
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HSA: HEAD-WISE SPARSE ATTENTION FOR EFFICIENT
AND ACCURATE LONG-CONTEXT INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer architectures have become the foundation of large language mod-
els (LLMs), excelling at sequential modeling via the self-attention mechanism.
However, the quadratic computational complexity and linear KV cache growth of
self-attention limit scalability in long-context scenarios. Sparse attention mech-
anisms, especially sliding window attention (SWA), help reduce these costs but
inevitably constrain access to global context, which can degrade performance in
tasks requiring long-range dependencies. While hybrid architectures that alternate
between full-attention and SWA layers help mitigate this issue, their layer-wise
sparsity pattern introduces a ‘weakest-link’ effect in which global context is in-
evitably lost in sparse layers, and the resulting degradation becomes more severe
as the proportion of such layers increases. In this work, we introduce Head-wise
Sparse Attention (HSA), a hybrid architecture that applies sparsity at the KV-head
level. Unlike layer-wise sparse designs that impose a uniform sparsity pattern
across all heads in a layer, HSA introduces sparsity at the KV-head level: a sub-
set of heads is retained with full attention to preserve long-range dependencies,
while the rest are converted to SWA for efficiency. This head-wise design ensures
that every layer maintains global context through at least one full-attention KV
head, while simultaneously reducing computation and KV-cache requirements.
To decide which heads should remain global, we introduce a discrepancy-based
post-training selection strategy that preserves those essential for capturing global
context while converting the rest to sparse form. We then continue training to
adapt the model to the new KV-head sparsity pattern. Extensive experiments on
both public and in-house benchmarks show that HSA consistently outperforms
prior layer-wise sparse designs, with the advantages being especially significant
in long-context scenarios, while maintaining efficiency.

1 INTRODUCTION

Transformer architectures (Vaswani et al., 2017) have emerged as a cornerstone of large language
models (LLMs), demonstrating remarkable versatility across a wide range of tasks. At the heart of
this architecture is the self-attention mechanism, which excels at sequential modeling by capturing
long-range dependencies and rich contextual relationships. However, the quadratic computational
complexity O(N2) of self-attention incurs substantial latency for long-context modeling. Moreover,
in autoregressive LLM inference, where a prefill phase is followed by a decode phase, efficiency is
achieved by caching key–value (KV) pairs from previous tokens. This KV cache grows linearly
with sequence length O(N), further limiting scalability during inference. These limitations are par-
ticularly significant in reasoning-intensive tasks (Zelikman et al., 2022), which require referencing
earlier information across multiple reasoning steps, and in multi-turn autonomous agent applica-
tions (Park et al., 2023) that must maintain long interaction histories.

To mitigate these issues, a straightforward approach is to exploit the inherent sparsity in attention
patterns (Beltagy et al., 2020), thereby reducing the token-to-token computations in self-attention.
By restricting each query to attend only a subset of keys and values—such as through fixed win-
dows (Beltagy et al., 2020), dilated patterns (Beltagy et al., 2020), or content-based sparsity (Yuan
et al., 2025)—both the computational cost and the KV-cache can be significantly reduced with-
out severely degrading model performance. A representative example is sliding-window attention
(SWA) (Child et al., 2019), where each token attends only to w neighboring keys and values, reduc-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ing the computational complexity to O(Nw) and the KV-cache requirement to O(w). For instance,
Mistral-7B (Jiang et al., 2023) adopts SWA with a fixed window size of 4096 to support longer se-
quences at modest additional cost. However, this locality constraint inevitably causes performance
degradation on tasks that rely on long-range reasoning or cross-segment dependencies.

To address these limitations, recent work has explored hybrid architectures that alternate between
full-attention layers and SWA layers, thereby providing periodic access to global context while re-
taining some of the efficiency benefits of sparsity. Notable examples include Gemma 2 (Team et al.,
2024) and GPT-OSS (Agarwal et al., 2025), which interleave full-attention and sliding-window lay-
ers to balance accuracy and efficiency. However, this layer-wise sparsity pattern suffers from a
“weakest-link” effect, as sparse layers inherently lack access to global context until the next full-
attention layer. As the sparsity ratio increases, these local limitations accumulate, leading to substan-
tial degradation in long-context performance. For instance, under high sparsity settings, layer-wise
SWA results in severe performance drops (see Figure 2 and Table 2).

In this work, we propose Head-wise Sparse Attention (HSA), a hybrid architecture that applies
sliding-window attention (SWA) at the KV-head level. Unlike layer-wise sparse designs that impose
a uniform pattern across all heads within a layer, HSA assigns different patterns to different KV
heads, ensuring that each layer retains at least one head with full attention to preserve long-range
context, while the others adopt SWA for efficiency. This design is motivated by our empirical obser-
vation shown in Figure 1, which reveals that attention patterns vary across heads, with many focusing
predominantly on local regions rather than global context. By adopting this finer-grained sparsifi-
cation, HSA retains essential long-range dependencies while benefiting from the computational and
KV-cache advantages of sparse attention. Specifically, we adapt an existing pre-trained model into a
head-wise sparse architecture at the end of training, thereby avoiding the prohibitive cost of training
from scratch. A key step in this process is identifying which KV heads can be sparsified without
severely impairing global context modeling. The challenge lies in distinguishing locally focused
KV heads, which can be replaced with SWA for efficiency, from globally oriented heads that should
remain dense to preserve long-range dependencies. To address this, we introduce a simple yet ef-
fective discrepancy-based selection strategy. For each KV head in a pre-trained model, we measure
the change in its attention output when that head is replaced with SWA. KV heads showing large
discrepancies are considered critical for capturing global context and are retained with full atten-
tion, while those with small discrepancies are converted to SWA for efficiency. Finally, we perform
training on the sparsified model to adapt it to the new sparsity pattern and enhance performance.

