

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DATA EFFICIENT ANY TRANSFORMER-TO-MAMBA DIS-TILLATION VIA ATTENTION BRIDGE

Anonymous authors

Paper under double-blind review

ABSTRACT

State-space models (SSMs) have emerged as efficient alternatives to Transformers for sequence modeling, offering superior scalability through recurrent structures. However, their training remains costly and the ecosystem around them is far less mature than that of Transformers. Moreover, the structural heterogeneity between SSMs and Transformers makes it challenging to efficiently distill knowledge from pretrained attention models. In this work, we propose **Cross-architecture distillation via Attention Bridge(CAB)**, a novel data-efficient distillation framework that efficiently transfers attention knowledge from Transformer teachers to state-space student models. Unlike conventional knowledge distillation that transfers knowledge only at the output level, CAB enables token-level supervision via a lightweight bridge and flexible layer-wise alignment, improving both efficiency and transferability. We further introduce flexible layer-wise alignment strategies to accommodate architectural discrepancies between teacher and student. Extensive experiments across vision and language domains demonstrate that our method consistently improves the performance of state-space models, even under limited training data, outperforming both standard and cross-architecture distillation methods. Our findings suggest that attention-based knowledge can be efficiently transferred to recurrent models, enabling rapid utilization of Transformer expertise for building a stronger SSM community.

1 INTRODUCTION

Linear RNNs (Mamba (Gu & Dao, 2024), RWKV (Peng et al., 2023)) have re-emerged as a promising alternative to attention-based models through recurrent state transitions. In contrast, Transformers use explicit attention to model long-range interactions with high expressiveness, but at the cost of quadratic computation and limited efficiency on long sequences (Katharopoulos et al., 2020). Among linear RNNs, Mamba exhibits strong long-range modeling with excellent runtime efficiency (Dao & Gu). However, its training remains computationally expensive, and its ecosystem is far less mature than that of Transformers. This highlights a challenge: *how can we cost-effectively transfer the rich inductive biases and knowledge of pretrained Transformers into Mamba architectures* (Fig. 1a)?

A straightforward approach is knowledge distillation (KD), where a pretrained Transformer guides the Mamba student. However, this naive strategy exhibits several limitations: (1) it lacks explicit transfer of attention-related inductive bias, weakening long-range dependency modeling (Li et al., 2024; Wang et al., 2020); (2) it results in weak gradient signals due to long backpropagation paths from the output layer, limiting learning efficiency in deep architectures (Romero et al., 2014; Sun et al., 2019); (3) it ignores architectural differences, resulting in suboptimal knowledge transfer (Lu et al., 2022; Abnar et al., 2020). Although SSMs lack explicit token interactions, their internal representations exhibit structural similarity to Transformer attention maps (Fig. 1b, left), motivating aligned transfer strategies. However, as shown in Fig. 1b, right, directly injecting Transformer attention into Mamba leads to performance collapse, underscoring the need for structure-aware knowledge transfer.

Recent work on bridging attention-based and SSM-based architectures still faces key limitations. MOHAWK (Bick et al., 2024) introduce a principled multi-stage alignment of full attention matrices and hidden states across architectures (Fig. 2a). Their high memory consumption and training cost make it impractical to scale this attention alignment to large training volumes(Bick et al., 2025).

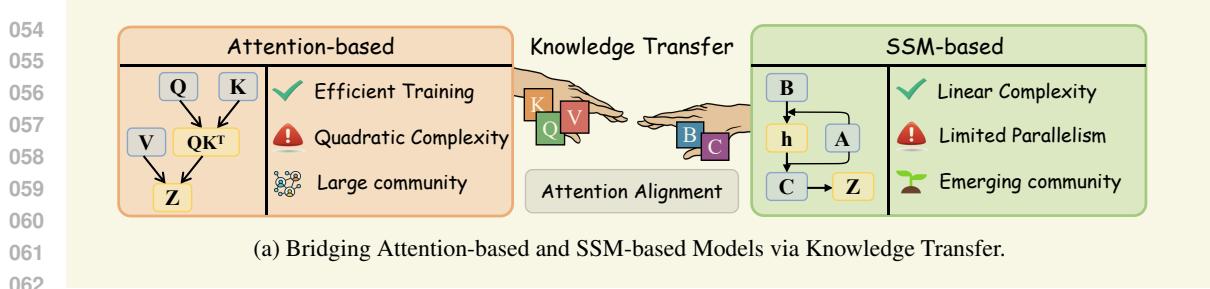
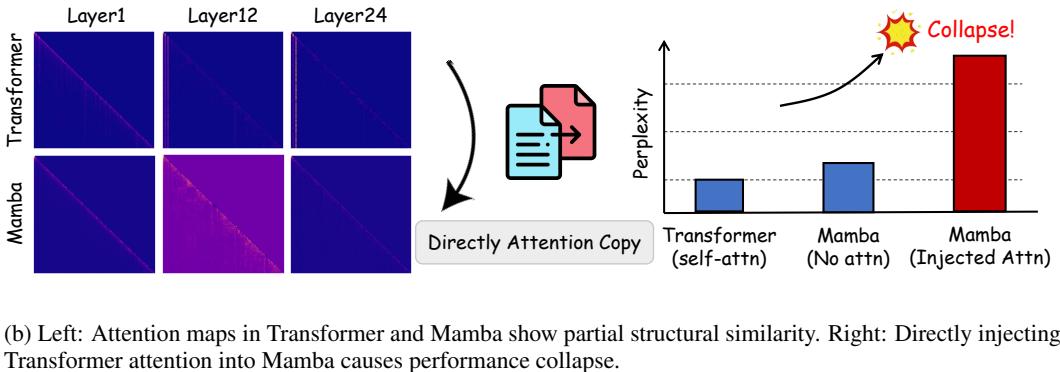


Figure 1: **Towards Effective Attention-to-SSM Distillation.** We highlight the structural complementarity between attention-based and SSM-based models, and the limitations of direct attention transfer, motivating our proposed alignment-based distillation approach.

Wang et al. (Wang et al., 2024) attempts to connect Transformers and Mamba by reusing projection weights from Transformer layers (Fig. 2b), but direct substitution ignores input-dependent dynamics.

Furthermore, these prior works often assume access to full-scale training datasets, overlooking efficiency considerations. Attention models are notoriously data-hungry, requiring large amounts of data to learn robust relationships (Kaplan et al., 2020; Dosovitskiy et al.; Zhai et al., 2022), while SSMs struggle under limited supervision. Thus, guiding Mamba with pretrained Transformers becomes especially important for efficient learning in data-scarce real-world domains such as healthcare (Sheller et al., 2020; Li et al., 2019; Rieke et al., 2020), robotics (Kadian et al., 2020; Peng et al., 2018), and edge computing (Zhou et al., 2019; Satyanarayanan, 2017).

To address these limitations, we propose **CAB**, a novel framework for transferring attention-based inductive biases into Mamba models (Fig. 2c). We introduce a lightweight MLP-based **bridge** between Transformer and Mamba architectures, enabling efficient fine-grained supervision of attention. Furthermore, we introduce a hierarchical mapping strategy to bridge the architectural gap between Transformers and Mamba, allowing for more effective cross-architecture knowledge transfer. Experiments on both vision and language modeling tasks demonstrate that our approach achieves superior performance and efficiency compared to existing distillation baselines.

Our contributions are summarized as follows:

- We introduce a novel distillation framework **CAB**, introduces a lightweight MLP **Attention Bridge** to directly connect the internal representations of the teacher and student models. This design enables fine-grained, token-level supervision and facilitates knowledge transfer across heterogeneous architectures.
- The proposed framework achieves dual efficiency: it is resource-efficient, bypassing the prohibitive cost of dense matrix alignment used in prior work, and uniquely data-efficient, designed to excel in low-data regimes where standard models falter.
- We extensively evaluate our method on both vision and language tasks between 9 diverse model architectures, consistently outperforming soft distillation and recent cross-architecture baselines.

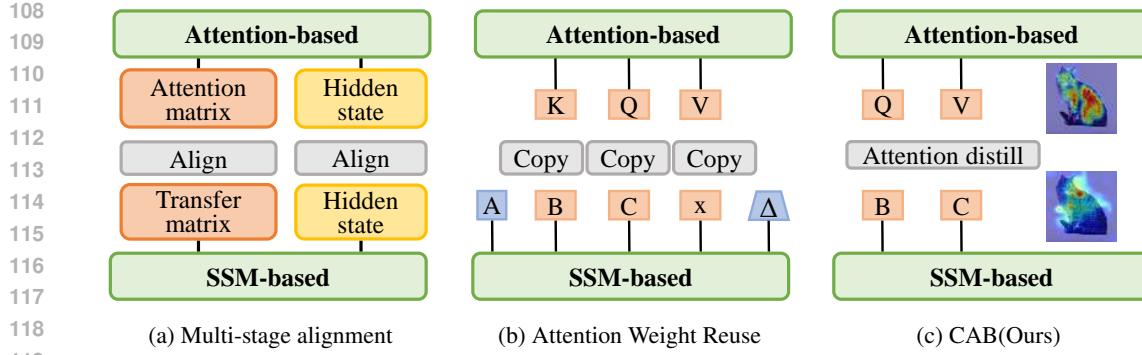


Figure 2: Overview of representative strategies for transferring attention-based inductive biases from Transformers to State Space Models (SSMs).

