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ABSTRACT

Extensive research has shown that deep neural networks (DNNs) are vulnerable
to slight adversarial perturbations—small changes to the input data that appear
insignificant but cause the model to produce drastically different outputs. In ad-
dition to augmenting training data with adversarial examples generated from a
specific attack method, most of the current defense strategies necessitate modi-
fying the original model architecture components to improve robustness or per-
forming test-time data purification to handle adversarial attacks. In this work,
we demonstrate that strong feature representation learning during training can
significantly enhance the original model’s robustness. We propose MOREL, a
multi-objective feature representation learning approach, encouraging classifica-
tion models to produce similar features for inputs within the same class, despite
perturbations. Our training method involves an embedding space where cosine
similarity loss and multi-positive contrastive loss are used to align natural and
adversarial features from the model encoder and ensure tight clustering. Concur-
rently, the classifier is motivated to achieve accurate predictions. Through ex-
tensive experiments, we demonstrate that our approach significantly enhances the
robustness of DNNs against white-box and black-box adversarial attacks, outper-
forming other methods that similarly require no architectural changes or test-time
data purification.

1 INTRODUCTION

The deployment of deep neural networks (DNNs) in critical vision applications such as autonomous
driving and medical diagnosis (Bojarski et al., 2016; Miotto et al., 2018) underscores the need for
robust models capable of reliably handling real-world scenarios. However, extensive research has
demonstrated that DNNs are vulnerable to adversarial examples—inputs crafted by adding imper-
ceptible perturbations that can cause the model to make incorrect predictions with high confidence
(Nguyen et al., 2015; Szegedy et al., 2013; Goodfellow et al., 2014). This vulnerability poses sig-
nificant challenges to the security and reliability of AI systems, especially in safety-critical envi-
ronments. To mitigate the risks posed by adversarial attacks, various defense strategies have been
proposed. A common approach is adversarial training (Madry et al., 2017), where models are trained
on adversarial examples generated from a specific attack method. In addition, to improve robustness,
most existing defenses require modifications to the original model architecture (Panousis et al., 2021;
Liu et al., 2024; Mohammed et al., 2024; Zhou et al., 2023), introducing additional complexity and
often being architecture-dependent. Some approaches also involve test-time data purification (Meng
& Chen, 2017; Song et al., 2017; Cohen & Giryes, 2024; Tang & Zhang, 2024), which increases
latency, limiting their practical applicability.

In this paper, we propose a novel method named Multi-Objective REpresentation Learning
(MOREL) that addresses these challenges by focusing on robust feature representation learning.
MOREL encourages the model to produce consistent features for inputs within the same class, de-
spite adversarial perturbations. By enhancing the robustness of feature representations, MOREL
strengthens the model’s inherent ability to differentiate between classes, making it more resilient to
adversarial attacks. The core of our approach is a multi-objective optimization framework that si-
multaneously optimizes two key objectives: enhancing adversarial robustness and maintaining high
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classification accuracy. We achieve this by embedding natural and adversarial features into a lower-
dimensional space, where cosine similarity and contrastive loss functions are applied to align and
tightly cluster these features. The classifier is concurrently motivated to achieve accurate predictions.
This approach ensures that the model’s learned representations are robust to adversarial perturbations
while preserving the information necessary for accurate classification. The embedding space used
during training is discarded, allowing the model to retain its original structure and computational
efficiency during inference. This characteristic distinguishes MOREL from many existing defense
strategies that either involve architectural changes or rely on additional modules during inference.
Through extensive experiments (Sec. 4), we demonstrate that our approach significantly enhances
the robustness of DNN models against white-box and black-box adversarial attacks, outperforming
existing adversarial training methods that similarly require no architectural changes or test-time data
purification, in terms of the accuracy-robustness trade-off. In summary, our key contributions are:

• We propose Multi-Objective REpresentation Learning (MOREL), a framework that en-
hances the robustness of deep neural networks by aligning natural and adversarial features
in a shared embedding space during training while preserving the model’s original structure
for practical deployment.

• We approach the challenge of improving adversarial robustness and maintaining high ac-
curacy as a multi-objective optimization task, effectively balancing these objectives to en-
hance the accuracy-robustness trade-off.

• We demonstrate through extensive experiments that models trained with MOREL outper-
form those trained with existing adversarial training methods, supporting our hypothesis
that strong feature representation learning enhances model robustness.

2 RELATED WORK

2.1 ADVERSARIAL TRAINING

Adversarial training, introduced by Madry et al. (2017), has emerged as one of the most effective
defenses against adversarial attacks. The core idea involves augmenting the training data with ad-
versarial examples generated using methods like Projected Gradient Descent (PGD). While standard
adversarial training has proven effective against known attacks, it often results in models becoming
overly specialized to the specific types of adversarial examples used during training (Tsipras et al.,
2018). To address this limitation, several variants of adversarial training have been proposed. Kan-
nan et al. (2018) introduced Adversarial Logit Pairing (ALP), which enhances robustness by pairing
logits from adversarial and clean examples during training. Building on this, they proposed Clean
Logit Pairing (CLP), which further refines the approach by focusing specifically on randomly se-
lected clean training examples. Ding et al. (2018) advanced the field with Max-Margin Adversarial
(MMA) training, which pushes decision boundaries further from data points, thereby offering en-
hanced robustness. The TRADES method by Zhang et al. (2019) marked a significant leap forward
by explicitly balancing the trade-off between robustness and accuracy through a regularized loss
function that minimizes the Kullback-Leibler divergence between predictions on natural and adver-
sarial examples. This was further refined by MART Wang et al. (2019), which focuses on the robust-
ness of misclassified examples, addressing vulnerabilities near the decision boundary. Despite these
advancements, common limitations persist, including the challenge of maintaining strong robustness
while achieving high accuracy on clean data. Building on these state-of-the-art adversarial training
methods, our approach, MOREL, addresses these challenges by strengthening the robustness of
DNNs through a robust feature representation learning technique. By considering a multi-objective
optimization framework, MOREL aims to achieve the best possible trade-offs between robustness
and accuracy—an aspect that, to our knowledge, has not been fully explored in previous work.