Our contributions can be summarized as follows:

• We propose HSA, a simple yet effective hybrid sparse attention framework that combines full at-
tention and SWA at the KV-head level. Unlike prior layer-wise designs, HSA retains full attention
for one or more heads while the remaining heads adopt sparse attention, ensuring that each layer
preserves global context while reducing computation and KV-cache requirements.

• We introduce a simple, gradient-free criterion to determine which heads retain full attention
and which adopt sparse attention, enabling efficient conversion of pre-trained models with only
lightweight continued training instead of costly retraining from scratch.

• Extensive experiments on multiple large-scale MoE models demonstrate that HSA consistently
outperforms strong layer-wise sparse baselines, achieving notable improvements on long-context
benchmarks while maintaining strong performance on short-context tasks.

2 RELATED WORK

2.1 STATIC SPARSE ATTENTION

Static sparse attention refers to attention mechanisms where the sparsity pattern is fixed in advance
rather than adapted dynamically for each input. These methods are simple to implement, computa-
tionally efficient, and hardware-friendly, while reducing KV-cache usage by restricting interactions
to predetermined subsets of positions. Representative works (Child et al., 2019; Tay et al., 2020;
Ainslie et al., 2020; Beltagy et al., 2020; Zaheer et al., 2020; Fu et al., 2025; Xiao et al., 2024; Gu
et al., 2025) adopt hybrid static local/global patterns to lower compute and memory while preserving
long-range dependencies. For example, Longformer (Beltagy et al., 2020) combines sliding-window

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

local attention with a small number of global tokens, while BigBird (Zaheer et al., 2020) augments
local windows with random and global connections to balance sparsity and connectivity. Beyond
global tokens, StreamingLLM (Xiao et al., 2024) highlights the role of attention sinks, typically the
first few tokens in a sequence that consistently attract disproportionate attention across segments.
Experiments show that removing these sink tokens during inference leads to noticeable performance
drops, underscoring their importance in maintaining stable attention under sliding-window spar-
sity. More recently, DuoAttention (Xiao et al., 2025) introduces a head-wise hybrid design: some
heads, called Retrieval Heads, maintain full attention and complete KV caches, while others, called
Streaming Heads, operate with constant-length caches to reduce memory and latency in long-context
inference. Meanwhile, Delta Attention (Willette et al., 2025) shows that static sparse methods of-
ten suffer from a distributional shift and proposes a lightweight correction mechanism that restores
much of the lost accuracy. Compared with these approaches, HSA adopts a simple sliding-window
mechanism with sink tokens and applies sparsity at the KV-head level through a discrepancy-driven
selection process after pre-training. This enables existing pre-trained models to be adapted into hy-
brid architectures in a lightweight manner, while ensuring that each layer retains at least one global
KV head to preserve long-range dependencies.

2.2 DYNAMIC SPARSE ATTENTION

Dynamic sparse attention methods adapt the sparsity pattern based on the input or inference con-
text instead of relying on a fixed mask. Their goal is to preserve global information while flexibly
accommodating varying contextual demands. Recent advances, such as Native Sparse Attention
(NSA) (Yuan et al., 2025), follow this direction by dynamically selecting attention connections ac-
cording to content relevance. Other techniques explore adaptive token selection (Zhang et al., 2025;
Kitaev et al., 2020; Lu et al., 2025), routing (Roy et al., 2021; Jiang et al., 2024), or pruning poli-
cies (Wang et al., 2021; Zhang et al., 2023; Mu et al., 2023; Ge et al., 2024) that tailor attention
spans to specific inputs. While these approaches offer greater adaptability than static patterns, their
dynamic nature poses practical challenges. Many methods (Yuan et al., 2025; Jiang et al., 2024)
cannot reduce KV cache size, since each query may attend to a different subset of keys, requir-
ing storage of the full cache. Even when partial KV cache pruning is applied (Zhang et al., 2023;
Ge et al., 2024), it risks discarding information that may later be needed, leading to performance
degradation. Moreover, dynamic mechanisms often introduce additional runtime and implementa-
tion overhead, which can complicate efficient deployment at scale. In contrast, our method remains
within the static sparse paradigm but introduces flexibility by assigning different sparsity patterns
to different KV heads. This head-wise formulation preserves the simplicity and efficiency of static
designs, avoids the overhead of dynamic mechanisms, and enhances context retention by ensuring
that each layer maintains at least one global KV head.

3 APPROACH

In this section, we first review the formulation of multi-head attention along with its computational
cost and KV-cache usage. We then present HSA, describing its KV-head–wise sparsification frame-
work, discrepancy-based head selection strategy, and theoretical efficiency analysis.

