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Abstract

Spiking Neural Network (SNN), as a brain-
inspired and energy-efficient network, is currently
facing the pivotal challenge of exploring a suit-
able and efficient learning framework. The pre-
dominant training methodologies, namely Spatial-
Temporal Back-propagation (STBP) and ANN-
SNN Conversion, are encumbered by substan-
tial training overhead or pronounced inference
latency, which impedes the advancement of SNN's
in scaling to larger networks and navigating intri-
cate application domains. In this work, we pro-
pose a novel parallel conversion learning frame-
work, which establishes a mathematical mapping
relationship between each time-step of the par-
allel spiking neurons and the cumulative spike
firing rate. We theoretically validate the lossless
and sorting properties of the conversion process,
as well as pointing out the optimal shifting dis-
tance for each step. Furthermore, by integrating
the above framework with the distribution-aware
error calibration technique, we can achieve ef-
ficient conversion towards more general activa-
tion functions or training-free circumstance. Ex-
tensive experiments have confirmed the signifi-
cant performance advantages of our method for
various conversion cases under ultra-low time la-
tency. To our best knowledge, this is the first work
which jointly utilizes parallel spiking calculation
and ANN-SNN Conversion, providing a highly
promising approach for SNN supervised training.
Code is available at https://github.com/
hzcl1208/Parallel_Conversion.
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1. Introduction

Spiking Neural Network (SNN), as the third generation of
neural networks (Maass, 1997), has become an academic
focus in the domain of brain-inspired intelligence. Unlike
traditional Artificial Neural Network (ANN), the network
backbone of SNN is composed of alternating synaptic lay-
ers and neuron layers. Due to the superior biological plas-
ticity and unique firing mechanism of the spiking neuron
models, SNNs have great potential in the field of neuro-
morphic computing and the internal spike triggering events
are extremely sparse. At present, SNNs can be effectively
deployed on multiple neuromorphic hardwares and have
demonstrated significant advantages in inference power con-
sumption (Merolla et al., 2014; Davies et al., 2018; DeBole
etal., 2019; Pei et al., 2019).

How to train effective spiking models remains a core topic
faced by researchers in the SNN community. The current
two mainstream training methods, Spatial-Temporal Back-
propagation (STBP) (Wu et al., 2018; Neftci et al., 2019)
and ANN-SNN Conversion (Cao et al., 2015; Bu et al.,
2022), each have their own advantages and deficiencies,
as described in Tab.1. Among them, one can obtain SNN
models under ultra-low time latency (e.g. < 4 ~ 6 time-
steps) through STBP training, but it requires significant
costs in terms of training speed and GPU memory overhead
(Yao et al., 2022). Therefore, STBP will struggle greatly for
network backbones with larger parameter scale and training
time-steps. In addition, when STBP does not fuse global
information in the time dimension or adopts fewer time-
steps, the performance upper-bound of the trained SNNs
still have a gap with that of the pretrained ANNs (Hao et al.,
2024b).

The idea of ANN-SNN Conversion is to establish a mathe-
matical mapping relationship between the activation layer
of ANNs and the neuron layer of SNN, so as to replace
the activation function modules in pretrained ANNs with
corresponding spiking neurons layer by layer, then obtain
the converted SNNs. Under this learning framework, the
calculation of SNNs only involve the model inference stage,
resulting in less training burden and superior performance
consistent with pretrained ANNs. But the drawback is that
the converted SNN usually requires higher time latency to
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Table 1: Comparison of various supervised learning methods for SNNs.

Method Act. Func. | Train. Free Train. Speed Train. Mem. | Inf. Lat. Inf. Speed Inf. Acc.
STBP Training Surro. Func. X Slow Large Ultra Low Slow Low
. ReLU X Fast Small Ultra High Slow High
ANN-SNN Conversion ) g X Fast Small High Slow High
Conversion Rect. QCFS X Fast Small Low Slow High
. QCFS X Fast Small Ultra Low Fast High
This Work ReLU N/A N/A Low Fast High

reach the ANN-Ievel inference accuracy, especially when
using original ReLU ANN directly as the foundation model
to achieve the so-called training-free conversion (Li et al.,
2021a; Bu et al., 2024). To tackle this problem, researchers
have proposed a series of conversion rectification strategies
from multiple perspectives, further compressing the infer-
ence latency to a small number of time-steps (Wang et al.,
2022; Hao et al., 2023b). In addition, due to the fact that the
converted SNNs obtained from current conversion schemes
are generally based on Integrate-and-Fire (IF) neurons, the
inference process of SNNs are limited by serial calculation,
which further amplifies the harm of time latency.