2.2 INSIGHTS FROM CONTRASTIVE LEARNING

To enhance the learning of robust features in the context of adversarial training, our method also
draws insights from recent advances in contrastive learning. Contrastive learning has been shown to
be effective in producing robust and well-structured feature representations by encouraging similar
samples to be closer in the embedding space while pushing dissimilar samples apart (Chen et al.,
2020; Gidaris et al., 2018; He et al., 2020). Specifically, Khosla et al. (2020) extend the principles of
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contrastive learning to a supervised setting. This method leverages label information to group similar
examples (i.e., those sharing the same class label) closer together in the feature space. This work
informs the design of our embedding space in MOREL, where we apply a multi-positive contrastive
loss function (Khosla et al., 2020; Tian et al., 2024) to align natural and adversarial features. By
doing so, MOREL not only enhances robustness against adversarial attacks but also ensures that
the learned features are tightly clustered and well-separated across different classes, improving both
robustness and accuracy.

2.3 DOMAIN ADAPTATION AND CONTRASTIVE ADVERSARIAL TRAINING

Domain adaptation seeks to enhance model performance on a target domain by utilizing knowledge
from a related source domain. Approaches such as those by Song et al. (2018) and Bashivan et al.
(2021) primarily concentrate on aligning output distributions between domains to enhance gener-
alization. In contrast, recent research has highlighted the effectiveness of focusing on the feature
space, leveraging contrastive learning to achieve more robust domain adaptation. Contrastive ad-
versarial training, particularly in unsupervised and self-supervised contexts, has gained attention
for its ability to learn invariant feature representations resilient to adversarial perturbations. Kim
et al. (2020) proposed a self-supervised adversarial contrastive learning framework that enhances
robustness without relying on labeled data. Similarly, Chen et al. (2024) introduced a contrastive
adversarial training method for unsupervised domain adaptation, demonstrating the value of align-
ing feature representations across domains. Our method aligns with these recent advancements by
emphasizing robust feature representation learning.

3 METHODS

We consider a supervised classification problem where a DNN model f parameterized by θ ∈ Ω
learns to map an input image x ∈ Rd to a target class f(x) = y ∈ {1, ..., c} where c ∈ N. An
adversarial example x′ ∈ Rd is an image obtained by adding imperceptible perturbations to x such
that f(x) ̸= f(x′). With a given lp-based adversarial region Rp(x, ϵ) = {x′ ∈ Rd | ∥x′ − x∥p ≤
ϵ}, the aim of adversarial training (Madry et al., 2017) is typically to approximately minimize the
risk on the data distribution D over adversarial examples:

min
θ

E(x,y)∼D

[
max

x′∈Rp(x,ϵ)
L(θ, f(x′), y)

]
(1)

where L is the loss function. The approximate solutions to the inner maximization problem are de-
rived using a specific attack method to generate adversarial examples, while the outer minimization
problem involves training on these generated examples.

To generate adversarial examples for training, we use the Projected Gradient Descent (PGD) attack
(Madry et al., 2017). It is an iterative method that generates adversarial examples by iteratively
applying small perturbations to the input. Given an input image x, the true label y, a loss function
L(θ, x, y), and a model parameterized by θ, the PGD attack generates an adversarial example x′

through the following iterative process for a predefined number of iterations:

x′0 = x (2)

x′i+1
= ProjR(x,ϵ)

(
x′i + η · sign

(
∇xL(θ, x′i, y)

))
(3)

where, x′i is the adversarial example at the i-th iteration, η the step size, ϵ the maximum perturbation
allowed, and ProjR(x,ϵ) the projection operator that ensures the adversarial example remains within
the ϵ-ball centered at x. Especially, we consider the l∞-based adversarial region:

R(x, ϵ) = {x′ ∈ Rd | ∥x′ − x∥∞ ≤ ϵ}.