3.1 PRELIMINARY: MULTI-HEAD ATTENTION

For notational simplicity, we present the formulation in the standard multi-head attention (MHA)
setting and omit the layer index for clarity. The extension to grouped-query attention (GQA) (Ainslie
et al., 2023) is analogous, except that multiple query heads share the same set of key–value heads.
Given an input X ∈ RN×D to a multi-head attention layer (Vaswani et al., 2017), where N is
the sequence length and D the model dimension, the input is projected into query, key, and value
representations using three learnable matrices Wh

Q,W
h
K ,Wh

V ∈ RD×d for the h-th head:

Qh = XWh
Q, Kh = XWh

K , Vh = XWh
V , (1)

where d denotes the head dimension. For each head, the attention output Oh is then computed as a
weighted sum of the values:

Oh = Attention(Qh,Kh,Vh) = Softmax(
QhKh⊤

√
d

)Vh. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: (a) Attention maps from different layers and heads of our in-house MoE-2.5B/50B, show-
ing that some heads capture global dependencies while many focus mainly on local neighborhoods.
(b) HSA assigns different attention patterns to individual heads within the same layer. A subset
of heads operate with full attention to preserve global context, while others adopt SWA to reduce
computational cost and KV cache storage.

Then, the output of each head is concatenated and projected back to the model dimension through a
learnable matrix WO ∈ RHd×D, where H is the number of heads:

Z = Concat(O1,O2, . . . ,OH)WO. (3)

With N tokens, the computational complexity of standard multi-head attention is O(N2dH), pri-
marily due to the query–key dot products. During autoregressive inference, the key–value (KV)
cache must be maintained to enable efficient decoding. In particular, once the prefill phase is com-
pleted, all keys and values from the N input tokens need to be stored and reused for subsequent
generation steps, incurring a memory cost of O(NdH) across all heads. As the sequence length N
increases, both computation and memory become prohibitive. The quadratic computational com-
plexity O(N2dH) rapidly dominates runtime, making prefill latency grow superlinearly with N .
At the same time, the KV cache grows linearly as O(NdH), which leads to substantial memory
overhead during decoding.

3.2 HEAD-WISE SPARSE ATTENTION

To reduce both the quadratic computational complexity of self-attention and the linear KV cache
growth, we propose head-wise sparse attention (HSA), a hybrid attention mechanism that introduces
sparsity at the granularity of individual heads, as shown in Figure 1. Unlike layer-wise sparse designs
such as Gemma 2 (Team et al., 2024) and GPT-OSS (Agarwal et al., 2025), which impose a uniform
sparsity pattern across all heads within a layer, HSA introduces sparsity at the finer granularity of
individual KV heads. This distinction is crucial: sparsity is applied only to the KV heads, while the
queries remain dense, ensuring that efficiency gains lead to reduced computation and smaller KV-
cache requirements. Formally, we define a sparsity ratio ρ ∈ [0, 1] to control the proportion of KV
heads converted to sparse attention. A fraction ρ of the KV heads are replaced with sliding-window
attention (SWA) equipped with an attention-sink mechanism following StreamingLLM (Xiao et al.,
2024), whose purpose is to retain as much of the original attention score distribution as possible
despite the locality constraint, thereby mitigating information loss. The remaining 1−ρ fraction are
kept as full attention to preserve long-range dependencies. To further maintain global information,
HSA requires that each layer retain at least one full-attention KV head. This KV-head–wise design
offers finer granularity than layer-wise sparsity, enabling a more balanced trade-off between effi-
ciency and context preservation, while simultaneously reducing computational cost and KV-cache
requirements without fully discarding global context.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 DISCREPANCY-BASED KV-HEAD SELECTION

In practice, HSA is constructed from an existing pre-trained model rather than trained from scratch,
as the latter would be prohibitively expensive for large-scale LLMs. Given such a model, the key
step is to determine which KV heads should be sparsified. Intuitively, not all KV heads contribute
equally to modeling long-range dependencies: some specialize in capturing global context, while
others primarily focus on local neighborhoods. Replacing a globally oriented KV head with a sparse
alternative is likely to cause a substantial deviation in the model output, whereas substituting a
locally focused KV head tends to produce comparatively smaller deviations. Motivated by this intu-
ition, we adopt a discrepancy-based KV-head selection strategy that quantifies the output difference
introduced by sparsification. For a given layer, we replace the h-th KV head with SWA and measure
the resulting output discrepancy ∆h by

∆h =
∥∥Attention(Qh,Kh,Vh)Wh

O − SWA(Qh,Kh,Vh)Wh
O

∥∥ , (4)

where SWA(·, ·, ·) denotes the sliding window attention operator with window size of w. The dis-
crepancy ∆h is computed on a small calibration dataset to quantify the sensitivity of each head to
sparsification. Heads with large ∆h values are retained as full attention to preserve global context,
whereas those with small values are replaced by SWA. Given a sparsity ratio ρ, the overall algorithm
for discrepancy-based KV-head selection is summarized in Algorithm 1. We then continue training
the resulting sparsified model to adapt the model to the new KV-head configuration and improve
performance under the modified sparsity pattern.

Algorithm 1: Discrepancy-based KV-head Selection

Input: Input X ∈ RN×D, projection weights Wh
Q,W

h
K ,Wh

V ∈ RD×d, sparsity ratio ρ.
Output: Index set Hswa ⊆ {1, . . . ,H} with |Hswa| = ρH .
Initialize an empty list S;
for h ∈ {1, 2, . . . ,H} do

Compute Qh, Kh, and Vh using Eq. (1);
Compute the discrepancy score ∆h using Eq. (4) and record the pair (h,∆h) in S;

Select the ρH heads with the smallest ∆h values in S and denote their indices as Hswa;
return Hswa;

3.4 EFFICIENCY DISCUSSION

Selection efficiency. Our discrepancy-based KV-head selection is highly efficient because it oper-
ates in a gradient-free manner, eliminating the need for backward propagation. Instead of re-training
or fine-tuning to determine head importance, we simply measure the output discrepancy on a small
calibration set, which requires only forward passes. This drastically reduces the computational
overhead compared to gradient-based pruning or training-time head reallocation. In practice, the
selection step adds negligible cost relative to model pre-training, making it scalable even for very
large LLMs.

