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ABSTRACT

Protein engineering seeks to rationally tailor proteins to achieve specific struc-
tural and functional objectives. These objectives encompass enhancing catalytic
efficiency, modifying substrate specificity, improving binding affinity, reducing
immunogenicity, and increasing stability under adverse conditions. A major bot-
tleneck is protein instability, as elevated temperatures often drive degradation and
compromise activity. Developing thermostable proteins is therefore a key objec-
tive in engineering efforts. Here, we present XPro-Design, an explainable Al
driven framework for protein optimization that integrates amino acid-level ex-
planations of functional impact into generative modeling. Our method captures
epistatic interactions and the mutational landscape by training a low-rank ma-
trix, which biases the generative model toward high-scoring regions of sequence
space. This enables targeted generation of candidate variants optimized for ther-
mostability, while remaining extensible to other objectives. XPro-Design further
uses distribution tempering and annealing to effectively balance exploration vs
exploitation without compromising on structural integrity. We demonstrate ratio-
nal, causality driven design of protein variants with melting temperatures nearly
2x that of their wild-type counterparts, while preserving binding pocket integrity
and domain architecture. Moreover, engineered variants show up to 38% lower
folding free energy relative to wild-type indicating significantly enhanced ther-
modynamic stability. XPro-Design establishes a generalizable strategy for ex-
plainable and controllable protein design, enabling multi-objective optimization
beyond thermostability.

1 INTRODUCTION

Protein engineering is a cornerstone of modern biotechnology, enabling the rational tailoring of
proteins for therapeutic, industrial, and synthetic biology applications. Engineered proteins can
improve binding affinity, reduce immunogenicity, extend half-life, function in harsh environments,
catalyze reactions with higher efficiency, or perform novel tasks such as biosensing and pathway
modulation. Despite these diverse applications, a central challenge remains: amino acid mutations
often exert complex, non-additive effects on structure and function, making the sequence—function
landscape difficult to navigate. Among targeted properties, thermostability is especially critical, as
proteins unstable at elevated temperatures readily unfold, aggregate, and lose function. Stabilizing
determinants include hydrophobic core packing, hydrogen-bond networks, covalent linkages such
as disulfide bonds, and minimization of unfavorable electrostatic or solvent-exposed hydrophobic
interactions, whereas disruptions to these features often destabilize proteins. Balancing these op-
posing contributions defines the mutational landscape of thermostability and underscores the need
for methods that accurately capture and exploit sequence—structure—function relationships.

Protein stability prediction has been approached through both physics-based and machine learning
methods. Classical tools such as FoldX (Schymkowitz et al., [2005) and Rosetta (Leaver-Fay et al.,
2011} |[Fleishman et al.l 2011} Leman et al., [2020) estimate mutational effects on folding free en-
ergy by modeling structural energetics and have long served as reference points for benchmarking.
More recent data-driven approaches, including DDGun/DDGun3D (Montanucci et al., 2019), and
DDGemb (Savojardo et al.| 2025)), leverage evolutionary features or embeddings from protein lan-
guage models (Rives et al., [2019; [Lin et al.,[2022) to predict AAG of mutation. Other efforts such
as DeepTM (L1 et al., 2023), ProTstab2 (Yang et al., [2022)), and DeepSTABp (Jung et al.| 2023)
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Figure 1: XPro-Design architecture

focus on predicting melting temperatures directly from sequence information, while transformer-
based models like TemBERTure (Rodella et al., [2024), ESMStabP (Ramos et al., 2025)), TemStaPro
(Pudziuvelyte et al.||2024)), and ESMTherm/EsmTemp (Chu et al.| 2024} [Sutek et al.|[2024) build on
large pretrained protein models to capture thermostability across diverse families. Structure-aware
neural networks, including ThermoMPNN (Dieckhaus et al., [2024), ThermoMPNN-D (Dieckhaus
& Kuhlman| 2025)), and SPURS (Li & Luol [2025)), further incorporate backbone geometry to refine
predictions for thermostability and T},,. While these tools provide valuable guidance for engineer-
ing, most have been trained primarily on single- or double-point mutations and often show reduced
accuracy when generalized to multi-site or structure-wide mutational designs, limiting their utility
in large-scale protein re-engineering.

