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ABSTRACT

Network pruning has emerged as an effective technique for reducing the size and
computational complexity of neural networks, thereby addressing the challenges
of deployment on resource-limited devices. However, existing pruning criteria are
predominantly based on handcrafted heuristics or calculated statistics, hindering
their generality and effectiveness. In this paper, we reveal that masked autoencoder
(MAE) can exploit the hidden semantic information within structured parameters,
thereby functioning as a learnable pruning criterion. Specifically, to address the
dimension inconsistency problem between layers, we propose a parallel training
pipeline, facilitating stable and efficient MAE training on weight matrices. Based
on the ’harder-reconstructed-more-important’ assumption, we explore diverse prun-
ing strategies and formulate structured pruning as a sample-without-replacement
problem that strikes a balance between algorithm complexity and performance.
Extensive experiments on benchmark datasets, including CIFAR-10 and ImageNet,
demonstrate that our method can efficiently compress both convolutional neural
networks and transformers. Furthermore, the trained MAE exhibits transferability
across various structures and datasets, avoiding repetitive training from scratch
and highlighting its potential as a universal pruning criterion. To the best of our
knowledge, this is the first work that establishes a connection between structured
pruning and self-supervised learning.

1 INTRODUCTION

Deep Neural Networks (DNNs) have revolutionized computer vision in recent years, achieving
state-of-the-art performance in a wide range of tasks, including image classification, object detection,
and semantic segmentation He et al. (2015); Zhao et al. (2018); Shelhamer et al. (2014). However, the
remarkable success of DNNs, whether convolutional neural networks (CNNs) or Vision Transformers
(ViTs), comes at the cost of increased computational complexity and memory demands, making it
arduous for deployment on resource-constrained devices. To address this challenge, network pruning
has emerged as a prominent technique aimed at reducing their size and computational complexity. As
explored in prior works Lin et al. (2020); He et al. (2020a); Li et al. (2021), network pruning seeks to
identify and remove nonessential parameters while maintaining accuracy.

In the realm of network pruning, structured pruning has gained significant prominence owing to its
compatibility with hardware infrastructure. However, existing structured pruning methods typically
rely on handcrafted heuristics or calculated statistics to identify the importance of filters. Taking the
structured pruning on CNNs for instance, ASFP He et al. (2020b) adopts norm-based criteria for
importance evaluation and discards the unimportant weights. Although straightforward, it fails to
consider the inter-filter relationships and thus lacks efficiency. ThiNet Luo et al. (2017) measures the
reconstruction error between the original feature maps and those generated by the pruned networks,
yet it requires iterative data propagation, posing challenges in terms of transferability and deployment.
Consequently, these criteria suffer from limited effectiveness and may exhibit poor generalization
across diverse tasks and network architectures.

Given the current context, it is crucial to explore a feasible criterion that can provide importance
evaluation both spontaneously and without explicit reliance on quantitative data. In this paper,
we delve into this issue and propose a novel pruning method based on the masked autoencoder
(MAE), dubbed as MAEP, to fully exploit the intrinsic correlations among learned parameters.
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By connecting the importance evaluation with masked image modeling (MIM), we can uncover
the semantic information concealed within structured parameters via MAE. Specifically, we first
flatten and pad the weights from each layer to a 2D matrix. The randomly masked 2D matrix is
then forward propagated by MAE to reconstruct the original one, where the obtained gradient from
each thread is further aggregated to update MAE. With such an efficient training pipeline, we solve
the inconsistent dimension issue of different layers, allowing MAE to be trained on the learned
parameters of the unpruned network in a batch-wise, parallel manner for faster convergence and better
generalization. Once trained, we search for the subsets in each layer that are the most challenging
to reconstruct, indicating the most critical ones for preservation. Moreover, leveraging the variable-
length input characteristic of MAE, we propose a novel strategy regarding pruning as a sample-
without-replacement problem to achieve a better trade-off between performance and complexity.
Consequently, the trained MAE can automatically discriminate the importance, either jointly or
individually, serving as a better indicator to guide pruning. In contrast to existing reconstruction-
based methods Jiang et al. (2018); Zhuang et al. (2018); Chatzikonstantinou et al. (2020), our approach
is data-free and computationally efficient, obviating the need for external data or time-consuming
iterative processes. Extensive experiments on several benchmark datasets, including CIFAR-10
and ImageNet, demonstrate that our proposed method outperforms state-of-the-art pruning methods
regarding both compression ratio and accuracy retention. Further experiments show that the trained
MAE can transfer across different structures, even datasets, which suggests its probability to function
as a universal pruning criterion.