3.1 MULTI-OBJECTIVE REPRESENTATION LEARNING

Training a robust model often results in a decrease in test accuracy. The goal of adversarial ro-
bustness is then to mitigate the trade-off between accuracy and robustness, thereby enhancing the
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model’s performance on both natural and adversarial examples (Zhang et al., 2019; Raghunathan
et al., 2020). We approach this challenge as a multi-objective optimization problem. The first ob-
jective is to constrain the model to produce features that are as similar as possible for input images
within the same class, and as dissimilar as possible from feature distributions of other classes, de-
spite perturbations. The second objective is to enhance the model’s accuracy. We denote the model
encoder as g (typically the model without its final layer) and the classifier as h (typically the fi-
nal layer). Let B =

{
xi ∈ Rd | i ∈ {1, ..., n}

}
be a batch of n natural images with classes{

yi ∈ {1, ..., c} | i ∈ {1, ..., n}
}
= Y , and B′ =

{
x′
i ∈ Rp(xi, ϵ) | i ∈ {1, ..., n}

}
its adversarial

batch. The encoder then produces features1:

g(B) = (zi)
n
i=1, and g(B′) = (z′i)

n
i=1. (4)

3.1.1 EMBEDDING SPACE WITH CLASS-ADAPTIVE MULTI-HEAD ATTENTION

During training, we consider an embedding space that includes a linear layer Le to project the
features from the encoder into a lower-dimensional space:

Le((zi)
n
i=1) = (si)

n
i=1, and Le((z

′
i)

n
i=1) = (s′i)

n
i=1. (5)

The lower-dimensional features are then grouped according to their classes:

(si)
n
i=1 =

⊕
y∈{1,...,c}

(syi )
ny

i=1, and (s′i)
n
i=1 =

⊕
y∈{1,...,c}

(s′
y
i )

ny

i=1. (6)

where ny is the number of features of class y present and “
⊕

” refers to a concatenation operation.

Additionally, a class-adaptive multi-head attention module Me enables interaction within each
lower-dimensional feature group, resulting in richer feature representations. This module func-
tions similarly to the multi-head attention mechanism in the vision transformer (Dosovitskiy et al.,
2020; Xiong et al., 2020), where the linearly embedded image patches can be viewed as a lower-
dimensional feature group. The key distinction is that our multi-head attention module operates on
features from different images (instead of features from the patches of the same image), and we omit
any positional embedding mechanism since the position of a feature within its lower-dimensional
feature group is irrelevant in our case (otherwise, this would imply keeping track of the position of
an image within its batch).

More precisely, given a lower-dimensional feature group (syi )
ny

i=1

(
or (s′yi )

ny

i=1

)
, the module Me

produces the final embedded feature group (tyi )
ny

i=1

(
or (t′yi )

ny

i=1

)
via Algorithm 1. All such groups

in the batch are concatenated to form :

T =
⊕

y∈{1,...,c}

(tyi )
ny

i=1 ∈ Rn×b, and T ′ =
⊕

y∈{1,...,c}

(t′
y
i )

ny

i=1 ∈ Rn×b.

This approach takes advantage of the global context understanding property of the attention mech-
anism (Dosovitskiy et al., 2020; Han et al., 2022) to capture dependencies and relationships across
features within the same group (class). During model evaluation on the test set, the embedding
space is discarded, keeping the original model architecture unchanged.

3.1.2 MULTI-OBJECTIVE OPTIMIZATION

In multi-objective optimization, the goal is to simultaneously optimize two or more conflicting ob-
jectives, which requires balancing trade-offs to find solutions that satisfy all objectives (losses) to
an acceptable degree (Hotegni et al., 2024; Coello, 2007; Marler & Arora, 2004). We define the
loss function for robustness based on Le outputs and the l2−normalized batch features T from the
embedding space:

Tnormalized = (ti)
n
i=1 (7)

The normalization in 7 computes the l2-norm for each row (of size b) and divides each element in
the row by this norm. This operation ensures that all feature vectors have unit norm.

1We use the matrix notation (zi)
n
i=1 = Z ∈ Rn×o, where Z is the concatenation of the n vectors zi, each

of dimension o.
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Algorithm 1 Class-Adaptive Multi-Head Attention

Require: A feature group (syi )
ny

i=1 = Sy ∈ Rny×b, from class y.
Ensure: The availability of learnable triplet weight matrices WQ

j , WK
j and WV

j ∈ Rb×bj (bj =

b/m) for each head j ∈ {1, ...,m} as well as an additional learnable weight matrix WO ∈
Rmbj×b.

1: for j = 1 to m do
2: Normalize Sy via layer normalization.
3: Project Sy through linear transformations:

Qj = SyW
Q
j , Kj = SyW

K
j , and Vj = SyW

V
j .

4: Get the attention score: Aj = softmax

(
QjK

T
j√

bj

)
5: Compute the jth head output Oj = AjVj .
6: end for
7: Concatenate the outputs from the m heads and project the result through a linear transformation:

O = concat(O1, . . . , Om)WO

8: return (tyi )
ny

i=1 = Sy +O

Cosine Similarity Loss: The cosine similarity loss function measures the cosine similarity be-
tween pairs of feature vectors, encouraging the model to produce similar features for a natural im-
age and its adversarial example in the embedding space. It is calculated as follows, considering Le
outputs:

Lcosine = 1− 1

n

n∑
i=1

si · s′i
∥si∥∥s′i∥

(8)

where · denotes the dot product, and ∥ · ∥ is the Euclidean norm.

Multi-Positive Contrastive Loss: The multi-positive contrastive loss function (Khosla et al.,
2020; Tian et al., 2024) encourages the model to bring the features of the same class closer while
pushing the features of different classes apart, considering the natural features from Me:

Lcsl =
∑

j∈{1,...,2n}

−1
|P(j)|

∑
p∈P(j)

log
exp(tj · tp/τ)∑

q∈Q(j) exp(tj · tq/τ)
(9)

where τ ∈ R+ is a scalar parameter, Q(j) = {1, ..., 2n} \ {j} and P(j) = {p ∈ Q(j) | yp = yj}
with yp and yj the class labels of tp and tj .