2 RELATED WORK

Linear Sequence Models. Recent research has explored alternatives to traditional attention mechanisms for efficient sequence modeling. Linear attention mechanisms retain the query-key-value structure of Transformers but replace softmax with activation function mappings to achieve linear time complexity. Efficient Attention (Shen et al., 2021) was among the first to decouple the attention map computation into two linear projections, reducing time and memory costs. Performer (Choromanski et al.) approximates softmax attention using orthogonal random features with theoretical guarantees under linear complexity. CosFormer (Qin et al.) and Linear transformers (Katharopoulos et al., 2020) both adopt feature-mapped formulations of attention, introducing reweighting or recurrence structures that support causal and efficient computation.

In parallel, another line of work revisits linear recurrence as an alternative mechanism for sequence modeling, leading to renewed interest in linear RNNs and state space models. S4 (Gu et al.) introduced structured state matrices for efficient, parallel, and long-range sequence modeling. Mamba (Gu & Dao, 2024) extended this with input-dependent, token-wise state transitions. Mamba-2 (Dao & Gu) further improves speed and scalability through structured state-space duality (SSD) and hardware-efficient algorithm design. RWKVs (Peng et al., 2023; 2024; 2025) is a recent line of recurrent models that utilize Time-mix for temporal dependency modeling and Channel-mix for feature transformation.

Knowledge Distillation and Attention Transfer. Knowledge distillation (KD) aims to transfer learned knowledge from a large teacher model to a smaller student model. Originally proposed by Hinton et al. (Hinton et al., 2015) through logit-based distillation, KD has since been successfully applied across a variety of domains, including image classification (Romero et al., 2014) and language understanding (Sun et al., 2019). Within the Transformer framework, recent work has explored richer supervision signals beyond output logits. TinyBERT (Jiao et al., 2020) and MiniLM (Wang et al., 2020) distill attention distributions and intermediate hidden states, showing that aligning multi-level information improves downstream performance. Other works (Zagoruyko & Komodakis, 2017; Li et al., 2024) highlight the transferability of attention maps in both language and vision domains, suggesting that attention matrices encapsulate inductive biases useful for generalization.

However, most existing attention distillation methods assume that the teacher and student share similar Transformer architectures. In contrast, our work addresses the more challenging setting of cross-architecture distillation from Transformer teachers to state-space model students.

3 METHOD

3.1 PRELIMINARY

The standard attention mechanism models token interactions using a global attention matrix:

$$\text{Attention}(Q, K, V) = \text{softmax}(QK^\top)V, \quad (1)$$

162 where Q, K, V represent the query, key, and value projections, respectively. While this formulation
 163 enables powerful context modeling, its quadratic time and space complexity with respect to sequence
 164 length L significantly limits scalability in long-sequence tasks.

165 To address the inefficiency of standard attention, linear attention was proposed by approximating the
 166 softmax-based attention weights using activation function mappings:

$$168 \text{Attention}(Q, K, V) = \phi(Q)\varphi(K)^\top V, \quad (2)$$

169 where $\phi(\cdot)$ and $\varphi(\cdot)$ denote activation functions. Under causal constraints, this formulation admits a
 170 recursive structure:

$$171 h_t = h_{t-1} + \varphi(k_t)^\top v_t, \quad y_t = \phi(q_t)h_t, \quad (3)$$

172 where h_t acts as a memory of past key–value information and $\phi(q_t)$ performs a dynamic readout.
 173 This reduces complexity to $\mathcal{O}(L)$ and makes linear attention structurally close to a recurrent model.

174 Mamba is a state-space model that encodes token interactions implicitly via dynamic recurrence:

$$176 y_t = C_t \sum_{j=1}^t (\Pi_{k=j+1}^t \bar{A}_k) \bar{B}_j x_j. \quad (4)$$

177 where the output y_t aggregates all past inputs $\{x_j\}_{j=1}^t$ modulated by the transition matrices
 178 (\bar{A}, \bar{B}_t, C_t). When the transition matrix \bar{A} approximates the identity, this recurrence simplifies
 179 into a form structurally equivalent to the recursive formulation of linear attention:

$$182 \begin{cases} h_t = h_{t-1} + \varphi(k_t)^\top v_t, \\ y_t = \phi(q_t)h_t \end{cases} \iff \begin{cases} h_t = \bar{A}_t h_{t-1} + \bar{B}_t x_t, \\ y_t = C_t h_t \end{cases} \quad (5)$$

183 This perspective provides a principled bridge between attention and state-space models: under this
 184 approximation, aligning the token-dependent projections B and C with the Transformer’s K and Q
 185 becomes a natural and theoretically motivated strategy. Prior work further shows that Q, K encode
 186 sufficient inductive biases for transferring attention (Li et al., 2024; Clark et al., 2019). We therefore
 187 regard B_t, C_t as **implicit attention carriers** and align them with the teacher’s Q, K , providing
 188 fine-grained supervision without incurring quadratic overhead from dense attention maps.

191 3.2 ATTENTION BRIDGE

192 Inspired by recent representation alignment methods REPA (Yu et al.), we propose a lightweight
 193 *MLP-based bridge* that links the attention mechanisms of Transformer and Mamba. Specifically, the
 194 bridge maps (Q, K) from the Transformer’s explicit attention to (B, C) in Mamba’s implicit attention,
 195 adapting to input-dependent dynamics. This design enables *fine-grained, token-level supervision*:
 196 each token’s role in the attention space is aligned with its counterpart in the state-space recurrence.

197 **Attention Alignment.** Existing attention distillation methods (Zagoruyko & Komodakis, 2017;
 198 Jiao et al., 2020) typically rely on explicit attention matrices as supervision targets. However, in state-
 199 space models like Mamba, attention is implicit and cannot be directly extracted without prohibitive
 200 quadratic overhead, as in full attention alignment methods (Bick et al., 2024). This gap motivates the
 201 need for a new distillation paradigm that leverages internal token-wise projections rather than explicit
 202 pairwise interactions. While $\bar{B} \leftrightarrow K$ and $C \leftrightarrow Q$ provide a bridge in the *discretized SSM*, we align
 203 the *continuous-time*, token-dependent B and C instead, to retain input-specific dynamics.

204 However, the representation spaces of $B, C \in \mathbb{R}^{L \times d_s}$ and the teacher’s attention vectors $K, Q \in$
 $\mathbb{R}^{L \times d_t}$ are not inherently aligned—neither in **dimensionality** nor in **semantics**. To address this
 205 mismatch, we introduce learnable MLP-based projection modules that map the student’s B and
 206 C into the teacher’s attention space. These modules implicitly learn activation mappings and
 207 dimensional adaptation, enabling a flexible and effective form of attention-level knowledge transfer
 208 across heterogeneous architectures. The attention alignment loss is then defined as:

$$212 \mathcal{L}_{\text{attn}} = \frac{1}{L} \sum_{l=1}^L \left(\left\| \phi_B(B^{(l)}) - K^{(l)} \right\|_2^2 + \left\| \phi_C(C^{(l)}) - Q^{(l)} \right\|_2^2 \right), \quad (6)$$

213 where l indexes student layers and ϕ_B, ϕ_C are MLPs. This alignment avoids explicit attention maps
 214 and supports distillation under limited supervision, making it suitable for low-data scenarios.

216 **Layer-wise Alignment across Architectures.** A key challenge in cross-architecture distillation lies
 217 in the structural mismatch between attention-based models and SSMs. Attention-based teachers often
 218 contain deep stacks of self-attention layers, while student models based on state-space architectures
 219 may have a different number of layers due to design choices. This mismatch in depth makes strict
 220 one-to-one layer supervision infeasible and potentially suboptimal.