Recently, parallel spiking neuron (Fang et al., 2023) is fa-
vored by researchers due to its high-speed calculation ability,
but current research around it is generally limited to the field
of STBP Training. In fact, the training precision of parallel
neurons heavily relies on parameter initialization and can-
not effectively contribute to the training memory explosion
problem of SNNGs. Instead, it is likely to play a crucial role
in the conversion series methods with higher time latency.
In this work, we innovatively combine ANN-SNN Con-
version with parallel computing to propose a lossless and
high-speed universal parallel conversion framework. The
specific contributions are as follows:

» We utilize parallel neurons to map the cumulative spike
firing numbers predicted by pretrained ANNs within
a specific time period step by step, and theoretically
prove the lossless property of the above process.

* We derive the step-wise optimal shifting distance and
sorting properties of parallel inference from a math-
ematical perspective, expanding the applicability of
parallel conversion and optimizing its computational
overhead.

* We propose a universal learning framework that can
achieve effective parallel conversion regardless of (i)
the type of activation function used (ii) whether the
simulated and actual time-steps are equal.

» Experiments have demonstrated the superior perfor-
mance of our method for both conventional and
training-free conversion. For example, we achieve a

top-1 accuracy of 72.90% on ImageNet-1k, ResNet-34
within merely 4 time-steps.

2. Related Works

STBP training for SNNs. As a significant learning algo-
rithm that can achieve relatively superior performance for
SNNs within ultra-low time latency, Wu et al. (2018) and
Neftci et al. (2019) integrated Back-propagation through
Time (BPTT) with surrogate gradient to pioneer the con-
cept of STBP. On this basis, researchers have successively
combined STBP algorithm with novel BatchNorm (BN) lay-
ers (Zheng et al., 2021; Jiang et al., 2024), residual blocks
(Fang et al., 2021; Hu et al., 2024), objective learning func-
tions (Li et al., 2021b; Deng et al., 2022; Guo et al., 2022),
multi-dimensional attention mechanisms (Qiu et al., 2024),
Transformer blocks (Zhou et al., 2023; Shi et al., 2024)
and advanced spiking models (Yao et al., 2022; Hao et al.,
2024a), thereby extending SNN models to various appli-
cation scenarios (Ren et al., 2023; Liao et al., 2024; Yao
et al., 2024). In addition, to effectively optimize GPU mem-
ory overhead and power consumption of STBP training,
multiple variant learning frameworks have been further ex-
plored, such as time-based learning (Mostafa, 2017) and
online learning (Xiao et al., 2022). However, at present,
aforementioned schemes still have bottlenecks in learning
performance.

ANN-SNN Conversion. Compared to STBP training, ANN-
SNN Conversion merely needs to replace the activation
function modules of the pretrained ANN model with spik-
ing neurons layer by layer to obtain the converted SNN (Cao
etal., 2015; Diehl et al., 2015; Sengupta et al., 2019), which
not only economizes training load, but also ensures that
the converted SNN has sufficiently superior performance
upper-bound. Rueckauer et al. (2017) and Han et al. (2020)
realized that the soft-reset mechanism is more suitable for
conversion learning algorithms, while Deng & Gu (2021)
proposed a shiftable ReLU function to better adapt the dis-
tribution of the spike firing rate. Based on the above find-
ings, Bu et al. (2022) proposed an advanced quantization
activation function and theoretically validated its ability to
losslessly simulate the average firing rate within any time
latency from the perspective of mathematical expectation.
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However, despite achieving better performance than STBP
within sufficient time-steps for the same network backbone
(Li et al., 2022), converted SNNss still suffer from significant
performance degradation under the condition of ultra-low
latency (Rathi & Roy, 2021). Therefore, subsequent re-
searchers further proposed more radical error rectification
strategies, including setting silent states for specific neurons
(Hao et al., 2023a), calibrating forward temporal bias (Wu
et al., 2024), shifting initial membrane potential (Hao et al.,
2023b), as well as introducing burst and signed spikes (Li
& Zeng, 2022; Wang et al., 2022).

Training-Free Conversion. How to effectively convert un-
processed ANNs into SNNs with the lowest possible time
latency has also become a recent academic focus in the
field of conversion learning. Han & Roy (2020) proposed
a novel Temporal-Switch-Coding scheme to cut down the
time latency and number of addition operations during the
SNN inference stage. From the perspectives of calibrat-
ing bias and initial membrane potential, Li et al. (2021a)
designed two sets of pipelines to further enhance the per-
formance of converted SNNs within dozens of time-steps.
Bu et al. (2024) analyzed the upper-bound of the layer-wise
conversion error, then pointed out a training-free threshold
balancing strategy, which can be applied to various visual
tasks on networks with sequential structure.