The loss function for robustness is then defined as follows:

L1 = Lcosine + αLcsl (10)

with 0 < α < 1.

To improve accuracy, we recommend using loss functions that induce robustness in the classifier
h(·), such as TRADES (Zhang et al., 2019) or MART (Wang et al., 2019). TRADES is defined as a
Cross-Entropy loss (Lce) regularized by the Kullback-Leibler divergence (Dkl) between the model’s
predictions on natural and adversarial examples:

L2 = Lce(h((zi)
n
i=1),Y) +

1

λ
· Dkl(h((zi)

n
i=1)∥h((z′i)ni=1)) (11)

with λ > 0.

Rather than the standard Cross-Entropy loss, the MART loss function uses a boosted version of
Cross-Entropy (Lbce) and focuses on the robustness of misclassified examples. The loss function L2

in Eq. 11 can then be replaced by:

L2 = Lbce(h((zi)
n
i=1),Y) +

1

nλ

n∑
i=1

Dkl(h(zi))∥h(z′i)) · (1− pyi
(xi)) (12)

5
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Figure 1: Overview of our proposed MOREL method. During training, encoder g(·) features are
projected into a lower-dimensional space using a linear layer Le. A class-adaptive multi-head atten-
tion module Me then facilitates interaction within each of the obtained feature groups. The natural
and adversarial embedded features are aligned using Lcosine (8), and Lcsl (9) ensures tight clus-
tering of the class-informed embedded features. Simultaneously, the classifier h(·) is encouraged
to make accurate predictions. During evaluation, the embedding space is discarded, preserving the
original model architecture.

where λ > 0 and pyi
(xi) is the probability of the input image xi belonging to class yi. Using

TRADES (Eq. 11) and MART (Eq. 12) as the loss function L2 within the MOREL framework is
referred to as “MOREL(← TRADES)” and “MOREL(←MART)”, respectively. Figure 1 shows an
overview of our proposed method.

We now have 2 objective functions to be simultaneously optimized. This can be done using the
Conic Scalarization (CS) method (Kasimbeyli, 2013), which is proven to produce an efficient Pareto
optimal point with a choice of a reference point a, a preference vector k, and an augmentation
coefficient γ:

min
θ∈Ω

( 2∑
i=1

ki
(
Li − ai

)
+ γ

2∑
i=1

(Li − ai)

)
(CS(k, γ, a))

with (k, γ) ∈ {((k1, k2), γ) | 0 ≤ γ < ki, i = 1, 2}, and 0 ≤ ai < Li, i = 1, 2.

Our multi-objective optimization approach then provides a comprehensive framework for enhancing
the performance of deep neural networks under adversarial attacks.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

To evaluate the effectiveness of our proposed method, we perform comprehensive experiments
on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) using WideResNet34-10
(Zagoruyko, 2016) and ResNet18 (He et al., 2016). The results on Tiny-ImageNet Le & Yang
(2015) are presented in Appendix A. In all experiments with MOREL, we use a batch size of 8, with
hyperparameters k = (0.1, 0.9), a = (0, 0), γ = 2× 10−5, and α = 10−5, selected through manual
tuning to satisfy the conditions in CS(k, γ, a) for k, a, and γ. An ablation study on the preference
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Table 1: Accuracy (in %) against white-box attacks on CIFAR-10 and CIFAR-100 for ResNet18
and WideResNet34-10. The best results are highlighted in bold and the second best are underlined.

WideResNet34-10 Clean FGSM PGD-20 PGD-100 CW∞ Avg-Robust
best last best last best last best last best last best last

C
IF

A
R

-1
0 TRADES 84.66 85.43 60.24 60.08 55.34 52.40 54.22 50.04 44.94 46.45 53.69 52.24

MOREL(← TRADES) 85.36 85.72 61.05 60.50 55.49 54.49 54.33 53.12 45.17 44.62 54.01 53.18
MART 82.58 86.12 61.57 60.83 57.27 52.91 56.36 50.68 47.26 45.85 55.61 52.57

MOREL(←MART) 82.72 84.57 62.15 62.25 57.56 56.59 56.46 55.38 47.86 47.03 56.00 55.31

C
IF

A
R

-1
00 TRADES 58.41 58.09 33.73 31.34 31.25 27.86 30.73 26.99 23.25 22.21 29.74 27.10

MOREL(← TRADES) 58.74 58.80 33.25 32.85 30.11 29.78 29.55 29.16 22.80 22.21 28.93 28.50
MART 56.46 58.39 34.42 30.21 31.76 25.37 31.44 24.44 23.14 20.50 30.19 25.13

MOREL(←MART) 61.61 62.25 36.73 36.06 32.81 31.96 32.08 31.10 25.72 25.38 31.83 31.13

ResNet18 Clean FGSM PGD-20 PGD-100 CW∞ Avg-Robust
best last best last best last best last best last best last

C
IF

A
R

-1
0 TRADES 79.00 79.41 53.83 53.74 49.94 49.31 49.08 48.60 39.41 39.03 48.07 47.67

MOREL(← TRADES) 79.96 80.35 54.72 54.33 50.64 49.67 49.84 48.73 39.65 39.51 48.71 48.06
MART 77.94 79.57 55.74 55.22 51.63 49.89 50.80 48.56 41.40 40.44 49.89 48.53

