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Abstract

The conditions required for the emergence of complex, self-replicating life remain1

one of the most significant open questions in science. Traditional models are often2

limited in their ability to explore the vast parameter space of possible prebiotic3

environments. In this paper, we introduce a novel agent-based model of a stochastic4

artificial chemistry to systematically investigate the "phase space" of abiogenesis.5

Our simulation consists of a 2D grid populated by mobile monomers that can6

form self-replicating polymer chains. These polymers are subject to evolutionary7

pressures through mutation, growth, and fragmentation. We deploy a computational8

agent, the Phase Space Mapper, to run thousands of simulations, each with a9

different set of physical laws (e.g., mutation rate, degradation probability). By10

classifying the final state of each simulated universe, we generate a phase diagram11

that maps the regions of parameter space corresponding to extinction, stasis, and12

the emergence of stable, complex life. Our results indicate that the transition to13

a state capable of supporting high complexity is not gradual, but rather a sharp14

phase transition that occurs at the "edge of chaos"—a narrow boundary between15

a universe that is too ordered (low mutation) and one that is too disordered (high16

fragmentation). This work provides a powerful new framework for exploring17

the fundamental conditions for life and suggests that the emergence of complex18

organisms may be a critical phenomenon highly sensitive to a small number of key19

environmental parameters.20

1 Introduction21

The apparent contradiction between the high probability of extraterrestrial life and the lack of22

observational evidence for it—the Fermi Paradox—has long challenged scientists. While discussions23

often focus on the probability of life arising at all (fl in the Drake Equation), our work explores a24

subsequent, and potentially more restrictive, bottleneck: the probability that life, once started, will25

evolve high complexity. The galaxy may be teeming with simple life, but the "Great Silence" suggests26

that the transition to complex, technologically-capable organisms is exceptionally rare.27

In this work, we present a computational model to investigate this "complexity bottleneck." We28

develop a stochastic, agent-based model of an artificial chemistry to create thousands of distinct29

"toy universes," each with its own set of physical laws. Our goal is not to perfectly simulate the30

chemistry of early Earth, but to use a simplified, abstract system to explore the universal principles31

of replication, competition, and evolution. By systematically mapping the parameter space of these32

laws, we can identify which conditions lead to a stable, low-complexity equilibrium—a "Sea of33

Stasis"—and which allow for a "phase transition" to a state of high, emergent complexity.34

Our results provide a potential, data-driven resolution to the Fermi Paradox. We demonstrate35

that the conditions for sustaining high complexity are far more restrictive than those for mere36

survival. We identify a narrow "island of stability" for complex life that exists at the "edge of chaos,"37
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requiring a precise and sustained balance between the forces of creation (mutation) and destruction38

(fragmentation). This suggests that the Great Filter may not be the origin of life itself, but rather39

the immense difficulty of maintaining the specific environmental conditions necessary to drive the40

evolution of complexity over billions of years.41

2 Related Work42

The study of emergent, life-like behavior in computational systems, known as Artificial Life (A-Life),43

has a rich history rooted in the theoretical work of John von Neumann on self-reproducing automata44

(1). This foundation laid the groundwork for the field of cellular automata, famously popularized by45

John Conway’s Game of Life (2), which demonstrated that complex, dynamic patterns could emerge46

from a small set of simple, deterministic rules.47

Subsequent research infused these systems with the principles of Darwinian evolution. Tom Ray’s48

Tierra created a digital ecosystem where self-replicating programs competed for CPU time, leading49

to the spontaneous evolution of digital parasites and complex host-parasite dynamics (3). Building50

on this, Chris Adami’s Avida platform introduced digital organisms that evolved to perform com-51

putational tasks for rewards, providing a powerful model for studying the evolution of metabolic52

complexity and genome organization (4). Concurrently, theoretical biologists like Stuart Kauffman53

proposed that life may not have originated from a single replicator, but from complex "autocat-54

alytic sets" of molecules, where the network as a whole becomes self-sustaining (5). Our model’s55

polymer-based chemistry is a simplified homage to these network-based theories.56

A central theme in A-Life is the concept of the "edge of chaos," a term popularized by Christopher57

Langton, who posited that the most complex and interesting computational behaviors occur at the58

phase transition between ordered and chaotic systems (6). Our work explicitly tests this hypothesis.59

While previous A-Life research has largely focused on demonstrating that life-like behaviors can60

emerge, our project’s primary contribution is the use of a computational agent (the PhaseSpaceMapper)61

to systematically map the entire landscape of possible outcomes. This allows us to quantitatively62

identify the "phase transitions" between stasis, complexity, and extinction, thereby treating the origin63

of life as a problem in statistical mechanics.64

3 Methodology: An Artificial Life Simulation65

Our simulation is built upon a discrete-time, 2D grid-based environment. Each cell in the grid can be66

in one of several states: empty, occupied by a fundamental building block (a monomer), or occupied67

by a segment of a larger structure (a polymer). The model is stochastic, with outcomes determined by68

a set of probabilistic rules that function as the "laws of physics" for our universe.69