3. Preliminaries

Spiking Neuron Models. Leaky Integrate-and-Fire (LIF)
neuron is the most commonly-used spiking foundation
model in the domain of SNN supervised training. Within
a simulation period consisting of T" time-steps, Vt € [1,T],
the LIF neuron will undergo three phases: receiving input
current I'?, firing spikes s, and resetting potential 'vf,;fE,
which can be described in the following equations:

'Ué’RtE — )\l,vl,(t—l) + Il,t’ bt = Ivll”le _ghtgt,
It l
1, vpgg >0

. (D
0, otherwise ¢

Il,t _ WlS(l_l)’ta(l_l), Sl,t _ {

Here 'vf);fE and v!! respectively denote the membrane po-
tential before and after firing spikes. A\ and @' regulate the
potential leakage degree and firing threshold. IF neuron is
a special form of the LIF neuron when \! = 1. W' repre-
sents the synaptic weight. As the spike firing process of the
LIF neuron depends on the value of the previous membrane
potential, the calculation procedure in each layer is serial,
which limits the inference speed of SNNs. To address this
issue, Fang et al. (2023) proposed the concept of parallel

spike computing:

1 0 0

! 1 0

/Ulg’RE = AlIl? Al = : : . :
(2)
Here A/ € RT*T. As the dynamic equation of the

LIF neuron at the ¢-th time-step can also be rewritten as
Ve = v (AN - SN Eish ) when we ig-
nore the influence of the previous spike firing sequence
[sb1, ..., s4(=1D] on the current time-step, the equation will
degenerate into the form of Eq.(2), which can finish the
calculation process of T' time-steps in parallel at once. How-
ever, when A’ is not a small value (e. g Al = 1), the contribu-
tion of the previous spike sequence to the current time-step
(i.e. — 311 (M)~ isb?) cannot be directly ignored, causing
the calculation result of the above parallel scheme to deviate
from that of vanilla LIF neuron. In addition, when A’ is
set as learnable parameters (e.g. in STBP training), some
potential inappropriate values (e.g. Vi, j € [1,T], Aéj < 0)
may lead to the problem of gradient vanishing.

ANN-SNN Conversion. Vanilla conversion methods are
generally based on the approximate linear transformation re-
lationship of the average spike firing rates from pre-synaptic
and post-synaptic layers. Specifically, when we combine
the charging and resetting process as mentioned in Eq.(1),
we will have:

shtgl — Wig(I—Dtgli—1) _ (,vz,t _ )\zvz,(tq)) )

Then, if we consider IF neuron and calculate the average
firing situation along time dimension for both sides of the
equation, we can further obtain:

T = wip=D.T _ M )
T

Here we use r''7 = 327 sb%6! /T to denote the average
firing rate. Bu et al. (2022) further pointed out that when
vh0 = /2 and assuming that the spike sequence is uni-
formly distributed in time dimension, we can utilize the
following Quantization-Clip-Floor-Shift (QCFS) function
to simulate the average spike firing rate within any number
of time-steps:

- ! er(lfl),TT+ wl N
1T .
rOcEs = ?Chp (\‘ o ,0,7 1. (5)

Here T and 1! respectively represents the simulation time
period and shift term in QCFS function. Whether T is
equal to 7" or not, when 7,/1[ = Ql/2, rgng and r’T always
maintain equivalence from the perspective of mathematical
expectation.
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Figure 1: The overall framework of parallel conversion. Here (a) depicts the activation functions in ANNS, (b) shows the
sorting property of parallel spiking neurons in the firing phase, and (c) describes the specific process of parallel inference.

4. Methods

4.1. Establishing an Equivalent Mapping Relationship
between Spiking Parallel Inference and QCFS

For traditional conversion framework, spiking neurons gen-
erally require a higher time latency (i.e. larger T') to make
the error term (v — v"?)/T in Eq.(4) approach zero,
thereby achieving the layer-wise output alignment between
the pretrained ANN and converted SNN. Considering the
inherent serial computing property of LIF neurons, the total
time cost of SNN inference stage will be further exacerbated.
Unlike previous approaches, here we attempt to explore the
mathematical mapping relationship between parallel spiking
neurons and ANN activation functions. Intuitively, a larger
average input current W'r('~1:7 will cause spiking neu-
rons to emit spikes earlier. Therefore, for a QCFS function
with T" quantization levels, at the x-th time-step (z € [1, ),
we will judge whether the total number of firing spikes is
not less than T' — x + 1, as shown in Fig.1-IILIV.

