H∥, ∥S−1∥ ≤ 1, we can
compute g̃apk ∈ (1± ϵ) gapk and µ̃k ∈ µk± ϵ gapk by iteratively calling INV, MM, and EIG, using

O
(
TMM(n) log(

1
ϵ gapk

) log2(nκ(S)ϵ gapk
)
)

floating point operations using

O
(
log4(nκ(S)ϵ gapk

) log(n)
)

bits of precision with probability at least 1−O( log(1/ϵ gapk)
n ).

Proof. Let D,V← EIG(A, ϵEIG) be the solution returned by EIG when applied to A = S−1H+E.
Note that

∥S−1H−VDV−1∥ = ∥S−1H+E−E−VDV−1∥ ≤ ∥S−1H+E−VDV−1∥+ ∥E∥ ≤ ϵEIG + ∥E∥.

From Corollary B.1, since S−1H is diagonalizable with real eigenvalues then we conclude that∣∣λi(S−1H)−Di,i

∣∣ = ∣∣λi(S−1H)− λi(VDV−1)
∣∣ ≤ O(log(n))κV(S−1H)∥S−1H−VDV−1∥
≤ O(log(n))κV(S−1H) (ϵEIG + ∥E∥) .

We can tune the machine precision such that ∥E∥ = ϵEIG = ϵ′ 1

c log(n)
√

κ(S)
for some chosen ϵ′, and

some global constant c, then finally∣∣λi(S−1H)− λi(VDV−1)
∣∣ ≤ ϵ′.

32



We can now consider an iterative scheme, where we call EIG on S−1H, halving ϵ′ at each step.
We need to keep halving ϵ′ until it reaches ϵ′ = Θ(ϵ gapk), in which case we have a total of
O(log( 1

ϵ gapk
)) calls to EIG. In the worst case every call costs

O
(
TMM(n) log

2( n
ϵEIG

)
)
= O

(
TMM(n) log

2(nκ(S)ϵ gapk
)
)

arithmetic operations using O
(
log4(nκ(S)ϵ gapk

) log(n)
)

bits (note that the bits required by MM and
INV to achieve accuracy ϵ′ are dominated by those required for EIG, and we therefore ignore them).
Since we do not know gapk, we can set the termination criterion to be ϵ′ ≈ Θ(ϵg̃apk), where g̃apk
is the approximate gap that we obtain from EIG.

Each iteration succeeds with high probability 1 − 1/n, in which case a union bound gives 1 −
O(log(1/(ϵ gapk))/n, which can potentially be improved to 1 − O(1/n) without impacting the
complexity, but we do not expand further.

A subtle detail in the analysis above is that we need an estimate for κ(S) in order to be able to use
INV and to set the machine precision. Since κ(S) is generally unknown, we need to compute it. We
will later show in Appendix E how to compute the condition number quickly.

When S = I, we can avoid the inversion and the computation of κ(S). The arithmetic complexity
and the bit requirement are the same by setting κ(S) = 1.

Remark B.1. We highlight that a similar result can be obtained by using the more recent pencil
diagonalization algorithm of [41]. The authors the latter mention that their algorithm should be
“more numerically stable” than EIG of [15], since it uses an inverse-free iteration internally, and
they do provide strong theoretical and experimental evidence for this statement. However, as there
is no formal, end-to-end proof for the bit complexity at the time of this writing, we choose to com-
pare against EIG of [15]. Note that, any improvements on the bit requirements for the matrix sign
function, directly provide the same improvements for our main Theorems 1.1 and 3.1.

C Analysis of Cholesky

This section is devoted to the analysis of Algorithm 2 and the proof of Theorem 1.2. Let M =(
A B∗

B C

)
be a Hermitian matrix. It can be factorized in the form

M =

(
I

BA−1 I

)(
A

S

)(
I A−1B∗

I

)
= WYW∗, (9)

where S = C−BA−1B∗ is the Schur complement and

W =

(
I

BA−1 I

)
, Y =

(
A

S

)
.

Proposition C.1. Let M ∈ Hn
++ and consider the partitioning M =

(
A B∗

B C

)
. The following

hold

(i) A,C and the Schur complement S = C−BA−1B∗ are all positive definite;

(ii) For all X ∈ {A,C,S} we have that ∥X∥ ≤ ∥M∥ and ∥X−1∥ ≤ ∥M−1∥;

(iii) ∥B∥ ≤ ∥M∥/2.

Proof. It is easy to see that A is positive definite: since M ≻ 0, then it must also hold that
A ≻ 0 since the quadratic form x∗Ax can be written as y∗My for some vector y. For the
Schur complement we recall the factorized form of Equation (9). Consider the quadratic form

x∗(C − BA−1B∗)x. Let y =

(
−A−1B∗x

x

)
. Then y∗My = x∗(C − BA−1B∗)x, which

means that every quadratic form for the Schur complement can be written as a quadratic form for
the matrix M, and therefore they are both positive definite.
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For the spectral norm bounds, since A and C are both positive definite then their norms are equal
to the largest absolute eigenvalues. From the variational characterizaiton of eigenvalues and the
discussion above it is easy to see that ∥A∥ ≤ ∥M∥. For the Schur complement, let z be the
eigenvector such that ∥C−BA−1B∗∥ = z∗(C−BA−1B∗)z. Then

z∗(C−BA−1B∗)z = z∗Cz− z∗BA−1B∗z ≤ z∗Cz ≤ ∥M∥,

where we used the fact that BA−1B∗ is positive semi-definite (since A−1 is positive definite) and
therefore for all x

x∗BA−1B∗x ≥ 0,

where equality with zero holds only when z ∈ ker(B∗).

We finally prove the bound for ∥B∥. Let u be the top left singular vector of B and v be the top right
singular vector. Specifically, if B = UΣV∗ is the economy SVD of B, then u is the first column
of U and v∗ is the first row of V∗. Then u∗Bv = σmax(B)v∗v = (B)u∗u = ∥B∥. Consider the

vector z =

(
v
u

)
. Then

∥M∥ ≥ z∗Mz = (v∗ u∗)

(
A B∗

B C

)(
v
u

)
= v∗Av + 2u∗Bv + u∗Cu ≥ 2u∗Bv = 2∥B∥,

where we used the fact that A,C are positive-definite. We can then obtain bounds for
∥C−1∥, ∥A−1∥, and ∥S−1∥, by observing that σmin(X) = min∥z∥=1 z

∗Xz and lower bound it
by σmin(M) using similar argumnents.

Since A and S are Hermitian and positive-definite, we can recursively compute their Cholesky
factors. This gives rise to the recursive Algorithm 2. The complexity is as follows.
Proposition C.2. Algorithm 2 requires O(TMM(n)) arithmetic operations.

Proof. Let T (n) be the number of operations executed for a matrix of size n × n. Steps 4 and 8
require time T (n/2). Step 5 requires time TMM(n/2) + TINV(n/2), and step 6 requires TMM(n/2).
The Schur complement in Step 7 requires TMM(n/2) + THERM(n/2) + (n/2)2 = TMM(n/2) +
2(n/2)2. This becomes

T (n) = 2T (n2 ) + 3TMM(
n
2 ) + TINV(

n
2 ) + 2(n2 )

2 ≤ 2T (n2 ) +O(TMM(
n
2 )) ≤ O(TMM(n)).

C.1 Error analysis

The goal is to show that CHOLESKY(M) will return a backward-approximate Cholesky factor L
such that the error

∥LL∗ −A∥ ≤ f(u, ∥M∥, ∥M−1∥, n),
where f is some function, and use this bound to argue about the number of bits that are required to
achieve it. Recall that

M =

(
A B∗

B C

)
, L =

(
L11

L21 L22

)
, LL∗ =

(
L11L

∗
11 L11L

∗
21

L21L
∗
11 L21L

∗
21 + L22L

∗
22

)
.

It is easy to see that

∥LL∗ −M∥ =
∥∥∥∥(L11L

∗
11 L11L

∗
21

L21L
∗
11 L21L

∗
21 + L22L

∗
22

)
−
(
A B∗

B C

)∥∥∥∥
≤ ∥L11L

∗
11 −A∥+ ∥L21L

∗
11 −B∥+ ∥L21L

∗
21 + L22L

∗
22 −C∥ , (10)

which means that it suffices to bound the individual terms in the sum. The first term is the error of
the first recursive call. Following the notation of [39], let us denote err(n) the norm-wise error of
the algorithm for size n. We can then write

∥L11L
∗
11 −A∥ ≤ ∥ECH

0 ∥ ≤ err(n/2). (11)
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To simplify the various inequalities in the proofs we use the global bound µ from Remark A.1, where
all the terms µMM(n) and µINV(n) are bounded by µ(n). Finally, we also define

E1(M, n) := µ(n) · κ(M),

EINV(M, n) := µ(n) · κ(M)cINV log(n). (12)

We can now get a first expression for the bounds of the terms in Equation (10).
Lemma C.1. In Algorithm 2, the blocks L11,L21,L22 of the returned matrix L satisfy:

∥L11L
∗
11 −A∥ ≤ err(n/2),

∥L21L
∗
11 −B∥ ≤ (κ(M) + ∥EBAi∥) err(n/2) + ∥EBAi∥∥M∥+ ∥EMM

3 ∥∥L∗
11∥,

∥L21L
∗
21 + L22L

∗
22 −C∥ ≤ 2κ(M)2 · err(n/2) + 2κ(M)∥EL21

∥∥L11∥+ ∥EL21
∥2 + ∥ES∥.

Proof. The error for L11L
∗
11 was already described. For the second inequality, we first expand

L21L
∗
11 as follows:

L21L
∗
11 = (BA−1 +EBAi)L11L

∗
11 +EMM

3 L∗
11

= (BA−1 +EBAi)(A+ECH
A ) +EMM

3 L∗
11

= B+BA−1ECH
A +EBAiA+EBAiE

CH
A +EMM

3 L∗
11.

Then

∥L21L
∗
11 −B∥ =

∥∥∥BA−1ECH
A +EBAiA+EBAiE

CH
A +EMM

3 L∗
11

∥∥∥
≤ ∥B∥∥A−1∥∥ECH

A ∥+ ∥EBAi∥∥A∥+ ∥EBAi∥∥ECH
A ∥+ ∥E

MM
3 ∥∥L∗

11∥
≤ κ(M)err(n/2) + ∥EBAi∥∥M∥+ ∥EBAi∥err(n/2) + ∥EMM

3 ∥∥L∗
11∥.

With a similar procedure we can derive the third bound. We first write L21 = BA−1L11 + EL21

where EL21 contains several error matrices from previous computations. Then

L21L
∗
21 =

(
BA−1L11 +EL21

) (
BA−1L11 +EL21

)∗
=
(
BA−1L11 +EL21

) (
BA−1L11 +EL21

)∗
= BA−1L11L

∗
11A

−1B∗ +EL21BA−1L11 + L∗
11A

−1B∗E∗
L21

+EL21E
∗
L21

= BA−1(A+ECH
A )A−1B∗ +EL21BA−1L11 + L∗

11A
−1B∗E∗

L21
+EL21E

∗
L21

= BA−1B∗ +BA−1ECH
A A−1B∗ +EL21

BA−1L11 + L∗
11A

−1B∗E∗
L21

+EL21
E∗

L21
.

Similarly

L22L
∗
22 = S̃+ECH

S̃

= S+ES +ECH
S̃

= C−BA−1B∗ +ES +ECH
S̃
.

Then

∥L21L
∗
21 + L22L

∗
22 −C∥

=
∥∥∥BA−1ECH

A A−1B∗ +EL21BA−1L11 + L∗
11A

−1B∗E∗
L21

+EL21E
∗
L21

+ES +ECH
S̃

∥∥∥
≤ ∥BA−1∥2∥ECH

A ∥+ 2∥EL21
∥∥BA−1∥∥L11∥+ ∥EL21

∥2 + ∥ES∥+ ∥ECH
S̃
∥

≤ κ(M)2 · err(n/2) + 2κ(M)∥EL21
∥∥L11∥+ ∥EL21

∥2 + ∥ES∥+ err(n/2)

≤ 2κ(M)2 · err(n/2) + 2κ(M)∥EL21∥∥L11∥+ ∥EL21∥2 + ∥ES∥.

With this, the task reduces to finding appropriate bounds for the norms of the matrices
EMM

3 ,EBAi,ES and EL21
. We first derive bounds for the norms of the error matrices E(·).
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Lemma C.2. In Algorithm 2, the following bounds hold for the error matrices

(i)
∥∥∥EINV

1

∥∥∥ ≤ u · EINV
(
n
2 ,M

)
∥M−1∥,

(ii)
∥∥∥EMM

2

∥∥∥ ≤ u · E1
(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))
,

(iii) ∥EBAi∥ ≤ u · EINV
(
n
2 ,M

)
· κ(M) + u · E1

(
n
2 ,M

)
(1 + u · EINV

(
n
2 ,M

)
),

(iv)
∥∥∥EMM

3

∥∥∥ ≤ u · E1
(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))2 ∥L11∥,

(v)
∥∥∥EMM

4

∥∥∥ ≤ u · E1
(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))2 ∥M∥,
(vi)

∥∥∥ESUB
5

∥∥∥ ≤ u ·
√
n/2 · ∥M∥ ·

(
1 +

(
κ(M) + u · E1

(
n
2 ,M

)) (
1 + u · EINV

(
n
2 ,M

))2)
,

(vii) ∥EL21
∥ ≤ u · EINV

(
n
2 ,M

)
·
[
κ(M) +

(
2 + u · EINV

(
n
2 ,M

))2] · ∥L11∥,

(viii) ∥ES∥ ≤ u·∥M∥·EINV
(
n
2 ,M

)
·
(
2κ(M) +

(
1 + u · EINV

(
n
2 ,M

))2 (
3κ(M) + u · E1

(
n
2 ,M

)))
.

Proof. Each term is bounded as follows.

(i) For ∥EINV
1 ∥ we have:

∥EINV
1 ∥ ≤ µINV(n/2) · u · κ(A)cINV log n

2 ∥A−1∥ (...from Thm. A.3)

≤ µ(n/2) · u · κ(A)cINV log n
2 ∥M−1∥

= u · EINV
(
n
2 ,M

)
∥M−1∥.

(ii) Similarly, for ∥EMM
2 ∥:

∥EMM
2 ∥ ≤ µMM(n/2) · u∥B∥∥A−1 +EINV

1 ∥ (...from Thm. A.2)

≤ µMM(n/2) · u∥B∥∥A−1∥+ µMM(n/2) · u∥B∥∥EINV
1 ∥.

≤ µMM(n/2) · u · ∥M∥∥M−1∥+ µMM(n/2) · u · ∥M∥ · u · EINV
(
n
2 ,M

)
∥M−1∥

≤ u · E1
(
n
2 ,M

)
+ u2 · E1

(
n
2 ,M

)
· EINV

(
n
2 ,M

)
= u · E1

(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))
.

(iii) Using these two inequalities we can bound the norm of EBAi:

∥EBAi∥ = ∥BEINV
1 +EMM

2 ∥
≤ ∥B∥∥EINV

1 ∥+ ∥E
MM
2 ∥

≤ ∥M∥ · u · EINV
(
n
2 ,M

)
∥M−1∥+ u · E1

(
n
2 ,M

)
(1 + u · EINV

(
n
2 ,M

)
)

≤ κ(M) · u · EINV
(
n
2 ,M

)
+ u · E1

(
n
2 ,M

)
(1 + u · EINV

(
n
2 ,M

)
).

(iv) Next is the error term of the matrix multiplication between the result of MM(B, INV(A)) and
L11. Expanding Theorem A.2 gives

∥EMM
3 ∥ ≤ µMM(n/2) · u · ∥L11∥ ∥BAi∥ .

It suffices to bound ∥BAi∥ =
∥∥∥B(A−1 +EINV

1

)
+EMM

2

∥∥∥ ≤ ∥BA−1∥ + ∥BEINV
1 ∥ +

∥EMM
2 ∥. Using Proposition C.1, the triangle inequality, and the previous bounds, the two
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unknown norms in the sum are bounded as follows

∥BA−1∥ ≤ ∥B∥∥A−1∥ ≤ ∥M∥∥M−1∥ = κ(M),

∥BEINV
1 ∥ ≤ ∥B∥∥E

INV
1 ∥

≤ ∥M∥ · u · EINV
(
n
2 ,M

)
∥M−1∥

= u · EINV
(
n
2 ,M

)
κ(M).

This gives

∥BAi∥ ≤ κ(M) + u · EINV

(
n
2 ,M

)
κ(M) + u · E1

(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))
= κ(M)

(
1 + u · EINV

(
n
2 ,M

)) (
1 + u · E1

(
n
2 ,M

))
≤ κ(M)

(
1 + u · EINV

(
n
2 ,M

))2
,

where in the last inequality we simplified
(
1 + u · E1

(
n
2 ,M

))
≤
(
1 + u · EINV

(
n
2 ,M

))
.