Computation and KV-cache reduction. In HSA, we replace a proportion ρ of the KV heads with
SWA using a window size w ≪ N . We consider causal attention under the convention that each
query can attend to all preceding tokens including itself. For a sequence of length N , the t-th query
attends to exactly t keys. Summing over all positions yields the total number of query–key pairs per
head in full attention:

Sfull =

N∑
t=1

t =
N(N + 1)

2
. (5)

For sliding-window attention with window size w, the t-th query attends to min(t, w) keys. There-
fore, the total number of pairs becomes

SSWA =

N∑
t=1

min(t, w) =

w∑
t=1

t︸︷︷︸
growing window

+

N∑
t=w+1

w︸ ︷︷ ︸
fixed window

=
w(w + 1)

2
+ (N − w)w. (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This simplifies to
SSWA = wN − w(w−1)

2 . (7)

The relative cost of SWA compared to full attention is

SSWA

Sfull
=

(2β − β2)N + β

N + 1
,where β = w

N . (8)

Accordingly, the overall attention computation cost in HSA is 2dH
[
(1 − ρ)Sfull + ρSSWA

]
while

the KV-cache storage cost becomes O(Nd(1− ρ)H + wdρH). Relative to full causal attention, the
computation speedup ratio of HSA is

Sfull

(1− ρ)Sfull + ρSSWA
=

1

(1− ρ) + ρ · (2β−β2)N+β
N+1

where β = w
N . (9)

For KV-cache storage, the compression ratio is 1
1−ρ+ρβ . As a concrete example, with ρ = 0.75,

w = 4K, and N = 32K (β = 1/8), HSA achieves a computation speedup of ∼ 2.35× and a
KV-cache compression of ∼ 2.91×, substantially reducing both FLOPs and memory costs.

4 EXPERIMENTS

Experimental settings. We evaluate HSA on two in-house MoE models, MoE-680M/13.6B and
MoE-2.5B/50B, trained on proprietary in-house datasets. Additional experiments on the open-
source dense model OLMo 2 7B (OLMo et al., 2024) are presented in Section C of the appendix.
MoE-680M/13.6B is first pre-trained on 400B tokens with a maximum sequence length of 8K, after
which HSA is applied and the model is further adapted through continued training on 100B tokens
with an extended sequence length of 32K. MoE-2.5B/50B follows the same pipeline at a larger scale,
with 500B tokens for pre-training and 200B tokens for continued training. Unless otherwise stated,
the sliding-window size for SWA heads is set to 4K, and sparsity ratios of ρ = 0.5 and ρ = 0.75
are explored. For head selection, we randomly sample 512 instances from the 32K sequence-length
training set, consisting of 256 English and 256 Chinese samples. We compare HSA against layer-
wise SWA with four attention sinks (Xiao et al., 2024), using identical training configurations across
all methods. In addition, the first and last layers are kept as full attention in all cases. For short-
context evaluation, we report performance on widely used open-source reasoning benchmarks under
few-shot settings, including ARC-Challenge (Clark et al., 2018), BBH (Suzgun et al., 2023), Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024),
C-Eval (Huang et al., 2023), and WinoGrande (Sakaguchi et al., 2021). For long-context evaluation,
we assess performance on LongBench (Bai et al., 2024) and RULER (Hsieh et al., 2024). We further
evaluate on internal long-context benchmarks, including the Needle-in-a-Haystack test and diverse
retrieval, reasoning, and comprehension tasks up to 32K tokens.

Table 1: Performance of MoE-2.5B/50B on short-context benchmarks across different methods.

Method ARC-c BBH HellaSwag WinoGrande MMLU MMLU-Pro C-Eval Avg.

Baseline 88.8 64.7 75.7 75.9 74.3 79.1 46.9 72.2

Layer-wise SWA (ρ = 0.5) 88.6 65.4 75.7 76.2 74.1 79.0 46.5 72.2
HSA (ρ = 0.5) 89.2 65.5 75.4 75.5 73.9 80.6 46.5 72.4

Layer-wise SWA (ρ = 0.75) 88.9 64.1 75.4 75.3 73.8 79.2 47.2 72.0
HSA (ρ = 0.75) 89.4 64.3 75.7 75.7 74.3 80.3 47.6 72.5

4.1 MAIN RESULTS

We present the results of MoE-2.5B/50B in Tables 1 and 2, as well as in Figure 2. More results
of MoE-680M/13.6B can be found in Section B of the appendix. On short-context benchmarks, all
methods perform comparably to the baseline, as the 4K window size is already sufficient to cover
nearly the entire input. Notably, HSA consistently achieves slightly better results than layer-wise
SWA across different sparsity ratios. For example, at ρ = 0.75, the average accuracy improves from

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Single-Doc QA

Multi-
Doc QA

Summariza
tion

Few-sh
ot Learning

Code Completion
Avg.

0

10

20

30

40

50

60
Sc

or
e

17.1
13.5

23.9

33.4

62.6

30.0

17.0
13.1

23.7

33.6

64.8

28.1

17.0
13.2

23.8

32.7

66.2

30.6

16.6

12.5

22.1
18.9

53.0

24.6

17.8

13.0

23.4

32.4

64.2

30.2

Baseline Layer-wise SWA (=0.5) HSA (=0.5) Layer-wise SWA (=0.75) HSA (=0.75)

Figure 2: Performance of MoE-2.5B/50B on LongBench across different methods. Detailed results
for individual subsets are provided in Section A of the appendix.