Specifically, we first define a primary parallel conversion
matrix by refering to Eq.(2):

chl 1 0 0

l ch? 11 -0

A= . |@|. . . .| (©)
chT 11 1

To simplify the calculation, we assume that the ratio of the
input current obtained at the z-th time-step is c/"*. Since we
need to determine whether Wr(=1-TT > (T — z + 1)6!

or not at this time-step, we can derive:

z-cbe  Wip=D.T _pl L T
N i —
Wirt-DTT=(T—z+1)¢ a(T—x+1)
@)
Eq.(7) indicates that when W'r(=D:TT > (T — 4 1)6",
we will have Af,’gSTIl > @', then neurons will emit spikes to
the posterior layer; Otherwise, spiking neurons will remain
silent. Therefore, for (T — z + 2)6" > Wir(=D.TT >
(T — x +1)6', spiking neurons will continuously fire spikes
from the x-th step to the 7'-th step, with a total firing count of

T —x+1, which is completely consistent with the simulated
result of the corresponding QCFS ANN.

However, it is worth noting that the calculation in Eq.(7) is
based on the assumption that the input current completely
follows a uniform distribution (i.e. Vo € [1,7],1v% =
er(l’l)’T). From the above analysis, one can find that the
spike sequence transmitted from the [-th layer to the [ + 1-th
layer [s"1, ..., s"T] clearly does not satisfy the condition of
uniform distribution. To effectively regulate the distribution
of the input current layer by layer, we introduce the concept
of conversion premise controling matrix: AL, = % ‘1,1 ¢
RTXT a5 shown in Fig.1-11.

For each layer in the converted SNN, the input current is
first projected into a uniformly distributed state through
AL, and then transformed into a spike sequence consistent
with the ANN prediction through Al and parallel spiking
neuron. We perform re-parameterization fusion for Al
and Al to obtain the final parallel conversion matrix Al:
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Next, we will consider the transformation towards the shift
term in QCFS function (Fig.1-I). For multi-step parallel
inference, ¢! plays a role similar to the initial membrane
potential, but the contribution of v to different time-steps is
obviously various. We theoretically prove the optimal value
of the shift term, which can achieve lossless conversion
from QCFS function to SNN parallel inference:

Theorem 4.1. For a T-steps parallel inference in the l-th
layer, we use bt to denote the corresponding shift term, here
b! € R”. When the pretrained ANN adopts QCFS function
in Eq.(5), for the following cases, we will derive the optimal

L
value of the shift term: bt = {‘Z’% %:_1 1/11 .

() IfT = T, then~we have r\T = rﬁj&s-
(i) If T # T and o' 0'/2, then we have

1T LT _
E (r — rQCFS> =0.

4.2. Towards Universal Conversion Error Rectification

Theorem 4.1(ii) indicates that under the condition of receiv-
ing uniform data distribution, even if the simulated time
latency T is not equal to the actual inference latency 7,
from the perspective of mathematical expectation, the con-
version error can still be cut down to zero. However, on
the one hand, the input data may not necessarily follow
a uniform distribution in reality; on the other hand, there
may be significant distribution gap across different chan-
nels. Therefore, to further rectify the conversion error under
arbitrary data distribution and time latency, we propose a
Distribution-Aware QCFS (DA-QCFS) function:

- I 4l 1.(1=1), T 1 T l B
T — ¢ +fbDA Clip(\\(w r +pa) T+ J ,O,T).

DA o!
©))

Here 1}, b, € RY, which are the learnable shifting and
scaling factors of DA-QCFS function (C denotes the total
number of channels). For each layer, along the channel
dimension, we respectively calculate the mean conversion
errors ehy ., eb. ¢ before and after the activation function,
which are then used to update ¢, , v}, iteratively. The
overall learning process of ¢h,, 1L, adopts the idea of
greedy algorithm. The goal of each iterative update is to
make the distribution of the average firing rate during ac-
tual inference closer to the distribution simulated by the
pretrained ANN, thereby reducing the precision loss when
converting from the original model.

Subsequently, we can also losslessly convert DA-QCFS
function into parallel spiking neurons. The specific process
has been described in Algorithm 1.

Algorithm 1 The overall pseudo-code for universal parallel

conversion

Require: Pretrained ANN model fann with L layers; orig-
inal activation function (QCFS or ClipReLU) g}, ()
and layer-wise output r},; actual activation function
(DA-QCFS) gk, (-) and layer-wise output rf)’i; cali-
bration dataset D; mean function along the channel
dimension y(+); learning momentum c.