In parallel, generative modeling approaches have shifted the focus from prediction to design.
Sequence-to-structure inverse folding methods such as ProteinMPNN (Dauparas et al., [2022), Hy-
perMPNN (Ertelt et al., 2024), ESM-IF (Hsu et al., 2022), AlphaDesign (Jendrusch et al., 2025),
DivPro (Zhou et al.,[2025)) and PiFold (Gao et al.,[2022) generate sequences compatible with given
backbones, and in some cases have been experimentally validated for stable protein design. Diffu-
sion and flow-based frameworks, including RFdiffusion (Watson et al., [2023)), MapDiff (Bai et al.,
2025)), RareFold (L1 et al., [2025)), and ADFLIP (Yi et al.l [2025) introduce probabilistic sampling
strategies that enable exploration of novel topologies and controlled backbone design. Specialized
models such as AntiFold (Hgie et al., 2024)) extend generative principles and modeling to antibody
design or specialized protein families. However, most of these approaches are trained on broad pro-
tein structure datasets (Berman et al., 2000a) and are not optimized for task-specific objectives such
as thermostability. For this reason, we adopt ProteinMPNN as a general-purpose baseline and Hy-
perMPNN as a task-specific prior for high-temperature stability design, ensuring that comparisons
are grounded in models directly relevant to our objective.

XPro-Design enhances inverse folding frameworks such as ProteinMPNN by overcoming biases
from mesophile-dominated training data, which undersample rare but functionally important substi-
tutions. By correcting this bias, XPro-Design increases access to underrepresented residues while
preserving backbone compatibility and foldability. In addition, it leverages tempering and annealing
to broaden exploration of sequence space while refining promising directions, enabling more effec-
tive navigation of the mutational landscape. Sequences are sampled in paired batches: one modified
by a learned low-rank biasing matrix and the other left unbiased as a control. Each batch is eval-
uated with melting-temperature (Tm) predictors, wrapped with Integrated Gradients (Sundararajan
et al.[(2017)) modules to generate residue-level attribution maps. By aggregating attribution signals
across multiple predictors trained on diverse datasets, XPro-Design reduces model-specific biases
and builds robust residue-level guidance for updating biasing weights, while the unbiased batch pre-
serves exploration. The framework also supports position masking, allowing functional domains
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such as catalytic residues or binding pockets to remain fixed while surrounding regions are opti-
mized. In experiments, XPro-Design generated sequences with reduced conservation relative to
mesophilic proteins yet achieved substantial improvements in predicted thermostability. In some
scaffolds, engineered variants exhibited predicted Tm increases of up to 90 °C compared to wild
type. All redesigned variants were validated using Boltz-2 (Passaro et al.| [2025) and AlphaFold3-
based predictors like Chai-1 (team et al.l 2024) and AlphaFold3 (Abramson et al., 2024), which
confirmed correct folding into stable structures. Further validation with BioEmu (Lewis et al.| [2025))
equilibrium sampling, short molecular dynamics simulations (Hollingsworth & Dror, [2018)), and
MM/GBSA (Sun et al., 2014} \Genheden & Ryde, 2015)) folding-energy calculations supported fa-
vorable AAG changes relative to wild type and baseline generative approaches. While thermosta-
bility serves as a case study, XPro-Design establishes a generalizable, explainable, and controllable
framework for multi-objective protein engineering, with applications ranging from altered substrate
selectivity and enhanced cofactor binding to optimized hinge dynamics and reduced immunogenic
epitopes.

2 METHODOLOGY

The XPro-Design Architecture (Fig. [I) consists of 3 main components: Sampling, Explanations
and Optimization. Each of which are going to be detailed below. For the targets, we selected two
proteins with distinct thermostability profiles. The first was Candida Antarctica Lipase B (CalB)
(Uniprot ID: P41365; (Berman et al.l [2000b))), a widely used biocatalyst in esterification, transes-
terification, and hydrolysis reactions (PDB ID: 4K6G; (Berman et al., 2000b; [Xie et al., 2014a)).
Wild-type CalB has a reported melting temperature of 45-60 °C ((Xie et al., 2014b;|Le et al., [2012;
Qian et al.| 2009)) depending on variant, solvent and assay conditions, making it moderately stable
but suboptimal for high-temperature industrial processes. To preserve activity during optimization,
catalytic pocket residues (Ser105, His224, Asp187, and surrounding binding-site residues) were con-
served by leaving them unmasked. The second target was Superoxide Reductase (SOR) (Uniprot
ID: P82385) from Pyrococcus Furiosus (PDB ID: 1DQI; (Yeh et al., [2000)), a hyperthermophilic
enzyme stable up to 95 °C in oligomeric form ( 75 °C as monomer). SOR was used as a control
scaffold to benchmark improvements from XPro-Design against baseline models (ProteinMPNN,
HyperMPNN).