Then

∥EMM
3 ∥ ≤ µMM(n/2) · u · ∥L11∥ · κ(M)

(
1 + u · EINV

(
n
2 ,M

)) (
1 + u · E1

(
n
2 ,M

))
≤ u · E1

(
n
2 ,M

)
·
(
1 + u · EINV

(
n
2 ,M

))2 ∥L11∥,

concluding the bound for EMM
3 .

(v) The norm of EMM
4 is very similar to that of EMM

3 since they both involve a multiplication with
BAi:

∥EMM
4 ∥ ≤ cHERM log(n/2) · µMM(n/2) · u · ∥BAi∥∥B∥ (...from Corollary A.2)

≤ cHERM log(n/2) · µMM(n/2) · u · κ(M)
(
1 + u · EINV

(
n
2 ,M

))2 ∥M∥
≤ u · E1

(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))2 ∥M∥.
(vi) Next is ESUB

5 . From Equation (5):

∥ESUB
5 ∥ ≤ u

√
n/2

∥∥∥C− ((BAi)B∗ +EMM
4

)∥∥∥
≤ u

√
n/2

(
∥C∥+ ∥(BAi)B∗∥+ ∥EMM

4 ∥
∥∥∥

≤ u
√
n/2

(
∥M∥+ ∥(BAi)B∗∥+ ∥EMM

4 ∥
)

≤ u
√
n/2

(
∥M∥+ κ(M)

(
1 + u · EINV

(
n
2 ,M

))2 ∥M∥+ u · E1
(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))2 ∥M∥)
= u

√
n/2 · ∥M∥ ·

(
1 + κ(M)

(
1 + u · EINV

(
n
2 ,M

))2
+ u · E1

(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))2)
= u

√
n/2 · ∥M∥ ·

(
1 +

(
κ(M) + u · E1

(
n
2 ,M

)) (
1 + u · EINV

(
n
2 ,M

))2)
.

(vii) The next term is EL21 , which we can bound as follows:

∥EL21
∥ = ∥EBAiL11 +EMM

3 ∥
≤ ∥EBAi∥ · ∥L11∥+ ∥EMM

3 ∥
≤
[
κ(M) · u · EINV

(
n
2 ,M

)
+ u · E1

(
n
2 ,M

)
(1 + u · EINV

(
n
2 ,M

)
)
]
· ∥L11∥+ . . .

. . .+ u · E1
(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))2 ∥L11∥
=
[
κ(M) · u · EINV

(
n
2 ,M

)
+ u · E1

(
n
2 ,M

)
·
(
1 + u · EINV

(
n
2 ,M

))
·
(
2 + u · EINV

(
n
2 ,M

))]
· ∥L11∥

≤ u · EINV
(
n
2 ,M

)
·
[
κ(M) +

(
2 + u · EINV

(
n
2 ,M

))2] · ∥L11∥.

(viii) The final and most involved error term is the norm of ES. Recall that from Line 7 of Algorithm
2 the matrix can be written as

ES = BEINV
1 B∗ +EMM

2 B∗ +EMM
4 +ESUB

5 .
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Once more, the norm of each term is bounded separately.

∥BEINV
1 B∗∥ ≤ ∥B∥∥EINV

1 ∥∥B
∗∥

≤ ∥M∥2 · u · EINV
(
n
2 ,M

)
∥M−1∥

= κ(M) · ∥M∥ · u · EINV
(
n
2 ,M

)
.

Similarly,

∥EMM
2 B∗∥ ≤ u · E1

(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))
· ∥M∥.

The final bound for ES is given by the sum of the four bounds that were derived.

∥ES∥ = ∥BEINV
1 B∗ +EMM

2 B∗ +EMM
4 +ESUB

5 ∥
≤ ∥BEINV

1 B∗∥+ ∥EMM
2 B∗∥+ ∥EMM

4 ∥+ ∥ESUB
5 ∥

≤ u · EINV
(
n
2 ,M

)
· κ(M) · ∥M∥ . . .

. . .+ u · E1
(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))
· ∥M∥

. . .+ u · E1
(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))2 ∥M∥
. . .+ u

√
n/2 · ∥M∥ ·

(
1 +

(
κ(M) + u · E1

(
n
2 ,M

)) (
1 + u · EINV

(
n
2 ,M

))2)
= u · ∥M∥ ·

[
EINV

(
n
2 ,M

)
· κ(M) . . .

. . .+ E1
(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))
. . .+ E1

(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))2
. . .+

√
n/2

(
1 +

(
κ(M) + u · E1

(
n
2 ,M

)) (
1 + u · EINV

(
n
2 ,M

))2)]
= u · ∥M∥ · EINV

(
n
2 ,M

)
·
[
κ(M) +

(
1 + u · EINV

(
n
2 ,M

))
. . .

. . .+
(
1 + u · EINV

(
n
2 ,M

))2
. . .+

(
1 +

(
κ(M) + u · E1

(
n
2 ,M

)) (
1 + u · EINV

(
n
2 ,M

))2)]
= u · ∥M∥ · EINV

(
n
2 ,M

)
·
[
κ(M) +

(
1 + u · EINV

(
n
2 ,M

))
. . .

. . .+
(
1 + u · EINV

(
n
2 ,M

))2
. . .+

(
1 +

(
κ(M) + u · E1

(
n
2 ,M

)) (
1 + u · EINV

(
n
2 ,M

))2)]
≤ u · ∥M∥ · EINV

(
n
2 ,M

)
·
[
κ(M) + 1 +

(
1 + u · EINV

(
n
2 ,M

))2 (
1 + 1 +

(
κ(M) + u · E1

(
n
2 ,M

)))]
≤ u · ∥M∥ · EINV

(
n
2 ,M

)
·
[
2κ(M) +

(
1 + u · EINV

(
n
2 ,M

))2 (
3κ(M) + u · E1

(
n
2 ,M

))]
.

C.2 Maintaining positive-definiteness, norms, and condition numbers throughout the
recursion

Given the bounds of Lemma C.2, we can now calculate the appropriate machine precision u and the
corresponding number of bits such that the algorithm will not break down due to loss of positive-
definiteness of the submatrices. Hereafter, we will denote by M the matrix that is passed as an
argument in any of the recursive calls of Algorithm 2, and M0 will denote the original matrix that
needs to be factorized.
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Lemma C.3. Let M0 ∈ Hn
++ be a matrix that is factorized using Algorithm 2 and κ be its condition

number. Then there exist constants c1, c2, c3, c4 ≥ 1, such that if n > c1 and

u ≤ u++ :=
1

c2 · nc3 · κc4 logn
,

then every matrix that is constructed in Line 7 during the recursion, that is, every Schur complement
S̃ and every upper-left block A, will be Hermitian and positive-definite. Moreover, for each such
matrix X it holds that ∥X∥ ≤ 2∥M0∥ and κ(X) ≤ 2κ(M0). This value of u translates to

log(1/u) = O(log(n) log(κ))

required bits of precision.

Proof. At each recursive step, two matrices need to remain positive-definite: A and S̃. If M is
positive-definite then so is A. It remains to ensure the same for the Schur complement. To prove
this we first fix u be bounded by the value

u ≤ u++ :=
1

n2cINV · EINV
(
n
2 ,M0

)
· 72κ(M0)2

. (13)

Assume that we are in the first level of recursion, i.e. M = M0. Per Lemma C.2, we can write
S̃ = S+ES, where

∥ES∥ ≤ u · ∥M0∥ · EINV
(
n
2 ,M0

)
·
(
2κ(M0) +

(
1 + u · EINV

(
n
2 ,M0

))2 (
3κ(M0) + u · E1

(
n
2 ,M0

)))
.

For the assumed value of u, both u · E1
(
n
2 ,M0

)
≤ 1 and u · EINV

(
n
2 ,M0

)
≤ 1, and we also know

that 1 ≤ κ(M0), in which case the bound simplifies to

∥ES∥ ≤ u · ∥M0∥ · EINV
(
n
2 ,M0

)
·
(
2κ(M0) + (1 + 1)

2
(3κ(M0) + 1)

)
≤ u · ∥M0∥ · EINV

(
n
2 ,M0

)
· (2κ(M0) + 4 (3κ(M0) + κ(M0)))

≤ u · ∥M0∥ · EINV
(
n
2 ,M0

)
· 18κ(M0)

≤ 1

n2cINV · EINV
(
n
2 ,M0

)
· 72κ(M0)2

· ∥M0∥ · EINV
(
n
2 ,M0

)
· 18κ(M0)

≤ 1

n2cINV
· λmin(M0). (14)

Using this, we derive the following useful inequalities

λmax(S̃) ≤ ∥S∥+ ∥ES∥ ≤ (1 + 1/n2cINV)∥M0∥,

λmin(S̃) ≥ λmin(S)− ∥ES∥ ≥ λmin(S)−
1

n2cINV
λmin(M0) ≥ (1− 1/n2cINV)λmin(M0),

κ(S̃) ≤ n2cINV + 1

n2cINV − 1
· κ(M0),

EINV

(
n
4 , S̃

)
= µ(n/4)κ(S̃)cINV log(n/4)

≤ µ(n/4) ·
(
n2cINV + 1

n2cINV − 1

)cINV log(n/4)

· κ(M0)
cINV log(n/4)

≤ ncINV · µ(n/4) · κ(M0)
cINV log(n/4)

≤ ncINVEINV
(
n
4 ,M0

)
.

In the above, we used the fact that for cINV ≥ 1 we have that n2cINV+1
n2cINV−1

≤ 2, for all n ≥ 3, and

therefore 2cINV log(n/4) = (n/4)cINV ≤ ncINV . Since the smallest eigenvalue of S̃ is larger than a
positive value, we can conclude that it is Hermitian and positive-definite, and its condition number
and spectral norm are appropriately bounded.
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In a similar manner, we can now get a bound for the Schur complement of the Schur complement.
In this recursive step we call Algorithm 2 with M = S̃. Let

S̃ =

(
A1 B∗

1
B1 C1

)
.

Let S1 be the true Schur complement of S̃, i.e. S1 = C1−B1A
−1
1 B∗

1, and let S̃1 be the approximate
Schur complement of S̃ that is constructed in line 7 of Algorithm 2 when executed on S̃. Let ES1 be
the corresponding error matrix, i.e. S̃1 = S1 + ES1

. Using Lemma C.2 and simplifying the terms
(1 + 1/ncINV) ≤ 2 and n2cINV+1

n2cINV−1
≤ 2 we have that

∥ES1∥ ≤ u

≤2∥M0∥︷︸︸︷
∥S̃∥ EINV

(
n
4 , S̃

)
︸ ︷︷ ︸

≤ncINVEINV(n4 ,M0)

2
≤2κ(M0)︷︸︸︷
κ(S̃) +

1 + u · EINV
(

n
4 , S̃

)
︸ ︷︷ ︸

≤ncINVEINV(n4 ,M0)


23

≤2κ(M0)︷︸︸︷
κ(S̃) +u

≤2E1(n2 ,M0)︷ ︸︸ ︷
E1
(

n
4 , S̃

) 


≤ u · 2∥M0∥ · ncINVEINV
(
n
4 ,M0

) (
4κ(M0) +

(
1 + u · ncINVEINV

(
n
4 ,M0

))2 (
6κ(M0) + u · 2E1

(
n
4 ,M0

)))
≤ u · 2∥M0∥ · ncINVEINV

(
n
4 ,M0

) (
4κ(M0) + (1 + 1)

2
(6κ(M0) + 2)

)
≤ u · ∥M0∥ · ncINVEINV

(
n
4 ,M0

)
· 72κ(M0)

≤ 1

n2cINV · EINV
(
n
2 ,M0

)
· 72κ(M0)2

· ∥M0∥ · ncINVEINV
(
n
4 ,M0

)
· 72κ(M0)

=
1

ncINV
· λmin(M0).

The corresponding bounds for S̃1 can be derived:

λmax(S̃1) ≤ ∥S̃∥+ ∥ES1
∥

≤ ∥S∥+ ∥ES∥+ ∥ES1
∥

≤ ∥M0∥+
1

n2cINV
∥M0∥+

1

ncINV
∥M0∥

≤ (1 + 2/ncINV)∥M0∥,
λmin(S̃1) ≥ (1− 2/ncINV)λmin(M0),

κ(S̃1) ≤
ncINV + 2

ncINV − 2
· κ(M0),

EINV
(

n
8 , S̃1

)
= µ(n/8)κ(S̃)cINV log(n/8)

≤ µ(n/8) ·
(
ncINV + 2

ncINV − 2

)cINV log(n/8)

· κ(M0)
cINV log(n/8)

≤ ncINV · µ(n/8) · κ(M0)
cINV log(n/8)

= ncINVEINV
(
n
8 ,M0

)
.

We can therefore identify that S̃1 is also Hermitian positive-definite and its extremal eigenvalues are
similarly bounded with those of S̃.

If we keep applying the same analysis for all log(n) iterations, as long as n is greater than some
constant such that (ncINV + log n)/(ncINV − log n) ≤ 2, then for each i = 1, ..., log n it holds that

∥ESi
∥ ≤ 1

ncINV
· λmin(M0) ≤

1

ncINV
∥M0∥,
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which implies that

λmax(S̃i) ≤ (1 + i/ncINV)∥M0∥,
λmin(S̃i) ≥ (1− i/ncINV)λmin(M0),

κ(S̃i) ≤
ncINV + i

ncINV − i
· κ(M0),

EINV
(

n
2i , S̃i

)
≤ ncINVEINV

(
n
2i ,M0

)
.

The same bounds hold for the matrices Ai, since they always originate from the top-left corner of
a matrix S̃j , where j < i, i.e., Ai either has no errors or it inherits the errors from a matrix S̃j .
We can therefore conclude that, for the value of u in Inequality (13), every matrix Ai and S̃i that
is constructed during the recursion of Algorithm 2 will be Hermitian and positive-definite and its
condition number and spectral norm will be at most 2κ(M0) and 2∥M0∥ respectively. The required
number of bits is

log(1/u++) = log
(
n2cINV · EINV

(
n
2 ,M0

)
· 72κ(M0)

2
)
= O (log(n) log(κ(M0))) .

C.3 Final backward-approximation bounds and proof of Theorem 1.2

Having safeguarded the possibility of a breakdown due to loss of positive-definiteness, we can now
revisit the bounds of Lemma C.1 and finalize the proof of Theorem 1.2.
Theorem C.1 (Restatement of Theorem 1.2). Given a Hermitian positive-definite matrix M, there
exists an algorithm L← CHOLESKY(M), listed in Algorithm 2, which requires O(TMM(n)) arith-
metic operations. This algorithm is logarithmically stable, in a sense that, there exist global con-
stants c1, c2, c3, such that for all ϵ ∈ (0, 1), if executed in a floating point machine with precision

u ≤ uCHOLESKY := ϵ
1

c1nc2κ(M)c3 logn
,

which translates into O
(
log(n) log(κ(M)) + log( 1ϵ )

)
required bits of precision, then it does not

break down due to arithmetic errors, and the solution returned satisfies ∥LL∗ −M∥ ≤ ϵ∥M∥.

Proof. The arithmetic complexity of the algorithm was already bounded in Proposition C.2.