221 To address this, we adopt a flexible alignment strategy that allows cross-layer matching. Instead of
 222 enforcing strict one-to-one correspondence, we define a general layer mapping function $g(l)$ that
 223 aligns each student layer $l \in [1, L]$ to a teacher layer via proportional indexing:

$$225 \quad g(l) = \left\lfloor \frac{l}{L} \cdot T \right\rfloor. \quad (7)$$

227 This unified and relaxed alignment strategy supports both deeper and shallower student networks,
 228 enabling effective knowledge transfer across varying depths and architectural module types while
 229 avoiding over-constraining the student. Moreover, it enhances the transferability of the method across
 230 heterogeneous architectures. The resulting attention alignment loss is:

$$232 \quad \mathcal{L}_{\text{attn}} = \frac{1}{L} \sum_{l=1}^L \left(\left\| \phi_B(B^{(l)}) - K^{(g(l))} \right\|_2^2 + \left\| \phi_C(C^{(l)}) - Q^{(g(l))} \right\|_2^2 \right). \quad (8)$$

235 4 EXPERIMENT

236 4.1 SETUP

239 We evaluate our proposed attention distillation framework across both vision and language domains,
 240 focusing on simulating low-resource scenarios to study data efficiency and cross-architecture transfer-
 241 ability. For image classification, we use the ImageNet-1k dataset (Deng et al., 2009), and simulate
 242 realistic low-resource settings by training on 1%, 5%, 10%, or 20% of the original training data,
 243 sampled per class to preserve label balance. All models are evaluated on the full validation set.
 244 For language modeling, we use the OpenWebText corpus (Gokaslan et al., 2019) with a maximum
 245 sequence length of 1024 tokens for distillation. To simulate supervision-limited regimes, we adopt a
 246 two-stage training strategy: the first stage uses 200M tokens for attention alignment, and the second
 247 stage scales up to 2B or 4B tokens for soft distillation. We evaluate models directly using perplexity
 248 on OpenWebText, C4 (Raffel et al., 2020), and WikiText (Merity et al., 2016) datasets, to reflect
 249 generalization under pretraining-only supervision.

250 **Implementation Details.** We implement each projection module ϕ_B and ϕ_C as a 2-layer MLP
 251 with SiLU activation functions across all experiments, which we find to be both simple and effective.
 252 For image classification, we use DeiT (Touvron et al., 2021) as the Transformer teacher and Vision
 253 Mamba (Zhu et al.) as the state-space student model. As shown in equation 5, initializing $A \approx 0$ (so
 254 that $\bar{A} \approx I$) simplifies the recurrence into a form structurally equivalent to linear attention, making it
 255 natural to align B and C with the teacher’s K and Q through our attention bridge.

256 Given the bidirectional nature of Vision Mamba, we compute the attention-level distillation
 257 loss separately for the forward and backward directions. Specifically, for each direction $\text{dir} \in \{\text{forward}, \text{backward}\}$, the loss is computed as:

$$260 \quad \mathcal{L}_{\text{dir}} = \frac{1}{L} \sum_{l=1}^L \left(\left\| \phi_B(B_{\text{dir}}^{(l)}) - K^{(g(l))} \right\|_2^2 + \left\| \phi_C(C_{\text{dir}}^{(l)}) - Q^{(g(l))} \right\|_2^2 \right), \quad \text{dir} \in \{\text{forward}, \text{backward}\}. \quad (9)$$

263 The total distillation loss is the sum of both directions:

$$265 \quad \mathcal{L}_{\text{attn}} = \mathcal{L}_{\text{forward}} + \mathcal{L}_{\text{backward}}. \quad (10)$$

267 The teacher models are DeiT-Tiny and DeiT-Small, both based on Transformer architectures, while
 268 the student models are Vim-Tiny and Vim-Small, based on state-space mechanisms. Table 1 sum-
 269marizes the architectural specifications of the teacher and student models, including their modeling
 mechanisms, number of layers, and parameter counts.

270 Table 1: Architectural specifications of vision models.
271

272 Model	Hidden Dim	Layers	Params (M)
274 DeiT-Tiny	192	12	5
275 DeiT-Small	384	12	22
276 Vim-Mini*	96	12	1.1
277 Vim-Mini	96	24	2.1
278 Vim-Tiny*	192	12	3.8
279 Vim-Tiny	192	24	7.1
	384	24	26

280 Table 2: Architectural specifications of language models.
281

282 Model	Layers	Params	FLOPs (G)
283 DistilGPT2	6	88M	20.76
284 Phi-Mamba	6	123M	21.68

286 All ViM models are distilled for 300 epochs using the AdamW optimizer with a learning rate of 5e-4.
287 The batch size is 64, and training is conducted on a single NVIDIA A100 GPU. Standard ImageNet
288 augmentations, including random cropping and horizontal flipping, are applied during training.
289

290 For all language experiments, we use a lightweight Phi-Mamba-123M variant (Bick et al., 2024) as
291 the student model and DistilGPT2 (pretrained on OpenWebText) as the Transformer teacher. Built on
292 Mamba-2, Phi-Mamba parameterizes A_i as a scalar a_i , making it naturally close to linear attention;
293 thus we directly align B and C without special initialization. To isolate the contribution of our
294 attention alignment mechanism, training is conducted in two stages: (i) attention alignment, where the
295 student’s token-wise projections are matched to the teacher’s key and query representations (Eq. 8);
296 and (ii) soft distillation, minimizing KL divergence between teacher and student outputs. Both stages
297 share the same configuration: learning rate 2×10^{-5} , batch size 32 per device, and 8 NVIDIA A100
298 GPUs. Evaluation is performed in terms of perplexity (PPL) on OpenWebText, C4 (Raffel et al.,
299 2020), and WikiText (Merity et al., 2016). Table 2 summarizes the architectural specifications of
300 these language models, including their parameter counts and FLOPs.

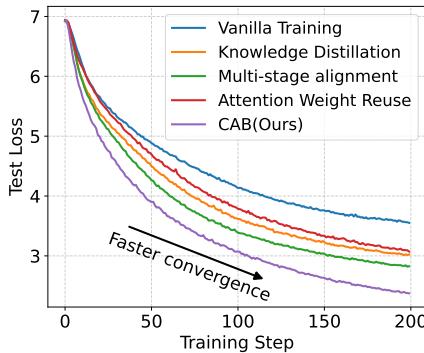
301 **Baselines.** We compare our method against several related distillation strategies:

- 303 • **Standard Soft Distillation** (Hinton et al., 2015): The student model is trained to match
304 the teacher’s softened output logits using KL divergence loss, without supervision on
305 intermediate representations.
- 306 • **Mamba in Llama(Attention Weight Reuse)** (Wang et al., 2024): This method distills large
307 language models (LLMs) into hybrid Transformer-Mamba architectures by reusing attention
308 weights. We adapt their strategy to our vision and language settings.
- 309 • **MOHAWK(Multi-Stage Alignment)** (Bick et al., 2024): This approach distills Trans-
310 formers into state-space models by progressively aligning full attention matrices as well
311 as intermediate hidden representations. We reimplement their method and apply it in our
312 cross-architecture setting.

313 Implementation and architectural details of all baselines, including training configurations and model
314 specifications, are provided in Appendix C.
315

316 4.2 MAIN RESULTS 317

318 **Image Classification.** Table 3 summarizes Top-1 accuracy on ImageNet for various teacher-student
319 pairs and data ratios. Our method consistently outperforms the standard soft distillation and other
320 baselines across these settings. Notably, under the DeiT-Tiny teacher and Vim-Tiny student setting
321 at 10% data, it achieves up to a **+16.3%** improvement over vanilla training. Beyond final accuracy,
322 we also analyze the convergence dynamics of different training strategies. Fig. 3 presents these
323 results. Our method converges significantly faster and achieves lower test loss throughout training,
324 highlighting its optimization efficiency under limited supervision. For completeness, we also report



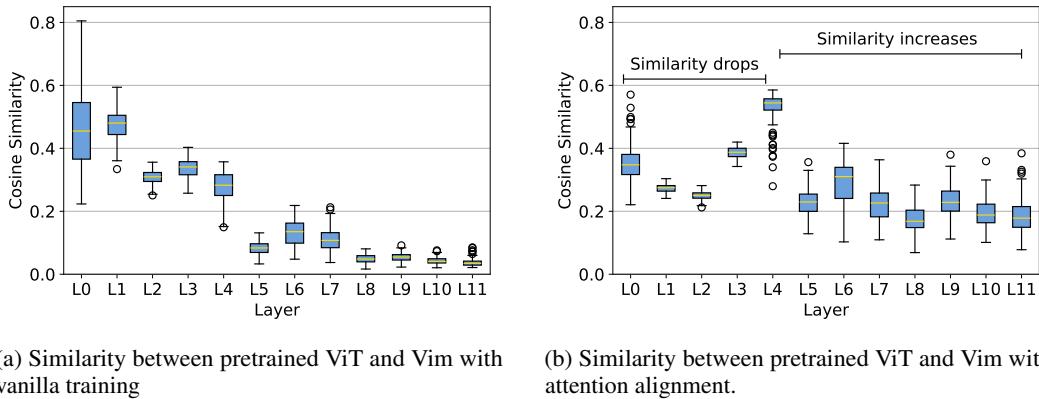
325 Figure 3: Convergence speed and test loss
326 comparison on ImageNet.
327

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 3: Top-1 accuracy comparison between pretraining and distillation methods on ImageNet classification under varying proportions of training data.