2.1 SAMPLING

XPro-Design leverages inverse folding models to map three-dimensional protein backbones to se-
quence space. While we use ProteinMPNN and HyperMPNN for ablation studies, the framework
is general and can incorporate any inverse folding model. Depending on the design objective, criti-
cal residues can be preserved by leaving them unmasked during preprocessing; in our experiments,
the catalytic and substrate binding residues were explicitly conserved (Fig. [7), though in practice
this can extend to entire substrate-binding domains. Given a protein backbone, the inverse folding
model generates conditional probabilities over masked positions while respecting frozen residues.
We first sample from the baseline model to obtain amino acid distributions, which serve as priors.
XPro-Design then tempers this distribution once by applying a temperature, broadening support and
reducing initialization bias. Training thereafter proceeds normally, with the tempered distribution
gradually sharpening to a newer distribution. This step mitigates the bias of training data domi-
nated by mesophilic proteins, raises entropy, and prevents the model from becoming trapped in local
optima early in optimization.

We represent the amino acid distributions across an aligned protein of length L = 320 as a matrix
K
P=(pig) €RFF K =20, Y pio=1V pie>0 )

=1

To reduce bias toward highly frequent residues (e.g., conserved amino acids) and to increase the
chance of sampling low-probability substitutions, we apply temperature scaling independently to
each column. For temperature 7' > 0 and smoothing constant € > 0, the tempered probabilities are
defined as ~

Pie

K ~
ijl Pje

1/T

Die = (pie+e)’'", pie(T) = )
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Notation.

e K = 20: number of categories (amino acids).

* L = 320: sequence length (positions).

* p;,¢: normalized probability of amino acid 7 at position .

* ¢ > (: smoothing constant ensuring nonzero support for all categories.

» T': temperature parameter; 7' = 1 recovers the original distribution, 7" > 1 broadens the
distribution so that rare amino acids become more likely at a given site, and 0 < 7" < 1
sharpens the distribution, reinforcing the dominant residue choices.

* p;¢(T): tempered probability of amino acid ¢ at position £.

After the one-time tempering step, we applied a linear annealing schedule (from T=1.0 to T=0.1)
during sampling, progressively sharpening the distribution and enabling early exploration followed
by exploitation. Alternatively, sequences can be sampled in parallel from fixed temperatures (e.g.,
[0.1, 0.5, 1.0]) to balance exploration and exploitation. Sequence generation uses two complemen-
tary strategies: direct sampling from the baseline model and sampling guided by a learned position-
specific scoring matrix (PSSM) that biases toward desired residue preferences. Together, these yield
a diverse baseline of sequences drawn from both the prior and a tempered distribution. A key advan-
tage of this approach is that model weights remain unchanged. This avoids catastrophic forgetting
and prevents convergence to narrow local optima, while also preserving the structural fidelity of the
inverse folding model; something that can degrade under fine-tuning on limited datasets.

2.2 TEMPERATURE PREDICTION AND EXPLAINABLE Al

Each generated protein sequence = (z1,...,x1), |x| = L, is evaluated using Integrated Gra-
dients (IG) to attribute residue-level contributions to the predicted melting temperature (7},,). While
we primarily employ three variants of TemBERTure for prediction, the framework can incorporate
any differentiable 7;,, or AAG model. Predictions from DeepSTABp and TemStaPro are also
used to establish cross-model correlations and derive consensus thermostability estimates.