Ensure: Converted Parallel SNN model fsnn.
# Stage I: Parameter Initialization
for! =1to L do

fANN~g1l)A~9l = fANN~96A~9l

fann-Uh, =0
SaNN-@hs =0
end for

# Stage II: Layer-wise Error Calibration
for (Image, Label) in D do
for! =1to Ldo - T
-1 -1),
ef’RE =K (erOA - VVerA )
SaNNPhy = - faNN-Vha + (1 — @) - €y
Refering to Eq.(5) and Eq.(9), calculate the origi-
nal and actual activation output r , , rgi through
fanN-g6a(-) and faNN-gha(-)
1T
ef’OST =p rlOA —Tpp
SANN-Ohs = @ fann-dha + (1
end for
end for
# Stage III: Parallel Conversion
for! =1to Ldo

fort =1toT1 do g L
Joun Bl = Sy o+ Doy

- O‘) : ef>05T

end for
Ssnn-Wh = fann W/
Set fsnn-Ab. according to Eq.(8)
fsnn-Oige = fann-gha 0"
SsnN-Obost = FANN-Gha-0" + fanN-Oba
end for
# Stage IV: Parallel Inference
forl=1toL,t=1toT do
I = foun-W'sCD fonn Oibsr”
if fSNN.Af,CIl + fSNN.bl > fSNN.Hf,RE then
Fire spikes: s' = 1
else
Keep slient: s' = 0
end if
end for
Return fsnn (W, A, b, Opres, Opost)-

It is worth noting that the above algorithm is also applicable
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Table 2: Detailed experimental configuration for universal parallel conversion framework.

Conversion Cases | Need Thre. Rec. Need Calib. | Al_..shape bl.shape 6. .shape 6! . .shape
QCFS (T'=1T) X X (T,T] T,] scalar scalar
QCEFS (T # T) X [T, T] [T, C] scalar [C)]

ReLU [T,T] [T,C] [C,] C,]

to the training-free conversion for pretrained ReLU ANNGs.
Compared to QCFS ANN family, which is specifically de-
signed for conversion learning, a large number of models in
the ANN community are typically based on vanilla ReLU
function. The data distribution based on ReL.U is more irreg-
ular and has a larger numerical range, which is more difficult
to achieve precise conversion under low time latency. Here
we propose a three-stage training free conversion frame-
work:

* From ReLU to ClipReLU. For each layer, we
utilize the calibration dataset to record the histor-
ical maximum activation value within each chan-
nel, then set it as @' to achieve the transformation
from ReLU(-) = max(0,-) to ClipReLU(-,0,6') =
min (max(0, -), 6').

* From ClipReLU to DA-QCFS. As shown in Algo-
rithm 1, for the specified inference time 7', we will
replace ClipReLU (set as g, ) with T-level initialized
DA-QCFS (set as gh,). Due to the fact that the ac-
tual data distribution may be irregular, then we adopt
layer-wise error calibration to enhance the inference
performance within 7" time-steps as much as possible.

* From DA-QCES to parallel spiking neuron. Specif-
ically, as illustrated in Algorithm 1, ¢}, and ' can
be merged together in the bias term; for ¢, , we can
achieve mathematical equivalent mapping by setting
pre-threshold 6., and post-threshold 6. ;.

Overall, we utilize a unified foundational framework for pre-
trained ANNs based on QCFS (T’ = T, T # T) or ReLU,
with the only difference being whether additional threshold
recording (ReLU — ClipReLU) and error calibration stages
(ClipReLU/QCFS — DA-QCFS) are introduced. Among
them, threshold recording has no accuracy loss on the cali-
bration dataset, error calibration aims to reduce the error to
zero from the level of mathematical expectation, while par-
allel conversion is completely lossless for any data distribu-
tion. The detailed comparison of the above three conversion
cases has been listed in Tab.2.

4.3. Optimizing the Calculation Overhead of Spiking
Parallel Inference

In the previous discussion, we have pointed out that for
the parallel conversion matrix in Eq.(8), the calculation
intention of Af,g is to determine whether the total number
of firing spikes within 7' time-steps is not less than 7" —
x + 1. That is to say, if parallel neurons emit spikes at
the z-th step, they will continue to emit spikes from the
x + 1-th step to the T-th step. Therefore, to further optimize
the computational overhead and inference speed, we can
leverage this sorting property and apply the binary search
technique in the parallel inference stage.

Specifically, under the initial state, we respectively set lower-
bound and upper-bound pointers ptrlL, ptrfJ for the search
interval, where ptrl = 1, ptrfJ = T'. In each subsequent

ptr{ +ptr}
2

search, we select the mid = L J—th step and calcu-

late ALl 4 plmid [f glmid — 1 the next search interval
will be squeezed to [ptr! , mid], otherwise it will be updated
to [mid + 1, ptrﬁ}. Finally, we will derive the time-step tpy
at which the first spike is emitted. Then, we can directly
set shtmiT = 1 ghlitm—1 — O and transmit it to the next
synaptic layer.