327	Teacher	Student	Method	1%	5%	10%	20%
328	-	Vim-Tiny	Vanilla Training	11.2	27.4	32.9	41.5
329			Soft Distillation	20.4	37.0	42.0	42.7
330			Attention Weight Reuse	21.3	37.1	41.5	42.6
331	DeiT-Tiny	Vim-Tiny	Multi-Stage Alignment	21.5	36.8	45.1	44.0
332			CAB(Ours)	27.8	45.4	49.2	49.4
333	-	Vim-Small	Vanilla Training	15.3	29.2	36.2	47.0
334			Soft Distillation	23.3	41.1	49.4	54.0
335			Attention Weight Reuse	23.5	41.5	49.3	54.3
336	DeiT-Small	Vim-Small	Multi-Stage Alignment	24.0	42.1	50.1	53.9
337			CAB(Ours)	27.3	46.0	54.9	60.7

341 results under the full-data regime, where a DeiT-Tiny teacher distills into a Vim-Tiny student using
342 100% of ImageNet; see Appendix A.1.

343
344 **Attention Behavior Analysis.** To further understand the underlying attention behaviors, we analyze
345 the similarity between attention matrices of the Vim model and pretrained ViT across all layers(Fig. 4).
346 Before L3, similarity slightly decreases, reflecting the local focus of early layers (Zeiler & Fergus,
347 2014). Beyond L3, however, similarity rises sharply, showing that our alignment loss effectively
348 guides Vim to mimic Transformer-style attention. This indicates that mid-to-deep layers recover
349 global token interactions typically lost in standard training, thereby bridging the gap between SSMs
350 and attention-based models.



362 (a) Similarity between pretrained ViT and Vim with
363 vanilla training
364
365 (b) Similarity between pretrained ViT and Vim with
366 attention alignment.

367
368
369 Figure 4: Cosine similarity between Vim and pretrained ViT, comparing results with and without
370 attention alignment. Higher similarity indicates better alignment of attention representations.

371
372
373
374
375
376
377 **Language Modeling.** Table 4 reports perplexity results evaluated under two training regimes
378 corresponding to the second training stage, using 2B and 4B tokens respectively. Our proposed
379 attention-level distillation consistently achieves lower perplexity across all benchmarks and scales,
380 significantly outperforming both standard attention weight reuse and multi-stage alignment baselines.
381 Remarkably, with only 4B tokens, the CAB-distilled student attains perplexity comparable to the
382 Transformer teacher, highlighting the efficiency of our bridge in transferring knowledge from attention-
383 based to state-space models.

384 Beyond achieving strong performance on the in-distribution OpenWebText corpus used for distillation,
385 our method generalizes effectively to diverse out-of-distribution (OOD) datasets such as C4 and
386 WikiText, which differ markedly in domain and style. Notably, the relative perplexity reduction on

378 Table 4: Perplexity comparison on language modeling benchmarks. DistilGPT2 is used as the teacher
 379 and Phi-Mamba as the student.

Method	OpenWebText		C4		WikiText	
	2B	4B	2B	4B	2B	4B
<i>Teacher PPL (DistilGPT2)</i>	28.2		39.7		52.96	
Attention Weight Reuse	61.8	37.2	111.0	62.9	212.3	99.8
Multi-Stage Alignment	58.4	31.1	105.7	51.2	199.3	77.9
CAB (Ours)	54.4	30.1	97.3	50.1	175.0	74.7

390 these challenging OOD datasets is larger than that on OpenWebText, indicating that our framework
 391 successfully transfers underlying structural knowledge beyond the training distribution. This enables
 392 robust language modeling without task-specific fine-tuning and highlights the broad practical applica-
 393 bility of our approach in real-world scenarios. For completeness, Appendix A.2 reports scalability
 394 results with Phi-1.5 as the teacher and Phi-Mamba-1.5B as the student.

395 **Efficiency Analysis.** In addition to perplexity and generalization results, we further evaluate the
 396 *efficiency* of CAB compared to MOHAWK. At sequence length $L = 1024$, aligning a single attention
 397 layer with MOHAWK requires storing $2 \cdot (H, L, L)$ tensors, leading to quadratic memory growth and
 398 substantial runtime overhead. By contrast, CAB avoids explicit attention matrices and only introduces
 399 two lightweight MLPs of size $2 \cdot n_{\text{MLP}} \text{ layers} \cdot (d_{\text{student}}, d_{\text{teacher}})$, whose cost scales linearly with model
 400 dimensions rather than sequence length. On DistilGPT2 \rightarrow Phi-Mamba-123M with 200M tokens,
 401 CAB achieves a $10\times$ reduction in memory footprint and $4\times$ faster runtime on a single A100 GPU,
 402 as shown in Fig. 5. These results highlight that CAB not only improves accuracy but also makes
 403 large-scale distillation much lighter and easier to run in practice.

4.3 ABLATION STUDY

407 To evaluate the effectiveness and robustness of
 408 our proposed distillation framework, we con-
 409 duct ablation studies from three complementary
 410 perspectives: (1) the contribution of B and C
 411 projection alignment to knowledge transfer, (2)
 412 the impact of the transition matrix \bar{A} initializa-
 413 tion strategy, and (3) the generalization of our
 414 method across student architectures with vary-
 415 ing capacities. All ablation experiments are con-
 416 ducted under the DeiT-Tiny teacher and Vim-
 417 Tiny student setting on a fixed 10% subset of
 418 ImageNet-1k to reduce computational cost while
 419 maintaining task difficulty.

420 **Effect of B/C Distillation.** We first investi-
 421 giate whether aligning both B and C projections
 422 is necessary, or if aligning either alone suffices.
 423 We compare three variants: distilling only B ,
 424 only C , and both. As shown in Table 5, we observe that while distilling either component individually
 425 brings measurable gains over no distillation, jointly aligning B and C yields the best performance.
 426 This supports our hypothesis that B and C jointly encode the implicit attention mechanism in Mamba,
 427 and both are needed to effectively transfer structural knowledge from the teacher. We also test a
 428 variant where B and C share the same projection ($\phi_B \equiv \phi_C$). As shown in Table 5, this setting
 429 underperforms independent mappings, since B and C lie in different semantic spaces— B injects
 430 inputs while C extracts context—confirming the need for distinct projections.

431 **Effect of \bar{A} Initialization.** We study how the initialization of the transition matrix influences
 432 the effectiveness of distillation. In Mamba, A is typically initialized with a log-spaced diagonal

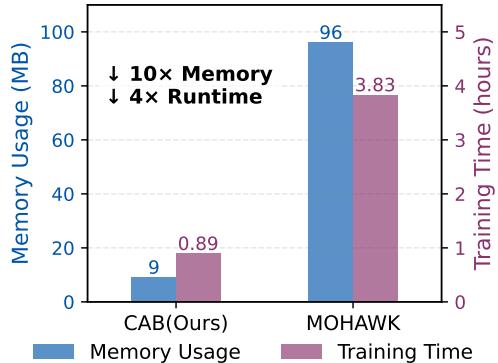


Figure 5: Memory and runtime comparison of CAB vs. full-matrix distillation.

432 from S4D (Gu et al., 2022), which is designed to capture diverse temporal dynamics in sequence
 433 modeling. However, such initialization introduces dynamics that may not align well with attention-
 434 based supervision. In our setting, we instead initialize $A \approx 0$, so that $\bar{A} \approx I$, effectively simplifying
 435 the recurrence into an additive form that closely resembles linear attention. This choice provides
 436 a better structural match to Transformer teachers, reducing the gap between the two architectures.
 437 As a result, the attention-aligned initialization not only stabilizes optimization during training but
 438 also improves transfer efficiency. Empirically, as shown in Table 5, it consistently outperforms the
 439 default S4D initialization across tasks, highlighting the importance of initialization when bridging
 440 heterogeneous sequence models.

441
 442 **Effect of Student Architecture.** We evaluate
 443 the robustness of our framework across student
 444 models with varying depths and widths. This
 445 setup reflects realistic cross-architecture scenar-
 446 ios where students may differ significantly from
 447 teachers in capacity and design. As shown in Ta-
 448 ble 6, our method consistently improves perfor-
 449 mance across diverse architectures. Even under
 450 aggressive compression (e.g., shallow or nar-
 451 row students), attention-level distillation yields
 452 clear gains over standard knowledge distillation,
 453 demonstrating the versatility of our framework
 454 for heterogeneous student designs.

455 Table 6: Top-1 accuracy comparison between soft distillation and our method across various student
 456 architectures and proportions of training data.

457	Teacher	Student	Params (M)	Method	1%	5%	10%	20%
459	DeiT-Tiny	Vim-Mini*	1.1	Soft Distillation	5.1	17.6	30.3	30.0
460				CAB(Ours)	6.9	18.7	31.0	32.8
461		Vim-Mini	2.1	Soft Distillation	6.6	24.0	34.6	35.3
462				CAB(Ours)	8.0	24.1	36.0	36.2
463	DeiT-Small	Vim-Tiny*	3.8	Soft Distillation	7.7	27.9	42.3	41.5
464				CAB(Ours)	8.1	28.1	42.8	42.5
465		Vim-Tiny	7.1	Soft Distillation	7.8	27.6	43.9	45.0
466				CAB(Ours)	8.7	30.7	44.9	47.2
467								

470 5 CONCLUSION

471 In this work, we propose **CAB**, a novel attention distillation framework for transferring structural
 472 knowledge from Transformer-based teachers to state-space student models. CAB introduces a
 473 lightweight MLP-based **Attention Bridge** that treats the token-dependent projections in Mamba
 474 as implicit carriers of attention and aligns them with the teacher’s key and query representations.
 475 Extensive experiments across vision and language tasks demonstrate that this strategy significantly
 476 improves the performance of state-space models.