For a differentiable predictor fy, the IG for residue ¢ is defined as

1 / o
IGi(z) = (x; — x;)/o Ofo(@ +5'fo ) da (3)

where z; is the embedding vector of residue ¢ in sequence x , z is a baseline embedding for residue
i (e.g., all-zero or reference amino acid), « € [0, 1] is the interpolation coefficient along the path
from baseline to input, fg(x) is the predicted Tm from model 6 and IG;(z) is the contribution of
residue ¢ to the predicted Tm

Signed attributions IG;(x) indicate whether a residue increases or decreases predicted Ty,,. Pairwise
effects can be captured by

161 = ﬁ S 1Gi(w) - 1G5 (x) @)
zeS

where positive values denote synergistic contributions and negative values denote antagonistic in-
teractions. Averaging across sequences helps suppress predictor noise, yielding sharper and more
reliable attribution signals.

In scenarios where the predictor is non-differentiable—such as black-box outputs from molecular
dynamics simulations or docking—the framework falls back to correlation-based surrogates. Define
the positional frequency of amino acid a at site ¢ across sequences S:

1
pi(a) = Il Z 1{z; =a}, a€AA 5)
‘ | zeSs
with correlation to predicted 75,,:

T = COIT (pi7 Joracle (JZ)) (6)



Under review as a conference paper at ICLR 2026

Although correlation-based optimization is less efficient and converges more slowly, it can still re-
veal residue—property associations. By contrast, attribution-guided exploration via IG improves con-
vergence efficiency and produces distributions that closely resemble those of naturally thermostable
proteins.

2.3 LEARNING SEQUENCE PREFERENCES

Each generated batch of sequences is converted into a position-specific scoring matrix (PSSM) of
shape L x 20, where L is the sequence length and 20 corresponds to the amino acid types. To update
the PSSM, we first compute the mean-centered stability signal for each sequence:

AT (z) = Tin(x) — pr,, )

where T, () is the predicted melting temperature of sequence z, and 7, is the batch mean.

To enhance signal separation, AT;,, values are rescaled on an exponential scale. For a batch of AT},
values, let
AT™ = max ATy (z)] ()
We then define
ATp(a) = AT (o) ©)

where 7 > 0 is an exponent hyperparameter.

| AT (2)]\”
ATmax

This transformation ensures that large deviations from the mean are amplified, small deviations are
attenuated and the sign of AT, (x) is preserved.

The weighted AT, is then combined with residue-wise attribution scores to form the update term:

LS AT () - 1Gs a(2) (10)

APSSM; , = —
|S| zeS

where IG; () is the attribution score for amino acid a at position 7 in sequence z, and S is the
batch of sequences.

This procedure ensures that amino acids contributing to low 7,,, are penalized with amplified neg-
ative updates, amino acids contributing to high 7,,, are rewarded with amplified positive updates,
context-dependent effects (epistasis) are captured naturally through batch-level averaging.

Finally, the PSSM is updated iteratively as
PSSM+Y) = pSSM® + (t) - APSSM an

where the learning rate 7)(t) follows a linear decay schedule from 0.01 to 0.001. Over successive
batches, this update biases sampling toward regions enriched in stabilizing mutations while main-
taining exploration of diverse sequence space.

2.4 EVALUATION OF FOLD INTEGRITY AND STABILITY

After convergence of the sampling distribution, we generated N sequences for evaluation. Ther-
mostability was first predicted using the methods in Section 2.2, followed by structure prediction
with Boltz-2. Predicted structures were aligned to the reference backbone, and Cae RMSD was cal-
culated to assess fold preservation. Additional descriptors like packing density, solvent-accessible
surface area (SASA), and inter-residue interaction networks—were computed on both Boltz-2 and
energy-relaxed structures to evaluate packing and interaction integrity. For thermodynamic valida-
tion, sequences were analyzed with BioEmu to sample 50 equilibrium conformations, subjected to
molecular dynamics simulations, and evaluated by MM/GBSA free-energy calculations in OpenMM
((Eastman et al.|[2017)). These MM/GBSA energies (denoted as AG in tables and plots) are used as
relative stability proxies of folded conformations; they should not be interpreted as absolute folding
free energies (AGfowa). The resulting AAG values quantified relative stability across variants. This
integrated framework ensured that designed proteins preserved structural topology while exhibiting
favorable energetic and thermodynamic profiles.
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Figure 2: Predicted melting temperature values for CalB variants in °C for the different methods
using TemBERTure and DeepSTABp models. We Observe the spread of High-Tm sequences is con-
siderably narrower for XPro-Design compared to even HyperMPNN which was specifically trained
to generate thermophile variants.