Table 2: Performance of MoE-2.5B/50B across different methods on RULER and in-house long-
context benchmarks.

Model RULER In-house Evaluation

4K 8K 16K 32K 64K 128K NIAH Others Avg.

Baseline 93.2 89.5 87.0 80.1 45.1 30.0 83.8 27.4 52.6

Layer-wise SWA (ρ = 0.5) 95.2 91.7 86.2 74.8 41.4 25.8 82.6 27.4 52.2
HSA (ρ = 0.5) 94.4 91.3 86.7 83.0 48.5 31.0 79.9 29.1 53.1

Layer-wise SWA (ρ = 0.75) 94.5 85.6 78.3 64.8 34.2 21.3 69.5 25.9 46.7
HSA (ρ = 0.75) 94.8 91.2 87.9 81.6 46.1 29.0 78.4 30.1 53.6

72.0% to 72.5%, even outperforms baseline by 0.3%. The advantages of HSA become far more
pronounced on long-context benchmarks, where modeling dependencies beyond the local window
is essential. In these settings, the limitations of layer-wise sparsity become apparent: once global
context is dropped in a sparse layer, it cannot be preserved until a subsequent full-attention layer,
and the resulting degradation compounds as sparsity increases. At a sparsity ratio of 0.75, for
instance, layer-wise SWA suffers average performance drops of 5.4%, 15.3%, and 5.9% on Long-
Bench, 32K RULER, and our in-house long-context benchmark, respectively. In contrast, HSA not
only avoids such degradation but even outperforms the baseline, with gains of 0.2%, 1.5%, and 1.0%
on the same benchmarks. Note that our models are trained with sequences up to 32K, so evaluations
beyond this length correspond to extrapolation. Even under extrapolation settings, HSA delivers
notable gains over layer-wise SWA, achieving an 11.9% score improvement on 64K RULER. These
results highlight the effectiveness of HSA’s KV-head–wise design. By ensuring that at least one
global KV head is preserved in every layer, HSA maintains access to long-range information across
the entire network, while selectively sparsifying locally focused heads for efficiency. This avoids the
weakest-link effect observed in layer-wise designs and enables more consistent performance as spar-
sity increases. Overall, the findings demonstrate that HSA consistently provides advantages across
sparsity levels, offering small but consistent improvements in short-context tasks and substantial
gains in long-context settings, particularly under high sparsity.

4.2 FURTHER STUDIES

Effect of keeping attention sinks. Since HSA is built upon sliding-window attention, we further
examine the role of attention sinks by comparing two variants: HSA (with sinks) and HSA w/o
sink (sinks removed, where “w/o” denotes “without”). Both variants use the same sparsity ratios ρ,
window sizes w, training schedules, and datasets, with the only difference being whether sink tokens
are preserved. As shown in Table 3, retaining attention sinks consistently improves performance
across benchmarks. For instance, on RULER 32K, HSA with attention sinks outperforms the variant
without by 6%. This aligns with observations in StreamingLLM (Xiao et al., 2024), where the first
few tokens serve as persistent “sinks” that stabilize attention across segments. Based on these results,
we adopt HSA with attention sinks as the default in all subsequent experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Effect of retaining attention sinks. We report performance of MoE-2.5B/50B on RULER
and in-house long-context benchmarks.

Model RULER In-house Evaluation

4K 8K 16K 32K 64K 128K NIAH Others Avg.

Baseline 93.2 89.5 87.0 80.1 45.1 30.0 83.8 27.4 52.6

HSA w/o sink (ρ = 0.75) 94.0 90.2 87.8 75.6 41.8 26.4 78.4 28.3 51.9
HSA (ρ = 0.75) 94.8 91.2 87.9 81.6 46.1 29.0 78.4 30.1 53.6

Effect of different window sizes. We investigate how varying the sliding-window size w ∈
{1K, 2K, 4K} impacts model performance. Experiments are conducted on MoE-680M/13.6B with
a sparsity ratio of ρ = 0.75, and the results are reported in Table 4. As expected, smaller windows
increase efficiency by reducing both computational cost and KV-cache usage, but they also restrict
the receptive field of sparse heads, limiting the ability to capture long-range dependencies. Larger
windows alleviate this issue by incorporating broader context, albeit at the expense of efficiency.
In practice, shrinking the window size leads to a slight degradation on both short- and long-context
benchmarks. Nevertheless, since HSA retains full-attention heads in every layer, the overall per-
formance drop remains modest. Balancing these trade-offs, we adopt a window size of 4K as the
default setting, which offers a favorable compromise between efficiency and accuracy across tasks.

Table 4: Effect of different window sizes. We report performance of MoE-680M/13.6B on short-
context benchmarks and in-house long-context benchmarks.

Model Short-context benchmarks In-house Evaluation

ARC-c BBH HellaSwag WinoGrande MMLU MMLU-Pro C-Eval Avg. NIAH Others Avg.