MOREL(←MART) 78.56 80.09 56.15 55.86 52.08 50.18 51.08 49.01 41.75 40.58 50.27 48.91

C
IF

A
R

-1
00 TRADES 52.68 52.90 28.41 28.03 26.21 25.84 25.90 25.42 18.21 18.35 24.68 24.41

MOREL(← TRADES) 56.56 55.39 28.88 27.98 25.91 25.27 25.51 24.85 18.25 18.17 24.64 24.07
MART 51.41 52.40 28.80 28.22 26.51 25.25 26.11 24.76 18.77 18.14 25.05 24.09

MOREL(←MART) 52.36 53.26 30.43 29.73 28.12 27.19 27.67 26.71 20.35 19.69 26.64 25.83

vector k, the training batch size and the Me module is conducted in Sub-section 4.4 to evaluate
their impact on the performance of MOREL. Le is a single linear layer with a size of b = 128,
and we use m = 2 heads in Me. We use the Stochastic Gradient Descent (SGD) optimizer with
a momentum factor of 0.9 and an initial learning rate of 0.01 for WideResNet34-10 and 0.001 for
ResNet18. The learning rate is reduced by a factor of 100 for WideResNet34-10 and by a factor of
10 for ResNet18 at the 75th and 90th epochs. A weight decay of 10−4 is applied. The total num-
ber of epochs is set to 100. For the baselines, we use the configurations specified by their original
authors (especially, 1/λ = 6 for both TRADES and MART). In Appendix A, we present additional
results using Logit-Oriented Adversarial Training (LOAT) (Yin & Ruan, 2024) as a baseline. All
methods generate adversarial examples during training using PGD-10 (Madry et al., 2017), with the
maximum l∞−norm of perturbations set to ϵ = 8/255, using random start and step size ϵ/4. Across
the training epochs, we evaluate all models using PGD-20 and save the best-performing model as
“best”. The models obtained at the end of training are referred to as “last”. Ablation studies were
conducted using MOREL(←MART) with a ResNet18 model trained on the CIFAR-10 dataset. All
experiments are conducted on an NVIDIA A100 80GB GPU.

For testing, we use various attack methods, including FGSM (Goodfellow et al., 2014), PGD-20,
PGD-100, with a step size of ϵ/10, as well as CW∞ attack (Carlini & Wagner, 2017), using the
Python library Adversarial Robustness Toolbox (ART) (Nicolae et al., 2018). For the CW∞ attack,
we set the maximum number of iterations to 10, with an initial learning rate of 10−2. We use a
confidence level of 1 and initialize the constant c at 15. The experimental results for AutoAttack
(Croce & Hein, 2020) and the query-based black-box attack, SquareAttack (Andriushchenko et al.,
2020), are provided in Appendix A. All attack methods are evaluated under the non-targeted setting,
with adversarial perturbation strength constrained by the l∞−norm. We evaluate both the “best” and
“last” models for each method and refer to the average performance across all considered attacks as
“Avg-Robust”.

4.2 EVALUATION AND ANALYSIS OF WHITE-BOX ROBUSTNESS AND AUTOATTACK
PERFORMANCE

In this section, we evaluate the adversarial robustness of our proposed MOREL method under white-
box attack scenarios, where the adversary has full access to the model’s parameters and gradients.

With the WideResNet34-10 architecture, MOREL(← MART) demonstrates strong robustness
across various attack types. On CIFAR-10, MOREL(← MART) achieves approximately a 3% im-
provement in average robust accuracy over TRADES with its last model. This advantage is particu-
larly evident under the PGD-100 attack, where MOREL(← MART) consistently outperforms both
TRADES and MART by more than 5% with its last model, and under the CW∞ attack, where it
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Table 2: Accuracy (%) against transfer-based black-box attacks on CIFAR-10 and CIFAR-100 for
ResNet18 and WideResNet34-10. Adversarial examples are generated using a surrogate model
(ResNet50) and then transferred to the target models. The best results are highlighted in bold,
and the second best are underlined.

WideResNet34-10 FGSM PGD-20 PGD-100 CW∞ Avg-Robust
best last best last best last best last best last

C
IF

A
R

-1
0 TRADES 82.57 83.68 83.24 84.24 83.14 84.01 84.40 85.13 83.34 84.27

MOREL(← TRADES) 83.25 83.84 83.98 84.34 83.90 84.22 85.09 85.44 84.06 84.46
MART 80.23 84.31 81.13 84.75 80.93 84.67 82.33 85.86 81.16 84.90

MOREL(←MART) 80.63 82.42 81.33 83.19 81.05 82.97 82.47 84.32 81.37 83.23

C
IF

A
R

-1
00 TRADES 56.43 56.19 56.53 56.25 56.39 56.12 58.07 57.80 56.86 56.59

MOREL(← TRADES) 55.99 56.53 56.49 56.87 56.40 56.66 58.36 58.38 56.81 57.11
MART 54.28 55.73 54.49 56.10 54.32 55.89 56.21 58.02 54.83 56.44

MOREL(←MART) 58.82 59.63 59.30 59.92 58.98 59.54 61.22 62.02 59.58 60.28

ResNet18 FGSM PGD-20 PGD-100 CW∞ Avg-Robust
best last best last best last best last best last