Table 1: Predicted Temperatures and Sequence Recovery
TemBERTure DeepSTABp

methods Tm (°C) Tm (°C) lsfq“ence Sequence

ecovery Diversity
mean, max T mean, max T

ProteinMPNN 54.4,66.9 54.4,81.3 56.3% £2.5% 0.750

HyperMPNN 62.2, 80.1 60.5, 90.0 48.7% £1.5% 0.732

XPro-Design(P) ours  80.1, 81.5 76.8,90.2 482% +1.5% 0.734

XPro-Design(H) ours  80.3, 81.5 82.7,90.9 34.8% £ 1% 0.602

3 RESULTS

3.1 MELTING TEMPERATURE PREDICTIONS

Once XPro-Design had learned the optimized protein sequence space, we generated 1,000 sequences
each from ProteinMPNN, HyperMPNN, XPro-Design(P) (with ProteinMPNN sampling), and XPro-
Design(H) (with HyperMPNN sampling) at sampling temperatures of 0.1 and 0.5.

As illustrated in Figure [2} our approach outperformed even the specialized HyperMPNN model in
generating sequences with substantially higher predicted melting temperatures (Tm). Thermosta-
bility was independently verified using both TemBERTure and DeepSTABp predictors, with Deep-
STABp evaluated at a growth temperature of 37°C. Consistent with our hypothesis, XPro-Design
reliably identified high-Tm sequence variants for the given backbones regardless of the underly-
ing sampling model. The difference between XPro-Design(P) and (H) was negligible in terms of
predicted temperature performance and sampled AA space, indicating strong generalization.

Among the baseline methods, ProteinMPNN exhibited the weakest performance, with the lowest
mean and maximum predicted 7, across both TemBERTure and DeepSTABp (Tab/[I)). HyperMPNN
generated sequences with higher maximum temperatures than ProteinMPNN, though mean values
remained significantly below those achieved by our methods.

In contrast, both XPro-Design variants consistently produced sequences with markedly elevated
thermostability. TemBERTure predicted mean 7;,, values above 80 °C for both samplers, while
DeepSTABp predictions reached up to 91 °C. The temperature distribution was slightly sharper for
XPro-Design(H) as the sampler, though the overall improvement over XPro-Design(P) was marginal
when considering sequence recovery and diversity as shown in Table
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Figure 3: Violin plots showing AG (left) and AAG (right) distributions of variants generated from
the different methods computed against CalB WT

Table 2: Structure Predictions

methods Alphafold PTM  Alphafold pLDDT RMSD (A) |
ProteinMPNN 0.966 £0.004 0.94 +£0.01 1.94£0.25
HyperMPNN 0.958 £0.007 0.92 +£0.01 2.02 £0.33
XPro-Design (P) ours  0.947 £0.009 0.90 +0.01 2.24 +0.69
XPro-Design (H) ours  0.915 £0.015 0.85 £0.02 3.12 +£0.56

3.2 SEQUENCE DIVERSITY AND RECOVERY

Sequence diversity was quantified using a k-mer—based Jaccard similarity approach (k = 3), which
efficiently captures local compositional differences without requiring full pairwise alignments. Di-
versity is expressed as 1 minus the Jaccard similarity (Brohee & Van Helden, |2006), averaged over
all sequence pairs. As shown in Table [T} all variants exhibit comparable diversity except XPro-
Design(H), which converged on a narrower sequence space.

Sequence recovery was computed as the fraction of residues matching the wild-type (WT) sequence
at aligned positions, reflecting the balance between conservation and exploration. ProteinMPNN
achieved the highest recovery (56.3%), indicating strong preservation of WT residues but limited
mutational diversity, which corresponds to weaker thermostability and AAG improvements. Hy-
perMPNN (48.7% recovery) explores more of sequence space, yielding more thermophilic designs,
though gains remain modest.