Baseline 81.6 51.1 69.3 70.2 65.5 73.5 34.0 63.6 66.9 20.2 40.2

w = 1K 80.9 49.1 69.6 68.1 65.8 73.6 33.8 63.0 58.2 18.7 36.2
w = 2K 80.7 49.9 69.8 68.7 65.5 74.0 33.9 63.2 55.8 19.7 36.4
w = 4K 80.7 49.4 69.8 69.5 65.6 73.3 34.0 63.2 58.1 19.4 36.8

Effect of discrepancy-based KV-head selection. We compare our proposed discrepancy-based
KV-head selection (DBKS) against two attention-map–based variants. The first variant, AM-
DBKS, selects heads solely based on the difference between the attention maps of full and
sparse attention. The second, AMV-DBKS, extends this approach by also incorporating val-
ues, where head selection is guided by the discrepancy between attention-weighted outputs, i.e.,
∆h =

∥∥Attention(Qh,Kh,Vh)− SWA(Qh,Kh,Vh)
∥∥. In contrast, our DBKS directly measures

the output-level discrepancy defined in Eq. (4). Experiments are conducted on MoE-680M/13.6B at
a sparsity ratio of ρ = 0.75, and the results are shown in Table 5. As shown, AM-DBKS is inherently
limited because it only compares attention distributions and neglects the role of values in forming
the final representation. AMV-DBKS improves upon this by incorporating values into the selection
process, which leads to much stronger performance, but it still overlooks the influence of the output
projection weights WO. In contrast, our DBKS measures discrepancy directly at the output level,
taking into account the joint effects of attention weights, value vectors, and output projection, which
explains its consistently superior performance. For instance, DBKS surpasses AMV-DBKS by 4.5%
on 32K RULER and 2.2% on our in-house long-context benchmarks.

Table 5: Effect of different KV-head selection strategies. We report performance of MoE-
680M/13.6B on RULER and in-house long-context benchmarks.

Model RULER In-house Evaluation

4K 8K 16K 32K 64K 128K NIAH Others Avg.

AM-DBKS 89.8 70.0 61.4 51.4 30.5 17.8 50.4 18.5 33.6
AMV-DBKS 90.6 78.1 70.5 57.4 33.0 20.0 53.5 18.6 34.6
DBKS 89.7 78.9 71.1 61.9 32.7 19.3 58.1 19.4 36.8

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Effect of different data sizes for KV-head selection. We study how the number of samples in-
fluences KV-head selection by conducting experiments on MoE-680M/13.6B at a sparsity ratio of
ρ = 0.75 with varying data sizes. As shown in Table 6, larger sample sets enable more accurate
identification of informative heads and yield stronger downstream performance, as they provide a
more reliable signal for selection. Among the tested settings, using 512 samples achieves the best
overall performance, and we therefore adopt it as the default in our experiments.

Table 6: Effect of different data sizes for KV-head selection. Results are shown for MoE-
680M/13.6B on RULER and our in-house long-context benchmarks.

Model RULER In-house Evaluation

4K 8K 16K 32K 64K 128K NIAH Others Avg.

128 90.0 78.2 71.8 57.3 32.9 19.0 53.4 19.5 35.5
256 88.4 78.2 69.8 56.6 32.8 19.1 53.1 20.1 36.0
512 89.7 78.9 71.1 61.9 32.7 19.3 58.1 19.4 36.8

Computational efficiency. To evaluate the computational efficiency of HSA, we measure the for-
ward and backward pass time of a stack of four attention modules on a GPU accelerator, using the
Qwen3-8B (Team, 2025) configuration with 32 query heads, 8 KV heads, and a head dimension of
128. The sparsity ratio is fixed at ρ = 0.75, the window size at w = 4096, and the batch size at
1. We compare three settings: (i) Baseline, where all four modules use full attention; (ii) Layer-
wise SWA, where one module uses full attention and the remaining three use SWA; and (iii) HSA,
where all four modules adopt HSA with ρ = 0.75. All attention computations are executed with
the official FlashAttention kernel (Dao et al., 2022); in HSA, heads are dispatched to either dense
FlashAttention or SWA FlashAttention through PyTorch (Ansel et al., 2024). As shown in Figure 3,
HSA achieves speedups comparable to layer-wise SWA, confirming that head-wise sparsification
introduces little additional overhead while still providing significant efficiency gains. More impor-
tantly, unlike layer-wise SWA, which suffers from accuracy degradation under high sparsity, HSA
achieves markedly better performance across long-context benchmarks (see Figure 2 and Table 2).
Furthermore, the efficiency benefit scales with context length: at a sequence length of 128K, HSA
achieves speedups of 3.31× and 3.28× in forward and backward passes compared to full attention.

8k 16k 32k 64k 128k
Sequence Length

0

1000

2000

3000

4000

5000

6000

Ti
m

e
(m

s)

1.20×
1.11×

1.68×
1.59× 2.29×

2.22× 2.87×
2.83×

3.33×
3.31×

Forward Time Comparison

Baseline
Layer-wise SWA
HSA

8k 16k 32k 64k 128k
Sequence Length

0

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e
(m

s)

1.20×
1.08×

1.67×
1.55× 2.28×

2.17× 2.87×
2.77×

3.33×
3.28×

Backward Time Comparison

Baseline
Layer-wise SWA
HSA

Figure 3: Forward and backward time comparison for four attention modules.