C
IF

A
R

-1
0 TRADES 77.21 77.61 77.66 78.01 77.35 77.81 78.75 79.14 77.74 78.14

MOREL(← TRADES) 77.84 78.59 78.27 78.88 78.16 78.59 79.73 80.07 78.50 79.03
MART 76.14 77.75 76.56 78.17 76.44 78.01 77.77 79.24 76.73 78.29

MOREL(←MART) 76.90 78.28 77.48 78.83 77.30 78.61 78.42 79.85 77.53 78.89

C
IF

A
R

-1
00 TRADES 50.69 50.92 50.78 50.90 50.47 50.80 52.42 52.59 51.09 51.30

MOREL(← TRADES) 53.54 52.66 53.89 52.94 53.84 52.88 56.12 54.98 54.35 53.36
MART 49.40 50.51 49.48 50.86 49.41 50.56 51.15 52.17 49.86 51.03

MOREL(←MART) 50.09 51.39 50.44 51.54 50.31 51.19 51.93 53.05 50.69 51.79

maintains its dominance in both the best and last models. On CIFAR-100, MOREL(←MART) also
excels, leading in both clean accuracy and adversarial robustness. It delivers an approximately 3%
increase in clean accuracy compared to TRADES and MART while outperforming them across all
evaluated attacks. This highlights the effectiveness of our multi-objective approach, which balances
robustness and accuracy. Additionally, it is worth noting that our extensions, MOREL(← TRADES)
and MOREL(← MART), demonstrate superior robustness compared to MART and TRADES in
most scenarios, further highlighting the strength and effectiveness of our proposed framework.
For the ResNet18 architecture, MOREL(← TRADES) stands out on CIFAR-10 and CIFAR-100,
achieving superior clean accuracy for both its best and last models, and consistently outperforming
TRADES across all evaluated attacks on CIFAR-10. Similarly, MOREL(← MART) demonstrates
stronger robustness than other methods on both CIFAR-10 and CIFAR-100, coupled with compet-
itive clean accuracy. This indicates that our defense framework is effective at preserving natural
feature representations while simultaneously enhancing robustness.

These results demonstrate that strong feature representation learning, as achieved by the MOREL
framework, significantly enhances adversarial robustness.

4.3 EVALUATION AND ANALYSIS OF BLACK-BOX ROBUSTNESS

In addition to white-box attacks, we evaluate the robustness of our models against black-box attacks,
where the adversary does not have direct access to the model’s parameters or gradients. Adversarial
examples are generated using ResNet50 as a surrogate model (trained for 200 epochs) and trans-
ferred to the target models. The surrogate model is trained on clean images using standard training.
Consequently, the same attack techniques used in white-box settings are applicable here, with ad-
versarial images generated by the surrogate model. Table 2 presents the performance of MOREL(←
TRADES) and MOREL(← MART) compared to TRADES and MART on both the CIFAR-10 and
CIFAR-100 datasets.

On WideResNet34-10, MOREL(← TRADES) consistently demonstrates superior robust accuracy
across most attacks for both CIFAR-10 and CIFAR-100. For CIFAR-100, MOREL(← MART)
achieves the highest overall robustness, with an Avg-Robust score of 59.58% for the best model
and 60.28% for the last model, surpassing MART and TRADES by approximately 4%. MOREL(←
MART)’s performance under the CW∞ attack is particularly notable, outperforming MART by 4%−
5% in both best and last models. The results on CIFAR-10 suggest that, while MOREL(←MART)
achieves superior robustness in adversarial settings where the attacker’s strategy is well-known, there
is room for improvement in enhancing its defenses against black-box attacks. For the ResNet18
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(a) (b) (c)

Figure 2: (a): The Pareto front of MOREL(←MART) showing the trade-off between the robustness
loss L1 (Learning Robust Features) and the accuracy loss L2 (Making Accurate Predictions) as
the preference vector k is varied. (b): The performance of MOREL(← MART) against PGD-20,
displaying the robust accuracy as a function of k1. (c): Robust accuracy under PGD-20 attacks as a
function of batch size.

architecture, MOREL(← TRADES) achieves notable gains in robustness on CIFAR-10 across all
evaluated attacks, with an Avg-Robust score of 78.50% (best) and 79.03% (last), surpassing both
TRADES and MART. On both datasets, MOREL(←MART) demonstrates more competitive robust
accuracy than MART. Additionally, on CIFAR-100, MOREL(← TRADES)’s robust accuracy under
all attacks remains consistently high.

The results in black-box settings further reinforce the effectiveness of our multi-objective learning
framework, indicating that our method generalizes well across different attack types.

4.4 DISSECTING THE IMPACT OF k VALUES, BATCH SIZES, AND THE ME MODULE ON
MODEL ROBUSTNESS

We explore the Pareto front by varying the values of the preference vector k for the MOREL frame-
work (MOREL(← MART)) with a ResNet18 model trained on the CIFAR-10 dataset. Figure 2
provides a visualization of how the loss terms and performance against PGD-20 evolve as we adjust
the values of k1 (the weight assigned to the robustness loss L1) and k2 (the weight assigned to the
clean accuracy loss L2). As the preference shifts from prioritizing robustness (k1 = 0.9) to accu-
racy (k1 = 0.1), we observe a clear trade-off between the two objectives (Figure 2a). This behavior
clearly illustrates the multi-objective nature of the problem, where optimizing for one objective (ac-
curacy or robustness) leads to a trade-off with the other. Figure 2b shows the relationship between
robust accuracy and the values of k1. As k1 decreases towards 0.1, robust accuracy improves, reach-
ing its peak at k1 = 0.3 . This emphasizes the importance of appropriately weighting the robustness
loss to improve robustness.