XPro-Design variants achieved recoveries of 48.2% (P) and 34.7% (H) while generating sequences
with markedly improved thermostability and reduced AAG. Lower recovery for HyperMPNN-
based designs reflects its bias toward hyperthermophilic residues. XPro-Design with ProteinMPNN
strikes an optimal balance, maintaining high sequence coverage while producing superior designs
without model-specific fine-tuning. Both XPro-Design variants converge to a distinct amino acid
distribution, clearly separating them from the baseline models.

3.3 STRUCTURE PREDICTION AND RMSD

We predicted the structures for all generated sequences using the Boltz-2 model, with multiple se-
quence alignments (MSAs) obtained from the ColabFold (Mirdita et al.| [2022) MSA server. Wild-
type templates were not provided during the prediction to ensure unbiased folding assessments.
Across all methods, the designed sequences were predicted to fold correctly, with XPro-Design
variants consistently demonstrated successful folding. Backbone RMSD values of the designed
sequences relative to the wild-type backbone showed minimal deviations, confirming structural con-
servation despite extensive sequence redesign. As illustrated in Figure[6] the variant V_2372 folded
nearly identically to the wild-type CalB backbone while exhibiting a 38.7% reduction in predicted
AAG and a 63% improvement in predicted melting temperature. Predicted Aligned Error (PAE)
and predicted Local Distance Difference Test ()LDDT) scores are summarized in Table 2] all within
acceptable confidence thresholds, further supporting the structural reliability of the generated se-
quences.
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Table 3: Folding free energy, AAG and
AG AAG . Normalized entropy
Normalized entropy
Methods mean, best mean, best J-mol-LK-1) | Core
(kcal -mol™1) | (2kcal-mol™) | 0 (J-mol~1.K~1) |
ProteinMPNN -6999, -8588 650, -939 0.707 £ 0.010 0.696 + 0.013
HyperMPNN -7215, -8504 433, -855 0.682 £ 0.009 0.681 £ 0.011
XPro-Design(P) -9075,-10612 -1426, -2962 0.673 £ 0.009 0.670 £ 0.012
XPro-Design(H) -8828, -10026 -1179, -2377 0.660 £+ 0.007 0.658 £ 0.010

3.4 FREE ENERGY AND PACKING ENTROPY ANALYSES

We evaluated thermodynamic stability using folding free energies (AG) and relative stability
changes (AAG) with respect to the wild type (Tab[3). Stabilizing variants were defined by lower
AG and negative AAG. Baseline ProteinMPNN generated stabilizing variants in only 14% of
cases, with mean AG = —-6999 kcal-mol~! and mean AAG = +650 kcal-mol~1, indicating overall
destabilization. HyperMPNN modestly improved performance (21% stabilizing), with mean AG =
—7215 kcal-mol ! and mean AAG = +433 kcal-mol~—!. These results confirm that baseline models
rarely introduce consistently stabilizing substitutions.

In contrast, XPro-Design produced near-universal stabilization (Fig. [3). With ProteinMPNN as
the sampler, all variants were stabilizing, with mean AG = -9075 kcal-mol™! and mean AAG
= —1426 kcal-mol~!. Using HyperMPNN vyielded similarly strong results (99% stabilizing, mean
AG = -8828 kcal-mol~%, mean AAG = —-1179 kcal-mol~!). Both samplers achieved substantially
more favorable AAG values than either baseline, consistent with the enhanced thermostability and
packing analyses (Fig. [).

To further probe stability, we computed packing-derived residue entropies with PACKMAN (Khade,
2024) (Voronoi/Delaunay geometry — packing fraction — entropy). Normalized entropy values
(removing length bias)(Fig showed clear reductions for XPro-Design: ProteinMPNN (0.707),
HyperMPNN (0.682), XPro-Design(P) (0.673), and XPro-Design(H) (0.660). Hydrophobic-core
entropies followed the same trend (0.696, 0.681, 0.670, 0.658, respectively), confirming that XPro-
Design variants adopt tighter, less flexible packing. These paired results indicate that improved
thermostability arises from redistributed packing patterns rather than simple global compression of
the core volume.