3.1 The Environment and its Inhabitants70

The world is a square 2D grid of size 50x50 with periodic boundary conditions, creating a toroidal71

space that prevents edge effects. The environment is populated by several types of entities. The most72

basic are the monomers, ’A’ and ’B’, which are non-living building blocks that diffuse randomly73

across the grid. These can be assembled into polymers, which are our artificial organisms. A74

polymer is not a single point but is represented as a linear chain of connected monomers occupying a75

contiguous path on the grid. Each polymer has a unique ID, a sequence string (e.g., ’A-B-A-B’), and76

a list of body coordinates. Finally, energy cells are randomly replenished into empty space and serve77

as a necessary catalyst for certain biological actions, though they are not consumed in the process.78

3.2 The "Laws of Physics": Core Mechanics79

The simulation proceeds in discrete time steps, with the life cycle of our artificial organisms governed80

by a set of probabilistic rules. First, the environment is updated: monomers diffuse with a probability81

of diffusion_prob, and energy is replenished. Then, each polymer is given an opportunity to act.82

An organism can extend its chain by consuming a nearby monomer, a process we call growth. This is83

the primary driver of increasing complexity, and it is during this process that mutations can occur,84

with a probability of mutation_prob, by incorporating the wrong monomer.85

2



Organisms can also reproduce through a process of seeding. A polymer can consume an ’A’ and a ’B’86

monomer from its local neighborhood to create a new, simple two-monomer polymer in a random87

empty location on the grid. This allows successful lineages to spread without requiring the perfect88

replication of a complex structure.89

Survival is governed by two destructive forces. First, all polymers are subject to degradation, a process90

by which they are destroyed and their constituent monomers recycled back into the environment. The91

probability of this is inversely proportional to length, creating a selective pressure for longer, more92

stable chains. Second, to counter runaway growth and introduce a "cost of complexity," long polymers93

are also subject to fragmentation, where they have a chance of breaking into two smaller pieces.94

Finally, polymers can actively explore their environment for resources by slithering to adjacent empty95

cells with a probability of slither_prob.96

3.3 Conservation of Matter97

A critical feature of the simulation is the strict conservation of matter. The total number of ’A’ and98

’B’ units, whether as free monomers or bound within polymers, is constant throughout a run. To99

ensure this, the logic for consuming materials for growth and seeding is "atomic": the simulation100

first confirms that all necessary resources are available before any are removed from the grid. This101

prevents the loss of matter from failed reactions and ensures the physical realism of the model.102

4 Computational Experiments103

To test our hypothesis that the emergence of complex life occurs as a phase transition, we designed104

a series of computational experiments to systematically map the parameter space of our simulated105

universe. Our goal was not to find a single optimal set of parameters, but to understand the landscape106

of possibilities and identify the boundaries between different universal outcomes.107

4.1 The Phase Space Mapper Agent108

We developed a computational agent, the ‘PhaseSpaceMapper‘, to serve as our automated experi-109

menter. This agent is designed to perform a grid search over a two-dimensional parameter space.110

For each coordinate on this grid, which corresponds to a unique set of physical laws, the agent runs111

a specified number of independent simulations, or trials. This use of multiple trials is essential to112

account for the stochastic nature of our model, allowing us to distinguish between deterministic113

outcomes and probabilistic tendencies. The agent saves its progress to a persistent file, allowing for114

long-running, high-resolution experiments to be conducted over multiple sessions.115

4.2 Experiment 1: Mapping the "Edge of Chaos"116

Our primary experiment was designed to directly test the "edge of chaos" hypothesis. We chose to117

map the two parameters most central to this concept: the mutation_prob, which serves as the engine118

of novelty and change, and the fragmentation_prob, which represents a "cost of complexity" and119

acts as a destructive, chaotic force. We defined a 20x20 grid spanning a range of values for these120

two parameters. The agent ran 5 trials for each of the 400 points on this grid, for a total of 2,000121

simulations. Each simulation was run for 3,000 time steps to allow the ecosystem to reach a mature122

state.123

4.3 Experiment 2: The Role of Mobility124

To ensure that the observed phase transition was not an artifact of our mobility rules, we con-125

ducted a second experiment as an ablation study. Here, we mapped the parameter space defined by126

diffusion_prob (the mobility of raw materials) and slither_prob (the mobility of organisms),127

while holding all other parameters constant at their baseline values. For this study, we used a 15x15128

grid and ran 5 trials per point. This allowed us to isolate the effect of mobility on the evolution of129

complexity and verify that it was not the primary driver of the phase transition observed in our main130

experiment.131
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4.4 Classification of Outcomes132