In addition, we analyze the impact of varying batch sizes during training and the presence of the
Me module (with Lcsl) in the embedding space on the model’s robust accuracy. Figure 2c illustrates
the overall robust accuracy under PGD-20 attacks as a function of batch size, with values plotted
for batch sizes of 8, 32, 128, and 512. While larger batch sizes are commonly used in contrastive
learning to leverage a diverse set of negative samples, our analysis revealed a different dynamic in
MOREL. As the batch size increases, the model’s robustness declines. This trend can be attributed
to the differences in training paradigms. In standard contrastive learning (Khosla et al., 2020; Chen
et al., 2020), training typically involves two distinct steps: first, the encoder is trained to cluster
features in the embedding space, and then the classifier is trained on top of the frozen encoder.
This separation allows larger batch sizes to enhance feature learning by providing a rich diversity
of negative samples, with little interference from downstream classification. In contrast, MOREL
considers a simultaneous learning approach, optimizing both feature alignment and classification
objectives through multi-objective optimization. As these objectives can sometimes conflict, smaller
batch sizes seem to focus the optimization process on a narrower subset of samples, reducing the
diversity and complexity of competing gradients in each step. This allows the model to resolve
conflicts more effectively, maintaining a better balance between the objectives.
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Table 3: Clean and robust accuracy (PGD-20, PGD-100) of the model with and without the Me
module (and the associated contrastive loss Lcsl).

Me (and Lcsl)
✓ ✗

Clean 80.09 80.00
PGD-20 50.91 50.77
PGD-100 49.01 48.85

Table 3 compares the performance of MOREL with and without the Me module (and the associated
contrastive loss Lcsl). The robust accuracy under PGD-20 and AutoAttack is slightly higher when
the Me module is present than when it is removed. Similarly, under PGD-100, the model performs
marginally better with the Me module (49.01%) than without it (48.85%). These results suggest that
the Me module and contrastive loss Lcsl contribute modestly to improving robustness, even against
stronger adversarial attacks.

5 CONCLUSION

In this paper, we introduced MOREL, a multi-objective feature representation learning framework
aimed at enhancing the adversarial robustness of deep neural networks. MOREL encourages the
alignment of natural and adversarial features through the use of cosine similarity and contrastive
losses during training, promoting the learning of robust feature representations. Our approach con-
sistently outperformed existing methods that similarly require no architectural changes or test-time
data purification, such as TRADES and MART, in terms of robustness against a wide range of adver-
sarial attacks, while maintaining high clean accuracy. Moreover, the ability of our multi-objective
optimization approach to generalize across various datasets and attack types, without requiring ar-
chitectural modifications, makes it a practical and scalable solution for real-world applications. For
future work, we plan to investigate the transferability of robust features learned by MOREL across
different tasks and domains, which could unlock new possibilities for applying adversarially ro-
bust models in areas like transfer learning and domain adaptation. Additionally, we aim to explore
grouping techniques to extend MOREL’s application to scenarios with limited labeled data, such as
semi-supervised or few-shot learning settings.
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A ADDITIONAL RESULTS

Tables 4 and 5 present the performance of ResNet18 on Tiny-ImageNet under white-box and
“transfer-based” black-box attack scenarios. For white-box attacks, MOREL(← MART) consis-
tently outperforms its baseline, MART, with particularly notable improvements under stronger at-
tacks such as CW∞. On the other hand, MOREL(← TRADES) demonstrates more significant
improvements in clean accuracy, which can be adjusted to prioritize robustness by modifying the
preference vector k. As shown in Table 5, both MOREL(← TRADES) and MOREL(← MART)
consistently outperform their respective baselines in ”transfer-based” black-box settings across all
evaluated datasets.

Table 4: Accuracy (in %) against white-box attacks on Tiny-ImageNet for ResNet18. The best
results are highlighted in bold and the second best are underlined.

ResNet18 Clean FGSM PGD-20 PGD-100 CW∞ Avg-Robust
best last best last best last best last best last best last

Ti
ny

-
Im

ag
eN

et TRADES 41.97 40.91 18.91 18.28 17.31 16.70 16.99 16.44 10.06 09.90 15.82 15.33
MOREL(← TRADES) 43.74 42.20 18.89 18.24 16.95 16.14 16.70 15.89 10.63 09.99 15.79 15.07

MART 39.62 39.90 21.73 19.84 20.39 18.25 20.24 17.96 12.82 11.58 18.79 16.91
MOREL(←MART) 40.50 40.89 21.54 20.73 20.15 18.97 19.92 18.62 13.55 12.51 18.79 17.71

Table 5: Accuracy (%) against transfer-based black-box attacks on Tiny-ImageNet for ResNet18.
The best results are highlighted in bold, and the second best are underlined.