477 We believe our approach offers a new perspective on cross-architecture knowledge transfer and
 478 highlights the potential of combining attention-based reasoning with efficient recurrent modeling.
 479 Importantly, we demonstrate that this framework remains highly effective under data-scarce condi-
 480 tions. Through extensive experiments on subsets of ImageNet and language modeling tasks, we show
 481 that our method achieves strong performance with only 1%–20% of the training data, significantly
 482 outperforming existing distillation baselines. Our findings highlight a promising direction toward
 483 building efficient, scalable, and data-efficient sequence models. However, our approach currently
 484 focuses on Mamba and Transformers, and extending it to other SSM variants or more complex hybrid
 485 architectures may require further investigation.

Table 5: Ablation study on distillation strategies.

Setting	Acc (%)
Vanilla Training	32.9
Soft Distillation	42.0
Align B only	48.7
Align C only	48.8
Shared ϕ for B and C	49.0
Align $B + C$ w/ default \bar{A}	43.1
Align $B + C$ w/ $\bar{A} \approx I$ (Ours)	49.2

486 REFERENCES
487

488 Samira Abnar, Mostafa Dehghani, and Willem Zuidema. Transferring inductive biases through
489 knowledge distillation. *arXiv preprint arXiv:2006.00555*, 2020.

490 Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models. *arXiv preprint*
491 *arXiv:2403.01590*, 2024.

492 Aviv Bick, Kevin Li, Eric Xing, J Zico Kolter, and Albert Gu. Transformers to ssms: Distilling
493 quadratic knowledge to subquadratic models. *Advances in Neural Information Processing Systems*,
494 37:31788–31812, 2024.

495 Aviv Bick, Tobias Katsch, Nimit Sohoni, Arjun Desai, and Albert Gu. Llamba: Scaling distilled
496 recurrent models for efficient language processing. *arXiv preprint arXiv:2502.14458*, 2025.

497 Xiuwei Chen, Sihao Lin, Xiao Dong, Zisheng Chen, Meng Cao, Jianhua Han, Hang Xu, and Xiaodan
498 Liang. Transmamba: Fast universal architecture adaption from transformers to mamba. *arXiv*
499 *preprint arXiv:2502.15130*, 2025.

500 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea
501 Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
502 Rethinking attention with performers. In *International Conference on Learning Representations*.

503 Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look at?
504 an analysis of bert’s attention. *ACL 2019*, pp. 276, 2019.

505 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
506 structured state space duality. In *Forty-first International Conference on Machine Learning*.

507 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
508 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
509 pp. 248–255. Ieee, 2009.

510 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
511 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
512 is worth 16x16 words: Transformers for image recognition at scale. In *International Conference*
513 *on Learning Representations*.

514 Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. <http://Skylion007.github.io/OpenWebTextCorpus>, 2019.

515 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
516 URL <https://arxiv.org/abs/2312.00752>.

517 Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
518 state spaces. In *International Conference on Learning Representations*.

519 Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
520 of diagonal state space models. *Advances in Neural Information Processing Systems*, 35:35971–
521 35983, 2022.

522 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
523 *preprint arXiv:1503.02531*, 2015.

524 Zi-Hang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, and Shuicheng Yan. Convbert:
525 Improving bert with span-based dynamic convolution. *Advances in Neural Information Processing*
526 *Systems*, 33:12837–12848, 2020.

527 Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
528 Tinybert: Distilling bert for natural language understanding. In *Findings of the Association for*
529 *Computational Linguistics: EMNLP 2020*, pp. 4163–4174, 2020.

540 Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexander Clegg, Erik Wijmans, Stefan Lee,
 541 Manolis Savva, Sonia Chernova, and Dhruv Batra. Sim2real predictivity: Does evaluation in
 542 simulation predict real-world performance? *IEEE Robotics and Automation Letters*, 5(4):6670–
 543 6677, 2020.

544 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 545 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 546 *arXiv preprint arXiv:2001.08361*, 2020.

548 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
 549 Fast autoregressive transformers with linear attention. In *International conference on machine
 550 learning*, pp. 5156–5165. PMLR, 2020.

551 Alex Li, Yuandong Tian, Beidi Chen, Deepak Pathak, and Xinlei Chen. On the surprising effectiveness
 552 of attention transfer for vision transformers. *Advances in Neural Information Processing Systems*,
 553 37:113963–113990, 2024.

555 Wenqi Li, Fausto Milletari, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao Zhu, Maximilian
 556 Baust, Yan Cheng, Sébastien Ourselin, M Jorge Cardoso, et al. Privacy-preserving federated brain
 557 tumour segmentation. In *Machine Learning in Medical Imaging: 10th International Workshop,
 558 MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019,
 559 Proceedings 10*, pp. 133–141. Springer, 2019.

560 Yufan Liu, Jiajiong Cao, Bing Li, Weiming Hu, Jingting Ding, and Liang Li. Cross-architecture
 561 knowledge distillation. In *Proceedings of the Asian conference on computer vision*, pp. 3396–3411,
 562 2022.

563 Zhiying Lu, Hongtao Xie, Chuanbin Liu, and Yongdong Zhang. Bridging the gap between vision
 564 transformers and convolutional neural networks on small datasets. *Advances in Neural Information
 565 Processing Systems*, 35:14663–14677, 2022.

567 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 568 models, 2016.

570 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
 571 Cao, Xin Cheng, Michael Chung, Leon Derczynski, et al. Rwkv: Reinventing rnns for the
 572 transformer era. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp.
 573 14048–14077, 2023.

574 Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
 575 Cheah, et al. Eagle and finch: Rwkv with matrix-valued states and dynamic recurrence. *arXiv
 576 preprint arXiv:2404.05892*, 3, 2024.

578 Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Haowen Hou, Janna Lu, William Merrill,
 579 Guangyu Song, Kaifeng Tan, Saitaja Utpala, et al. Rwkv-7 "goose" with expressive dynamic state
 580 evolution. *arXiv preprint arXiv:2503.14456*, 2025.

581 Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
 582 robotic control with dynamics randomization. In *2018 IEEE international conference on robotics
 583 and automation (ICRA)*, pp. 3803–3810. IEEE, 2018.

585 Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
 586 Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In *International Conference
 587 on Learning Representations*.

588 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 589 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 590 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

591 Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni, Spyridon
 592 Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The future of digital
 593 health with federated learning. *NPJ digital medicine*, 3(1):119, 2020.

594 Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
 595 Yoshua Bengio. Fitnets: Hints for thin deep nets. *arXiv preprint arXiv:1412.6550*, 2014.

596

597 Mahadev Satyanarayanan. The emergence of edge computing. *Computer*, 50(1):30–39, 2017.

598

599 Micah J Sheller, Brandon Edwards, G Anthony Reina, Jason Martin, Sarthak Pati, Aikaterini Kotrot-
 600 sou, Mikhail Milchenko, Weilin Xu, Daniel Marcus, Rivka R Colen, et al. Federated learning in
 601 medicine: facilitating multi-institutional collaborations without sharing patient data. *Scientific
 602 reports*, 10(1):12598, 2020.

603

604 Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention: Atten-
 605 tion with linear complexities. In *Proceedings of the IEEE/CVF winter conference on applications
 606 of computer vision*, pp. 3531–3539, 2021.

607

608 Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
 609 compression. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language
 610 Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
 611 IJCNLP)*, pp. 4323–4332, 2019.

612

613 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert:
 614 a compact task-agnostic bert for resource-limited devices. In *Proceedings of the 58th Annual
 615 Meeting of the Association for Computational Linguistics*, pp. 2158–2170, 2020.

616

617 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 618 Jégou. Training data-efficient image transformers & distillation through attention. In *International
 619 conference on machine learning*, pp. 10347–10357. PMLR, 2021.

620

621 Junxiong Wang, Daniele Paliotta, Avner May, Alexander Rush, and Tri Dao. The mamba in the llama:
 622 Distilling and accelerating hybrid models. *Advances in Neural Information Processing Systems*,
 623 37:62432–62457, 2024.

624

625 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 626 attention distillation for task-agnostic compression of pre-trained transformers. *Advances in neural
 627 information processing systems*, 33:5776–5788, 2020.