3.5 BOND ANALYSIS

The analysis of non-covalent interactions revealed that XPro-Design variants consistently formed a
higher number of hydrogen bonds relative to baseline ProteinMPNN and HyperMPNN designs (Fig.
[). In the same figure, a comparable trend was observed for salt bridges, 7-cation interactions, and
m-stacking contacts, all of which increased significantly in the redesigned variants. Disulfide bond
counts remained largely unchanged across methods, indicating that the global covalent connectivity
of the proteins was preserved.
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Figure 5: Inter residue Interactions: ProteinMPNN (blue), HyperMPNN (red), XPro-Design(P)
(green), XPro-Design(H) (purple)

Interestingly, this redistribution of interactions was accompanied by a modest reduction in hydropho-
bic contacts. However, rather than reflecting destabilization, this shift appears to be a compensatory
effect: the gain in directional, energetically favorable interactions such as hydrogen bonds and elec-
trostatic or aromatic contacts outweighs the slight decrease in non-specific hydrophobic packing.

Taken together, these results indicate that XPro-Design variants achieve improved stability not by
maximizing hydrophobic burial alone, but by reinforcing a diverse network of stabilizing non-
covalent interactions. This richer interaction landscape likely contributes to the enhanced thermosta-
bility and folding robustness observed in our designs.

4 CONCLUSION

We introduced XPro-Design, a novel framework for protein sequence optimization that leverages
explainable Al in a gradient-free setting. By using attribution methods such as Integrated Gradi-
ents, the approach provides residue-level interpretability while guiding optimization without task-
specific predictors. Unlike conventional baselines, XPro-Design requires no fine-tuning, operating
directly on inverse folding models while retaining their structural fidelity and broad applicability.
The framework balances exploration and exploitation through tempered initialization and annealed
sampling, systematically uncovering stabilizing mutations missed by baseline methods. As a result,
XPro-Design designed orders of magnitude more stable sequences than ProteinMPNN and Hyper-
MPNN. It consistently yielded higher predicted thermostability, near-universal shifts toward stabi-
lizing AAG, and reduced packing entropies indicative of more favorable folds; all while preserving
sequence diversity. These results highlight XPro-Design as a transformative step in protein engi-
neering: scalable, interpretable, and capable of delivering unprecedented improvements in stability
beyond the reach of existing generative models.
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A APPENDIX

A.1 FUTURE WORK

Future work planned around XPro-Design involves validating some of the top variants in a lab along
with quantifying their half lives at an elevated range of temperatures compared to the WT proteins.
Also we are currently working on redesigning several other industry relevant proteins to operate at
elevated temperatures.

Moreover we have already started testing XPro-Design towards substrate binding selectivity for
enzymes, optimizing protein-protein binding affinity by improving the interaction profiles on the
binding domains as well as evaluating XPro-Design towards improving enzymatic kinetics by re-
designing hinge regions towards higher catalytic efficiency.

A.2 SHANNON ENTROPY

The Shannon entropy of a categorical distribution p is defined as
K
H(p)=—) pilogp:. 12)
i=1
Applying tempering yields the distribution p(T"), whose entropy is
K
H(p(T)) = =Y pi(T) log pi(T) (13)
i=1

For T > 1, it follows that
H(p(T)) = H(p),
with equality if and only if p is uniform.
Notation:
* H(p): Shannon entropy of distribution p.
* log: natural logarithm.

* p;(T): tempered probability of category i.

A.3 BIOLOGICAL INTUITION BEHIND TEMPERATURE SCALING OF PRIOR DISTRIBUTION

Temperature scaling with 7" > 1 increases the probability of rare substitutions that might other-
wise be ignored because of under representation in the training data, thus encouraging exploration
of sequence diversity. Conversely, setting 7' < 1 amplifies the dominance of conserved residues,
reinforcing evolutionary constraints. This single parameter therefore provides a biologically inter-
pretable knob to balance between conservation and diversity in sampling.
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A.4 CALB STRUCTURAL RESULTS

Ho License F1Wg

=

Figure 7: lowest ddG variant V_2372 (blue) overlaid over WT 4K6G (green) structure shows that
the substrate bidning pocket is well conserved. Catalytic Triad Residues S105, D187, H224 and
Substrate binding residues T40, E188, L278 were specifically conserved. Residues 1189, V190,
1285 were masked out, yet we see that XPro-Design substitutions represents a conservative change
(Ile — Leu) within the substrate binding pocket, and is not expected to drastically alter the overall
hydrophobic character even for redesigned residues not explicitly conserved, though subtle changes
in side-chain packing or pocket geometry may occur.