For the error proof we assume the bound for u ≤ u++ from Inequality (13). Combining the in-
equalities for a single recursion step from Lemma C.2 with the results of the previous section and
the bound for u, we have the following inequalities (recall once more that M is the input of the
algorithm for the specific recursive call, while M0 is the matrix in the original call):∥∥∥EMM

3

∥∥∥ ≤ u · E1
(
n
2 ,M

) (
1 + u · EINV

(
n
2 ,M

))2 ∥L11∥

≤ u · 8 · E1
(
n
2 ,M0

)
∥L11∥,

∥EBAi∥ ≤ u · EINV
(
n
2 ,M

)
· κ(M) + u · E1

(
n
2 ,M

)
(1 + u · EINV

(
n
2 ,M

)
)

≤ u ·
(
2ncINVEINV

(
n
2 ,M0

)
· κ(M0) + 4E1

(
n
2 ,M0

))
≤ u · 6ncINVEINV

(
n
2 ,M0

)
· κ(M0),

∥EL21
∥ ≤ u · EINV

(
n
2 ,M

)
·
[
κ(M) +

(
2 + u · EINV

(
n
2 ,M

))2] · ∥L11∥

≤ u · ncINVEINV
(
n
2 ,M0

)
· (2κ(M0) + 9) · ∥L11∥

≤ u · ncINVEINV
(
n
2 ,M0

)
· 11κ(M0) · ∥L11∥,

∥ES∥ ≤ u · ∥M∥ · EINV
(
n
2 ,M

)
·
(
2κ(M) +

(
1 + u · EINV

(
n
2 ,M

))2 (
3κ(M) + u · E1

(
n
2 ,M

)))
≤ u · 2∥M0∥ · ncINVEINV

(
n
2 ,M0

)
·
(
4κ(M0) + (1 + 1)

2
(6κ(M0) + 1)

)
≤ u · ncINVEINV

(
n
2 ,M0

)
· 64κ(M0) · ∥M0∥.
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Using those inequalities, the first term that we need to bound from Lemma C.1 is the following

∥L21L
∗
11 −B∥ ≤ (κ(M) + ∥EBAi∥) err(n/2) + ∥EBAi∥∥M∥+ ∥EMM

3 ∥∥L∗
11∥

≤
(
2κ(M0) + u · 6ncINVEINV

(
n
2 ,M0

)
· κ(M0)

)
err(n/2)

. . .+ u · 6ncINVEINV
(
n
2 ,M0

)
· κ(M0) · 2∥M0∥

. . .+ u · 8 · E1
(
n
2 ,M0

)
· ∥L11∥∥L∗

11∥︸ ︷︷ ︸
≤∥A∥+∥ECH

A ∥≤2∥M0∥+err(n/2)

≤
(
2κ(M0) + u · 6ncINVEINV

(
n
2 ,M0

)
· κ(M0)

)
err(n/2)

. . .+ u · 12ncINVEINV
(
n
2 ,M0

)
· κ(M0)∥M0∥

. . .+ u · 16 · E1
(
n
2 ,M0

)
· ∥M0∥

. . .+ u · 8 · E1
(
n
2 ,M0

)
· err(n/2)

≤
(
2κ(M0) + u · 6ncINVEINV

(
n
2 ,M0

)
· κ(M0) + u · 8 · E1

(
n
2 ,M0

))
err(n/2)

. . .+ u ·
(
12ncINVEINV

(
n
2 ,M0

)
· κ(M0) + u · 16 · E1

(
n
2 ,M0

))
· ∥M0∥.

≤ 22 · κ(M0) · err(n/2) + u · 28ncINVEINV
(
n
2 ,M0

)
· κ(M0) · ∥M0∥,

where in the last inequality we used the assumed bound for u, namely Inequality (13).

Similarly

∥L21L
∗
21 + L22L

∗
22 −C∥ ≤ 2κ2(M) · err(n/2) + 2κ(M)∥EL21

∥∥L11∥+ ∥EL21
∥2 + ∥ES∥

≤ 8κ2(M0) · err(n/2)
. . .+ 4κ(M0) · u · ncINVEINV

(
n
2 ,M0

)
· 11κ(M0) · ∥L11∥∥L11∥

. . .+
(
u · ncINVEINV

(
n
2 ,M0

)
· 11κ(M0) · ∥L11∥

)2
. . .+ u · ncINVEINV

(
n
2 ,M0

)
· 64κ(M0) · ∥M0∥

≤ 8κ2(M0) · err(n/2)
. . .+ 44κ(M0)

2 · u · ncINVEINV
(
n
2 ,M0

)
· (2∥M0∥+ err(n/2))

. . .+
(
u · ncINVEINV

(
n
2 ,M0

)
· 11κ(M0)

)2 · (2∥M0∥+ err(n/2))

. . .+ u · ncINVEINV
(
n
2 ,M0

)
· 64κ(M0) · ∥M0∥

≤
[
8κ2(M0)

. . .+ 44κ(M0)
2 · u · ncINVEINV

(
n
2 ,M0

)
. . .+ 121

(
u · ncINVEINV

(
n
2 ,M0

)
· κ(M0)

)2 ] · err(n/2)
. . .+

[
88κ(M0)

2 · u · ncINVEINV
(
n
2 ,M0

)
. . .+ 242

(
u · ncINVEINV

(
n
2 ,M0

)
· κ(M0)

)2
. . .+ u · ncINVEINV

(
n
2 ,M0

)
· 64κ(M0)

]
· ∥M0∥

=

[
8 +

(
44 + 121u · ncINVEINV

(
n
2 ,M0

))
· u · ncINVEINV

(
n
2 ,M0

) ]
· κ(M0)

2 · err(n/2)

. . .+ u · ∥M0∥ · κ(M0) · ncINVEINV
(
n
2 ,M0

)
·
[
88κ(M0) + 64 + . . .

. . .+ 242κ(M0)u · ncINVEINV
(
n
2 ,M0

) ]
≤ 173 · κ(M0)

2 · err(n/2) + u · 394κ(M0)
2ncINVEINV

(
n
2 ,M0

)
· ∥M0∥,

where in the last inequality we used again (13).
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We can now derive a recursive formula for the main error bounds, Inequality (10).

err(n) = ∥LL∗ −M∥
≤ ∥L11L

∗
11 −A∥+ ∥L21L

∗
11 −B∥+ ∥L21L

∗
21 + L22L

∗
22 −C∥

≤ err(n/2) + . . .

. . .+ 22 · κ(M0) · err(n/2) + u · 28ncINVEINV
(
n
2 ,M0

)
· κ(M0) · ∥M0∥+ . . .

. . .+ 173 · κ(M0)
2 · err(n/2) + u · 394κ(M0)

2ncINVEINV
(
n
2 ,M0

)
· ∥M0∥

≤ 196κ(M0)
2 · err(n/2) + u · 422κ(M0)

2ncINVEINV
(
n
2 ,M0

)
· ∥M0∥. (15)

The base case n = 1 is trivial since M is just a positive real number2 and we can compute L =
fl(
√
M) = (1 + δ)

√
M with |δ| ≤ u, which means that LL∗ = L2 = (1 + δ)2M > 0 and

|M− LL∗| = |M(2δ + δ2)| ≤ 3u∥M∥ ≤ 6u∥M0∥.

If we denote α = 196κ(M0)
2 and β = u · 422κ(M0)

2ncINVEINV
(
n
2 ,M0

)
, then the solution of the

recursion can be written as

err(n) ≤ αlognerr(1) + β∥M0∥
logn−1∑
i=0

αi

≤ αlogn6u∥M0∥+ log(n)αlognβ∥M0∥
= unc1κ(M0)

2 logn∥M0∥+ log(n)nc1κ(M0)
2 lognu · 422κ(M0)

2ncINVEINV
(
n
2 ,M0

)
· ∥M0∥

= u · c4nc2κ(M0)
c3 logn · ∥M0∥.

We can now absorb the remaining terms inside u, by tuning the constants of Inequality (13), to argue
that we can achieve any desired (multiplicative) backward-accuracy ϵ ∈ (0, 1) and if we set

u ≤ ϵ 1

c′1n
c′2κ(M0)c

′
3 logn

for some constants c′1, c
′
2, c

′
3. This translates to the advertised

log(1/u) = O
(
log(nc

′
2κ(M0)

c′3 logn/ϵ)
)
= O

(
log(n) log(κ(M0)) + log( 1ϵ )

)
bits of precision.

C.4 Reducing the GEP to a regular Hermitian eigenproblem

We can now use CHOLESKY to reduce the definite GEP to a regular Hermitian eigenproblem For
the rest of the paper, we assume that ∥H∥, ∥S−1∥, ∥S−1H∥ ≤ 1. This is not a limitation since we
can approximate the norms of H and S−1 in floating point using the algorithm SIGMAK, which is
described later, and then scale accordingly. Formally, let η ≳ ∥H∥ and σ ≳ ∥S−1∥. Then we can
rewrite the generalized eigenproblem

HC = SCΛ ⇔ ( 1ηH)C = (σS)C(Λ 1
ησ ) ⇔ H′C = S′CΛ′,

i.e. it is the same generalized eigenproblem only with scaled eigenvalues. We can thus safely
make the unit-norms assumption. In Proposition C.3 we prove the properties of the reduc-
tion, which, in brief, states that we can compute in O(TMM(n)) floating point operations us-
ing O(log(n) log(κ(S)) + log(1/ϵ)) bits the matrix H̃ ← L̃

∗
HL̃,, where L̃ is returned by

CHOLESKY(INV(S)). The eigenvalues of H̃ provably approximate the pencil eigenvalues:∣∣∣λi(H̃)− λi(H,S)
∣∣∣ ≤ ϵ, (16)

where ϵ ∈ (0, 1) is a given accuracy. Algorithm 4 details the reduction.

2It has to be real otherwise a complex 1-by-1 matrix is not Hermitian.
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REDUCE

Input: Matrix H ∈ Hn, matrix S ∈ Hn
++, accuracy parameter ϵ ∈ (0, 1).

Requires: H is Hermitian and ∥H∥ ≤ 1, S is Hermitian and positive definite and ∥S−1∥ ≤ 1.

Algorithm: H̃← REDUCE(H,S).

1: SINV ← HERM(INV(S)). ▷ SINV = S−1 +EINV
1 .

2: L̃← CHOLESKY(SINV). ▷ L̃L̃
∗
= SINV +ECH

2 .

3: H̃← HERM(MM(MM(L̃
∗
,H), L̃)). ▷ H̃ = (L̃

∗
H+EMM

3 )L̃+EMM
4 = L̃

∗
HL̃+E5.

4: return H̃.

Output: Hermitian matrix H̃.

Ensures: |λi(H̃) − λi(S
−1H)| ≤ ϵ in O(TMM(n)) floating point operations using O(log(n) log(κ(S)) +

log(1/ϵ)) bits.

Algorithm 4: REDUCE.

Proposition C.3. Given H ∈ Hn, S ∈ Hn
++, and ϵ ∈ (0, 1), Algorithm 4 executes O(TMM(n))

floating point operations and returns a matrix H̃ ← REDUCE(H,S, ϵ), such that, if the machine
precision satisfies

u ≤ uREDUCE := ϵ
1

ρ1nρ2(4κ(S))ρ3 log(n)
,

for some constants ρ1, ρ2, ρ3, and ϵ ∈ (0, 1), which translates to

O (log(1/uREDUCE)) = O (log(n) log(κ(S)) + log(1/ϵ))

required bits of precision, then for all i ∈ [n]

|λi(H̃)− λi(H,S)| ≤ ϵ∥S−1∥∥H∥,

where λi(H,S) are the eigenvalues of the Hermitian definite pencil (H,S).

Proof. Let L be the (exact) lower triangular Cholesky factor of S−1, i.e. LL∗ = S−1 (which is
unique up to column phases). Expanding the equation in line 3 of Algorithm 4 we have

Λ(H̃) = Λ
(
L̃
∗
HL̃+E5

)
= Λ

(
L̃L̃

∗
H+ L̃E5L̃

−1
)

= Λ
(
(S−1 +EINV

1 +ECH
2 )H+ L̃E5L̃

−1
)

= Λ
(
S−1H+EINV

1 H+ECH
2 H+ L̃E5L̃

−1
)

= Λ
(
L∗HL+ L−1EINV

1 HL+ L−1ECH
2 HL+ L−1L̃E5L̃

−1
L
)
.

At the same time, Λ(S−1H) = Λ(L∗HL). Combining this with Kahan’s bound from Fact A.1 and
denoting

B = L−1EINV
1 HL+ L−1ECH

2 HL+ L−1L̃E5L̃
−1

L,

we have that ∣∣∣λi(H,S)− λi(H̃)
∣∣∣ = |λi(L∗HL)− λi(L∗HL+B)| ≤ C∥B∥ log(n), (17)

for some constant C. It remains to bound for ∥B∥.
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(i) EINV
1 originates from the inversion of SINV. Let SINV = HERM(INV(S)) = S−1 + EINV

1 .
From Corollary A.3, we know that as long as the machine precision satisfies

uREDUCE ≤ δ
1

cHERM log(n)µINV(n)κ(S)cINV log(n)+1
,

for some δ ∈ (0, 1/2), then all of the following hold: ∥EINV
1 ∥ ≤ δ∥S−1∥, 1

2∥S
−1∥ ≤

∥SINV∥ ≤ 2∥S−1∥, 1
4κ(S) ≤ κ(SINV) ≤ 4κ(S).

(ii) As a second step, the Cholesky factor L̃ = CHOLESKY(SINV) is computed, such that L̃L̃
∗
=

SINV +ECH
2 . From Theorem 1.2 we know that as long as

uREDUCE ≤ δ
1

c1nc2κ(SINV)c3 log(n)
,

for some constants c1, c2, c3, then ∥ECH
2 ∥ ≤ δ∥SINV∥ ≤ 2δ∥S−1∥. From the bound of κ(SINV)

in (i), the following is sufficient:

uREDUCE ≤ δ
1

c1nc2 (4κ(S))
c3 log(n)

,

(iii) Finally, we form the matrix H̃ = HERM
(
MM(MM(L̃,H), L̃

∗
)
)

= L̃
∗
HL̃ + EMM

3 L̃ +

EMM
4 = E3. Using Theorem A.2 and Corollary A.2, as long as

uREDUCE ≤ δ
1

µ(n)
= δ

1

cHERM log(n)µMM(n)
,

∥E5∥ = ∥H̃− L̃
∗
HL̃∥ =

∥∥∥L̃∗
HL̃+EMM

3 L̃+EMM
4 − L̃

∗
HL̃

∥∥∥
=
∥∥∥EMM

3 L̃+EMM
4

∥∥∥
≤

≤u·µMM(n)∥L̃∗∥∥H∥︷ ︸︸ ︷
∥EMM

3 ∥ ∥L̃∥+

≤cHERM log(n)·uµMM(n)∥L̃∗
+EMM

3 ∥·∥L̃∥︷ ︸︸ ︷
∥EMM

4 ∥

≤ u · µMM(n)∥L̃∥2∥H∥+ cHERM log(n) · uµMM(n)∥L̃
∗
H+EMM

3 ∥ · ∥L̃∥

≤ u · µ(n)∥L̃∥2∥H∥+ uµ(n)∥L̃
∗
H∥∥L̃∥+ uµ(n)∥EMM

3 ∥ · ∥L̃∥

≤ 2u · µ(n)∥L̃∥2∥H∥+ uµ(n) · u · µMM(n)∥L̃
∗
∥∥H∥ · ∥L̃∥

= u · µ(n)∥L̃∥2∥H∥ (2 + u · µMM(n))

= 3u · µ(n)

≤∥SINV∥+∥ECH
2 ∥︷ ︸︸ ︷

∥L̃∥2 ∥H∥

≤ 3u · µ(n)
(
∥S−1∥+ ∥EINV

1 ∥+ ∥E
CH
2 ∥
)
∥H∥

≤ 3u · µ(n)
(
2∥S−1∥+ 2δ∥S−1∥

)
∥H∥

≤ 12uµ(n)∥S−1∥∥H∥
≤ 12δ∥S−1∥∥H∥.

(iv) For the final desired error we need to bound ∥L̃∥∥L̃
−1
∥. Taking the square:

(∥L̃∥∥L̃
−1
∥)2 = ∥L̃∥2∥L̃

−1
∥2 = ∥L̃L̃

∗
∥∥(L̃L̃

∗
)−1∥ = ∥SINV +ECH

2 ∥∥(S
INV +ECH

2 )−1∥
= κ(SINV +ECH

2 ).

For the spectral norm we have that ∥SINV+ECH
2 ∥ ≤ ∥SINV∥+∥ECH

2 ∥ ≤ 2∥S−1∥+2δ∥S−1∥ ≤
3∥S−1∥. For the spectral norm of the inverse we need to bound the smallest singular value of
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SINV +ECH
2 from below:

σmin(S
INV +ECH

2 ) ≥ σmin(S
INV)− ∥ECH

2 ∥ ≥ 1
2σmin(S

−1)− 2δ∥S−1∥ = 1
2∥S∥ − 2δ∥S−1∥

= 1−4δκ(S)
2∥S∥ .

Combining the last two bounds, that we have

κ(SINV +ECH
2 ) ≤ 3∥S−1∥

1−4δκ(S)
2∥S∥

=
6κ(S)

1− 4δκ(S)
.

We now have bounds for all the required quantities to bound ∥B∥ :

∥B∥ =
∥∥∥L−1EINV

1 HL+ L−1ECH
2 HL+ L−1L̃E5L̃

−1
L
∥∥∥

≤
√
κ(S)

∥∥∥EINV
1 H+ECH

2 H+ L̃E5L̃
−1
∥∥∥

≤
√
κ(S)

(
∥EINV

1 ∥∥H∥+ ∥E
CH
2 H∥+ ∥E5∥∥L̃∥∥L̃

−1
∥
)

≤
√
κ(S)

(
δ∥S−1∥∥H∥+ 2δ∥S−1∥∥H∥+ 12δ∥S−1∥∥H∥

√
6κ(S)

1− 4δκ(S)

)

≤ δ
√
κ(S)∥S−1∥∥H∥

(
3 + 12

√
6κ(S)

1− 4δκ(S)

)
.