628

629 Ziqiao Wang, Wangbo Zhao, Yuhao Zhou, Zekai Li, Zhiyuan Liang, Mingjia Shi, Xuanlei Zhao,
 630 Pengfei Zhou, Kaipeng Zhang, Zhangyang Wang, et al. Repa works until it doesn't: Early-stopped,
 631 holistic alignment supercharges diffusion training. *arXiv preprint arXiv:2505.16792*, 2025.

632

633 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 634 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 635 than you think. In *The Thirteenth International Conference on Learning Representations*.

636

637 Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
 638 performance of convolutional neural networks via attention transfer. In *International Conference
 639 on Learning Representations*, 2017.

640

641 Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
 642 *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12,
 643 2014, Proceedings, Part I* 13, pp. 818–833. Springer, 2014.

644

645 Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
 646 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 647 12104–12113, 2022.

648

649 Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge intelligence: Paving
 650 the last mile of artificial intelligence with edge computing. *Proceedings of the IEEE*, 107(8):
 651 1738–1762, 2019.

652

653 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
 654 mamba: Efficient visual representation learning with bidirectional state space model. In *Forty-first
 655 International Conference on Machine Learning*.

648
649

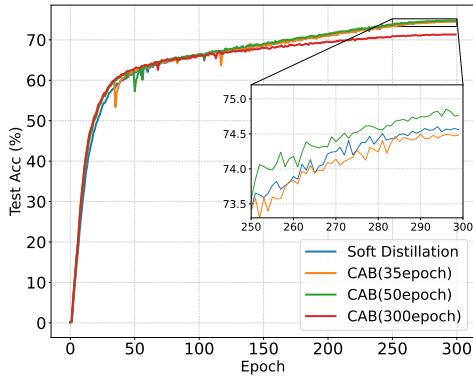
LLM USAGE

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
Large language models (LLMs) were used solely to polish the writing (e.g., grammar correction and phrasing improvements). They did not contribute to research ideation.

A ADDITIONAL EXPERIMENTS

A.1 FULL-DATA REGIME ON IMAGENET

We further investigate CAB under the full-data regime, where a DeiT-Tiny teacher distills into a **Vim-Tiny** student using 100% of ImageNet. As shown in Fig. 6 and Table 7, CAB dramatically accelerates convergence in the early stages, even surpassing standard soft distillation. However, when enforced throughout training (e.g., 300 epochs), CAB alignment degrades performance, suggesting that excessive attention supervision can over-constrain the mismatch between Transformer attention and the SSM latent space. Inspired by recent findings on (Wang et al., 2025), we adopt an *early-stopped alignment* strategy: applying CAB for the first phase and then switching to KL distillation. Here, **(xepoch) denotes the epoch at which CAB alignment is early-stopped**. This hybrid schedule successfully transfers attention priors while maintaining strong final accuracy.

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
Figure 6: Training curves under full-data regime.

A.2 SCALABILITY TO LARGER LLMs

To further assess scalability, we conduct experiments using **Phi-1.5B** as the Transformer teacher and **Phi-Mamba-1.5B** as the student. We re-implemented the training pipeline of (Bick et al., 2024) according to the descriptions provided in the paper. However, since the original setting does not specify dataset splits and cannot be exactly reproduced, we empirically determine the splits and adopt a two-stage training strategy for a fair comparison and isolate the contribution of our attention alignment mechanism: the first stage uses 200M tokens for attention alignment, and the remaining 2.8B tokens are allocated to the KD stage. All models are trained on the C4 corpus (Raffel et al., 2020) with a maximum sequence length of 2048 tokens. Both stages use a learning rate of 5e-5, a batch size of 32 per device, and are trained on 8 NVIDIA A100 GPUs. This setting is evaluated on a suite of downstream language modeling benchmarks using the LM Harness. Results demonstrate that CAB consistently improves perplexity across diverse benchmarks, validating its effectiveness beyond lightweight configurations. Table 8 summarizes the results. Under the same training setup, our proposed **CAB** consistently outperforms prior distillation methods.

B DISCUSSION WITH MORE RELATED WORKS

699
700
701
A growing body of work has explored knowledge distillation across different architectural families, aiming to leverage the strengths of large pretrained models while deploying lightweight or domain-specialized students. In the NLP domain, TinyBERT (Jiao et al., 2020), MiniLM (Wang et al., 2020), and MobileBERT (Sun et al., 2020) focus on intra-Transformer distillation, transferring attention and

Method	Top-1 Acc ↑	Top-5 Acc ↑
DeiT-Tiny(teacher)	72.20	91.10
Soft Distillation	74.56	92.46
CAB(35epoch)	74.50	92.38
CAB(50epoch)	74.85	92.56
CAB(300epoch)	71.34	90.64

Table 7: Results under the full-data regime.

702
703
704 Table 8: Benchmark comparison on five tasks
705
706
707
708
709

Model	HellaSwag	PIQA	ARC-E	ARC-C	WinoGrande
Phi1.5	62.6	75.6	73.1	48.0	72.9
Attention Weight Reuse	29.42	62.79	36.07	21.84	51.22
MOHAWK	28.87	63.11	36.24	22.70	51.22
CAB (Ours)	31.73	64.64	37.75	23.21	51.85

710
711
712 hidden representations within the same architectural paradigm. Beyond homogeneous architectures,
713 **cross-structure distillation** has attracted growing interest. Early works such as Patient Knowledge
714 Distillation (Sun et al., 2019) and FitNets (Romero et al., 2014) employed intermediate supervision
715 to facilitate knowledge transfer across networks of varying depth or capacity. ConvBERT (Jiang
716 et al., 2020) introduced span-based dynamic convolution into Transformers, improving local feature
717 modeling while remaining compatible with attention-based distillation. Liu et al. (Liu et al., 2022)
718 proposed a unified cross-architecture distillation framework by learning token-level correspondences
719 and relational structure mappings from Transformers to CNNs. However, most of these approaches
720 rely on feature-level alignment or final-layer supervision, without explicitly preserving attention-level
721 semantics when transferring across fundamentally different inductive biases.

722 While existing approaches have made progress in distilling from Transformers to Mamba-like models,
723 several challenges remain unresolved. A key limitation is the lack of a unified mechanism for
724 transferring attention-based relational structure to models with fundamentally different inductive
725 biases. TransMamba (Chen et al., 2025) sidesteps the attention mechanism entirely, relying on
726 hierarchical feature calibration, while Bick et al. (Bick et al., 2024) impose handcrafted architectural
727 constraints to align internal representations. However, such design choices are model-specific and
728 difficult to generalize across heterogeneous architectures. Wang et al. (Wang et al., 2024) introduces
729 projection reuse by directly copying Transformer weights, but this static substitution ignores input-
730 dependent dynamics inherent to SSMs. These methods, while valuable, fall short of addressing
731 the core challenge of distillation across structurally dissimilar models without relying on manual
732 architecture tailoring.

733 In contrast, our method directly bridges attention and state projections by introducing a representation-
734 level alignment between QK and BC within each layer. This avoids architectural entanglement and
735 allows for a clean formulation of attention-level distillation losses, which can be flexibly applied
736 to discrete SSMs without modifying their internal propagation rules. Moreover, by initializing the
737 transition matrix A to near-zero, we induce a recurrence that behaves analogously to linear attention,
738 enabling a natural path for knowledge flow from Transformer activations into Mamba dynamics. Our
739 approach thus provides an interpretable, computation-friendly, and model-agnostic framework for
740 attention-to-SSM distillation. It highlights a missing middle ground between full structural replication
741 and output supervision, offering a scalable route to adapt pretrained Transformer knowledge into
742 sequence models with fundamentally different inductive priors.

743 C EXPERIMENT SETTINGS

744 In this section, we detail the experimental settings and provide instructions for reproduction.

745 C.1 IMPLEMENTATION DETAILS FOR VISION DISTILLATION METHODS

746 To ensure a fair and comprehensive comparison, we extend two representative Transformer-to-SSM
747 distillation frameworks (Bick et al., 2024; Wang et al., 2024) to the vision domain. While both were
748 originally proposed for language modeling, we adapt them for image classification on ImageNet-1k
749 by modifying the distillation targets and model-specific components as follows:

750 **Transformers to SSMs (MOHAWK).** The original MOHAWK framework (Bick et al., 2024) con-
751 sists of three stages: attention matrix alignment, hidden state alignment, and output-level knowledge
752 distillation. For fair comparison and reduced overhead, we adopt only the attention alignment and

756 final distillation stages. In the original setup, attention alignment was limited to 200M tokens (out of
 757 3B total) due to the high cost of computing softmax attention.
 758

759 In our adaptation to the vision setting, we perform one full epoch of distillation using the training set.
 760 The attention matrices from the Vim student are computed following the formulation used in *The*
 761 *Hidden Attention of Mamba Models* (Ali et al., 2024). In the second stage, we apply KL divergence
 762 between the teacher and student logits as the distillation objective. To handle depth mismatches
 763 between the teacher and student, we introduce a layer alignment function $g(l)$ that maps each student
 764 layer l to its corresponding teacher layer. Hidden state matching is omitted to isolate the effect of
 765 attention transfer and maintain efficiency.
 766