In summary, our main contributions can be summarized as follows:
• A new insight. We build the bridge between pruning and self-supervised learning

through masked image modeling on structured weights in networks. Based on the ’harder-
reconstructed-more-important’ assumption, we reveal that a well-trained MAE can be an
efficient pruning criterion.

• Efficient training pipeline. To address the variable shapes of weight matrices from each
layer, we propose an efficient training pipeline for MAE, enabling batch-wise, parallel
training to enhance both its performance and stability. We visually illustrate the minor
differences between reconstructed weights and their originals, demonstrating MAE’s ability
to uncover hidden semantic information. We further unveil the linear relationship between
MAE’s performance and the pruned model’s accuracy, assisting us to further enhance
algorithmic efficiency.

• Pruning strategy exploration. Based on the trained MAE, we explore diverse possible
strategies to prune the network. By formulating pruning as a sample-without-replacement
problem, it can balance between performance and computational efficacy.

• Comprehensive experiments. Experiments on CIFAR-10 and ImageNet datasets with
various structures, including CNNs and ViTs, demonstrate that MAEP can achieve the best
trade-off between accuracy and FLOPs compared with other state-of-the-art techniques.
Furthermore, the trained MAE demonstrates transferability across different structures, even
datasets, highlighting its potential as a versatile criterion.

2 RELATED WORK

2.1 EVALUATION METRICS FOR PRUNING

Structured pruning aims to identify unimportant structural components by an appropriately defined
criterion. Existing pruning criteria can be broadly categorized into two types: hand-crafted heuristics-
based and statistic-based. Handcrafted heuristics-based methods typically rely on predefined rules or
metrics for identification, e.g., the magnitude of weights or influence on the final loss. Norm-based
pruning methods, which remove the filters with the smallest ℓ1-norm Li et al. (2016) or ℓ2-norm He
et al. (2020b) by assuming that a smaller norm leads to less contribution to the final output, are among
the most widely used. These methods assume that smaller norms lead to less contribution to the final
output. In contrast, statistic-based methods, also known as data-driven pruning methods, leverage
statistics derived from intermediate outputs or gradients to evaluate importance, thereby enabling
more accurate and generalizable pruning decisions. For instance, the APoZ Hu et al. (2016) measures
the fraction of input samples that a channel’s activations are zero, which correlates well with the
importance of the channels. Inspired by the discovery that the average rank of multiple feature maps
generated by a single filter is always the same, HRank Lin et al. (2020) prunes filters with low-rank
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feature maps based on the principle that low-rank feature maps contain less information. Although
statistic-based methods may excel in generalizability, they usually require substantial additional
computation and data to complete the evaluation process.

2.2 RECONSTRUCTION-BASED PRUNING

Reconstruction-based pruning leverages the concept of reconstruction, which typically involves
calculating the reconstruction error to determine which filters are important for pruning. Among these
methods, ThiNet Luo et al. (2017) is a groundbreaking approach that calculates the reconstruction
error between the pruned and original networks. NRE Jiang et al. (2018) proposes layer-wise pruning
by minimizing the reconstruction error in nonlinear units since the error can change significantly
before and after activation. DCP Zhuang et al. (2018) proposes a reconstruction-based method
similar to that of ThiNet, which considers the discriminating ability of each channel to determine its
importance for pruning. Alternatively, HOS Chatzikonstantinou et al. (2020) employs an auxiliary
reconstruction loss at the output of the network and intermediate layers for fine-tuning, rather than
for guidance in pruning. In summary, reconstruction-based methods can accurately identify the
importance of individual filters. However, these methods involve multiple forward and backward
passes through the network for each iteration of pruning, making them computationally expensive.