To analyze the results, the final state of each simulated universe was classified based on its long-133

term behavior. A universe was classified as an Extinction event if all polymers died out. If life134

survived but the average complexity of organisms remained low (below a threshold of 2.5, indicating135

a failure to evolve beyond simple dimers and trimers), it was classified as Low Stable Complexity.136

If the ecosystem survived but its complexity fluctuated wildly, with a high normalized standard137

deviation, it was deemed Unstable Growth. Finally, if the ecosystem achieved and sustained a high138

average complexity, it was classified as High Stable Complexity. The probability of this final, most139

interesting outcome was the primary metric used to construct our phase diagrams.140

5 Results and Discussion141

We conducted two primary computational experiments to map the phase space of our artificial142

universe. The first investigated the interplay between the forces of creation (mutation) and destruction143

(fragmentation), while the second explored the role of mobility (diffusion and slithering). The results144

reveal a complex landscape where the conditions for stable, complex life are rare and exist only at a145

critical boundary.146

5.1 Experiment 1: The Edge of Chaos (Mutation vs. Fragmentation)147

Our first experiment systematically varied the mutation_prob and fragmentation_prob. The148

results, shown in Figure 1, reveal a sharp phase transition between a universe where life is simple or149

extinct and a narrow "island of stability" where complex life can thrive.150

We identify three distinct phases in this diagram:151

• The Sea of Stasis (Low Mutation): In the lower regions of the diagrams, where the152

mutation rate is low, life fails to evolve. The average complexity remains low, and the153

probability of achieving a "High Stable" state is near zero. The system lacks the novelty154

required to explore more complex forms.155

• The Desert of Extinction (High Fragmentation): In the right-hand regions, where the156

fragmentation rate is high, life is too fragile. The "cost of complexity" is so great that any157

long polymers that form are quickly destroyed. This leads to a high probability of total158

extinction, as seen by the dark purple regions in both plots.159

• The Island of Stable Complexity: A narrow, vertically-oriented band exists where life160

flourishes. Here, the mutation rate is high enough to generate diversity, but the fragmentation161

rate is low enough to allow complex structures to survive and reproduce. This "Goldilocks162

zone" is a clear demonstration of the "edge of chaos" principle: life emerges not in perfect163

order or complete chaos, but at the critical boundary between them.164

5.2 Experiment 2: The Role of Mobility (Diffusion vs. Slithering)165

Our second experiment, an ablation study, investigated the role of mobility by varying the166

diffusion_prob (movement of raw materials) and the slither_prob (movement of organisms).167

The results are shown in Figure 2.168

The results of this experiment are strikingly different from the first. We observe that:169

• Mobility Prevents Extinction: Unlike the first experiment, we see very few regions of total170

extinction. As long as there is some form of mobility (i.e., we are not at the (0,0) corner), the171

ecosystem is able to sustain itself and avoid a catastrophic collapse from resource depletion.172

• Mobility is Not Sufficient for High Complexity: Crucially, the probability of achieving a173

"High Stable Complexity" state is near zero across the entire parameter space. The system174

consistently settles into a state of low, stable complexity.175

This is a critical finding. It suggests that mobility is a necessary but not sufficient condition for the176

evolution of complex life. It allows the ecosystem to survive, but it does not, by itself, provide the177

evolutionary pressure needed to drive the emergence of long, sophisticated organisms.178
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Figure 1: Phase diagrams for Experiment 1. (Left) The probability of achieving a "High Stable
Complexity" state. The bright yellow region indicates a high likelihood of success. (Right) The
average emergent complexity for each parameter set. The phase transition is clearly visible, with a
narrow "island" where high complexity is both probable and achievable.

5.3 Synthesis and Implications for Astrobiology179

Taken together, our experiments suggest that the emergence of complex life is a two-tiered problem.180

First, a baseline level of environmental dynamism (like mobility) is required for life to sustain itself181

at all. However, the true bottleneck is the fine-tuning of the parameters that govern creation and182

destruction—mutation and fragmentation.183

Our results provide a potential, data-driven perspective on the Fermi Paradox. The conditions for184

life may be far more restrictive than simply the presence of liquid water and organic molecules. If185

the evolution of complex organisms requires a planet’s geochemistry and environment to remain186
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Figure 2: Phase diagrams for Experiment 2. (Left) The probability of achieving "High Stable
Complexity" is near zero across the entire space. (Right) The average emergent complexity is
uniformly low. This indicates that while mobility is crucial for survival, it is not a primary driver of
high complexity in our model.