Setting δ = ϵ 1
64C log(n)κ(S) , where C is the constant from Inequality (17) and ϵ ∈ (0, 1), this finally

gives

∥B∥ ≤ ϵ 1

64C log(n)κ(S)
·
√
κ(S)∥S−1∥∥H∥

(
3 + 12

√
6κ(S)

1− 4ϵ 1
64C log(n)κ(S)κ(S)

)

= ϵ
1

64C log(n)
√
κ(S)

∥S−1∥∥H∥

(
3 + 12

√
6κ(S)

1− ϵ 1
16

)

≤ ϵ 1

64C log(n)
√
κ(S)

∥S−1∥∥H∥

(
3 + 12

√
96

15
κ(S)

)

≤ ϵ 1

64C log(n)
√
κ(S)

∥S−1∥∥H∥(3 + 36
√
κ(S))

≤ ϵ 1
C log(n)∥S

−1∥∥H∥,
which we can use in Inequality (17) to obtain

|λi(H,S)− λi(H̃)| ≤ ϵ∥S−1∥∥H∥.
We can now gather all the requirements for uREDUCE. From the above, uREDUCE needs to satisfy

uREDUCE ≤ ϵ
1

64C log(n)κ(S)
min

{
1

cHERM log(n)µINV(n)κ(S)cINV log(n)+1
,

1

c1nc2(4κ(S))c3 log(n)
,

1

cHERM log(n)µMM(n)

}
≤ ϵ 1

ρ1nρ2(4κ(S))ρ3 log(n)
,

for some suitably chosen constants ρ1, ρ2, ρ3. This translates to
O (log(1/uREDUCE)) = O (log(n) log(κ(S)) + log(1/ϵ))

required bits of precision. Having established the eigenvalue bounds, note that λi(H,S) =

λi(L
∗HL, I). Since H̃ and L∗HL are both Hermitian, the eigenvalue bound holds also for the

singular values. For scaled matrices ∥S−1∥, ∥H∥ ≤ 1 we obtain a maximum ϵ additive error for the
eigenvalues.
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C.5 Counterexample for floating point LU

In this section provide a counter-example which illustrates why the backward-stable LU factoriza-
tion algorithm of [39] is not sufficient to obtain a Cholesky factor for a Hermitian postive-definite
matrix. We apply one-by-one the steps of the LUR algorithm of [39] on the matrix:

A =

(
3 1
1 3

)
.

(a) In the first step the matrices LL and UL are computed by calling LUR(A1:2,1), to compute the

LU factorization of the first column of A. It is easy to see that this returns LL =

(
1

1
3 (1 + θ1)

)
where |θ1| ≤ u, and UL = 3 (the UL factor is a 1-by-1 matrix in this case).

(b) The second step updates the upper right corner of A, by multiplying from the left with the
inverse of the top-left block of LL. Assuming that multiplication and inversion with the number
1 does not incur errors, then for this specific example A1,2 is not modified in this step, i.e., it
remains equal to 1, without errors.

(c) The third step updates the Schur complement, which becomes A2,2 ← fl(A2,2 − 1
3 (1 + θ1)) =

(3− 1
3 (1 + θ1))(1 + θ2), where |θ2| ≤ u is the error term incurred by subtraction.

(d) The next step computes the LR,UR ← LUR(A2,2) of the (updated) Schur complement. In this
specific case it trivially returns LR = 1 and UR = A2,2 = (3− 1

3 (1 + θ1))(1 + θ2).

(e) The final steps combine together the left and right LU factors to finally return L =(
1 0

1
3 (1 + θ1) 1

)
,

(f) and U =

(
3 1
0 (3− 1

3 (1 + θ1))(1 + θ2)

)
.

Then, in exact arithmetic, LU =

(
3 1

1 + θ1 3(1 + θ2) + θ2(1 + θ1)
1
3

)
, which is not symmetric.

D Regularization with diagonal disorder

We now arrive to the more interesting part of the analysis. In Section 2 we argued that if we know the
gap and the midpoint then the sign function can yield the desired spectral projector. To compute the
gap and midpoint efficiently, we will take advantage of the symmetry induced by the Cholesky-based
reduction, and use the Wegner estimate [138] for Hermitian diagonal perturbations to regularize the
problem in the spirit of smoothed analysis. We use the following variant of the Wegner estimate.

Proposition D.1. Let G be a random diagonal matrix with independent diagonal elements sampled
from N (0, σ2), for σ = 1

2
√

2 ln(4n/δ)
and some δ ∈ (0, 1/2). Then for any interval I ⊂ R

Pr [|Λ(H+G) ∩ I| ≥ 1] ≤
√

4π ln(4n/δ)n|I|,

where H is a fixed Hermitian matrix and I ⊂ R is a fixed interval.

Proof. This directly comes from the well-known result of Wegner [138], which states that that for
any interval I ⊂ R

Pr [|Λ(H+G)| ∩ I| ≥ 1] ≤ π∥ρ∥∞n|I| ≤
√

π

2σ2
n|I|,

where ∥ρ∥∞ = 1√
2πσ2

is the supremum the probability density.

Similar results can be obtained for other classes of random matrices G. Such an example is the
Gaussian Unitary Ensemble (GUE) [4], in which case G is dense, but it is invariant under rotations
which might be useful for other applications.
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D.1 Sampling Gaussians and perturbing in floating point

The next step is to describe how to use such random diagonal perturbations in floating point. Briefly,
we first assume that we have a fixed number of bits for the floating point exponent and for the
mantissa. If we sample a standard normal Gaussian (in infinite precision), it can happen that it is too
large to fit in the given number of bits. This is accounted for in the failure probability, which is very
small due to the decay of the normal distribution. We describe our sampling method in the following
definition, which can be thought of as sampling only the most significant bits of the floating point
representation of a Gaussian.
Definition D.1. A floating point standard normal sampler N(p, t) takes as input the number of
exponent bits p, and the number of mantissa bits t, and returns a floating point number g̃ ← fl(g)
where g is sampled from N (0, 1). Following the definitions of the floating point model in Appendix
A.2, if |g| ∈ [2−M , 2M (2 − 2−t)], where M = 2p−1, then |g̃ − g| ≤ 2−t|g| = u|g|. If |g| >
2M (2− 2−t) the sampler returns g̃ = ±INF, i.e. the floating point representation of infinity, and if
|g| < 2−M it returns zero.
Lemma D.1 (Diagonal Gaussian sampler). Let γ ∈ (0, 1/2) and σ > 0, and assume that we want to
obtain a floating representation of the matrix γG, where G is a diagonal matrix with independent
diagonal entries from N (0, σ2). Let N(p, t) be a floating point standard normal sampler as in
Definition D.1, and u = 2−t. Let σ̃ be such that |σ̃ − σ| ≤ ηcσ, where |ηc| ≤ cu

1−cu for some
(integer) constant c > 1, and

G̃ = diag(g̃1, g̃2, . . . , g̃n),

where g̃i = N(p, t). If p ≥ C log(log(nδ )) for some global constant C, then the diagonal matrix
Ṽ = fl(γ · σ̃ · G̃) = γG+E, has all the following properties with probability at least 1− δ:

(i) Ṽi,i /∈ {0, INF},

(ii) E is diagonal and ∥E∥ ≤ γηc+2σ
√
2 ln(4n/δ),

(iii) ∥Ṽ∥ ≤ γ (1 + ηc+2)σ
√

2 ln(4n/δ).

Proof. Let us first analyze the conditions that are necessary such that all the sampled numbers lie
within the floating point bounds from Appendix A.2, specifically, |gi| ∈ [2−M , 2M (2 − 2−t)],
i ∈ [n], where M = 2p−1. For simplicity we consider |gi| ∈ [2−M , 2M ].

For the lower bound, we have that

Pr[|gi| ≤ 2−M ] ≤ 2
1√
2π

2−M ,

where we naively upper bounded the standard normal probability density in the interval [0, 2−M ] by

the constant function 1√
2π

. For M = log2

(
2n
δ

√
2
π

)
this implies that there are no subnormal gi for

all i ∈ [n] simultaneously. This value of M translates to p = O
(
log(log(nδ ))

)
bits.

For the upper bound, a standard normal tail bound gives

Pr[|gi| ≥ 2M ] ≤ 2 exp(−22M/2). (18)

For the aforementioned value of M , the probability that each one of the gi is larger than 2M is
exponentially small in δ/n, therefore we can conclude that the sampler does not return any INF
values with exponentially high probability.

This is already enough to argue that the sampler returns floating point numbers that are not subnor-
mal and not INF. However, we will need a tighter bound for the magnitude of the gi to bound the
norm of the diagonal random matrix. Analyzing Eq (18) for M = 1

2 log2(2 ln(
4n
δ )), and taking a

union bound over all i ∈ [n] we have that |gi| ≤
√

2 ln( 4nδ ) ≪ 2M holds for all i simultaneously
with probability at least 1− δ/2.

Conditioning on the event that all the gi are in the correct range, from Definition D.1, |g̃i−gi| ≤ u|gi|
holds for all i. Then

ṽi = fl(σ̃ · g̃i) = (1 + θ)σ̃g̃i = σgi(1 + ηc+1),

48



where c > 1 is a constant and |ηc+1| ≤ (c+1)u
1−(c+1)u . This means that every diagonal element of fl(σ̃G̃)

is (1+ ηc+1)-far from a random variable that is sampled fromN (0, σ2). Multiplying each diagonal
element of fl(σ̃G̃) with γ to form Ṽ (similar to the Step 4 of Algorithm 5) simply increases the
(relative) error to (1 + ηc+2). Then we can write

Ṽ = γV +E,

where V is diagonal with independent diagonal entries from N (0, σ2) and E is a diagonal matrix
with diagonal elements Ei,i bounded in magnitude by

|Ei,i| ≤
(c+ 2)u

1− (c+ 2)u
γ|Vi,i|.

It also holds that ∥V∥ ≤ σ
√
2 ln(4n/δ) since the diagonal elements Vi,i since they are just

the gi’s scaled by σ, and we already bounded |gi| ≤
√
2 ln(4n/δ), which implies that ∥E∥ ≤

γ (c+2)u
1−(c+2)uσ

√
2 ln(4n/δ). Finally

∥Ṽ∥ ≤ γ∥V∥+ ∥E∥ ≤ γ
(
1 + (c+2)u

1−(c+2)u

)
σ
√

2 ln(4n/δ).

We conditioned only on two random events, where each holds with probability at least 1 − δ/2,
giving the final success probability of at least 1− δ.

REGULARIZE

Input: Hermitian matrix A ∈ Hn, perturbation scale factor γ ∈ (0, 1/4), failure probability parameter δ ∈
(0, 1/4).

Requires: ∥A∥ ≤ 1.

Algorithm: X̃← REGULARIZE(A, γ, δ).

1: σ̃ = fl

(
1

2
√

2 ln(4n/δ)

)
.

2: p← ⌈C log(log(n
δ
))⌉.

3: G̃ = diag(g̃1, . . . , g̃n), g̃i ← N(p, log(1/u))

4: Ṽ = fl(γ · σ̃ · G̃) = γσG+E. ▷ Where G = diag(g1, . . . , gn), gi ← N (0, 1).

5: X̃ = A+ Ṽ +E(+).

Output: Hermitian perturbed matrix X̃.

Ensures: See Proposition D.2.

Algorithm 5: REGULARIZE.

We can now use the Wegner estimate to get a minimum singular value bound for diagonal shifts over
a grid, defined as follows.
Definition D.2 (Grid). A 1-d grid in the real line is a set of s points defined as

grid(l, r, h) = {l + jh|j ∈ Z≥0, l + jh ≤ r}.
The cardinality of a grid g = grid(l, r, h) is denoted as |g|.

The following Proposition 3.2 summarizes the properties of Algorithm 5, REGULARIZE, that we
will use to perform efficient eigenvalue counting queries to compute the spectral gap.
Proposition D.2. Let A with ∥A∥ ≤ 1 be a Hermitian matrix, γ, δ ∈ (0, 1/4) two given parameters,
and X̃ ← REGULARIZE(A, γ, δ). Let g be an arbitrary (but fixed) grid of points in [−2, 2] with
size |g| = T . For every element hi ∈ g consider the matrices Mi = hi− X̃ and M̃ = hi− X̃+Ei,
where Ei denote the diagonal floating point error matrices induced by the shift. If the machine
precision u satisfies

u ≤ γδ

32(c+2)nT
√

π ln(4n/δ)
,
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which translates to O(log(Tn
γδ )) bits, then all the following hold simultaneously with probability

1− 2δ :

∥X̃∥ ≤ 4/3,
∣∣∣λi(X̃)− λi(A)

∣∣∣ ≤ 9
16γ, σmin(M̃i) ≥ γδ

4nT
√

4π ln(4n/δ)
.

Proof. Let X = A + γσG, where σG is a diagonal matrix with independent elements from
N (0, σ2) where σ = 1

2
√

2 ln(4n/δ)
. Let B = X/γ = A/γ + σG. Denote by EG the event

∥σG∥ ≤ 1
2 . From a tail bound as in Lemma D.1, Pr[EG] ≥ 1 − δ. Conditioning on EG,

we obtain ∥B∥ = ∥A/γ + σG∥ ≤ 1/γ + 1/2 := β. This directly implies that Λ(B) ⊆
(−1/γ − 1/2, 1/γ + 1/2). Let h′i = hi/γ for all i = 1, . . . , T .

From the Wegner estimate (Proposition D.1), for every fixed interval I ,

Pr [|Λ(h′ −B) ∩ I| ≥ 1] ≤
√
4π ln(4n/δ)n|I|.

Setting Ii to be an interval centered at h′i with size |Ii| = δ

Tn
√

4π ln(4n/δ)
, we have that the probabil-

ity that Ii contains any eigenvalues is at most δ/T . Since there are no eigenvalues in Ii, this means
that the smallest singular value of h′i−B is at least half the size of Ii, i.e. σmin(h

′
i−B) ≥ |Ii|/2 =

δ

2Tn
√

4π ln(4n/δ)
. Hence, σmin(hi −X) = γσmin(h

′
i −B) ≥ γδ

2Tn
√

4π ln(4n/δ)
holds as well.

From Lemma D.1, if the diagonal Gaussian sampler is called with p = Θ(log(log(nδ )) and t =
log(1/u) then

∥E∥ ≤ γηc+2
1

2
,

∥Ṽ∥ ≤ γ(1 + ηc+2)
1

2
,

where |ηc+2| ≤ (c+2)u
1−(c+2)u . The elements of the diagonal error matrix E(+) in Algorithm 5 are

bounded by

|E(+)
i,i | ≤ u|Ai,i + Ṽi,i| ≤ u(∥A∥+ ∥Ṽ∥) ≤ u

(
1 + 1

2γ(1 + ηc+2)
)
.

Then

∥X̃−X∥ = ∥E(+) +E∥
≤ u∥A+ Ṽ∥+ 1

2γηc+2

≤ u
(
1 + 1

2γ(1 + ηc+2)
)
+ 1

2γηc+2.

If u ≤ ϵ
2(c+2) for some ϵ ∈ (0, 1) then |ηc+2| ≤ ϵ and since γ < 1/2 we also have that ∥X̃−X∥ ≤ ϵ.

Recall that ∥X∥ = ∥A+ γσG∥ ≤ 1 + γ/2 ≤ 5/4 and thus

∥Ei∥ ≤ u(|hi|+ ∥X̃∥) ≤ u(|hi|+ ∥X∥+ ϵ) ≤ u(2 + (1 + γ/2) + ϵ) ≤ 5u ≤ 5
ϵ

2(c+ 2)
≤ ϵ,

assuming that c ≥ 1. We now collect all the error bounds and apply Weyl’s inequality to argue that

|λj(hi −X)− λj(hi − X̃+Ei)| ≤ ∥X− X̃∥+ ∥Ei∥ ≤ 2ϵ.

The same holds for the singular values σj since the matrices are Hermitian. Thus if

ϵ ≤ γδ

8Tn
√
4π ln(4n/δ)

≤ σmin(hi −X)/4

then ∣∣∣σmin(hi − X̃+Ei)− σmin(hi −X)
∣∣∣ ≤ σmin(hi −X)/2,

which implies

σmin(hi − X̃+Ei) ≥ σmin(hi −X)/2 =
γδ

4Tn
√
4π ln(4n/δ)

.
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The aforementioned bound on ϵ also gives two (loose) bounds that are useful for the analysis of
algorithms later:

∥X̃∥ ≤ ∥X∥+ ϵ ≤ 5/4 + 1/32 ≤ 4/3,

and also from Weyl’s inequality∣∣∣λi(A)− λi(X̃)
∣∣∣ ≤ ∥A−X∥+ ∥X− X̃∥ ≤ γ

2 + γ
16 = 9

16γ.

The requirement for the machine precision is

u ≤ ϵ

2(c+ 2)
≤ γδ

32(c+ 2)Tn
√
π ln(4n/δ)

,

which translates to

O
(
log(Tn

γδ )
)

bits of precision (recall that we also required p = Θ(log(log(n/δ))) for the exponent of the Gaussian
sampler, but this does not affect the total number of bits).