2.3 APPLICATION OF MASKED AUTOENCODER

Masked autoencoder (MAE) He et al. (2021) is a self-supervised learning technique in computer
vision that masks random patches of an input image and reconstructs the missing pixels. Various
studies have explored MAE’s application in different tasks over the years. For instance, VideoMAE
Tong et al. (2022) proposed an efficient method for self-supervised video pre-training with customized
video tube masking, which can extract more effective video representations during the pre-training
process. Point-MAE Pang et al. (2022) investigated the performance of MAE in point cloud self-
supervised learning, addressing the challenges posed by point cloud’s properties, including leakage of
location and uneven information density. Nevertheless, MultiMAE Bachmann et al. (2022) extends
MAE to the multi-modal concept, where the training objective includes predicting multiple outputs
besides the RGB image, ensuring tractability as well as cross-modality predictive coding. Our MAEP
explores MAE’s potential in pruning by viewing pruning as a self-supervised learning task, which
can also be regarded as a special application of MAE.

3 THE PROPOSED METHOD

3.1 PRELIMINARIES

In this section, we formally introduce the symbols and notations.

Masked Autoencoder. Masked Autoencoder is a self-supervised learner that has an asymmetric
encoder-decoder architecture, with an encoder that operates only on the visible patches (without
mask tokens), along with a lightweight decoder that reconstructs the original image from the latent
representation and mask tokens. Given an input image xi ∈ R3×H×W , it is first divided into non-
overlapping patches. Then a subset of patches is sampled and the remaining ones are masked (i.e.,
removed). The remaining patches are first embedded by a MLP (MultiLayer Perceptron) and then
processed via a series of Transformer blocks to obtain the tokens. The positional embeddings are
added to all tokens to make them be aware of the location information in the image. Similarly, the
decoder comprises another set of Transformer blocks and a linear projection that decodes the tokens
to the pixel level. Then it is reshaped and reconstructs the input by predicting the pixel values for
each masked patch.

Structured Pruning. A deep convolutional neural network (CNN) can be represented by Wi ∈
RNi

out×Ni
in×si×si for 1 ⩽ i ⩽ L, where L denotes the total number of convolutional layers in the

network. Here, N i
out and N i

in refer to the output channels and input channels, respectively, for the
i-th convolution layer, while si denotes the size of the convolution kernel. Assume the pruning
rate of the i-th layer is pi, the number of filters decreases from N i

out to N i
out × (1 − pi). Given a

dataset D with N samples denoted as D = {xi, yi}Ni=1 and a sparsity level k (i.e., the total number
of remaining filters in the pruned network). Structured pruning for CNNs aims to find a compact
subset W

′
from W that minimizes the test loss, which can be formulated as:
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Figure 1: Workflow of the overall training pipeline. In each iteration, the weights from various
convolutional layers are randomly assigned to each thread, where a sequence of operations is
conducted to reconstruct the original weights. More specifically, filters from each layer are flattened,
padded, and repeated to form a batch, which is then forward propagated with MAE for reconstruction
to obtain the calculated gradient. Finally, gradients from each thread are aggregated to update MAE.
(Best viewed in color.)
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where ℓ(.) is the loss function (e.g., cross-entropy loss for image classification). W
′

represents the
filter set of the pruned network. It’s worth noting that while we use CNN as an example, the principles
of structured pruning apply similarly to transformer-based architectures.

3.2 MAE AS AN IMPORTANCE INDICATOR

3.2.1 EFFICIENT TRAINING PIPELINE OF MAE

In this subsection, we demonstrate the details of our proposed training pipeline, as depicted in Fig 1.
Based on the reconstruction ability of MAE, our objective is to reconstruct filters within CNNs (or
MLPs in the case of ViTs, with CNNs used here for ease of explanation). To accomplish this, we
first flatten each convolutional filter in Wi to 2D dimension such that W f

i ∈ RNi
out×leni , where

leni = N i
in×si×si. Each row can be viewed as an image patch in the original setting of MAE. Then

mi% of the rows are masked, and the unmasked parts are sent to the MAE to obtain the reconstructed
filter matrix.