within a narrow "island of stability" for billions of years, then the number of planets that successfully187

navigate this path could be exceedingly small. A slight increase in environmental harshness (higher188

fragmentation) or a slight decrease in the drivers of novelty (lower mutation) could be all that is189

needed to lock a biosphere into a state of simple microbial life or push it to extinction. The galaxy190

might be full of life, but it may be overwhelmingly simple, existing in a "Sea of Stasis" from which it191

is statistically unlikely to escape.192
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6 Limitations193

While our model offers a powerful framework for exploring the emergence of complexity, several194

limitations should be acknowledged:195

1. Simplified chemistry: The simulation uses only two monomer types (’A’ and ’B’) with uniform196

properties. Real biochemical systems feature a much richer chemical alphabet, leading to specialized197

functions, selective bonding, and catalytic behaviors. This abstraction may limit the types of structures198

and interactions that can evolve in our model.199

2. Static environment: All simulations assume a homogeneous and time-invariant environment. In200

real prebiotic or planetary contexts, environmental fluctuations—such as diurnal cycles, tidal stresses,201

or random catastrophes—may play a key role in driving resilience, adaptation, or extinction. Our202

results thus reflect emergence under idealized, steady-state conditions.203

3. Fitness proxy heuristics: The classification of outcomes relies on thresholds for metrics like204

average complexity (e.g., 2.5 monomers). While useful for large-scale statistical comparisons, these205

thresholds may not capture all biologically meaningful forms of complexity, such as functional206

diversity, robustness, or network modularity.207

4. Limited evolutionary mechanisms: The model includes random mutation and fragmentation but208

lacks more advanced mechanisms found in real evolution, such as recombination, niche formation, or209

horizontal information transfer. These may be necessary for sustained innovation over evolutionary210

timescales.211

5. No explicit natural selection: While there is implicit selection via differential survival, our model212

does not include explicit competition for limited energy or space, nor fitness-based reproduction rates.213

As a result, the system may fail to capture key dynamics like evolutionary arms races or selection214

pressures that promote complexity.215

6. Finite simulation horizon: All simulations are run for a fixed number of timesteps (e.g., 3,000),216

which may be insufficient to observe slow or rare evolutionary transitions. It remains an open question217

whether certain low-complexity regions would eventually evolve complexity given more time.218

These limitations point to several exciting directions for future work, including expanding the chemical219

vocabulary, introducing environmental dynamics, and incorporating richer ecological interactions to220

better capture the full complexity of prebiotic evolution.221

7 Conclusion222

In this work, we have developed a novel agent-based model for exploring the fundamental conditions223

required for the emergence of life. By systematically mapping the parameter space of our simulated224

universe, our experiments reveal that the emergence of complex life is a two-tiered problem. We first225

observe that baseline conditions, such as the mobility of organisms and their resources, are necessary226

to prevent extinction, but are not sufficient on their own to drive evolution beyond a state of low,227

stable complexity.228

The true bottleneck, our results demonstrate, is the fine-tuning of the parameters that balance creation229

and destruction. We have shown that the transition to a state capable of supporting high complexity230

is not gradual, but a sharp phase transition. This "sweet spot" for life exists at the "edge of chaos,"231

requiring a precise balance between a mutation rate high enough to foster novelty and a fragmentation232

rate low enough to preserve complex structures.233

This framework and its results offer a new, data-driven perspective on the Fermi Paradox, suggesting234

that the conditions for complex life are far more restrictive than for life itself. A planet may well235

enter a "Sea of Stasis" with simple, microbial-like life, but the specific, long-term stability required to236

navigate the narrow channel to high complexity may be exceptionally rare. Our model provides a237

powerful new tool for investigating these fundamental questions, shifting the focus from a singular238

origin story to the statistical landscape of all possible beginnings.239
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7.1 Future Directions240

The model presented here, while powerful, is a simplified abstraction. Several avenues for future241

research could build upon this foundation to explore the emergence of life in greater detail:242

• Richer Chemistry: Future work could expand the simple ’A-B’ monomer system to a larger243

alphabet of components. This would allow for the evolution of polymers with specialized244

functional sites, analogous to proteins, potentially leading to more complex metabolic245

networks and catalytic capabilities.246

• Dynamic Environments: Our current model assumes a static environment. A significant247

next step would be to introduce dynamic environmental conditions, such as cyclical energy248

levels (simulating seasons or day-night cycles) or random catastrophic events. This would249

allow us to study the evolution of adaptation, resilience, and memory in our artificial250

organisms.251

• Emergence of Cooperation and Multicellularity: The current simulation focuses on252

competition between individual polymers. An exciting future direction would be to create253

conditions that could favor the emergence of cooperative behaviors, such as polymers that254

work together to acquire resources or form higher-level structures, providing a potential255