A.5 AA-WISE DISTRIBUTION SHIFTS
To evaluate how design strategies altered amino acid usage, we analyzed the distribution of residue
classes across surface, core, and overall regions of the protein (Figure[9]&[8). Both baseline samplers

(ProteinMPNN and HyperMPNN) preserved broad compositional trends but differed in their bias
toward polar residues on the surface and hydrophobic residues in the core.
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XPro-Design introduced a clear shift in these distributions. On the surface, it reduced excessive polar
enrichment while slightly increasing charged and special residues, suggesting more balanced solvent
exposure. In the core, XPro-Design produced a higher fraction of hydrophobic residues and a modest
rise in glycines, consistent with tighter packing and increased conformational adaptability. When
averaged over the full sequence, the distributions from both XPro-Design variants diverged from the
baselines in a consistent manner, indicating that optimization not only improved thermostability but
also drove distinct residue-level preferences aligned with thermophilic design principles.

Amino Acid Frequencies Grouped by AA Type

Hydrophobic Polar Positive Negative Special

Method

B ProteinMPNN Sampling

B HyperMPNN Sampling
XPro-Design (ProteinMPNN)
XPro-Design (HyperMPNN)

0.1

Frequency

Amino Acid

Figure 8: AA wise distribution shift of XPro-Design from baseline models

Comparison of Amino Acid Distribution Across Models

Surface Core Overall

Method
ProteinMPNN Sampling

M HyperMPNN Sampling
W XPro-Design (ProteinMPNN)
M XPro-Design (HyperMPNN)

Percentage (%)
&

Figure 9: Surface vs Core AA Type distribution from the different methods
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A.6 ENTROPY REDUCTION

Violin Plot Total and Core per residue normalized entropy from different methods

ProteinMPNN Sampling total
HyperMPNN Sampling total
XPro-Design (ProteinMPNN) total
XPro-Design (HyperMPNN) total

ProteinMPNN Sampling core
HyperMPNN Sampling core
0.7 XPro-Design (ProteinMPNN) core
XPro-Design (HyperMPNN) core
0.66 @

Figure 10: Normalized Per Residue wise Entropy for the full protein and the core
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A.7 SORA RESULTS

Despite the SorA protein being a small protein having only 124 AAs with not much scope towards
optimization since it is already a hyper thermophile, we observe a clear and similar trend here as
well. Our XPro-Design method considerably outperforms even the finetuned HyperMPNN model
at designing more thermostable variants. This is clear by the clear upward shift in the predicted
melting temperatures from different methods as well as the MM/GBSA based energy calculations.

[ ProteinMPNN Sampling ProteinMPNN Sampling deepstabp
“I1 HyperMPNN Sampling HyperMPNN Sampling deepstabp
[C1 XPro-Design (ProteinMPNN) XPro-Design (ProteinMPNN) deepstabp
] XPro-Design (HyperMPNN) XPro-Design (HyperMPNN) deepstabp
E , /\\ """""""""""""""""""""""""""""""""""
I— "'""""":"""""/*/'x‘x """"""" ’\'"E'"/"
Il " N
o ‘ “ )4
O, j
o 1
o $
o

Figure 11: Predicted melting temperature values for SorA variants in °C for the different methods
using TemBERTure and DeepSTABp models. We Observe the spread of High-Tm sequences is con-
siderably narrower for XPro-Design compared to even HyperMPNN which was specifically trained
to generate thermophile variants.
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Figure 12: Violin plots showing AAG distributions of variants generated from the different methods
computed against SorA WT

Similar to trends seen with the CalB target, all the generated variants from all the methods folded
correctly despite having sequence coverage of only around 53% across all methods.

Figure 13: Top SorA designed variant V_5984 (Xpro-Design(P) in Blue overlaid over SorA WT
1DQI

A.8 LLM USE DISCLAIMER
The authors used a large language model (ChatGPT, OpenAl) to assist in polishing grammar and
improving conciseness of the manuscript text. The model was not used for data analysis, generation

of scientific content, or drawing conclusions. All scientific content and interpretations are solely the
responsibility of the authors.
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