Although it is possible to train a personal MAE for each convolutional layer, the total training
cost is negligible. Besides, such personal MAE may overfit to a certain layer, therefore be biased
toward it. However, the shape of the weight matrix from each layer is distinct, e.g., the number of
rows and columns are different. It is impossible to train a generalized MAE directly across layers.
Therefore, we propose a suitable training pipeline to update our MAE. To first address the mismatch
in columns, we pad each row in W f

i with zeros to the maximum length lenmax in the network,
where lenmax = max {len1, len2, . . . , lenL}. Then we repeat the padded matrix for b times and use
different masks with the same mask ratio mi in each sample, where b denotes the batch size and
W fm

i ∈ Rb×Ni
out×lenmax . This enables us to train in a batch-wise manner.

As N i
in increases when the network goes deeper, it becomes harder to reconstruct deeper layers’

filters. Inspired by focal loss Lin et al. (2017), we regard filters from deeper layers as hard samples.
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Figure 2: Visual comparison between the feature maps generated by the original filters (first row)
from the 8th layer of ResNet-50 and those generated by the reconstructed filters (second row). Each
image corresponds to a certain channel of the feature map. Comparing the slight variation between
each image in both rows, it is confirmed that MAE can successfully learn the semantic information
concealed within the filters.

Consequently, we adjust the terms in the reconstruction loss with balanced weights, giving more
attention to hard samples and less to easy ones. Then the overall training loss can be formulated as:

Ltrain =

L∑
l=1

wl
γMSE

(
W r

i ,W
fm
i

)
, where wl =

lenl

lenmax
,

where γ is a hyperparameter that balances each sample’s term and W r
i denotes the reconstructed

filter matrix from MAE. It is worth mentioning that the MSE loss is only applied on the non-padding
part of the masked rows, rather than the whole reconstructed matrix.

However, the samples in a batch come from the same convolutional layer, resulting in a lack of
interactions between diverse layers due to the row mismatch issue mentioned earlier. To address this
challenge, we opt to train the MAE in a distributed parallel manner, where the i− th thread processes
samples from a randomly sampled layer and aggregates the obtained gradients gi with other threads
to update the MAE. The total number of threads is denoted as N , where each thread corresponds
to one GPU in our experiments. With the proposed training pipeline, the training loss can decrease
significantly, expediting convergence and enhancing stability. In our experiments, we also apply
exponential moving average (EMA) to update the MAE during training.

In summary, the overall training process in one iteration for each thread can be described as follows:

1. Randomly select a convolutional layer in the target network and unflatten its weights to
obtain W f

i

2. Pad W f
i with zero to lenmax and forming a batch with different masks to get W fm

i .
3. Conduct forward propagation with MAE to get the reconstructed filters W r

i .
4. Calculate the reconstruction loss and aggregate the obtained gradients with other threads to
update MAE.

To visually illustrate MAE’s ability to capture knowledge within filters, we compare the generated
feature maps from the reconstructed filters to the original filters in Fig. 2. It is observed that there is
only a slight distinction between them, indirectly implying the minor difference between reconstructed
and original filters. Given MAE’s proficiency in reconstructing the masked filters, it is reasonable to
conclude that MAE can effectively learn the semantic information concealed within the filters.

However, evaluating MAE’s training efficacy via visualizing the feature maps can be cumbersome.
Therefore, we introduce a quantitative evaluation criterion. Specifically, we calculate the total error
of reconstructing every single filter in the network as the test loss for validation. As depicted in
Fig. 3, we utilize MAE with different test losses to prune ResNet-56 on CIFAR-10 and record the
pruned accuracy without fine-tuning. The figure illustrates that as the test loss decreases, the pruned
accuracy exhibits an increasing trend with a Pearson Correlation coefficient of around −0.90. Given
this strong linear correlation, we posit that it can serve as an indicator of MAE’s training effectiveness,
consequently resulting in a more finely pruned model.
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3.2.2 EXPLORING DIVERSE PRUNING STRATEGIES

Figure 3: Correlation between the test
loss of MAE and the pruned accuracy,
as observed through ResNet-56 exper-
iments on the CIFAR-10 dataset. The
trend shows that as the test loss re-
duces, the pruned accuracy increases,
thus demonstrating that a more efficient
MAE can be a better pruning guidance.
The solid line is the result of fitting with
np.polyfit for a better presentation.