pathway to investigate the origins of multicellularity.256

Reproducibility Statement To ensure full transparency and reproducibility, we will publicly release257

all source code used to implement the artificial chemistry simulation, including the PhaseSpaceMapper258

agent, data logging utilities, and analysis scripts for generating the phase diagrams. The codebase259

includes configuration files for reproducing all experiments described in this paper, along with260

instructions for running simulations on standard hardware. In addition, we will provide the complete261

chat history between the human researcher and the Gemini language model, which documents the full262

development process—including hypothesis refinement, simulation design, implementation iterations,263

and interpretation of results. This record offers a uniquely detailed account of how the research was264

co-developed and serves as an audit trail for the AI-assisted workflow. All materials will be made265

available in an anonymized, open-access repository upon publication.266

References267

[1] J. von Neumann, "Theory of Self-Reproducing Automata," University of Illinois Press, 1966.268

[2] M. Gardner, "Mathematical Games - The fantastic combinations of John Conway’s new solitaire game269

’life’," Scientific American, vol. 223, pp. 120-123, 1970.270

[3] T. S. Ray, "An approach to the synthesis of life," in Artificial Life II, Addison-Wesley, 1991, pp. 371-408.271

[4] C. Adami and C. T. Brown, "Evolutionary learning in the 2D artificial life system ’Avida’," in Artificial Life272

IV, MIT Press, 1994, pp. 377-381.273

[5] S. A. Kauffman, "The Origins of Order: Self-Organization and Selection in Evolution," Oxford University274

Press, 1993.275

[6] C. G. Langton, "Computation at the edge of chaos: phase transitions and emergent computation," Physica D:276

Nonlinear Phenomena, vol. 42, no. 1-3, pp. 12-37, 1990.277

A Technical Appendices and Supplementary Material278

Technical appendices with additional results, figures, graphs and proofs may be submitted with the paper submis-279

sion before the full submission deadline, or as a separate PDF in the ZIP file below before the supplementary280

material deadline. There is no page limit for the technical appendices.281

8



Agents4Science AI Involvement Checklist282

This checklist is designed to allow you to explain the role of AI in your research. This is important for283

understanding broadly how researchers use AI and how this impacts the quality and characteristics of the284

research. Do not remove the checklist! Papers not including the checklist will be desk rejected. You will285

give a score for each of the categories that define the role of AI in each part of the scientific process. The scores286

are as follows:287

• [A] Human-generated: Humans generated 95% or more of the research, with AI being of minimal288

involvement.289

• [B] Mostly human, assisted by AI: The research was a collaboration between humans and AI models,290

but humans produced the majority (>50%) of the research.291

• [C] Mostly AI, assisted by human: The research task was a collaboration between humans and AI292

models, but AI produced the majority (>50%) of the research.293

• [D] AI-generated: AI performed over 95% of the research. This may involve minimal human294

involvement, such as prompting or high-level guidance during the research process, but the majority295

of the ideas and work came from the AI.296

These categories leave room for interpretation, so we ask that the authors also include a brief explanation297

elaborating on how AI was involved in the tasks for each category. Please keep your explanation to less than 150298

words.299

1. Hypothesis development: Hypothesis development includes the process by which you came to300

explore this research topic and research question. This can involve the background research performed301

by either researchers or by AI. This can also involve whether the idea was proposed by researchers or302

by AI.303

Answer: The hypothesis was co-developed through a collaborative process between the researcher304

(user) and the AI. The researcher initiated the project with a high-level conceptual analogy, and the305

AI refined this concept into a testable, computational hypothesis by providing background research,306

formal counter-arguments, and a concrete simulation framework. The final hypothesis—that complex307

life emerges as a phase transition at the "edge of chaos"—was proposed by the AI as a direct result of308

the iterative cycle of building, testing, and debugging the simulation with the researcher.309

Explanation: The development of the research question followed a clear, iterative path:310

(a) Initial Researcher Concept: The project began with the researcher’s novel idea to frame the311

existence of extraterrestrial life as an analogy to phase transitions in statistical mechanics.312

(b) AI-driven Refinement and Background Research: The AI critiqued the direct analogy, suggesting313

that a more robust framing would be based on statistical mechanics and the law of large numbers.314

To ground the project in existing science, the AI provided a summary of the field of Artificial315

Life (A-Life), including foundational work like Conway’s Game of Life, Tierra, and the concept316

of the "edge of chaos."317

(c) Collaborative Model Building: The researcher and AI then entered a long phase of collaborative318

development. The AI would propose and code a simulation model, and the researcher would319

astutely analyze the results, identify when they were non-physical or counter-intuitive (e.g.,320

matter not being conserved, lack of biodiversity), and guide the next iteration. This debugging321

cycle was crucial for building a scientifically sound model.322

(d) Final Hypothesis Formulation: After many iterations, the simulation began to produce interesting323

results. The AI analyzed these preliminary phase diagrams and formally proposed the final324

hypothesis presented in the paper: that the key to complex life is the fine-tuning of parameters325

that balance novelty and stability, and that this "sweet spot" exists as a sharp phase transition.326