In addition, during the actual inference process, we can
T
e T ...,T} ® Wie(l=D.T rather than

AL I, Obviously, the above schemes are computationally
equivalent, but the Hadamard product can further reduce the
total number of charging operations from O(7?) to O(T)).

choose |1

Overall, by combining the above two optimization tech-
niques, compared to vanilla LIF neuron, we can achieve
the calculation of charging phase within O(T") and derive
the complete spike firing sequence within only O(logT'),
without the need for additional reset phase.

5. Experiments

Consistent with previous conversion learning works, we con-
duct performance validation on CIFAR (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009) datasets by using
two types of network backbones, VGG (Simonyan & Zis-
serman, 2014) and ResNet (He et al., 2016). We selected
multiple methods including STBP Training (Li et al., 2021b,
Dspike; Guo et al., 2022, RecDis; Yao et al., 2022, GLIF;
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Table 3: Comparison of previous state-of-the-art learning methods. { denotes adopting the error calibration technique.

Dataset Method Type ANN Acc.(%) Arch. T SNN Acc.(%)
OPT ANN-SNN Conversion 93.51 VGG-16 32 88.79
QCFS  ANN-SNN Conversion 95.52 VGG-16 2,4,8 91.18, 93.96, 94.95
SNM Conversion Rect. 94.09 VGG-16 32 93.43
CIFAR-10 SRP Conversion Rect. 95.52 VGG-16 6 (4+2) 94.47
Ours Parallel Conversion 95.43 VGG-16 2,4 94.16, 95.50
QCFS ANN-SNN Conversion 91.77 ResNet-20 2,4, 8 73.20, 83.75, 89.55
SRP Conversion Rect. 91.77 ResNet-20 6 (4+2) 88.73
Ours Parallel Conversion 91.67 ResNet-20 2,4 87.42, 91.58
OPT ANN-SNN Conversion 70.21 VGG-16 32 56.16
QCFS  ANN-SNN Conversion 76.28 VGG-16 2,4,8 63.79, 69.62, 73.96
SNM Conversion Rect. 74.13 VGG-16 32 71.80
CIFAR-100 SRP Conversion Rect. 76.28 VGG-16 6 (4+2) 74.31
Ours Parallel Conversion 76.11 VGG-16 2.4 72.71,75.98
QCFS ANN-SNN Conversion 69.94 ResNet-20 4,8,16 34.14,55.37,67.33
SRP Conversion Rect. 69.94 ResNet-20 6 (4+2) 53.96
Ours Parallel Conversion 69.57 ResNet-20 4,8 65.31, 69.62
OPT ANN-SNN Conversion 72.40 VGG-16 32 54.92
QCFS  ANN-SNN Conversion 74.29 VGG-16  8,16,32 19.12,50.97, 68.47
SNM Conversion Rect. 73.18 VGG-16 32 64.78
Burst Conversion Rect. 74.27 VGG-16 32 70.61
COS Conversion Rect. 74.19 VGG-16 10 (8+2) 70.59
Ours Parallel Conversion 74.23 VGG-16 4,8,16  71.23,73.92,74.26
Ours' Parallel Conversion 74.23 VGG-16 4 71.75
TmageNet- 1k RecDis STBP Training - ResNet-34 6 67.33
Dspike STBP Training - ResNet-34 6 68.19
GLIF STBP Training - ResNet-34 4 67.52
TAB STBP Training - ResNet-34 4 67.78
OPT ANN-SNN Conversion 70.95 ResNet-34 64 59.52
QCFS  ANN-SNN Conversion 74.32 ResNet-34 8, 16,32 35.06, 59.35, 69.37
COS Conversion Rect. 74.22 ResNet-34 10 (8+2) 72.66
Ours Parallel Conversion 74.30 ResNet-34 4,8 67.28,74.32
Ours' Parallel Conversion 74.30 ResNet-34 4 72.90

Jiang et al., 2024, TAB), ANN-SNN Conversion (Deng
& Gu, 2021, OPT; Bu et al., 2022, QCFS), Conversion
Rectification (Li & Zeng, 2022, Burst; Wang et al., 2022,
SNM; Hao et al., 2023a, SRP; Hao et al., 2023b, COS), and
Training-Free Conversion (Li et al., 2021a, SNNC; Bu et al.,
2024, TBC) as comparison targets. The detailed experimen-
tal configuration is provided in Appendix.