After training the MAE, we can prune the network based
on the ’harder-reconstructed-more-important’ assumption.
Those structured parameters with higher reconstruction
loss may contain some unique semantic information that
cannot be reconstructed based on the hidden information
in other parameters. In this section, we explore several
strategies to locate the most-difficult-to-reconstruct param-
eters for preservation. Here, we take pruning CNNs as an
example.

Strategy 1: Exhaustive Search. With a specified prun-
ing rate, we can generate Nm different masks and subse-
quently choose the one exhibiting the highest reconstruc-
tion error. Filters corresponding to the masked indices
are the hardest to reconstruct, and they are therefore pre-
served. However, the total number of possible pruning
combinations can be astronomically high. For example,
for a convolutional layer with 256 filters, pruning 50% of
it can account for more than 2100 possibilities. While this
is the most accurate strategy, the associated computational
demands render it impractical for broader and deeper CNN
architectures.

Strategy 2: Independent Selection. To simplify the
pruning process, we can evaluate the importance of each
filter independently. Given the i-th convolutional layer, we
mask each filter in turn and sort the reconstruction loss in
descending order. Subsequently, we select and retain the
top-k filters. However, this strategy disregards inter-filter
relationships and may result in suboptimal solutions, despite its simplicity and efficiency.

Strategy 3: Sample-Without-Replacement. Suppose a fraction of filters have already been pruned,
the difficulty of reconstructing the remaining parts differs from the initial stage. Independently
evaluating filter importance can lead to significant performance degradation, especially at high
pruning rates. Therefore, by taking advantage of the variable-length input characteristic of MAE, we
formulate pruning as a sample-without-replacement problem, e.g., always selecting the filter with the
highest reconstruction loss from the remaining subset for preservation till the pre-defined sparsity.
This strategy strikes a balance between the two prior ones, offering both superior computation
efficiency and evaluation accuracy.

Extension to Vision Transformers. Apparently, our MAEP can also be applied to ViTs. Specifically,
the training phase is essentially similar to that of CNNs, with the exception that 1) MLPs in vision
transformers are inherently 2D matrices, eliminating the need for flattening 2) certain MLPs may
consist of multiple attention heads and therefore need to be handled separately. Furthermore, as ViTs
contain the unique self-attention module, the embedding dimension of the self-attention module must
be the same across WQ/WK/WV and different heads to enable structured pruning of ViTs and gain
realistic speed-up without customized hardware/software support. In our experiments, we use WK to
determine the pruning of the self-attention module, considering the rich semantic information that is
naturally embedded in it.

4 EXPERIMENTS

We perform several experiments on various datasets (CIFAR-10/ImageNet) and structures
(CNNs/ViTs) to validate the effectiveness of MAEP. For all ImageNet experiments, we take the
off-the-shelf model from either Pytorch or Huggingface Library. In the case of CIFAR-10, we train
the networks with our own settings. All experiments are conducted on 8 V100 GPUs with Pytorch,
where the detailed settings are provided in Appendix A.1.
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Table 1: Pruning Results on CIFAR-10 dataset.
Method Base Acc.(%) Acc↓(%) FLOPs↓(%) Method Base Acc.(%) Acc↓(%) FLOPs↓(%)

ResNet-56 VGG-16

HRank Lin et al. (2020) 93.30 0.13 50.0 AutoPrune Xiao et al. (2019) 92.40 0.90 23.0
ASFP He et al. (2020b) 93.59 1.15 52.6 DeepPruningES Junior & Yen (2020) 93.94 2.15 32.0

CC Li et al. (2021) 93.33 0.31 52.0 VCNNP Zhao et al. (2019) 93.25 0.07 39.1
LFPC He et al. (2020a) 93.59 0.35 52.9 GAL Lin et al. (2019) 93.96 3.23 45.2