The researcher then guided the design of the final set of rigorous computational experiments to327

explicitly test this hypothesis.328

2. Experimental design and implementation: This category includes design of experiments that are329

used to test the hypotheses, coding and implementation of computational methods, and the execution330

of these experiments.331

Answer: The experimental design was a collaborative effort between the researcher and the AI,332

evolving from a simple optimization task to a systematic mapping of the simulation’s parameter space.333

The AI was responsible for the full implementation of the computational model in Python, including334

the core simulation engine and the PhaseSpaceMapper agent that executed the experiments. The335

researcher played a critical role in guiding the experimental design and in the iterative debugging and336

refinement of the simulation’s core logic. The experiments were executed autonomously by the AI337

agent, which ran thousands of simulations to generate the final phase diagrams.338
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Explanation: Experimental Design: The primary experiment was designed to test the "edge of chaos"339

hypothesis by creating a 2D phase diagram. The AI proposed the two primary axes for this diagram: the340

fragmentation_prob (representing the forces of destruction/chaos) and the mutation_prob (representing341

the forces of creation/novelty). The researcher critically refined this design by insisting on the need342

for an "ablation study" to test the role of other parameters, which led to the second experiment343

mapping diffusion_prob vs. slither_prob. Furthermore, after observing stochastic anomalies ("islands344

of extinction"), the researcher correctly identified the need to run multiple trials for each parameter345

set, a crucial step that transformed the experiment from a simple classification to a more rigorous346

probabilistic mapping.347

• Implementation: The implementation was an iterative and collaborative process. The AI wrote348

all the Python code for the simulation, including the core classes (Grid, Polymer, RulesEngine,349

DataLogger) and the experimental agent (PhaseSpaceMapper). However, the researcher’s role350

was essential. By analyzing the output of early, buggy versions of the code, the researcher351

identified numerous critical flaws in the simulation’s "laws of physics," such as the violation of352

the conservation of matter, flawed replication and growth logic, and a lack of environmental dy-353

namism. The AI would then propose and implement fixes based on this high-level guidance. This354

tight feedback loop between AI implementation and human scientific intuition was instrumental355

in creating a robust and physically plausible final model. The AI also implemented practical356

features, such as the save-and-resume functionality and the ability to run the code locally, based357

on the researcher’s needs.358

• Execution: The PhaseSpaceMapper agent autonomously executed the experiments. For each359

point in the pre-defined parameter grid, the agent ran a specified number of simulation trials. After360

each trial, it logged the final state of the "universe" (e.g., Extinction, High Stable Complexity).361

Once all trials for a point were complete, it saved the aggregated results to a persistent file to362

guard against disconnection or crashes. After mapping the entire space, the agent automatically363

processed this raw data to generate the final phase diagrams and heat maps presented in the364

"Results" section of the paper.365

3. Analysis of data and interpretation of results: This category encompasses any process to organize366

and process data for the experiments in the paper. It also includes interpretations of the results of the367

study.368

Answer: The analysis and interpretation was a highly collaborative, iterative process. The AI was369

responsible for all the computational data processing, including calculating metrics, classifying370

outcomes, and generating the final phase diagrams. The researcher provided the crucial scientific371

interpretation of these results, identifying anomalies and non-physical behavior in the plots, which372

was the primary driver for debugging and refining the simulation model. The final scientific narrative373

presented in the paper was synthesized by the AI based on the clean data from the validated model.374

Explanation:375

• Analysis of Data: The AI performed all the low-level data processing. The PhaseSpaceMapper376

agent, written and executed by the AI, was responsible for organizing and processing the data377

from thousands of individual simulation runs. This included:378

(a) Metric Calculation: For each simulation, the agent used the DataLogger to calculate the379

time-series data for key metrics like polymer biomass, biodiversity, and average complexity.380

(b) Outcome Classification: The agent then processed this time-series data to classify the final381

state of each "universe" into categories such as "Extinction," "Low Stable Complexity," or382