767 **Mamba in the Llama.** Mamba in the Llama (Wang et al., 2024) introduces an attention-initialized
 768 Mamba variant, using a linearized formulation as the initialization scheme for distillation. Specifically,
 769 the linear projections of the Transformer teacher—including Q , K , V , and the output projection—are
 770 mapped to the corresponding C , B , X , and output projection layers in the Mamba student.
 771

772 In our vision adaptation, we adopt the same strategy: the Q , K , V , and output projection matrices
 773 from the ViT teacher are linearly mapped to the C , B , X , and output projection modules in the Vim
 774 student. To address the mismatch in depth between teacher and student models, we further introduce
 775 our layer alignment function $g(l)$ to assign supervision across corresponding layers.
 776

777 **CAB(Ours).** We implement our bidirectional distillation framework tailored for visual tasks.
 778 Specifically, we align both the forward and backward dynamic projections B , C from the student
 779 Vim with the K , Q representations from the Transformer teacher (e.g., DeiT). This alignment is
 780 performed layer-wise via a mapping function $g(l)$ and optimized jointly with soft KL loss on logits.
 781 To improve compatibility between attention and state-space recurrence, we also initialize the Mamba
 782 transition matrix $A \approx 0$ to simulate linear attention behavior. A full description of the algorithm is
 783 provided in Algorithm 1.
 784

783 **Algorithm 1:** Attention Distillation for Bidirectional Vision Mamba

784 **Input** :Transformer teacher \mathcal{T} (e.g., DeiT), bidirectional Mamba student \mathcal{S} , image tokens
 785 $\{x_t\}_{t=1}^L$, loss weights λ
 786 **Output** :Trained student model \mathcal{S}
 787 1 Initialize Mamba transition matrix $A \approx 0$ such that $\bar{A} \approx I$;
 788 2 Define student-to-teacher layer mapping $g(l)$;
 789 3 **for** each batch $\{x_t\} \sim \mathcal{D}$ **do**
 790 4 $\{K^{(l)}, Q^{(l)}\} \leftarrow \mathcal{T}(\{x_t\})$; // extract key/query from teacher
 791 5 $\{B_{\text{fw}}^{(l)}, C_{\text{fw}}^{(l)}, B_{\text{bw}}^{(l)}, C_{\text{bw}}^{(l)}\} \leftarrow \mathcal{S}(\{x_t\})$; // extract projections from student
 792 6 **for** each layer $l = 1$ to L **do**
 793 7 $\mathcal{L}_{\text{fw}}^{(l)} \leftarrow \|\phi_B(B_{\text{fw}}^{(l)}) - K^{(g(l))}\|^2 + \|\phi_C(C_{\text{fw}}^{(l)}) - Q^{(g(l))}\|^2$;
 794 8 $\mathcal{L}_{\text{bw}}^{(l)} \leftarrow \|\phi_B(B_{\text{bw}}^{(l)}) - K^{(g(l))}\|^2 + \|\phi_C(C_{\text{bw}}^{(l)}) - Q^{(g(l))}\|^2$;
 795 9 $\mathcal{L}_{\text{attn}} \leftarrow \frac{1}{L} \sum_{l=1}^L (\mathcal{L}_{\text{fw}}^{(l)} + \mathcal{L}_{\text{bw}}^{(l)})$, $p_T \leftarrow \mathcal{T}(\{x_t\})$, $p_S \leftarrow \mathcal{S}(\{x_t\})$
 796 10 $\mathcal{L}_{\text{KL}} \leftarrow \text{KL}(p_T \| p_S)$;
 797 11 Update \mathcal{S} using $\nabla(\mathcal{L}_{\text{attn}} + \lambda \mathcal{L}_{\text{KL}})$;
 798
 799

800
 801
 802 Table 11 summarizes the training configurations for visual distillation experiments under different
 803 data regimes (1%, 5%, 10%, 20%). Models are trained on ImageNet-1k using BF16 precision on a
 804 single NVIDIA A100 GPU.
 805

806 C.2 IMPLEMENTATION DETAILS FOR LLM DISTILLATION METHODS

807
 808 For the language modeling setting, we adapt both the **Transformers to SSMs (MOHAWK)** and
 809 **Mamba in the Llama** baselines into our distillation pipeline using the Phi-Mamba architecture as
 the student.

Transformers to SSMs (MOHAWK). For MOHAWK, we follow its original two-stage design by performing attention matrix alignment followed by output-level knowledge distillation. Specifically, we distill attention representations using 200M tokens in the first stage, and continue soft KL divergence-based distillation over 2B or 4B tokens depending on the experimental setup. To ensure fairness and training feasibility, we omit the intermediate hidden state alignment stage. Layer mismatches between the Transformer teacher (DistilGPT2) and the student are handled using a layer alignment function $q(l)$.

818 Mamba in the Llama. For Mamba in the Llama, we replicate their projection initialization strategy
 819 by directly mapping the Transformer’s Q , K , V , and output projection weights to the Mamba’s C , B ,
 820 input, and output projection layers, respectively. We then train the student using the same two-stage
 821 strategy on 2B or 4B tokens without additional supervision.

CAB(Ours). We apply our attention-level distillation framework to the LLM setting. The student model (Phi-Mamba) is trained in two stages: first aligning the token-wise B, C projections to the teacher's K, Q via layer-mapped MLPs, followed by KL-based soft distillation on teacher logits. Detailed pseudocode for this training process is provided in Algorithm 2.

Algorithm 2: Two-Stage Attention Distillation for Mamba in Language Modeling

Input : Pretrained Transformer teacher \mathcal{T} , Causal Mamba student \mathcal{S} , tokenized dataset \mathcal{D} , total training tokens N , attention distillation loss $\mathcal{L}_{\text{attn}}$, soft distillation loss \mathcal{L}_{KL}

Output: Trained student model S

1 Stage 1: Attention Alignment Phase (first N_1 tokens)

2 **for** each batch $(x, y) \sim \mathcal{D}$ **do**

$\{K^{(l)}, Q^{(l)}\} \leftarrow \mathcal{T}(x); \quad \text{// extract key/query from teacher}$

$\{B^{(l)}, C^{(l)}\} \leftarrow \mathcal{S}(x); \quad \quad \quad // \text{ extract projections from student}$

for *each layer* $l = 1$ **to** L **do**

Compute loss: $\mathcal{L}_{\text{attn}}^{(l)} = \|\phi_B(B^{(l)}) - K^{(g(l))}\|^2 + \|\phi_C(C^{(l)}) - Q^{(g(l))}\|^2$

$\mathcal{C}_{\text{st}} = \frac{1}{n} \sum_{l=1}^L \mathcal{C}_{\text{st}}^{(l)}$ Update student S using $\nabla \mathcal{C}_{\text{st}}$

3. Stage 2: Soft Distillation Phase (continue to N_2 tokens)

8. **Stage 2: Soft Distillation** For

// teacher soft predictions

$$p_T \leftarrow T(x),$$

$$p_S \leftarrow S(x);$$

teacher sort predictions
// student predictions

Compute loss: $\mathcal{L}_{\text{KL}} \equiv \text{KL}(p_T \| p_S)$

Update student S using ∇f_{x_1}

Table 9 summarizes the training configurations for language model distillation. All experiments are conducted using BF16 precision on a single NVIDIA A100 GPU.

Table 9: Training recipe for LLM distillation experiments.

Config	Value
Max sequence length	1024
Batch size	4
Learning rate	2e-5
Optimizer	AdamW
Adam β	(0.9, 0.999)
Adam ϵ	1e-8
Precision	bfloat16 (BF16)
Training tokens	200M (Stage 1) / 2B or 4B (Stage 2)
Loss functions	Attention alignment (Stage 1) + KL divergence (Stage 2)

864 C.3 MODEL ARCHITECTURES
865866 Table 10 summarizes the model architectures. Asterisk (*) marks manually adjusted variants to
867 simulate heterogeneous settings, covering diverse scales across both domains.
868869 Table 10: Detailed architectural configurations of teacher and student models used in our experiments.
870

871 Model	872 d_{model}	873 d_{state}	874 d_{conv}	875 #Layers	876 #Params (M)	877 FLOPs (G)
<i>Vision Models</i>						
Vim-Mini*	96	16	4	12	1.1	0.15
Vim-Mini	96	16	4	24	2.1	0.28
Vim-Tiny*	192	16	4	12	3.8	0.55
Vim-Tiny	192	16	4	24	7.1	1.08
Vim-Small	384	16	4	24	26	4.00
DeiT-Tiny	192	–	–	12	5	1.26
DeiT-Small	384	–	–	12	22	4.61
<i>Language Models</i>						
DistilGPT2	768	–	–	6	88	21.68
Phi-Mamba*	768	64	4	6	123	20.76
Phi1.5	2048	–	–	24	1418	336.11
Phi-Mamba	2048	64	4	24	1521	362.30