For the complexity, we have n calls to N(p, t) and O(n) scalar additions and multiplications there-
after, which accumulate to O(n) total floating point operations using O

(
log(Tn

γδ )
)

bits.

For the success probability, there are two types random events that we took into account: EG, which
fails with probability at most δ, and the Wegner estimate for T points hi in the grid g, where each one
fails with probability at most δ/T . A union bound over all random events gives a success probability
of at least 1− δ − Tδ/T = 1− 2δ.

E Fast spectral gaps and eigenvalues with counting queries

The core of our methods is an algorithm to efficiently approximate spectral gaps using only “eigen-
value counting queries,” avoiding an explicit (and expensive) diagonalization.

E.1 Counting eigenvalues

The main subroutine of our algorithm is used to count the eigenvalues that are smaller than a given
threshold efficiently.

Lemma E.1. Let X̃ be Hermitian, ∥X̃∥ ≤ 2, and h ∈ [−2, 2] is a fixed point that can be exactly
represented in floating point, i.e. fl(h) = h. There exists an algorithm COUNT(X̃, h, ε) which
takes as input h, X̃, and ε ∈ (0, 4/199) with the guarantee that σmin(h− X̃) ≥ ε, and it returns an
integer n(−), which is the precise number of eigenvalues of X̃ that are smaller than h. The algorithm
requires

O
(
TMM(n)

(
log( 1ε ) + log(log(nε ))

))
arithmetic operations using

O
(
log(n) log3( 1ε ) log(

n
ε )
)

bits of precision.

Proof. Let M = h − X̃ and M̃ = h − X̃ + E be its floating point counterpart. As the shift only
distorts the diagonal elements, ∥E∥ = maxi |Ei,i| ≤ umaxi |h − X̃i,i| ≤ 4u. By assumption
σmin(M) ≥ ε, hence if u ≤ ε/8 then Weyl’s inequality implies σmin(M+E) ≥ σmin(M)−ε/2 ≥
ε/2.

Assume that we want to approximate n(−) by the expression

ñ(−) = COUNT(X̃, h, ε) = round
(
fl(tr(SGN(M̃, αSGN, ηSGN, ϵSGN)))

)
,
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for some αSGN, ηSGN, ϵSGN (to be determined). For simplicity we will use SGN(M̃) to denote
SGN(M̃, αSGN, ηSGN, ϵSGN). Assuming for now that SGN converged to the requested error ϵSGN,
we know that ∥ sgn(M̃)− SGN(M̃)∥ ≤ ϵSGN. To proceed recall that for any matrix A

|fl(tr(A))− tr(A)| ≤ log(n)u
1− log(n)u

∥A∥,

which can be achieved with a binary tree-type addition.

Now consider the error

|n(−) − ñ(−)| =
∣∣∣tr(sgn(M))− tr(sgn(M̃)) + tr(sgn(M̃))− tr(SGN(M̃)) + tr(SGN(M̃))− fl(tr(SGN(M̃)))

∣∣∣
≤
∣∣∣tr(sgn(M))− tr(sgn(M̃))

∣∣∣+ ∣∣∣tr(sgn(M̃))− tr(SGN(M̃))
∣∣∣+ ∣∣∣tr(SGN(M̃))− fl(tr(SGN(M̃)))

∣∣∣
≤
∣∣∣tr(sgn(M))− tr(sgn(M̃))

∣∣∣+ nϵSGN + log(n)u
1−log(n)u (1 + ϵSGN)

≤ n
∥∥∥sgn(M)− sgn(M̃)

∥∥∥+ nϵSGN + log(n)u
1−log(n)u (1 + ϵSGN). (19)

It remains to bound ∥ sgn(M) − sgn(M̃)∥. For this we can directly use Lemma B.1 where we set

S = I, H = X̃, and µ = h. The lemma states that if ∥E∥ ≤ ϵshift
|λmin(h−X̃)|2π

128 then ∥ sgn(h −
X̃) − sgn(h − X̃ + E)∥ ≤ ϵshift for some ϵshift ∈ (0, 1) that we can choose. By assumption
|λmin(h− X̃)| ≥ ε, which means that

4u ≤ ϵshift
ε2π

128n

is sufficient to guarantee that

n
∥∥∥sgn(M)− sgn(M̃)

∥∥∥ ≤ ϵshift.
For SGN, we set ηSGN = ε

4 , αSGN = 4−ε
4+ε and ϵSGN = 1

8n . Note that αSGN satisfies the requirement
99/100 < αSGN < 1 as long as ε < 4/199). Then based on Theorem A.4 SGN requires

N = O
(
log( 1

1−αSGN
) + log(log( 1

ϵSGNηSGN
))
)
= O

(
log( 1ε ) + log(log(nε ))

)
iterations and

O
(
log(n) log3( 1

1−αSGN
)
(
log( 1

ϵSGN
) + log( 1

ηSGN
)
))

= O
(
log(n) log3( 1ε ) log(

n
ε )
)

bits of precision.

If we set ϵshift = 1/8, then the bound for u becomes

u ≤ ϵ2π

32 · 128n
,

in which case

log(n)u
1− log(n)u

(1 + ϵSGN)≪
1

8
.

Then (19) becomes

|n(−) − ñ(−)| < 1
8 + 1

8 + 1
8 = 3/8 < 1/2,

which means that if we round to the closest integer then round(ñ(−)) = n(−). Note that log(1/u) =
O
(
log(nϵ )

)
which is dominated by the bit requirements of SGN.
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E.2 Approximate midpoint and gap

Having an efficient way to count eigenvalues smaller than a threshold, we show how to approximate
spectral gaps. We can now prove Proposition 3.1, which we restate below for readability.

Proposition E.1. Problem 3.1 can be solved in time O
(
log( 1

ϵ gapk
)q( 1

ϵ gapk
)
)

.

Proof. We start with γ0 = 1/4, and make a grid g = grid(−1, 1+γ, γ) which consists of the points
{−1,−3/4,−2/4,−1/4, 0, 1/4, 2/4, 3/4, 1, 5/4} (a useful note for later is that all the numbers in
the grid can be exactly represented in floating point). Let count(hj) denote the number of γ0-
distorted values λ′i that are smaller than hj , for some hj ∈ g, j = 1, . . . , 10. Query all hj ∈ g for
count(hj). Set jk = argminj{hj | count(hj) ≥ k} and jk+1 = argminj{hj | count(hj) ≥ k+1}.
Now λ′k ∈ [hjk−1, hjk ] and λ′k+1 ∈ [hjk+1−1, hjk+1

]. The points in the grid are equispaced so each
interval has length γ. Since by definition λ′k ∈ [λk−γ0, λk+γ0], then λk ∈ [hjk−1−γ0, hjk+γ0] =
[hjk−2, hjk+1]. Similarly for λk+1. We have now restricted both λk and λk+1 inside some intervals
of length 3γ0. Let us denote those intervals as Ik = [hjk−2, hjk+1] and Ik+1 = [hjk+1−2, hjk+1+1].
In the next step we halve γ0 to γ1 = 1/8. We now create two grids, one inside Ik and one inside
Ik+1: gk = grid(hjk−2, hjk+1 + γ1, γ1) and similar for gk+1. Each of the new grids has exactly 8
points and each point can be exactly represented in floating point. As in the previous iteration, we
query all the 8 points hj of gk for count(hj), and we pick a new jk = argmin{hj | count(hj) ≥ k},
and we do the same for jk+1. There are a total of 16 queries. As before, we have now restricted λk
and λk+1 inside two new intervals Ik and Ik+1 where |Ik| = |Ik+1| = 3γ1, which is half the size of
the corresponding intervals of the previous iterations. If we set λ̃k equal to the midpoint of Ik, then
|λ̃k−λk| ≤ 3γ/2. The same for λk+1. We keep repeating the same procedure by halving γi in each
step i.

It remains to find a proper termination condition. Let us denote µ̃k = λ̃k+λ̃k

2 and g̃apk = λ̃k−λ̃k+1,
where λ̃k and λ̃k+1 are as above. Then, after m steps,

µ̃k = µk ± 3γm/2,

g̃apk = gapk ±3γm.
Thus, γm ≈ ϵ gapk /3 is a sufficient terminating criterion. We don’t know gapk, but we can use
g̃apk instead, i.e., γ ≤ ϵ g̃apk−3γm

3 is also a sufficient, which gives a quantifiable termination crite-
rion γm ≤ ϵg̃apk/6. But since g̃apk ≥ gapk −3γm, then the terminating criterion will be reached
in the worst case when

γm ≤ ϵ
gapk −3γm

6
⇒ γm ≤

ϵ gapk
9

,

meaning that the algorithm will halt and return an ϵ-accurate µ̃k, g̃apk in at most O
(
log( 9

γm
)
)
=

O
(
log( 1

ϵ gapk
)
)

iterations.

Each hj-query at iteration i costs O(polylog(1/γi)) by assumption, and there are exactly 16 hj-
queries in each iteration, which gives a total query cost of O(polylog(1/γi)) per iteration, which is
maximized for the smallest γm = Θ(ϵ gapk).

We can now describe the algorithm GAP that computes the k-th gap and the midpoint of a Hermitian
definite pencil.

Theorem E.1 (GAP, Restatement of Theorem 3.1). Let H ∈ Hn, S ∈ Hn
++ and ∥H∥, ∥S−1∥ ≤ 1,

which define a Hermitian definite pencil (H,S). Given k ∈ [n− 1], accuracy ϵ ∈ (0, 1), and failure
probability δ ∈ (0, 1/2), there exists an algorithm

µ̃k, g̃apk ← GAP(H,S, k, ϵ, δ)

which returns µ̃k = µk ± ϵ gapk and g̃apk = (1 ± ϵ) gapk, where µk = λk+λk+1

2 and gapk =
λk − λk+1. The algorithm requires

O
(
TMM(n) log(

1
δϵ gapk

) log( 1
ϵ gapk

)
)
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arithmetic operations using O
(
log(n)

(
log4( n

δϵ gapk
) + log(κ(S))

))
bits, where λi are the eigen-

values of (H,S). If κ(S) is unknown, additional O(TMM(n) log(
nκ(S)

δ ) log(κ(S))) floating point
operations and O(log(n) log4(nκ(S)δ )) bits are suficient to compute it with Corollary E.1.

Proof. We first set γ0 = 1/8 and call H̃ = REDUCE
(
H,S, γ0

4

)
. From Proposition C.3, REDUCE

requires O(TMM(n)) floating point operations using O(log(n) log(κ(S)) + log(1/γ0)) bits, and it
returns a matrix H̃ that satisfies |λi(H̃)− λi(H,S)| ≤ γ0

4 .

We then call X̃← REGULARIZE(H̃, γ0

2 , δ0), where δ0 = δ/2 is the initial failure probability. From
Proposition 3.2, for all i it holds that |λi(X̃) − λi(H̃)| ≤ 9γ0/16. Therefore, all the eigenvalues,
which initially lie in [−1, 1], are distorted by at most γ0.

Next, recall the counting query model of Proposition 3.1: in the first step we construct a grid g =
grid(−1, 1 + γ0, γ0), where |g| = 10. From Proposition 3.2, the regularization ensures that for
every hj ∈ g it holds that σmin(hj − X̃ + E) ≥ ε0 for ε0 = γ0δ0

8|g|n
√

π ln(4n/δ0)
(this is included in

the success probability of 1− δ0 of Proposition 3.2). Then we execute COUNT(X̃, hj , ε0) for every
hj . We continue by halving at each step both γ and δ, constructing the corresponding grids as per
Proposition 3.1, and counting eigenvalues over the grid. In each iteration after the first one, we keep
track of two grids g with size |g| = Θ(1) each, and therefore we can ignore |g| in the complexity.

After a total of m = O
(
log( 1

ϵ gapk
)
)

iterations, we have that γm = Θ(ϵ gapk) and δm =

Θ(δ0ϵ gapk). Invoking Lemma E.1, and plugging in the value of εm, each call to COUNT dur-
ing the entire algorithm costs at most

O
(
TMM(n)

(
log( 1

εm
) + log(log( n

εm
))
))

= O
(
TMM(n) log(

n
γmδm

)
)

arithmetic operations using O
(
log(n) log3( 1

εm
) log( n

εm
)
)

= O
(
log(n) log4( n

γmδm
)
)

bits. The
last iteration where γm = Θ(ϵ gapk) and δm = Θ(δ0ϵ gapk) is the most expensive, which gives a
total of

O
(
TMM(n) log(

n
δ0ϵ gapk

) ·m
)
= O

(
TMM(n) log(

n
δ0ϵ gapk

) log( 1
ϵ gapk

)
)

arithmetic operations and

O
(
log(n) log4( n

δ0ϵ gapk
)
)

bits. The failure probability is δ0 in the first iteration and halved at each subsequent iteration, in
which case a union bound converges to 2δ0 = δ.

To be able to call REDUCE in every step, we need to approximate κ(S) in order to set the machine
precision appropriately. For this we can use Corollary E.1, which is detailed in the next section, and
it returns κ̃ ∈ Θ(κ(S)) with probability 1−δ. It requiresO(TMM(n) log(

nκ(S)
δ ) log(κ(S))) floating

point operations using O(log(n) log4(nκ(S)δ )) bits.

E.3 Singular values, singular gaps, and condition number

The gap finder can be extended to compute eigenvalues and singular values and singular gaps or
arbitrary matrices instead of eigenvalue gaps of Hermitian matrices. The following algorithm in
Proposition E.2 computes the k-th singular value of a matrix, for arbitrary k ∈ [n], using counting
queries.

Proposition E.2 (SIGMAK). Given a matrix A ∈ Cm×n, n ≥ m with ∥A∥ ≤ 1, an integer k ∈ [n]
such that rank(A) ≥ k, an accuracy ϵ ∈ (0, 1), and failure probability δ ∈ (0, 1), there exists an
algorithm

σ̃k ← SIGMAK(A, k, ϵ, δ),
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which returns a value σ̃k ∈ (1± ϵ)σk(A) with probability at least 1− δ. The algorithm executes

O
(
TMM(n)

(
m
n + log( n

δϵσk
)
)
log( 1

ϵσk
)
)

floating point operations and requires O
(
log(n) log4( n

δϵσk
)
)

bits.

Notes: If m > n then we can apply the algorithm on A⊤. If ∥A∥ > 1, we can use Theorem A.7 to
approximate ∥A∥ and scale accordingly. The rank(A) ≥ k assumption can potentially be omitted
by a more sophisticated counting query strategy.

Proof. We will solve the problem with counting queries, similar to Theorem 3.1, halving γ and δ in
every iteration. We start with γ0 = 1/8 and δ0 = δ/2. First, we divide A by two, to ensure that
∥A∥ ≤ 1/2. Then we construct Ã = HERM(MM(A,A∗)) = AA∗/4 + EMM. To perform this
rectangular multiplication in practice, we partition A in m/n blocks of size n × n each, perform
the individual multiplications and sum the results. We can ensure that ∥EMM∥ ≤ γ0/4 if we use
O(log( n

γ0
)) bits. Then from Weyl’s inequality |λk(Ã) − λk(AA∗/4)| ≤ γ0/4. We then call

X̃ ← REGULARIZE(Ã, γ0, δ0). Conditioning on success of Proposition 3.2, for all i it holds that
|λi(X̃)− λi(Ã)| ≤ 9γ0/16, and therefore |λi(X̃)− λi(AA∗/4)| ≤ γ0.

Let λ′i = λi(X̃) and λi = λi(AA∗/4). Since all the λi are non-negative, then all the λ′i ∈
[−γ0, 1 + γ0]. We thus construct grid g = grid(0, 1 + γ0, γ0) = {0, 1/8, 2/8, 3/8, . . . , 1, 9/8}. We
now need to perform counting queries similar to Theorem 3.1. Since we conditioned on success of
Proposition 3.2, REGULARIZE ensures that for every hj ∈ g it holds that σmin(hj−X̃+Ehj

) ≥ ε0
for ε0 = γ0δ0

8|g|n
√

π ln(4n/δ0)
. Then we execute Cj ← COUNT(X̃, hj , ε0) for every hj ∈ g (in total

Θ(1) calls to COUNT). We set jk to be the smallest j such that Cj ≥ k. Now λ′1 ∈ [hjk , hjk+1].
Since λ′k ∈ [λk − γ0, λk + γ0], then λk ∈ [hj1−1 − γ0, hjk + γ0] = [hjk−2, hjk+1] := Ik, where
|Ik| = 3γ0 (we can always ignore the negative portion of Ik, if there is any).

In the next step we halve γ0 to γ1 = 1/8, and we create another grid inside Ik, g1 =
grid(hjk−2, hjk+1 + γ1, γ1). The new grid has at most 8 points. We query all the points hj of
g1 for Cj ← COUNT(X̃, hj , ϵ1), and we pick a new j1 = argmin{hj |Cj ≥ k}. Now λk lies in-
side a new interval Ik with |Ik| = 3γ1, which is half the size of the interval of the previous iteration.
If we set λ̃k equal to the midpoint of Ik (which is always positive), then |λ̃k−λk| ≤ 3γ/2. We keep
repeating the same procedure by halving γi and δi in each step i.