"High Stable Complexity," based on criteria co-developed with the researcher.383

(c) Data Aggregation: The agent aggregated the results from multiple trials for each point in the384

parameter space, calculating the probability of each outcome.385

(d) Visualization: Finally, the agent used this aggregated data to generate the phase diagrams386

and heat maps that form the central results of the paper.387

• Interpretation of Results: The interpretation of these results was a deeply collaborative feedback388

loop.389

(a) Researcher-led Debugging: In the early and middle stages of the project, the researcher’s390

primary role was to act as a scientific skeptic. By carefully examining the plots generated391

by the AI, the researcher consistently identified when the results were counter-intuitive392

or violated physical principles (e.g., "it is not mixing at all," "elements A and B should393

conserve"). This human-led interpretation of the data was the single most important driver394

of the iterative debugging process that led to a scientifically valid model.395

(b) AI-led Synthesis: Once the simulation was robust and producing physically plausible results,396

the AI took the lead in synthesizing the final scientific narrative. Based on the final phase397

diagrams, the AI identified and named the key phenomena—the "Sea of Stasis," the "Desert398

of Extinction," and the "Island of Stable Complexity." The AI also proposed the "edge of399

chaos" as the theoretical framework to explain these results and connected the findings to400
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the Fermi Paradox by framing it as a "complexity bottleneck." This interpretation was then401

refined and approved by the researcher.402

4. Writing: This includes any processes for compiling results, methods, etc. into the final paper form.403

This can involve not only writing of the main text but also figure-making, improving layout of the404

manuscript, and formulation of narrative.405

Answer: The writing process was a collaborative effort where the AI served as the primary author and406

the researcher acted as the scientific director and editor. The AI generated all the text in LaTeX format,407

automatically produced all figures from the experimental data, and structured the manuscript. The408

researcher provided high-level guidance on the scientific narrative, requested specific sections, and409

identified areas for elaboration and revision, which the AI then executed.410

Explanation:411

• Main Text Generation: The AI authored the initial drafts of all sections of the paper, including412

the abstract, introduction, methodology, results, and conclusion. The researcher guided this413

process by providing high-level prompts, such as "revise the introduction to focus on the Fermi414

Paradox," "add a related work section," and "elaborate more on future directions." The AI then415

expanded and rewrote these sections based on this guidance, synthesizing the project’s findings416

into a cohesive narrative.417

• Figure-Making and Layout: All figures in the paper are direct outputs of the PhaseSpaceMapper418

agent, which was written and executed by the AI. The agent was programmed to save the final419

phase diagrams and heat maps as high-quality PDF files. The AI was also responsible for the420

complete LaTeX formatting of the manuscript, including structuring the document, placing the421

figures, writing the captions, and creating the bibliography. The researcher played a key editorial422

role in this process by identifying formatting bugs (such as the incorrect rendering of parameter423

names with underscores), which the AI then corrected.424

• Formulation of Narrative: The formulation of the paper’s central scientific narrative was a deeply425

collaborative process. The researcher provided the initial high-level framing by connecting the426

project to the Fermi Paradox. Once the final, clean data was generated, the AI analyzed the phase427

diagrams and proposed the core interpretive framework: identifying the "Sea of Stasis" and the428

"Desert of Extinction" and framing the "island of stability" as evidence for the "edge of chaos"429

hypothesis. This AI-driven interpretation was then reviewed, validated, and approved by the430

researcher, forming the foundation of the "Results and Discussion" section.431

5. Observed AI Limitations: What limitations have you found when using AI as a partner or lead432

author?433

Description: The primary limitation observed when using the AI as a partner was a lack of scientific434

intuition and foresight, which manifested in several ways throughout the research process.435

(a) Fundamental Conceptual Errors in Implementation: The most significant limitation was the AI’s436

inability to reason about the physical and ecological implications of the code it was writing.437

This led to numerous iterations where the simulation was fundamentally flawed. For example,438

the AI repeatedly implemented rules that violated the law of conservation of matter, created439

geometrically impossible conditions for replication, and set initial conditions that made life440

unsustainable. These were not simple coding bugs but deep conceptual errors. The researcher’s441

scientific intuition was absolutely essential to analyze the simulation’s output, identify why the442

results were non-physical (e.g., "it is not mixing at all"), and guide the AI toward a valid model.443

The AI could not debug these issues on its own.444

(b) Misalignment with High-Level Scientific Goals: The AI initially defaulted to a simple engi-445

neering task—optimization. It designed an agent to find the single "best" set of parameters for446

sustaining life. The researcher had to intervene to explain that the true scientific goal was not to447

find an optimum but to understand the landscape of possibilities by mapping the entire parameter448

space. This demonstrated a limitation in the AI’s ability to grasp the broader scientific context449

and purpose of the experiment without explicit direction.450

(c) Inability to Handle Ambiguity: The AI required precise, computable definitions from the451

researcher. For instance, the initial proposal for a "Life Sustainability Index" was naively defined452

and had to be refined by the researcher into a more scientifically rigorous metric based on453

detecting a system’s equilibrium. The AI could not make this conceptual leap on its own.454