ResNet18 FGSM PGD-20 PGD-100 CW∞ Avg-Robust
best last best last best last best last best last

Ti
ny

-
Im

ag
eN

et TRADES 40.39 39.25 40.63 39.71 40.67 39.71 41.84 40.76 40.88 39.86
MOREL(← TRADES) 41.45 40.45 42.08 40.88 42.13 40.93 43.44 41.95 42.27 41.05

MART 38.36 38.78 38.70 39.08 38.59 39.11 39.44 39.67 38.77 39.16
MOREL(←MART) 39.32 39.54 39.65 39.85 39.59 39.89 40.33 40.70 39.72 39.99

Table 6 presents the performance of ResNet18 on CIFAR-10 and Tiny-ImageNet against AutoAt-
tack and the ”query-based” black-box attack SquareAttack. MOREL(← TRADES) and MOREL(←
MART) exhibit competitive robustness against AutoAttack in most cases, compared to their respec-
tive baselines, TRADES and MART. Notably, both variants show consistently strong performance
against SquareAttack.

Table 6: Accuracy (in %) against AutoAttack and SquareAttack on CIFAR-10 and Tiny-Imagenet
for ResNet18. The best results are highlighted in bold and the second best are underlined.

ResNet18 AutoAttack SquareAttack
best last best last

C
IF

A
R

-1
0 TRADES 46.45 46.33 69.63 69.85

MOREL(← TRADES) 46.64 45.91 70.76 70.76
MART 46.19 44.85 68.18 69.57

MOREL(←MART) 46.21 45.27 69.18 69.91

Ti
ny

-
Im

ag
eN

et TRADES 12.96 12.81 32.02 30.76
MOREL(← TRADES) 13.13 12.55 33.89 32.25

MART 16.13 14.76 31.30 31.14
MOREL(←MART) 15.60 15.33 32.35 31.87

In addition to TRADES and MART, we conducted further experiments on CIFAR-10 using
ResNet18 with a more advanced baseline: Logit-Oriented Adversarial Training (LOAT) (Yin &
Ruan, 2024). As shown in Tables 7 and 8, MOREL significantly improves LOAT’s performance
against both white-box and black-box adversarial attacks, demonstrating its effectiveness.

The heatmaps in Figure 3, generated using ResNet18 models trained on CIFAR-10, compare adver-
sarial features with their corresponding natural features for 48 randomly selected images. A strong
diagonal from the top-right to the bottom-left demonstrates effective alignment, indicating robust
consistency between adversarial and natural features. The MOREL(← TRADES) heatmap exhibits
a clear diagonal, showcasing the method’s ability to maintain robust feature alignment. Similarly,
MOREL(← MART) and MOREL(← LOAT) maintain strong alignment, with slightly more varia-
tion in intensity. The off-diagonal variations observed are likely due to features belonging to the
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Table 7: Accuracy (in %) against white-box attacks on CIFAR-10 for ResNet18, with LOAT as the
baseline.

ResNet18 Clean FGSM PGD-20 PGD-100 CW∞ Avg-Robust
best last best last best last best last best last best last

CIFAR-10 LOAT 78.09 79.47 55.67 55.23 51.70 49.89 50.87 48.61 41.20 40.44 49.86 48.54
MOREL(← LOAT) 78.13 80.49 56.27 55.62 51.99 50.23 51.05 48.96 42.01 41.00 50.33 48.95

Table 8: Accuracy (%) against transfer-based black-box attacks on CIFAR-10 for ResNet18, with
LOAT as the baseline.

ResNet18 FGSM PGD-20 PGD-100 CW∞ Avg-Robust
best last best last best last best last best last

CIFAR-10 LOAT 76.22 77.89 76.65 78.33 76.57 78.16 77.83 79.28 76.82 78.41
MOREL(← LOAT) 76.09 78.77 76.75 79.13 76.59 79.05 77.87 80.29 76.83 79.31

same class, as the MOREL embedding space is designed to encourage higher similarity among fea-
tures of the same class, even under adversarial conditions. Collectively, these heatmaps validate
the effectiveness of MOREL’s embedding space in ensuring robust alignment between natural and
adversarial features.

(a) MOREL(← TRADES) (b) MOREL(←MART) (c) MOREL(← LOAT)

Figure 3: Natural vs. Adversarial Feature Alignment

B ABLATION STUDY: EVALUATING MULTI-OBJECTIVE OPTIMIZATION
STRATEGIES

In this section, we perform an ablation study of the Multi-Objective Optimization (MOO) methods
used in the MOREL framework, specifically comparing Weighted Sum (WS) and Conic Scalariza-
tion (CS). As shown in Figure 4a, both methods exhibit a convex Pareto front with minor differences.
However, CS (black line) achieves a better balance of the loss functions. Figure 4b compares the
robust accuracy of the models trained using WS (red line) and CS (black line) for different values
of k1, which weights the robustness objective in the multi-objective optimization process. For both
WS and CS, the robust accuracy reaches its peak around k1 = 0.3, Where CS achieves the highest
improvement, while WS falls slightly behind. The robust accuracy then declines as k1 continues to
increase. These results highlight the advantages of Conic Scalarization over the standard Weighted
Sum in balancing the competing objectives of learning robust features and making accurate predic-
tions in adversarial training, demonstrating superior empirical performance.
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(a) (b)

Figure 4: (a): The Pareto front of MOREL(←MART) showing the trade-off between the robustness
loss L1 (Learning Robust Features) and the accuracy loss L2 (Making Accurate Predictions) as
the preference vector k is varied. (b): The performance of MOREL(← MART) against PGD-20,
displaying the robust accuracy as a function of k1.
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