After m steps we have that

λ̃k = λk ± 3γm/2.

A sufficient termination criterion is γm ≈ ϵλk. Instead of λk (which is unknown) we use λ̃k instead.
Then γ ≤ ϵ λ̃k−3γm

3 is also a sufficient, which gives a termination criterion γm ≤ ϵλ̃k/6 that we can
actually calculate. In turn, this termination criterion will be reached in the worst case when

γm ≤ ϵ
λk − 3γm/2

6
⇒ γm ≤

ϵλk
9
,

meaning that the algorithm will halt and return an ϵ-accurate λk in at most m = O
(
log( 9

γm
)
)
=

O
(
log( 1

ϵλk
)
)

iterations.

Note that in each iteration we make a total of Θ(1) calls to COUNT. From Lemma E.1, if we plug
in the corresponding εi, each call to COUNT during the entire algorithm costs at most

O
(
TMM(n) log(

n
γiδi

)
)

arithmetic operations using O
(
log(n) log4( n

γiδi
)
)

bits. The cost is maximized in the last iteration
where γm = Θ(ϵλk) and δm = Θ(δ0ϵλk), which gives

O
(
TMM(n) log(

n
δ0ϵλk

) ·m
)
= O

(
TMM(n) log(

n
δ0ϵλk

) log( 1
ϵλk

)
)
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arithmetic operations and

O
(
log(n) log4( n

δ0ϵλk
)
)

bits. As in Theorem 3.1, since the failure probability is halved in each iteration, a union bound
converges to 2δ0 = δ.

Now we have that |λk− λ̃k| ≤ ϵλk. Recall that σk(A) =
√
λk(AA∗) = 2

√
λk, since we computed

AA∗ and divided by two. If we set σ̃k = 2

√
λ̃k then

(1− ϵ)σ
2
k

4
≤ σ̃2

k

4
≤ (1 + ϵ)

σ2
k

4
⇒ (1− ϵ)σk ≤ σ̃k ≤ (1 + ϵ)σk,

where the last holds since
√
1 + ϵ ≤ 1 + ϵ and 1 − ϵ ≤

√
1− ϵ for ϵ ∈ (0, 1). Note that we lazily

assumed that we computed σ̃k = 2

√
λ̃k exactly, which does not hold, the square root introduces

a machine precision error. The calibration is left as an exercise. If we replace λk with σ2
k/4 and

δ0 = δ/2 in the complexity bounds we get the desired

O
(
TMM(n) log(

n
δϵσk

) log( 1
ϵσk

)
)

arithmetic operations and O
(
log(n) log4( n

δϵσk
)
)

bits.

We now have a tool for the condition number.
Corollary E.1 (COND). Let A ∈ Hn

++. Given δ ∈ (0, 1/2), we can compute κ̃ such that κ(A) ≤
κ̃ ≤ 32κ(A), with an algorithm κ̃← COND(A, δ) in

O
(
TMM(n) log(

nκ(A)
δ ) log(κ(A)))

)
using O

(
log(n) log4(nκ(A)

δ )
)

bits of precision with probability at least 1− δ.

Proof. We first compute Σ̃ ∈ [0.9∥A∥, 2∥A∥] using Corollary A.1 with parameter δ/3 in
O(n2 log(n) log(1/δ)) floating point operations using O(log(n)) bits of precision. The algo-
rithm succeeds with probability at least 1 − 2δ

3 . We then scale A′ ← A/M where M is
the smallest power of two that is larger than 4Σ̃. This implies 1

16 ≤ ∥A
′∥ ≤ 1

3.6 , and also

σmin(A
′) ∈

[
σmin(A)
16∥A∥ ,

σmin(A)
3.6∥A∥

]
=
[

1
16κ(A) ,

1
3.6κ(A)

]
. Thus, it suffices to approximate σmin(A

′)

and scale it to obtain the desired approximation for κ(A).

We now call σ̃′
min ← SIGMAK(A′, 1, 1/2, δ/3), which succeeds probability 1 − δ/3 and returns

σ̃′
min ∈ (1± 1

2 )σmin(A
′). It requires

O
(
TMM(n)

(
log( n

δσmin(A′) ) log(
1

σmin(A′) )
))

= O
(
TMM(n) log(

nκ(A)
δ ) log(κ(A))

)
arithmetic operations and

O
(
log(n) log4( n

δσmin(A′) )
)
= O

(
log(n) log4(nκ(A)

δ )
)

bits. Then we can set κ̃ = 1
σ̃′
min
∈ [κ(A), 32κ(A)]. The success probability is 1− 2δ

3 −
δ
3 = 1−δ.

E.4 Proof of Theorem 1.1

We now have all the prerequisites to prove that Algorithm 1 provides the guarantees of our main
Theorem 1.1, which we restate for readability.
Theorem E.2 (Restatement of Theorem 1.1). Let (H,S) be a Hermitian definite pencil of size n,
with ∥H∥, ∥S−1∥ ≤ 1, and λ1 ≤ λ2 ≤ . . . ≤ λn its eigenvalues. There exists an algorithm

Π̃k ← PROJECTOR(H,S, k, ϵ),
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which takes as input H, S, an integer 1 ≤ k ≤ n − 1, an error parameter ϵ ∈ (0, 1) and returns a
matrix Π̃k such that

Pr
[∥∥∥Π̃k −Πk

∥∥∥ ≤ ϵ] ≥ 1− 1/n,

where Πk is the true spectral projector on the invariant subspace that is associated with the k
smallest eigenvalues. The algorithm executes

O
(
TMM(n)

(
log( n

gapk
) log( 1

gapk
) + log(nκ(S)) log(κ(S)) + log

(
log( κ(S)

ϵ gapk
)
)))

floating point operations, using

O
(
log(n)

(
log4( n

gapk
) + log4(nκ(S)) + log3( 1

ϵ gapk
) log( κ(S)

ϵ gapk
)
))

bits of precision, where κ(S) = ∥S∥∥S−1∥ and gapk = λk+1 − λk. Internally, the algorithm
needs to generate a total of at most Õ(n) standard normal floating point numbers using additional
O(log(log(n))) bits. In the regular case, when S = I, the O(log(nκ(S)) log(κ(S))) term in the
arithmetic complexity and the O(log4(nκ(S))) term in the number of bits are removed.

Proof. We first compute µ̃k, g̃apk,κ̃ which satisfy the requirements of Proposition 2.1 using COND

and GAP. Afterwards we can use them to call PURIFY to obtain the spectral projector Π̃k such that
∥Π̃k −Πk∥ ≤ ϵ. We first call COND(S, 14 ,

1
2n ), which, from Corollary E.1, requires

O (TMM(n) log(nκ(S)) log(κ(S))))

arithmetic operations and

O
(
log(n) log4(nκ(S))

)
bits. Then, given the result of COND, we call GAP(H,S, k, 18 ,

1
2n ) which requires

O
(
TMM(n) log(

n
gapk

) log( 1
gapk

))
)

arithmetic operations and

O
(
log(n) log4( n

gapk
) + log(κ(S))

)
bits. They both succeed at the same time with 1 − 1/n probability. PURIFY(H,S, µ̃k, g̃apk, κ̃, ϵ)
requires

O
(
TMM(n)

(
log( 1

gapk
) + log(log( κ(S)

ϵ gapk
))
))

floating point operations and

O
(
log(n) log3( 1

gapk
) log( κ(S)

ϵ gapk
)
)

bits. The total arithmetic complexity is therefore

O
(
TMM(n)

(
log( n

gapk
) log( 1

gapk
) + log(nκ(S)) log(κ(S)) + log

(
log( κ(S)

ϵ gapk
)
)))

and the bit requirement is

O
(
log(n)

(
log4( n

gapk
) + log4(nκ(S)) + log3( 1

gapk
) log( κ(S)

ϵ gapk
)
))

.

Notice that the ϵ term appears only inside log log in the arithmetic complexity and in only one of the
log factors of the number of bits.
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F DFT background

Density Functional Theory (DFT) [88], which was awarded the Nobel prize in Chemistry in 1998, is
considered as one of the most common methods to perform electronic structure calculations thanks
to its ab initio character. That means that no input besides the initial atomic structure is required to
determine the relaxed geometry, energy levels, and the electron structure of a given material, in their
bulk or nanostructured form. The main idea behind DFT is to describe the system and its properties
by the electron density only. DFT calculations are widely used in industry and in academia to predict,
for example, the properties of novel materials [102] or to optimize the performance of batteries
[69], solar cells [142], or nanoelectronic devices [85]. Many scientific libraries implementing DFT
algorithms have been developed, which persistently occupy supercomputing clusters and receive up
to tens of thousands of citations annually at the time of this writing [89, 59, 127, 74]. Despite the
success of DFT calculations, important theoretical aspects of their underlying algorithms remain
unclear.

Assume a system that is composed of a set of na ∈ N atoms positioned inside a fixed three-
dimensional domain. The Kohn-Sham equation in real-space describes the electronic wave function
ψ(r) of the system

H(r)ψ(r) = Eψ(r), (20)

where r = (x, y, z) is any position in the domain. HereH(r) is the so-called single-particle Hamil-
tonian operator of the system, which can be written in the following form:

H(r) = −1

2
∇2 + Eion(r) +

∫
n(r′)

∥r− r′∥
dr′ + Exc(r),

where the first term is the kinetic term, the second term accounts for electron-ion interactions, the
third term represents the electron-electron interactions, which are solved at the Hartree level through
Poisson’s equation, and the fourth term is the so-called exchange-correlation term. The electron
density n(r) is the main observable of interest in DFT. It is related to the solutions Ei and ψi(r) of
Eq. (20) through

n(r) =
∑
i

f(Ei;EF )|ψi(r)|2, (21)

where EF is the Fermi level of the system, Ei is the energy level (eigenvalue) corresponding to
the wave function ψi(r), and f(Ei;EF ) is the occupation term. At zero temperature (T = 0K),
f(Ei;EF ) is equal to one for occupied states (Ei < EF ) and zero otherwise.3 The EF , Ei, and
ψi are the unknown quantities for which there exists no analytical solution, except for some spe-
cial cases. Approximate numerical solutions can be sought after expanding the wave functions into
a suitable basis. In this case, the ψi’s are approximated by a set of n = Θ(na) basis functions
χj(r), j ∈ [n], typically localized around atomic positions.4 Common basis sets that lead to effi-
cient algorithms to solve the eigenvalue problem of Eq. (20) include Linear Combination of Atomic
Orbitals (LCAO) [32], Gaussian-Type Orbitals (GTO) [22], or Maximally Localized Wannier Func-
tions (MLWF) [101]. In this context, the wave functions take the form of linear combinations of the
n localized orbitals. In particular, for all i ∈ [n]

ψi(r) =

n∑
i=1

cijχj(r), (22)

where cij are the (unknown) complex coefficients. This expansion can also be written in matrix
notation as

y(r) =


ψ1(r)
ψ2(r)

...
ψn(r)

 =


c11 c12 . . . c1n
c21 c22 . . . c2n

...
...

. . .
...

cn1 cn2 . . . cnn



χ1(r)
χ2(r)

...
χn(r)

 = Cx(r), (23)

3The definition of f(E;EF ) can vary to allow for partial occupations, i.e. at nonzero temperature T > 0 it
can be replaced by the Fermi-Dirac distribution 1− 1

1+exp((Ei−EF )/kBT )
, where kB is Boltzmann’s constant.

This case is not considered in this work.
4A common alternative is to approximate the electronic wave function using Plane Waves. In this work we

focus on localized basis sets.
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where y(r) ∈ Cn and x(r) ∈ Cn are (complex) vectors and C is a n× n matrix. By expanding the
wave functions into LCAO, GTO, or MLWF basis, the Hamiltonian operator becomes a matrix

Hi,j = ⟨χi|H|χj⟩ =
∫
χ∗
i (r)H(r)χj(r)dr.

Similarly, an overlap matrix S must be introduced

Si,j = ⟨χi|χj⟩ =
∫
χ∗
i (r)χj(r)dr,

which is equal to the identity matrix I if the basis elements are orthogonal (e.g. S = I for MLWF).
The entries of H and S represent the interaction between two basis elements that can be located on
the same or on different atoms. Furthermore, due to the complex conjugate property of the inner
product, both H and S are Hermitian matrices. Moreover, S is positive-definite ([103, Chapter 3]).
Putting everything together, the expansion coefficients cij are obtained by solving the following
generalized eigenvalue problem as already formulated in Eq. (1):

HC = SCΛ.

The so-called density matrix P can be derived from the C and Λ solutions

P = Cf(Λ;EF )C
∗. (24)

The density matrix possesses interesting properties. The matrix PS is a projector matrix and there-
fore it is idempotent, i.e. PS = (PS)2. Moreover, it can be used to derive the electron density at
any position r

n(r) =
∑
i,j∈n

Pijχi(r)χ
∗
j (r) = x∗(r)Px(r), (25)

where x(r) ∈ Cn is a vector such that xi(r) = χi(r), i.e. x(r) contains the values of all the
basis functions at position r. Given these basic definitions, we next give an overview of existing
algorithms.

F.1 Linear scaling methods

Because of the strong localization of the χi(r)’s, the (i, j) interactions rapidly decay with the dis-
tance between the atoms and can be discarded beyond a pre-defined cut-off radius. As a conse-
quence, H and S are often banded matrices with sometimes a sparse band. It should also be noted
that at equilibrium, the number of negatively charged electrons present in the system (which corre-
sponds to the integral of n(r) over space) must exactly compensate the number of positively charged
protons Zp. This allows for the computation of the Fermi level: from Eq. (25) and the definition
of S, it follows that trace(PS) = Zp, which means that one can perform a binary search on the
Fermi level EF until trace(PS) = Zp is satisfied. These observation has led to the development of
so-called linear scaling methods, which aim to exploit the sparsity of the matrices to obtain faster
solutions [143, 57, 86, 87, 56, 62, 63]. Typically, the density matrix and the Fermi level are it-
eratively computed, until all required constraints are satisfied, i.e., the density matrix should be
idempotent and trace(PS) = Zp. This can be done, for example, by approximating the matrix sign
function using a Newton iteration [136]. To optimize performance, heuristics such as truncating ma-
trix elements with negligible magnitude are applied, at the cost of decreasing the solution accuracy.
Empirical evidence shows that such methods tend to scale nearly linearly to the system size, how-
ever, they do not exhibit provable theoretical guarantees. Similar methods have been studied based
on finite-differences, which aim to approximate the Fermi distribution with polynomial expansions
[145, 144]. Finally, the work of [65, 137] offer the possibility to achieve lower complexities than
O(n3) for both the eigenvalues and eigenvectors of structured matrices, by leveraging the fast mul-
tipole method. However, an end-to-end stability analysis of those algorithms remains open. Indeed,
we are not aware of any end-to-end analysis with provable approximation guarantees that has lower
than O(n3) worst-case complexity for any of the aforementioned algorithms.

F.2 Density matrix

We can directly apply Theorem 1.1 to compute density matrices in DFT.

The following Theorem summarizes the analysis of Algorithm 6 for the density matrix.
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DENSITY

Input: Hermitian definite pencil H ∈ Hn, S ∈ Hn
++, number of occupied orbitals k.

Requires: ∥H∥ ≤ 1, ∥S−1∥ ≤ 1, k ∈ [n− 1].

Algorithm: P̃← DENSITY(H,S, k, ϵ).

1: Π̃← PROJECTOR(H,S, k, ϵ
32
).

2: SINV ← INV(S). ▷ SINV = S−1 +EINV
1 .

3: P̃← HERM
(
MM(Π̃,MM(SINV, Π̃

∗
))
)

. ▷ P̃ = Π̃
(
SINVΠ̃

∗
+EMM

2

)
+EMM

3 .

4: return P̃.

Output: Approximate density matrix P̃.

Ensures: ∥P̃−P∥ ≤ ϵ with probability at least 1−O(1/n).

Algorithm 6: DENSITY.

Theorem F.1 (DENSITY). Given a Hermitian definite pencil (H,S) with ∥H∥, ∥S∥ ≤ 1, an integer
k ∈ [n−1] denoting the number of occupied states in the system, and ϵ ∈ (0, 1), Algorithm 6 returns
a matrix P̃← DENSITY(H,S, k, ϵ) such that

∥P̃−P∥ ≤ ϵ,

where P is the true density matrix of the system and succeeds with probability at least 1−O (1/n).
The floating point arithmetic complexity is

O
(
TMM(n)

(
log( n

gapk
) log( 1

gapk
) + log(nκ(S)) log(κ(S))

))
,

and it requires

O
(
log(n)

(
log4( n

gapk
) + log4(nκ(S)) + log3( 1

ϵ gapk
) log( κ(S)

ϵ gapk
)
))

bits of precision.