5.1. Comparison with Previous state-of-the-art Works

In Tab.3, we choose QCFS ANNS as the pretrained base
models, and the hyper-parameter settings of QCFS func-
tion are the same as (Bu et al., 2022) (T = 8 for CIFAR-
100/ImageNet-1k, ResNet-20/34; T = 16 for ImagNet-1k,
VGG-16; T = 4 for the remaining cases). One can note
that when the inference latency 7' is equal to the simulation
latency T, the performance of converted SNNs is generally

at the same level as that of the corresponding ANNs. When

T<T, especially for complex datasets and deeper network
backbones, the additional utilization of layer-wise error cali-
bration will further enhance the performance of SNNs under
ultra-low latency.

Compared with other types of learning methods, our ap-
proach has achieved significant advantages, even surpassing
the memory-hungry STBP methods, which means that the
parallel conversion scheme may open up a third path for
the domain of SNN supervised learning besides STBP and
ANN-SNN Conversion. For instance, we achieve 73.92%
for ImageNet-1k, VGG-16 within 8 time-steps, which ex-
ceeds the performance of COS (T = 10) by 3.33% and is at
least 3.31% higher than the reported accuracies of remain-
ing methods even if extending the inference latency by 4 x
(i.e. T = 32).
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Table 4: Comparison of training-free conversion algorithms on ImageNet-1k dataset. T denotes utilizing fine-tuning training.

Method Arch. ANN Acc.(%) T=28 T =16 T =32 T =064
TBC ResNet-18 69.76 ; - 50.65 (-19.11)  64.79 (-4.97)
SNNC-LP  ResNet-34 75.66 - . 50.21 (-25.45)  63.66 (-12.00)
SNNC-AP!  ResNet-34 75.66 - - 64.54 (-11.12)  71.12 (-4.54)
TBC ResNet-34 73.31 - - 59.03 (-14.28)  70.47 (-2.84)
ResNet-18 69.76 55.18 (-14.58) 66.26 (-3.50) 69.05 (-0.71)  69.54 (-0.22)
Ours ResNet-34 7331 50.67 (-22.64)  68.04 (-527)  72.46 (-0.85)  73.03 (-0.28)
ResNet-50 76.12 64.16 (-11.96)  73.59 (-2.53)  75.71 (-0.41)  76.04 (-0.08)
ResNet-101 77.38 60.59 (-16.79) 73.86 (-3.52)  76.42 (-0.96)  77.01 (-0.37)
030 [ — par.alle.:l inference (this work) 35 06 35
[ serial inference (IF Neuron) 30 0.5
2025 2 g 30%
%020 25‘; % 04 zscg
;‘;015 20'§ ;:0.3 zog
£o.10 158 E02 158
0.05 10 0.1 10
wo I IO |
T=8 T=16 T=32 T=064 ’ T=8 T=16 T=32 T=64
(a) ResNet-18 (b) ResNet-34
0.8
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=06 17'5@ 2 1.25 202
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§04 125';‘5; 2&075 15"“2
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(c) ResNet-50

= T=l6 T=32 T=64

(d) ResNet-101

Figure 2: Comparison of parallel and serial inference speeds on ImageNet-1k dataset.

5.2. Performance Validation of Training-Free Parallel
Conversion

We further investigate the parallel inference capability of
our method under the condition of training-free conversion,
as illustrated in Tab.4. One can find that our method can
reduce the accuracy loss of conversion learning to < 1%
within 32 time-steps and achieve better performance than
previous schemes with only half of their inference latency.
For example, we achieve accuracies of 66.26%(68.04%) on
ResNet-18(34) within 16 steps, which exceeds the corre-
sponding results of TBC within 32 steps by 15.61% and
9.01%, respectively. In addition, it is worth noting that
even if the number of network layers increases to over 100
(e.g. ResNet-101), our training-free conversion framework
can also rapidly squeeze the accuracy loss within the same
time latency, preventing the conversion error from being
exacerbated as the network becomes deeper.