890 C.4 TRAINING RECIPE
891892 Tables 11 and 12 summarize our training recipes. Vision uses AdamW with cosine decay on 1–20%
893 ImageNet, while language adopts a two-stage setup: 200M tokens for attention alignment and 2B/4B
894 tokens for CE+KL distillation.
895896 Table 11: Training recipe for visual distillation experiments under different data regimes.
897

898 Config	899 1% Data	900 5% Data	901 10% Data	902 20% Data
Optimizer	AdamW	AdamW	AdamW	AdamW
Learning rate	5e-4	5e-4	5e-4	5e-4
Weight decay	0.05	0.05	0.05	0.05
Training epochs	3000	600	300	150
Optimizer momentum	(0.9, 0.999)	(0.9, 0.999)	(0.9, 0.999)	(0.9, 0.999)
Batch size	64	64	64	64
LR schedule	Cosine decay	Cosine decay	Cosine decay	Cosine decay

903 D DATASETS
904905 In this section, we introduce the datasets used in the paper, including those for visual and language
906 modeling.
907908 **ImageNet-1K (Deng et al., 2009)** is a widely-used large-scale image classification dataset consisting
909 of approximately 1.2 million training images and 50,000 validation images across 1,000 object
910 categories. It serves as a standard benchmark for evaluating the performance of visual recognition
911 models.
912

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 12: Training recipe for language distillation experiments under different token budgets. Stage 1 uses only attention alignment; Stage 2 combines CE and KL distillation.

Config	200M Tokens (Stage 1)	2B Tokens (Stage 2)	4B Tokens (Stage 2)
Optimizer	AdamW	AdamW	AdamW
Learning rate	2e-5	2e-5	2e-5
Warmup ratio	0.1	0.1	0.1
Training objective	Attention alignment	CE + KL loss	CE + KL loss
per device Batch size	32	32	32
Max seq length	1024	1024	1024

OpenWebText (Gokaslan et al., 2019) is a high-quality web text corpus constructed from URLs shared on Reddit posts with high karma. It captures diverse and natural language from the open web, making it well-suited for pretraining large language models.

C4 (Colossal Clean Crawled Corpus) (Raffel et al., 2020) is a large-scale English-language dataset created by filtering and cleaning the Common Crawl web archive. It is designed to provide high-quality, diverse text data for robust pretraining of general-purpose language models.

WikiText (Merity et al., 2016) WikiText is a collection of carefully curated, long-form Wikipedia articles that preserve document-level coherence. It is commonly used for benchmarking language models on tasks requiring contextual understanding and fluency.

E HEATMAP VISUALIZATION

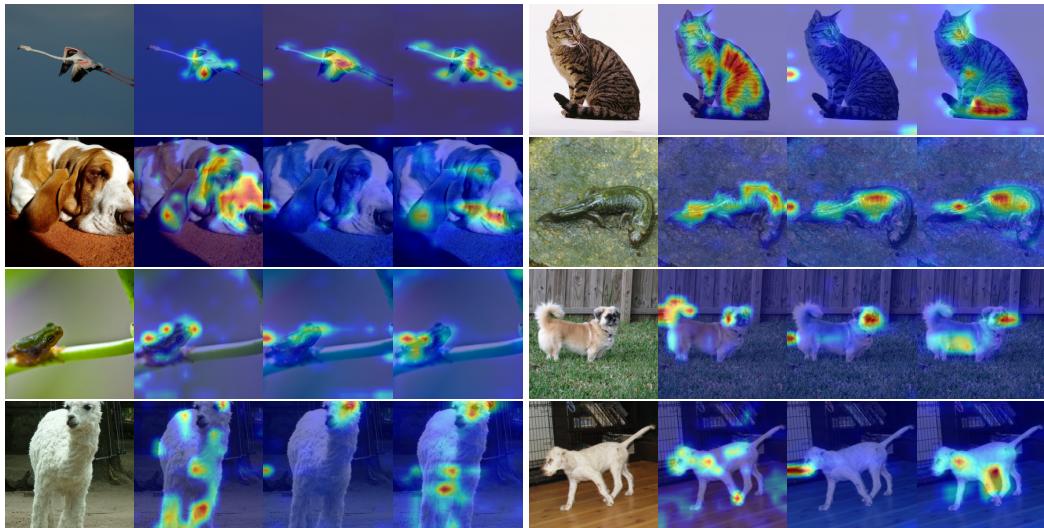
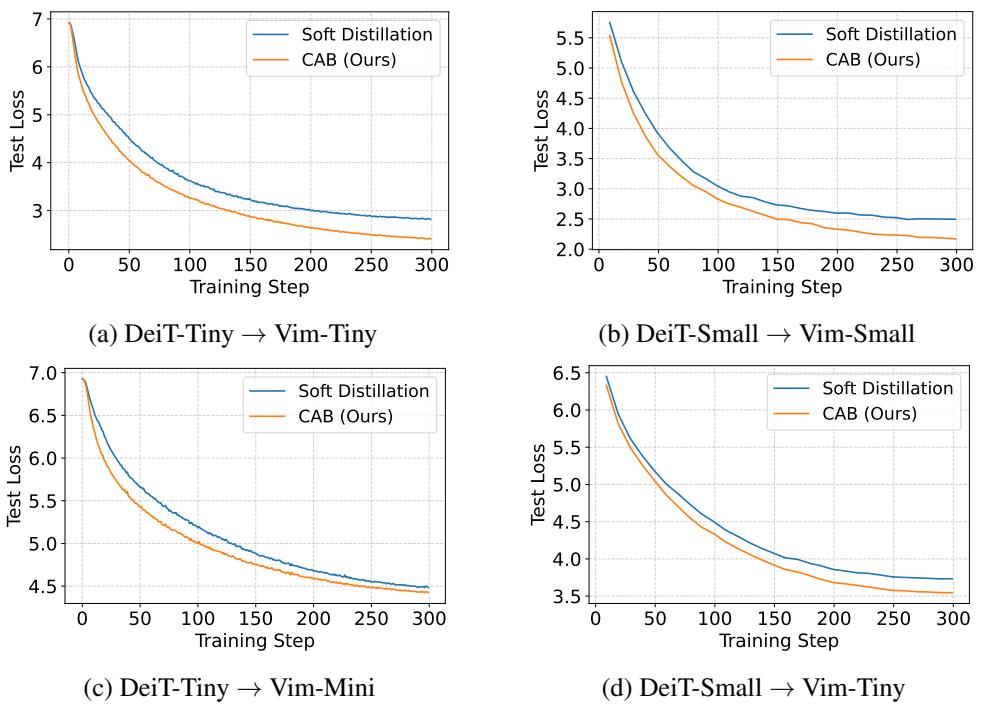
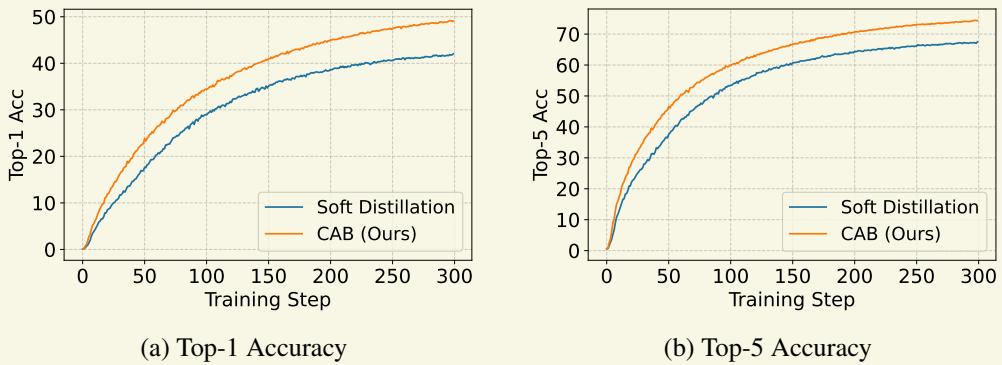


Figure 7: **Visualization of attention heatmaps across teacher and student models.** In each group of images, we show the original image followed by heatmaps generated from: (1) the pretrained ViT teacher, (2) a Vim model trained on the full ImageNet training set, and (3) our Vim student trained with CAB using only 10% of the full ImageNet training set. Despite limited supervision, our method produces more concentrated and semantically meaningful attention responses.

972 F LOSS TRAJECTORIES DURING DISTILLATION
973
974995
996
997
998
999
Figure 8: Test loss trajectories of different teacher-student pairs across training. Each subfigure illustrates the effectiveness of our attention-level distillation under a specific architecture configuration.1000 G ACC TRAJECTORIES DURING DISTILLATION
1001
10021016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Figure 9: Test accuracy trajectories during the distillation process for **DeiT-Tiny → Vim-Tiny** using **10% ImageNet training data**. We report both Top-1 and Top-5 accuracy across training steps, showing that attention-level distillation consistently improves generalization throughout the entire training trajectory.