Proof. In the first step of the algorithm we compute Π̃ such that

∥Π− Π̃∥ ≤ ϵ
32 := ϵΠ,

where Π is the spectral projector on the invariant subspace of the definite pencil associated with the
k smallest eigenvalues.

Then we invert S, and the final step of the algorithm computes P̃. Unrolling all the computations,
P̃ can be written as ΠS−1Π∗ +EP where EP is a Hermitian error matrix (yet to be detailed). It is
not hard to verify that ΠS−1Π∗ is equal to P, i.e. the true density matrix.

It thus remains to bound ∥EP∥. We can directly force ∥EINV
1 ∥ ≤ ϵΠ∥S−1∥ ≤ ϵΠ by setting u ≤

ϵΠ
1

µINV(n)κ(S)
cINV log(n) . Then from line 5 of Algorithm 6

P̃ = Π̃SINVΠ̃
∗
+ Π̃EMM

2 +EMM
3

= (Π+EΠ)
(
S−1 +EINV

1

)
(Π+EΠ)

∗
+ (Π+EΠ)EMM

2 +EMM
3

= ΠS−1Π∗ +ΠEINV
1 Π∗ +Π

(
S−1 +EINV

1

)
E∗

Π +EΠ

(
S−1 +EINV

1

)
Π∗ + . . .

. . .+EΠ

(
S−1 +EINV

1

)
E∗

Π + (Π+EΠ)EMM
2 +EMM

3 .

We bound each term as follows.

(i) ∥ΠEINV
1 Π∗∥ ≤ ∥EINV

1 ∥ ≤ ϵΠ,
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(ii)
∥∥∥Π(S−1 +EINV

1

)
E∗

Π

∥∥∥ ≤ (1 + ϵΠ) · ϵΠ ≤ 2ϵΠ,

(iii)
∥∥∥EΠ

(
S−1 +EINV

1

)
E∗

Π

∥∥∥ ≤ (1 + ϵΠ) · ϵ2Π ≤ 2ϵ2Π,

(iv) ∥EMM
2 ∥ ≤ uµ(n)∥SINV∥∥Π̃

∗
∥ ≤ uµ(n)

(
∥S−1∥+ ∥EINV

1 ∥
)
(1+∥EΠ∥)≪ ϵΠ(1+ ϵΠ)(1+

ϵΠ) ≤ 4ϵΠ,

(v) ∥EMM
3 ∥ ≤ uµ(n)∥Π̃∥∥SINVΠ̃

∗
+ EMM

2 ∥ ≪ ϵΠ(1 + ϵΠ) [(1 + ϵΠ)(1 + ϵΠ) + 4ϵΠ)] ≤ ϵΠ ·
2 · (4 + 4ϵΠ) ≤ 16ϵΠ.

Putting everything together we have that∥∥∥P− P̃
∥∥∥ ≤ ϵΠ + 2ϵΠ + 2ϵ2Π + 4ϵΠ + 16ϵΠ ≤ 25ϵΠ = ϵ

25

32
≤ ϵ.

Note that the aforementioned value of u is already dominated by the requirement of PROJECTOR.
The same holds for the arithmetic complexity. Therefore, the arithmetic complexity, the success
probability, and the number of required bits, similar to those of Theorem 1.1 up to a constant factor.

F.3 Electron density queries

Having a good approximation of the density matrix, we can use it to query for the electron density
at any point of interest. A direct application of Theorem F.1 gives the following.
Corollary F.1. Given a position r in the atomic domain, let x be a vector x =
(χ1(r) χ2(r) . . . χn(r)) , where χi are the basis functions that were used to construct the
Hamiltonian and overlap matrices H,S. Let P̃ ← DENSITY(H,S, ϵ, k) where k is the number of
occupied states in the atomic system, and let P be the true density matrix. Let n(r) = x∗Px be the
true electron density at r and ñ(r) = x∗P̃x. Then as long as DENSITY succeeds,

|n(r)− ñ(r)| ≤ 8ϵ∥x∥2.

Proof. First we recall that ϵ ∈ (0, 1/12) and note that ∥P̃∥ ≤ ∥P∥ + ϵ ≤ 1 + ϵ. The quadratic
form x∗P̃x is computed in two steps: y ← fl(P̃x) and ñ(r) = fl(x∗y). From [70], Eq. (3.12)
and Lemma 6.6, we know that the matrix-vector product satisfies y = P̃x + e where ∥e∥ =

∥P̃x − y∥ ≤
√
nηn∥P̃∥∥x∥, and ηn := nu

1−nu . For the chosen u we have
√
nηn ≤ 2ϵ. From

the same equations, the subsequent dot product satisfies ñ(r) = fl(x∗y) = x∗y + ϵ where |ϵ| ≤
ηn∥x∥∥y∥ ≤ ηn∥x∥

(
∥P̃x∥+ ∥e∥

)
≤ ηn∥P̃∥∥x∥2 (1 +

√
nηn) ≤ 4ϵ∥x∥2. Then |n(r)− ñ(r)| =

|x∗Px− (x∗y + ϵ)| = |x∗Px− x∗P̃x− x∗e− ϵ| ≤ |x∗Px− x∗P̃x|+ |x∗e|+ |ϵ| ≤ 2ϵ∥x∥2 +
2ϵ∥x∥2 + 4ϵ∥x∥2 = 8ϵ∥x∥2.

This can be generalized for many different points r. If N is the number of those points
and N = Θ(n) (which is typically the case in applications), then one can stack the vectors
x(r1),x(r2), . . . ,x(rN ) as the rows of a matrix X and use fast matrix multiplication to compute all
n(ri) simultaneously, instead of querying each n(ri) one-by-one.

If N is asymptotically larger than the system size, i.e., N = O(poly(n)), the query complexity
can be reduced by applying the Johnson-Lindenstrauss (JL) lemma [78], at the cost of a polynomial
dependence on the accuracy. In brief, since the matrix PS is an orthogonal projector, and therefore
idempotent, it can be deduced that

x∗Px = x∗PSPx = x∗PL−∗L−1Px = ∥x∗PL−∗∥2,

where L is the lower triangular Cholesky factor of S−1. Then ∥x∗PL−∗∥2 can be approximated
by ∥x∗PL−∗T∥2, where T is a n × r sparse random sign matrix scaled by 1/

√
r [1], with r =

O(log(N)/ϵ2) columns. The representation of T requiresO(n×r) = O(n log(N)/ϵ2) random bits.
Alternative random matrix distributions satisfying the JL property, with varying sparsity, runtime,

61



and dimension requirements exist in the literature [3, 82, 110]. The value of r is worst-case optimal
[93], however, tighter bounds have been studied in the literature [21, 126, 23, 49], thus potentially
leading to more practical algorithms. The full analysis is omitted.

G Deflation and bit complexity of PCA

Since its introduction in the early twentieth century [116, 72], Principal Component Analysis is
one of the most important tools in statistics, data science, and machine learning. It can be used,
for example, to visualize data, to reduce dimensionality, or to remove noise in measurements; cf.
[79, 45] for reviews on the vast bibliography. In its simplest formulation, given a (centered) data
matrix X ∈ Rm×n, the goal is to find a k-dimensional embedding Ck, where k < n, that maximizes
the sample variance, which can be written as an optimization problem

Ck = arg max
C⊤C=Ik×k

tr(C⊤HC), (26)

where H = X⊤X ∈ Rn×n is the sample covariance. It can be shown that the solution Ck corre-
sponds to the principal k singular vectors of H, i.e. the ones that correspond to the largest k singular
values. Evidently, since the sample covariance is always symmetric and positive semi-definite, this
can be written as a Hermitian eigenvalue problem

HC = CΛ,

(which is indeed a definite GEP as in Equation (1) with S = I). This way we can project the data in
k dimensions by computing XCk, preserving as much of the variance in k dimensions as possible.
Classically, PCA can be solved by approximating the SVD of H via diagonalization.

G.1 Vanilla PCA

With this short introduction, we can now describe how to enhance the analysis of PCA algorithms
by using our results for spectral projectors to obtain forward-error guarantees for all the SVD-
related computations. Using our Theorem 1.1, the SIGMAK algorithm of Proposition E.2, and
the DEFLATE algorithm of [19], as described in Algorithm 7, we can state the following result for
the classic (“vanilla”) PCA, which provides forward error guarantees in matrix multiplication time
regardless how large k is. This is can serve as the backbone for more advanced algorithms that are
analyzed in the next section, which typically first use random projections to reduce the matrix size
to approximately O(k × k) and then perform the SVD computation on the smaller matrix.

Remark G.1. For simplicity, we have assumed that the covariance matrix contains no errors. This
might not be true if H is computed numerically from the data matrix X. It is not hard to extend
the algorithm to take this into account as well, and nothing changes in the analysis (except some
negligible constant factors). To handle errors in the input matrix one can adapt the analysis from
the next Section G.2.

Theorem G.1 (PCA). Let H be an n × n symmetric sample covariance matrix of a centered data
matrix X ∈ Rm×n, i.e. H = X⊤X, ∥H∥ ≤ 1, k ∈ [n] is a target rank, and ϵ ∈ (0, 1) an

accuracy parameter. Then we can compute a matrix C̃k with k columns such that ∥X−XC̃kC̃
⊤
k ∥ ≤

(1 + ϵ)∥X−XCkC
⊤
k ∥, where Ck ∈ Rn×k contains the top-k (right) singular vectors of X in

O
(
TMM(n)

(
log( n

σk+1
) log( 1

σk+1
) + log( n

gapk
) log( 1

gapk
) + log(log( n

ϵσk+1 gapk
))
))

arithmetic operations using O
(
log(n)

(
log4( n

ϵ gapk
) + log4( n

σk+1
)
)
+ log( 1

ϵσk+1
)
)

bits of preci-

sion, with probability at least 1−O(1/n).

Proof. We first compute σ̃k+1 ← SIGMAK(H, k+1, 12 ,
1
n ) such that, from Proposition E.2, σ̃k+1 ∈

(1± 1
2 )σk+1(H) with probability 1− 1/n. It requires

O
(
TMM(n) log(

n
σk+1

) log( 1
σk+1

)
)
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PCA

Input: Sample Covariance Matrix H ∈ Rn×n of a centered data matrix X ∈ Rm×n, target rank k, accuracy
ϵ ∈ (0, 1).

Requires: ∥H∥ ≤ 1, k ∈ [n− 1].

Algorithm: C̃k ← PCA(H, k, ϵ).

1: σ̃k ← SIGMAK(H, k, 1
2
, 1
3n

)

2: ϵ′ ← ϵσ̃k/4.

3: Π̃k ← PROJECTOR(H, I, k, ( ϵ′2

203n4 )
2).

4: C̃k ← DEFLATE(Π̃k, k, (
ϵ′2

203n4 )
2, ϵ′).

5: return C̃k.

Output: Approximate principal component matrix C̃k.

Ensures: ∥X−XC̃kC̃
⊤
k ∥ ≤ (1 + ϵ)∥X−XCkC

T
k ∥ with probability at least 1−O(1/n).

Algorithm 7: PCA.

floating point operations and O
(
log(n) log4( n

σk+1
)
)

bits. Then we set ϵ′ ← ϵσ̃k+1/4. In the next

step, we compute Π̃k ← PROJECTOR(H, I, k, ( ϵ′2

203n4 )
2), which, from Theorem 1.1, returns a

spectral projector Π̃k that satisfies ∥Π̃k −Πk∥ ≤ ( ϵ′2

203n4 )
2 with probability 1− 1/n. It requires

O
(
TMM(n)

(
log( n

gapk
) log( 1

gapk
) + log(log( n

ϵ′ gapk
))
))

= O
(
TMM(n)

(
log( n

gapk
) log( 1

gapk
) + log(log( n

ϵσk+1 gapk
))
))

arithmetic operations and O
(
log(n) log4( n

ϵ′ gapk
)
)
= O

(
log(n) log4( n

ϵσk+1 gapk
)
)

bits. Then we

use DEFLATE to compute the matrix C′
k ← DEFLATE(Π̃k, k, (

ϵ′2

203n4 )
2, ϵ′). From Theorem A.5,

DEFLATE succeeds with probability

1− (20n)3
√

(ϵ′2/(203n4))2

ϵ′2 = 1− 1/n,

and it requires O(TMM(n)) floating point operations using O(log(n/ϵ′)) = O(log(n/(σk+1ϵ)))
bits, and it internally generates O(n2) random complex normal variables. On success it returns
C′

k ∈ Cn×k such that ∥Ck −C′
k∥ ≤ ϵ′, where Ck is a matrix whose columns form an orthonormal

basis for Πk. We can then keep only the real part of C′
k, and set C̃k ← Re(C′

k). The spectral norm
can only decrease by removing the imaginary part, therefore ∥C̃k −Ck∥ ≤ ϵ′ holds as well. Now
we can write C̃k = Ck +E where ∥E∥ ≤ ϵ′, which means that∥∥∥X−XC̃kC̃

⊤
k

∥∥∥ =
∥∥X−X(Ck +E)(Ck +E)⊤

∥∥
≤
∥∥∥X−XCkC

⊤
k

∥∥∥+ ∥∥∥XEC⊤
k

∥∥∥+ ∥∥∥XCkE
⊤
∥∥∥+ ∥∥∥XEE⊤

∥∥∥
≤
∥∥∥X−XCkC

⊤
k

∥∥∥+ 2ϵ′∥X∥+ ϵ′2∥X∥

≤
∥∥∥X−CkC

⊤
k X
∥∥∥+ 3

ϵσ̃k+1

4

≤ (1 + 9
8ϵ)
∥∥∥X−XCkC

⊤
k

∥∥∥ ,
where in the last we used the fact that

σ̃k+1(H) ≤ 3σk+1(H)/2 = 3σ2
k+1(X)/2 ≤ 3σk+1(X)/2 = 3∥X−XCkC

⊤
k ∥/2.

The result follows by rescaling ϵ by a constant and by summing together the individual algorithm
complexities and bits.
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G.2 Low-rank PCA

In many applications of PCA the parameter k is chosen to be small, i.e. k ≪ d. This has led to
an extensive research area on the so-called low-rank approximation algorithms for PCA. One of
the earliest works which introduced this type of randomized low-rank approximations is [53, 54].
Some other landmark works in the field include the analysis of randomized PCA and low-rank
approximation [100, 67, 120, 33, 34], and the pioneering Block-Krylov PCA of [106], which is
essentially optimal in the matrix-vector query model [125]. The approximation accuracy of low-rank
approximation-based PCA methods is often measured with respect to the spectral or the Frobenius
norm error, i.e. the matrix C̃k that is returned should satisfy C⊤

k Ck = Ik×k and:∥∥∥X−XC̃kC̃
⊤
k

∥∥∥
{2,F}

≤ (1 + ϵ)
∥∥∥∥X−XCkC

⊤
k

∥∥∥
{2,F}

. (27)

Most of the aforementioned low-rank approximation type algorithms assume exact arithmetic. A
subtle detail is that they often rely on the computation of an (exact) SVD of some smaller submatrix,
which is not realistic due to the Abel-Ruffini theorem. This can be justified for practical reasons
since SVD can be approximated in polynomial time to arbitrary accuracy using classical solvers
[64]. Quoting [67]:

“Techniques for computing the SVD are iterative by necessity, but they converge
so fast that we can treat them as finite for practical purposes.”

However, if one wants to rigorously prove forward error approximations and end-to-end complexity
upper bounds, there is necessarily a dependence on the singular value gap that separates the principal
invariant subspace from the rest of the spectrum (consider a small perturbation of the 2-by-2 identity
matrix and k = 1 as a straightforward example).

Assuming an exact SVD algorithm, the seminal analysis of the Block-Krylov PCA of [106] can in
fact provide per-singular vector guarantees, which are much stronger than the classical norm-wise
bounds. Then arithmetic complexity of Block-Krylov PCA depends on poly( k√

ϵ
). It is favorable for

coarse accuracy ϵ (i.e. when ϵ = Θ(1)) and small rank k. It is not suitable, however, for larger k.
E.g., it can be the case in applications where we need to keep k = n/20 of the original dimensions.
The same holds when higher accuracy is required, e.g. when ϵ = 1/ poly(n). Then the complexity
of these methods is already higher than standard eigensolvers.

In finite precision, the landscape is even less clear. At the time of this submission, the only work
related to low-rank approximation PCA that we are aware of with end-to-end bit complexity bounds
is [107] for the approximation of matrix functions applied on vectors. They prove that the Lanczos
method can be stably applied to compute a vector u such that the quantity ∥Au∥ approximates ∥A∥.
This is a backward-approximate solution for the top-1 singular vector. Concurrently with this work,
and independently, [80] analyzed the bit complexity of Block-Krylov PCA and achieved similar
bounds as ours, albeit with different techniques. However, [80] did not describe how to compute the
condition number which is required in order to adjust the machine precision. Our analysis covers
the computation of all the involved parameters.