5 CONCLUSION

In this work, we have proposed HSA, a hybrid architecture that introduces sparsity at the KV-
head level. By selectively converting locally focused heads into SWA while retaining globally ori-
ented ones, HSA achieves a finer balance between efficiency and context preservation. Through
discrepancy-based head selection and continued training, we have demonstrated that HSA can be
seamlessly applied to pre-trained models, reducing computational cost and KV-cache requirements
while largely preserving global context. Beyond its efficiency gains, HSA underscores the impor-
tance of head-level granularity in sparse attention design, offering a perspective that complements
existing layer-wise sparse approaches. Extensive experiments on both public and in-house bench-
marks confirm its effectiveness, showing consistent improvements on short-context tasks and sub-
stantial gains in long-context scenarios, particularly under high sparsity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. ETC: Encoding long and structured
inputs in transformers. In EMNLP, pp. 268–284, November 2020.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. In EMNLP, 2023.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Chris-
tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo,
Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In ASPLOS, April 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In ACL, pp. 3119–3137, August 2024.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In AAAI, volume 34, pp. 7432–7439, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In NAACL-
HLT, pp. 2924–2936, June 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast and
memory-efficient exact attention with IO-awareness. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), NeurIPS, 2022.

Zichuan Fu, Wentao Song, Yejing Wang, Xian Wu, Yefeng Zheng, Yingying Zhang, Derong Xu,
Xuetao Wei, Tong Xu, and Xiangyu Zhao. Sliding window attention training for efficient large
language models. ArXiv, abs/2502.18845, 2025.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive KV cache compression for LLMs. In ICLR, 2024.

10

https://zenodo.org/records/12608602

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuxian Gu, Qinghao Hu, Shang Yang, Haocheng Xi, Junyu Chen, Song Han, and Han Cai.
Jet-nemotron: Efficient language model with post neural architecture search. arXiv preprint
arXiv:2508.15884, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In ICLR, 2021.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
COLM, 2024.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, jiayi lei, Yao Fu, Maosong Sun, and Junxian He. C-eval: A multi-
level multi-discipline chinese evaluation suite for foundation models. In NeurIPS, 2023.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv,
abs/2310.06825, 2023.

Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference
1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In NeurIPS,
2024.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR,
2020.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, pp. 2381–2391, October-
November 2018.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens. In
NeurIPS, 2023.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In UIST,
pp. 1–22, 2023.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. TACL, 9:53–68, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of ACL, pp. 13003–13051, 2023.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
ICML, pp. 9438–9447, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In HCPA, pp. 97–110, 2021.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. In NeurIPS, 2024.

Jeffrey Willette, Heejun Lee, and Sung Ju Hwang. Delta attention: Fast and accurate sparse attention
inference by delta correction. arXiv preprint arXiv:2505.11254, 2025.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In ICLR, 2024.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context LLM inference with retrieval and streaming
heads. In ICLR, 2025.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
Yuxing Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng
Liang, and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable
sparse attention. In ACL, pp. 23078–23097, 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In NeurIPS, volume 33, pp. 17283–17297, 2020.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with rea-
soning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), NeurIPS,
2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Haocheng Xi, Jun Zhu, Jianfei Chen, et al.
Spargeattention: Accurate and training-free sparse attention accelerating any model inference.
In ICML, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In NeurIPS, 2023.

12

https://arxiv.org/abs/2505.09388

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

USAGE OF LARGE LANGUAGE MODELS.

We employed ChatGPT to help refine and improve the presentation of this paper. Some figures were
also initially produced using code generated by large language models.

A ADDITIONAL RESULTS OF MOE-2.5B/50B ON LONGBENCH

Table A reports detailed results of MoE-2.5B/50B on LongBench. Across most subsets, HSA sur-
passes layer-wise SWA, demonstrating stronger ability to preserve long-range dependencies under
different sparsity ratios.

Table A: Performance comparisons of MoE-2.5B/50B on LongBench.

Model Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Code Completion Avg.
NQA QQA MFQA-en MFQA-zh HQA 2WM Mus DuR GvR QMS MNs VCS TRC TQA SSM LSHT LCC RBP

Baseline 3.2 5.9 7.5 51.7 11.9 10.3 6.8 24.8 30.9 22.5 26.4 15.9 44.0 21.6 27.3 40.8 66.1 59.1 30.0

Layer-wise SWA (ρ = 0.5) 3.0 6.1 7.4 51.5 11.2 10.6 6.3 24.5 29.5 23.2 26.0 16.2 43.0 21.8 29.9 39.7 68.0 61.6 30.5
HSA (ρ = 0.5) 3.4 6.2 7.3 51.0 10.9 10.3 6.5 25.1 30.4 22.3 25.8 16.5 44.3 23.0 28.5 35.0 68.9 63.4 30.6

Layer-wise SWA (ρ = 0.75) 4.5 6.1 7.0 48.7 9.8 9.7 5.6 24.8 24.9 21.6 26.0 16.0 21.6 18.3 9.8 25.9 55.6 50.5 24.6
HSA (ρ = 0.75) 6.4 6.4 7.2 51.3 11.7 9.4 5.9 25.0 28.1 23.1 26.2 16.2 43.0 22.7 27.5 36.2 68.6 59.9 30.2

B MORE RESULTS OF MOE-680M/13.6B

We provide additional results for MoE-680M/13.6B in Tables B, C, and D. From the results, we
observe that on short-context benchmarks, all methods perform comparably to the baseline. On long-
context evaluations, however, HSA demonstrates clear advantages over layer-wise SWA, alleviating
the compounding degradation of sparsity—for instance, on 16K RULER, HSA outperforms layer-
wise SWA by 12.6%. While the absolute performance of HSA is slightly below the baseline due
to the limited amount of continued training data at this scale, it still delivers significant gains over
layer-wise SWA.

Table B: Performance of MoE-680M/13.6B on short-context benchmarks across different methods.

Method ARC-c BBH HellaSwag WinoGrande MMLU MMLU-Pro C-Eval Avg.