(d) Practical Environmental Blindness: The AI was not initially aware of the practical constraints of455

the execution environment. It wrote code that was not robust to the session timeouts of platforms456

like Google Colab. The researcher had to identify this real-world problem and guide the AI to457

implement necessary features like save-and-resume functionality and integration with persistent458

storage (Google Drive).459

11



Agents4Science Paper Checklist460

The checklist is designed to encourage best practices for responsible machine learning research, addressing461

issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: Papers462

not including the checklist will be desk rejected. The checklist should follow the references and follow the463

(optional) supplemental material. The checklist does NOT count towards the page limit.464

Please read the checklist guidelines carefully for information on how to answer these questions. For each465

question in the checklist:466

• You should answer [Yes] , [No] , or [NA] .467

• [NA] means either that the question is Not Applicable for that particular paper or the relevant468

information is Not Available.469

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).470

The checklist answers are an integral part of your paper submission. They are visible to the reviewers and471

area chairs. You will be asked to also include it (after eventual revisions) with the final version of your paper,472

and its final version will be published with the paper.473

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While474

"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper475

justification is given. In general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions476

are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your477

best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper478

or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please479

point to the section(s) where related material for the question can be found.480

IMPORTANT, please:481

• Delete this instruction block, but keep the section heading “Agents4Science Paper Checklist",482

• Keep the checklist subsection headings, questions/answers and guidelines below.483

• Do not modify the questions and only use the provided macros for your answers.484

1. Claims485

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s486

contributions and scope?487

Answer: Yes488

Justification: The abstract and introduction clearly articulate the paper’s contributions and scope,489

namely that the emergence of complex life in an artificial chemistry follows a sharp phase transition at490

the "edge of chaos." These claims are supported by simulation-based experiments and are quantitatively491

validated in the results section (Sec. 5).492

2. Limitations493

Question: Does the paper discuss the limitations of the work performed by the authors?494

Answer: Yes495

Justification: A dedicated Limitations section (Sec. 6.2) explicitly discusses modeling assumptions496

such as the binary monomer system, static environment, simplified fitness proxy, and absence of497

ecological or selective mechanisms.498

3. Theory assumptions and proofs499

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete500

(and correct) proof?501

Answer: NA502

Justification: The paper does not contain formal theoretical results or mathematical proofs; it is based503

entirely on simulation-based experiments.504

4. Experimental result reproducibility505

Question: Does the paper fully disclose all the information needed to reproduce the main experimental506

results of the paper to the extent that it affects the main claims and/or conclusions of the paper507

(regardless of whether the code and data are provided or not)?508

Answer: Yes509
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Justification: All key implementation details (e.g., grid size, simulation length, parameter ranges, trial510

count) are provided in Sec. 4. Additionally, a reproducibility statement confirms intent to release the511

source code and full AI chat logs.512

5. Open access to data and code513

Question: Does the paper provide open access to the data and code, with sufficient instructions to514

faithfully reproduce the main experimental results, as described in supplemental material?515

Answer: Yes516

Justification: The authors commit to releasing source code, configuration files, and chat logs in an517

open-access repository upon publication (see Reproducibility Statement).518

6. Experimental setting/details519

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,520

how they were chosen, type of optimizer, etc.) necessary to understand the results?521

Answer: Yes522

Justification: The experimental setup is thoroughly described in Sec. 4, including parameter sweeps523

(mutation/fragmentation and diffusion/slithering), grid sizes, number of trials, classification criteria,524

and simulation duration.525

7. Experiment statistical significance526

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-527

tion about the statistical significance of the experiments?528

Answer: Yes529

Justification: Each point in the phase space is evaluated over 5 independent trials to account for530

stochastic variability, and results are aggregated into probabilities (e.g., of reaching a high-complexity531

state). Although error bars are not shown, stochastic robustness is addressed in Sec. 4.4 and Sec. 5.532

8. Experiments compute resources533

Question: For each experiment, does the paper provide sufficient information on the computer534

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?535

Answer: Yes536

Justification: The simulation was run on a standard laptop-class CPU, and experiments are537

lightweight—each 50x50 grid simulation runs in under a minute. This is mentioned in the Re-538

producibility Statement and will be further detailed in the code repository.539

9. Code of ethics540

Question: Does the research conducted in the paper conform, in every respect, with the Agents4Science541

Code of Ethics (see conference website)?542

Answer: Yes543

Justification: The research complies fully with the Agents4Science Code of Ethics. There are no544

human subjects, sensitive data, or dual-use concerns. AI involvement is transparently documented.545

10. Broader impacts546

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts547

of the work performed?548

Answer: Yes549

Justification: The broader impacts are discussed in Sec. 5.3 and Sec. 6, particularly in relation550

to astrobiology and the Fermi Paradox. The work contributes to scientific understanding without551

presenting foreseeable risks of misuse.552
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