For general invariant subspaces (k > 1), consider one of the simplest randomized low-rank ap-
proximation algorithms, often referred to as “subspace iteration” [67] or “simultaneous iteration”
[106]. The algorithm first samples a matrix G ∈ Rn×l with i.i.d standard normal elements, where
l = Θ(k), and computes Y ← (AAT )qAG, where typically q ≈ log(min{m,n}). It then returns
the Q factor from the economy QR factorization of Y. It can be shown (see e.g. Corollary 10.10 of
[67]) that

∥(I−QQ⊤)A∥ ≲ ∥A−Ak∥.

The returned matrix has slightly more than k columns, often referred to as “oversampling,” but,
importantly, there is no explicit SVD involved in the computation. Even in this case, floating point
arithmetic already spoils the approximation guarantees: we cannot compute Q without rounding
errors. Stability analysis of QR factorization is typically carried out in the backward-error sense [70,
39], which makes the analysis of low-rank approximation PCA algorithms even more complicated.
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G.3 Bit complexity analysis of Block-Krylov PCA

We now analyze the seminal Block-Krylov iteration algorithm of [106], which is listed in Algorithm
8 for convenience (in exact arithmetic). For the floating point analysis the following methodology is
used. The main result is stated in Theorem 4.2. We shall denote by TMM(X, q) the cost of multiply-
ing X with a dense matrix with q columns with a numerically stable multiplication algorithm, like
the one of Theorem A.2. Formally, for the rest of this section, we assume the following subroutine.
Definition G.1 (MMX). Let X ∈ Rm×n be the input matrix of Algorithm 8. We assume a subroutine
MMX(B), which takes as input a matrix B with k columns. It returns a matrix C ∈ Rm×r such
that

∥C−XB∥ ≤ upoly(m, k)∥X∥∥B∥,

in a total of TMMX(k) floating point operations, using at mostO(log(1/u)) bits of precision. We also
assume MMX⊤(B) which approximates the product X⊤B with the same cost and approximation
bounds.

The standard inner-product based algorithm as well as a block variant of the MM algorithm of
Theorem A.2 satisfy this definition.

Block-Krylov Iteration (exact arithmetic)

Input: Data matrix X ∈ Rm×n, target rank k, accuracy ϵ ∈ (0, 1).

Requires: Exact arithmetic.

Algorithm: Zk ← Block-Krylov Iteration (X, k, ϵ).

1: q ← Θ( log(n)√
ϵ

).

2: G← N (0, 1)n×k.

3: K←
[
XG, (XX⊤)XG, . . . , (XX⊤)qXG

]
.

4: Q,R← Economy-QR(K). ▷Q ∈ Rm×qk.

5: M← Q⊤XX⊤Q ∈ Rqk×qk.

6: Ūk ← top-k singular vectors of M.

7: return Zk ← QŪk.

Output: Approximate principal component matrix Z.

Ensures: ∥X− ZkZ
⊤
k X∥ ≤ (1 + ϵ)∥X−Xk∥ with high probability (in exact arithmetic).

Algorithm 8: Block-Krylov Iteration (Alg. 2 of [106])

Step 1: Constructing the Block-Krylov matrix. We first observe that we can scale the matrix G
in Algorithm 8 to have norm at most one, since this does not affect the Krylov basis. We assume
that the (scaled) Gaussian matrix G in Algorithm 8 is given exactly. This is not realistic, but it
greatly simplifies the analysis and it can be addressed by using the floating point Gaussian sampler
of Definition D.1 to obtain a small error with high probability.

Given G and X, we can construct the Krylov matrix K using O(q) calls to MMX(G). The first call
X1 ← MMX(G) returns a matrix X1 = XG + E1 where ∥E1∥ ≤ u · O(poly(mk))∥X∥∥G∥ ≤
u · O(poly(mk)), since we assumed constant norms. If we keep performing multiplications re-
cursively to build the Krylov matrix ∥K̃∥, after O(q) multiplications it holds that ∥K̃ − K∥ ≤
u · O(poly(mkq)). The total cost is O(qTMMX(k)) floating point operations. If X is sparse and we
use the standard inner product-based algorithm, TMMX(k) = O(knnz(X)). If X is dense and we
use Theorem A.2 then O(qmkω−2) floating point operations are sufficient.

Step 2: Condition number of the Block-Krylov matrix. So far we have approximated K by
K̃ = K+EK.

In the following steps we will need an approximation for the condition number of K. We can get
such an approximation using a variant of the COND algorithm (Corollary E.1), which internally uses
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the SIGMAK algorithm of Proposition E.2 based on counting queries to approximate the condition
number. In that case, we start with some arbitrary error ∥EK∥, and we keep keep halving it until we
have a sufficiently good approximation. At each iteration t, the algorithm executes

O (qTMMX(k)))

floating point operations to construct the Krylov matrix using O(polylog(m, q, 1
ϵt
) bits. At most

O(log(κ(K))) iterations are required. The most expensive iteration is the last one, when ϵt ≈
1/κ(K), which gives a total cost of at most

O (q log(κ(K))TMMX(k))

floating point operations using at most O(polylog(m, q, κ(K))) bits. It returns a value κ̃ ∈
Θ(κ(K)), and it succeeds with high probability.

Step 3: Computing a basis. The computation of the basis in Step 4 of Algorithm 8 is arguably the
hardest part in the analysis of the Block-Krylov iteration. With similar arguments as in the proof of
Theorem A.6, if we write the economy-QR factorizations K̃ = QK̃RK̃ and K = QR, there exists
an orthogonal matrix Φ1 such that Q − QK̃Φ1 = E1 and ∥E1∥ ≤ ϵ′, for some ϵ′. This requires
that ∥K̃−K∥ ≤ ϵ′ 14

1
poly(mnqk)κ(K) , which implies a requirement

u ≤ ϵ′ c

poly(mq)κ(K)
,

for some constant c. Instead of κ(K) we can use κ̃ from the previous Step 2. We can now use
Theorem A.6 (which computes a basis via QR) on K̃ to approximate QK̃ by the matrix

Q̃ = QK̃Φ2 +EQR = (QΦ1 +E1)Φ2 +EQR = QΦ1Φ2 +E1Φ2 +EQR.

Let EQ = E1Φ2 + EQR. We have that ∥EQ∥ = ∥E1Φ2 + EQR∥ ≤ ϵ′ + EQR. From Theorem

A.6 we can ensure that ∥EQR∥ ≤ ϵ′ if we use O(log(mqκ(K̃)
ϵ′ )) bits. Thus, Q̃ is an approximate

orthogonal basis for the range of the true Block-Krylov matrix K.

To summarize, as long as u ≤ ϵ′ c
poly(mq)κ(K) , which can be achieved by replacing κ(K) with κ̃

above, then we can compute Q̃ = QΦ + EQ, where Q is the true orthonormal basis from the QR
factorization of K, Φ is a qk×qk orthogonal matrix, and ∥EQ∥ ≤ ϵ′. The total cost isO(m(qk)ω−1)

floating point operations for Theorem A.6, using O
(
log(mqκ(K)

ϵ′ )
)

bits.

Step 4: Computing the reduced matrix. In Step 5, Algorithm 8 forms the matrix M to compute
its top-k singular vectors. To analyze the computation of M, the first observation is that Q in lines 4-
7 can be replaced by any basis for the column space of K. In particular, we replace it by Q̃. We then

perform the multiplication in two steps: M̃
⊤
1 = MMX⊤(Q̃), which returns M̃1 = Q̃

⊤
X + EMM

1 ,
where ∥EMM

1 ∥ ≤ u · O(poly(qknm))∥Q̃∥∥X∥ ∈ u · O(poly(qm)). Then we compute M̃ ←
MM(M̃1, M̃

⊤
1 ) = M̃1M̃

⊤
1 +EMM

2 where ∥EMM
2 ∥ ≤ u ·O(poly(qkn))∥M1∥2 ∈ u ·O(poly(qkn)),

where the last is implied if u is sufficiently smaller than 1/poly(qm). Putting everything together
we can write

M̃ = Φ⊤
2 Φ

⊤
1 Q

⊤XX⊤QΦ1Φ2 +EM,

where EM contains the errors in Q̃ and also the ones from the multiplication in floating point, and
∥EM∥ ≤ O(∥EQ∥) ∈ O(ϵ′). ϵ′ is as in Step 3. So far we have assumed O(log(mqκ(K̃)

ϵ′ )) bits.

Step 5: Spectral gap and midpoint. Now we have written M̃ = Φ⊤Q⊤XX⊤QΦ+EM, where
Φ = Φ2Φ1 is orthogonal and ∥EM∥ ≤ O(ϵ′) for some ϵ′ ∈ (0, 1). We can use the counting queries
in the spirit of Theorem 3.1 to compute the spectral gap and the midpoint of M.

In particular, we start with some desired bound ϵ′0 ∈ (0, 1) for ∥EM∥ by setting the number of

bits to O(log( qmκ(K̃)
ϵ′0

)). At each iteration we repeat Steps 1, 3, and 4 (we do not need to compute
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again the condition number of K in Step 2). After at most m = O(log(1/ gapk(M))) iterations, the
error ϵ′m satisfies ϵ′m = Θ(gapk(M)), and we obtain two quantities g̃apk ∈ (1 ± 1

8 ) gapk(M) and
µ̃k ∈ µk(M) + 1

8 gapk(M) with high probability. In each iteration we need to construct M̃ using
Steps 1, 3, and 4 with the specified number of bits.

Step 1 costs O(qTMMX(k)) operations. Step 3 requires O(m(qk)ω−1) operations. Step 4
executes O(TMMX(qk) + m(qk)ω−1) operations. The result is the qk × qk matrix M̃ on
which we call COUNT on each iteration. From Lemma E.1, assuming that we have regular-
ized M̃ appropriately using REGULARIZE, COUNT costs at most O((qk)ω polylog(qk/ϵ′m)) =
O((qk)ω polylog(qk/ gapk(M))). The maximum number of bits is in the last iteration, which is
equal to O

(
polylog

(
mqκ(K)
gapk(M)

))
.

Step 6: Principal singular vectors. Given a suitable approximation for the gap and the midpoint,
we next use Lemma B.1 to prove forward error bounds between the true k-spectral projector of M =

Φ⊤Q⊤XX⊤QΦ and the one of M̃ = M+EM. From Lemma B.1, if we set µ = µ̃k, we have that
∥ sgn(M− µ̃k)− sgn(M̃− µ̃k)∥ ≤ ϵSGN if ∥EM∥ ≤ ϵSGN

|λmin(µ̃k−M)|2π
128 = ϵSGNΘ(gapk(M)2).

The same holds for the spectral projectors, i.e. ∥Πk(M)−Πk(M̃)∥ ≤ ϵSGN. The bound for ∥EM∥
is achieved by setting u ≤ ϵSGNg̃ap

2
k

poly(mq)κ̃ , which translates to O
(
log( mqκ(K)

ϵSGNg̃apk
)
)

bits.

It remains to approximate Πk(M̃), denoted as Πk for simplicity, and then use deflation, similar to
the vanilla PCA Algorithm 7. We first set ϵPURIFY = (

ϵ2PCA
203(qk)4 )

2, and then use Algorithm 3,

Π̃k ← PURIFY(M̃, I, µ̃k, g̃apk, ϵPURIFY),

followed by Ũk ← DEFLATE(Π̃k, k, ϵPURIFY, ϵPCA). From Proposition 2.1, PURIFY costs
O((qk)ω log(qk/ gapk)) floating point operations using

O(polylog( qk
ϵPURIFY gapk

)) = O(polylog( qk
ϵPCA gapk

))

bits. From Theorem A.5, DEFLATE costs O((qk)ω) operations using O(polylog(qk/ϵPCA)) bits,
and succeeds with high probability. The returned matrix Ũk satisfies ∥Ũk −Uk∥ ≤ ϵPCA, where
Uk is a matrix whose columns form an orthonormal basis for the span of the top-k singular vectors

of M̃. This also implies that ∥ŨkŨ
⊤
k −UkU

⊤
k ∥ ≤ 3ϵPCA. Then

∥Πk(M)− ŨkŨ
⊤
k ∥ ≤ ∥Πk(M)−Πk(M̃)∥+ ∥Πk(M̃)− ŨkŨ

⊤
k ∥ ≤ ϵSGN + 3ϵPCA.

We finally return Z̃k = MM(Q̃, Ũk). It holds that where ∥Z̃k − Q̃Ũk∥ ≤ u · O(poly(mq)). We
can then write

Z̃kZ̃
⊤
k = Q̃ŨkŨ

⊤
k Q̃

⊤
+EZ

= Q̃(Πk(M) +EΠ)Q̃
⊤
+EZ

= Q̃Πk(M)Q̃
⊤
+ Q̃EΠQ̃

⊤
+EZ

= (QΦ+EQ)Πk(M)(QΦ+EQ)⊤ + Q̃EΠQ̃
⊤
+EZ

= QΦΠk(M)Φ⊤Q⊤ +E′ + Q̃EΠQ̃
⊤
+EZ,

where QΦΠk(M)Φ⊤Q⊤ = ZkZ
⊤
k is equivalent to the true, exact arithmetic Zk of Algorithm

8. The error matrices satisfy ∥EZ∥ ≤ u · O(poly(mq)), ∥Q̃EΠQ̃
⊤
∥ ≤ O(ϵSGN + ϵPCA), and

∥E′∥ ≤ O(∥EQ∥) ∈ O(∥EM∥) ∈ O(ϵSGN gapk(M)2).

Putting everything together. We can now state the main result by summarizing the Steps 1-6.
Theorem G.2 (Restatement of Theorem 4.2). Let X be a data matrix X ∈ Rm×n, ∥X∥ ≤ 1, k ∈ [n]

a target rank, ϵPCA ∈ (0, 1) an accuracy parameter, and q = Θ
(

log(n)√
ϵPCA

)
. Let TMMX(k) denote the

67



complexity to stably multiply X or X⊤ with a dense matrix with k columns from the right (see Def.
G.1). Using the Steps 1-6 that are detailed in Appendix G.3 as a floating point implementation of
Algorithm 8, we can compute a matrix Z̃k ∈ Rm×k that satisfies∥∥∥Z̃kZ̃

⊤
k − ZkZ

⊤
k

∥∥∥ ≤ O(ϵPCA),

with high probability, where Zk is an approximate basis for the top-k principal components of X,
returned by Algorithm 8 in exact arithmetic. The total cost is at most

O
(
qTMMX(k) log(

κ(K)
gapk(M) ) +m(qk)ω−1 log( 1

gapk(M) ) + (qk)ω polylog( qk
gapk(M) )

)
floating point operations, using O

(
polylog( mqκ(K)

ϵPCA gapk
)
)

bits of precision. K,M are the same as in
Alg. 8. The only parameters that are initially required are k and ϵPCA.

Proof. We first compute κ̃ ∈ Θ(κ(K)) in Steps 1 and 2. This costs

O (q log(κ(K))TMMX(k))

floating point operations using O(polylog(qmκ(K))) bits.

Then, in Step 5 we iteratively use Steps 1, 3, and 4 to compute the midpoint and the gap, in a total
of O(log(1/ gapk)) iterations. The total cost is

O
((
qTMMX(k) +m(qk)ω−1

)
log( 1

gapk(M) ) + (qk)ω polylog( qk
gapk(M) )

)
floating point operations using at most

O
(
polylog( mqκ(K)

gapk(M) )
)

bits of precision. The only parameter that we require to know beforehand, except for the matrix
sizes, is κ̃ from the previous step.

In the last Step 6, assuming that ϵSGN = ϵPCA, we need to run Steps 1, 3, and 4, using
O
(
polylog( mqκ(K)

ϵPCA gapk
)
)

bits. The number of arithmetic operations does not exceed the one from
the previous step. Thereafter the costs of DEFLATE, PURIFY, and MM are negligible compared to
the costs of Steps 1, 3, and 4. The final matrix Z̃k satisfies∥∥∥Z̃kZ̃

⊤
k − ZkZ

⊤
k

∥∥∥ ≤ O(ϵPCA),

where Zk is the true, exact arithmetic projector in Algorithm 8.

Summarizing everything, we can compute Z̃k as advertised above in a total of at most

O
(
qTMMX(k) log(

κ(K)
gapk(M) ) +m(qk)ω−1 log( 1

gapk(M) ) + (qk)ω polylog( qk
gapk(M) )

)
floating point operations, using O

(
polylog( mqκ(K)

ϵPCA gapk
)
)

bits of precision.
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Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations have been clearly discussed in the paper.

Guidelines:
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All theoretical results include an informal proof in the main paper and a
reference to the full, rigorous proof in the appendix. All definitions and assumptions are
clearly stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: There are no experiments, only theoretical results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: There are no experiments and no code associated with the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: There are no experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no apparant societal impact of the work performed as it only includes
mathematical results.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no data or models involved in the paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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