Baseline 81.6 51.1 69.3 70.2 65.5 73.5 34.0 63.6

Layer-wise SWA (ρ = 0.75) 81.6 49.1 69.7 69.1 65.9 74.7 34.5 63.5
HSA (ρ = 0.75) 80.7 49.4 69.8 69.5 65.6 73.3 34.0 63.2

Table C: Performance of MoE-680M/13.6B on RULER and internal long-context evaluation datasets
across different methods.

Model RULER In-house Evaluation

4K 8K 16K 32K 64K 128K NIAH Others Avg.

Baseline 89.9 84.2 77.0 66.1 37.3 21.5 66.9 20.2 40.2

Layer-wise SWA (ρ = 0.75) 88.8 68.7 58.5 59.1 31.6 18.5 55.4 18.3 35.0
HSA (ρ = 0.75) 89.7 78.9 71.1 61.9 32.7 19.3 58.1 19.4 36.8

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table D: Performance of MoE-680M/13.6B on LongBench across different methods.

Model Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Code Completion Avg.
NQA QQA MFQA-en MFQA-zh HQA 2WM Mus DuR GvR QMS MNs VCS TRC TQA SSM LSHT LCC RBP

Baseline 2.6 6.2 7.1 47.1 9.8 9.4 5.5 24.5 26.4 23.0 27.1 15.1 39.0 22.5 32.9 37.9 55.6 51.1 27.5

Layer-wise SWA (ρ = 0.75) 2.7 6.1 6.9 46.3 9.2 8.8 5.8 24.8 28.0 19.9 26.2 14.3 38.8 23.2 33.0 31.3 58.6 52.8 27.4
HSA (ρ = 0.75) 4.6 6.4 7.1 49.1 8.5 9.2 5.3 24.7 28.5 22.1 25.6 15.2 38.3 23.0 33.8 32.8 60.5 53.7 28.1

C MORE RESULTS OF OLMO 2 7B

Experimental settings. In addition to our in-house MoE models, we evaluate HSA on the open-
source OLMo 2 7B (OLMo et al., 2024). The model is pre-trained on 4T tokens and further adapted
with an additional 50B tokens during the mid-training stage, following the official OLMo 2 proto-
col. Unlike our in-house models, both stages use a training sequence length of 4K. For HSA, we set
the sliding-window size of SWA heads to 1K and explore sparsity ratios of ρ = 0.75. Discrepancy-
based KV-head selection follows the same data setup described in Section 4. We compare against
layer-wise SWA with four attention sinks (Xiao et al., 2024), using identical training configurations,
and keep the first and last layers as full attention. For short-context evaluation, we report results
on MMLU (Hendrycks et al., 2021), ARC-Easy/Challenge (Clark et al., 2018), BoolQ (Clark et al.,
2019), HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), and WinoGrande (Sakaguchi et al., 2021). For long-context evaluation, we assess perfor-
mance on LongBench (Bai et al., 2024). All evaluations are conducted using the Language Model
Evaluation Harness (Gao et al., 2024).

Results. We present the results in Tables E and F. On short-context benchmarks, all methods per-
form similarly to the baseline. On long-context evaluations, the limitations of layer-wise sparsity
become more apparent, as dropping global context in sparse layers leads to cumulative degrada-
tion. In contrast, HSA alleviates this issue by ensuring global information is preserved in every
layer, yielding clear advantages at high sparsity ratios. For example, at ρ = 0.75, HSA improves
performance on LongBench by 1.1% compared to layer-wise SWA.

Table E: Performance of OLMo 2 7B across different methods on short-context benchmarks.

Method MMLU ARC-c ARC-e BoolQ HellaSwag OpenBookQA PIQA WinoGrande Avg.

Baseline 60.2 57.5 82.5 79.9 80.3 45.8 81.1 74.0 70.1

Layer-wise SWA (ρ = 0.75) 60.7 55.9 82.9 79.2 80.0 46.4 80.9 73.4 69.9
HSA (ρ = 0.75) 60.4 55.0 81.7 80.4 80.2 46.2 81.0 74.0 69.9

Table F: Performance of OLMo 2 7B on LongBench across different methods.

Model Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Code Completion Avg.
NQA QQA MFQA-en MFQA-zh HQA 2WM Mus DuR GvR QMS MNs VCS TRC TQA SSM LSHT LCC RBP

Baseline 6.2 20.7 21.2 13.0 31.3 25.9 10.9 8.8 20.0 15.6 11.5 7.9 51.6 79.3 34.6 15.3 34.2 30.6 25.2
Layer-wise SWA (ρ = 0.75) 5.9 14.1 14.6 9.6 31.2 24.9 13.1 9.2 20.9 16.5 12.3 7.8 44.5 80.2 32.3 10.2 29.8 29.7 23.3
HSA (ρ = 0.75) 7.9 21.1 20.6 9.9 27.2 26.8 13.0 9.3 21.1 16.4 12.2 8.2 49.7 78.9 33.8 11.9 29.4 30.3 24.4

14

	Introduction
	Related Work
	Static Sparse Attention
	Dynamic Sparse Attention

	Approach
	Preliminary: Multi-head Attention
	Head-wise Sparse Attention
	Discrepancy-based KV-head Selection
	Efficiency Discussion

	Experiments
	Main Results
	Further studies

	Conclusion
	Additional Results of MoE-2.5B/50B on LongBench
	More results of MoE-680M/13.6B
	More results of OLMo 2 7B