5.3. Analysis of Parallel Inference Speed

As illustrated in Fig.2, we compare our parallel inference
with the serial inference based on vanilla IF neuron. One can
note that our scheme generally achieves 19 ~ 38 x acceler-
ation ratio when 7' > 32, even for the very deep network
backbone (> 100 layers). It is worth noting that the con-
version error may be further amplified for complex network
backbones or task scenarios, which leads to more severe
time latency and performance degradation. Therefore, if
we respectively consider the converted SNNs after adopt-
ing our method and traditional conversion framework at the
same performance level, the actual advantages we achieve
in terms of inference speed will become more remarkable.
More experimental results can be found in Appendix.
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6. Conclusion

In this paper, we propose a novel concept of parallel conver-
sion and theoretically establish its mathematical equivalent
relationship with the general activation function modules.
Extensive experiments have validated that our scheme out-
performs existing routes in SNN supervised learning in
terms of inference performance and speed, which provides
a brand-new approach for obtaining efficient SNN models.
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A. Appendix
A.1. Proof of Theorem 4.1

Theorem 4.1. For a T-steps parallel inference in the l-th layer, we use bl to denote the corresponding shift term, here
b! € RT. When the pretrained ANN adopts QCFS function in Eq.(5), for the following cases, we will derive the optimal
T

value of the shift term: bl = [w% e Tilﬂ e 1/)1}

(i) If T = T, then we have r"" = rSCCFFs~

(i) If T # T and ¢! = 6' /2, then we have E (rl>T — rlQ@Fs) =0.

Proof. (i) For I' = W'r(=D-TT € [k6' — ¢!, (k+ 1)0' — ') ,Vk € [1,T], from Eq.(5) we can derive that rldg};s =
k6T

When we consider s' = (Af,CIZ + bl > 91) , we will have:

11 1 !
U U i I
Sl — T-—l T.—l T__l Il + T—1 Z el
11 1 d;z
T T
T - P! !
=(|1. —— ... T wip(=1.T R T /L I S1
([ T—a+1 ] O W A e T 1

Combining with Wir(t=D.T ¢ [’“"l;wl 7 (’““)Tel_wl ), we further have:

ko' ko' 0" Lt [ (D)8 (k +1)6" 0"
{T i k@] < ALI +b' < { - i (k+1)0}
sl= (ALl +bl >60)=s'=[0---1---1]" (S2)

firing k spikes
: : : LT LT l
Finally, we will derive r** = TOcEs = k6'/T.

(i1) Since QCFS function has the property of E (rgng — rgng) = 0 when ¢! = ¢ /2, as mentioned in (Bu et al., 2022),
combining with the conclusion of (i), we can have:
1T 1,7 - 1T 1, T 1,T 1,7 o o
E (r — rQCFS) =E (r — rQCFS) +E (rQCFS — rQCFS> =0+0=0. (S3)
Among them, r'"T — rggps maintains lossless conversion under any precondition, while rggzs — rldng needs to

satisfy the assumption mentioned in (Bu et al., 2022) that the input current follows a uniform distribution within multiple
sub-intervals. O

A.2. Detailed Experimental Configuration

For pretrained QCFS ANN models, we use SGD optimizer (Bottou, 2012), the optimization strategy of Cosine Anneal-
ing (Loshchilov & Hutter, 2017) and data augmentation techniques (DeVries & Taylor, 2017; Cubuk et al., 2019), the
corresponding hyper-parameter settings are: 1r = 0.1,wd = 5 x 10~ for CIFAR-10, 1r = 0.02,wd = 5 x 10~ for
CIFAR-100 and 1r = 0.1, wd = 1 x 10~* for ImageNet-1k. The specific network structure is consistent with (Bu et al.,
2022). Regarding the error calibration technique, we utilize the training dataset as the calibration data to iterate for 1 epoch.
The learning momentum « mentioned in Algorithm 1 is set to 0.99.

For ReLLU ResNet family in Tab.4, we replace all ReLU modules except for Stem with ClipReLU, DA-QCEFS, and parallel
spiking neurons in sequence. The inference speeds in Fig.2 and Fig.S1 are measured on a single NVIDIA RTX 4090 GPU.
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Figure S1: Comparison of parallel/serial inference speeds and performance on QCFS ANN models.

Among them, the inference speed of IF neuron is calculated on a subset of the test dataset (1000 images). In addition,
experimental results reported in Tab.4, Fig.2 and Fig.S1 utilize O(T") acceleration optimization in the charging phase.

A.3. Comprehensive Analysis based on Inference Speed and Performance

As shown in Fig.S1, we make a comprehensive comparison between parallel and serial inference in terms of speed and
learning accuracy. The serial inference performance under the QCFS conversion framework utilizes the accuracies reported
in (Bu et al., 2022). For relatively simple cases (i.e. CIFAR-100 dataset), IF neuron requires approximately 4 x time latency
of parallel conversion to reach the comparable accuracy, which makes our method achieve 15 ~ 23 x actual acceleration
ratio.

For more complex scenarios (i.e. ImageNet-1k dataset), the ratio of time latency between IF neuron and parallel spiking
neuron at the same performance level will further increase. Considering that our scheme can ensure lossless conversion
within a specific time latency, this may lead to greater potential for parallel conversion in more challenging cases.

13