FWTW Elkerdawy et al. (2021) 93.66 1.38 54.0 CHIP Sui et al. (2021) 93.96 0.10 58.1
MAEP (Ours) 93.59 0.02 55.9 MAEP (Ours) 93.87 0.06 57.6

ResNet-110 DenseNet-40

ASFP He et al. (2020b) 93.68 0.48 52.3 SOSP Nonnenmacher et al. (2021) 94.58 0.35 38.8
HRank Lin et al. (2020) 93.50 0.14 58.2 HRank Lin et al. (2020) 94.81 0.57 40.8
LFPC He et al. (2020a) 93.68 0.61 60.3 GAL Lin et al. (2019) 94.81 1.28 54.7

DECORE Alwani et al. (2021) 93.50 0.00 61.8 DECORE Alwani et al. (2021) 94.81 0.77 54.7
MAEP(Ours) 93.90 -0.06 59.3 MAEP (Ours) 94.88 0.56 55.3

Table 2: Pruning Results on ImageNet dataset.

Method Base
Top-1(%)

Pruned
Top-1(%)

Base
Top-5(%)

Pruned
Top-5(%) Top-1↓(%) Top-5↓(%) FLOPs↓(%)

ResNet-18

CHEX Hou et al. (2022) 70.30 69.60 - - 0.70 - 42.3
PFP Liebenwein et al. (2020) 69.74 65.65 89.07 86.75 4.09 2.32 43.1

SCOP Tang et al. (2020) 69.74 68.62 89.08 88.45 1.14 0.63 45.0
HFP Enderich et al. (2021) 69.75 68.53 - - 1.22 - 45.0

MAEP (Ours) 69.75 68.91 89.07 88.34 0.94 0.73 45.9
ResNet-50

CHEX Hou et al. (2022) 77.80 77.40 - - 0.40 - 51.3
PaS Li et al. (2022) 77.10 76.70 93.50 93.10 0.40 0.40 51.3

Polarize Zhuang et al. (2020) 76.15 75.63 - - 0.52 - 54.0
SCOP Tang et al. (2020) 76.15 75.26 92.87 92.53 0.89 0.34 54.6

MAEP (Ours) 76.15 76.10 92.87 92.73 0.05 0.14 60.5
DeiT-Tiny

S2ViTE Chen et al. (2021) 72.20 70.12 91.10 - 2.08 - 23.7
GOHSP Yin et al. (2023) 72.20 70.24 91.10 - 1.96 - 30.0

SAViT Zheng et al. (2022) 72.20 70.72 91.10 - 1.48 - 24.4
WDPruning Yu et al. (2022) 72.20 71.10 91.10 90.09 1.10 1.01 30.8

MAEP (Ours) 72.20 72.61 91.10 91.28 -0.41 -0.18 38.5
DeiT-Small
WDPruning Yu et al. (2022) 79.90 78.55 95.00 94.37 1.25 0.63 32.6
S2ViTE Chen et al. (2021) 79.90 79.22 95.00 - 0.68 - 31.6
SAViT Zheng et al. (2022) 79.90 80.11 95.00 - -0.26 - 31.7
GOHSP Yin et al. (2023) 79.90 79.98 95.00 - -0.08 - 35.0

MAEP (Ours) 79.90 80.40 95.00 95.52 -0.50 -0.52 36.3
Swin-Tiny
ViT-Slim Chavan et al. (2022) 81.20 80.70 95.50 - 0.50 - 24.4
X-Pruner Yu & Xiang (2023) 81.20 80.70 95.50 - 0.50 - 28.9

MAEP (Ours) 81.20 80.99 95.50 95.22 0.21 0.28 33.4

4.1 COMPARISON ON CIFAR-10

We present the results of CNNs on CIFAR-10, which are summarized in Table 1. In most cases, our
method achieves a larger reduction in FLOPs or more competitive performance when compared to
other state-of-the-art pruning methods. For example, our method accelerates ResNet-56 by 55.9%
with an only 0.02% accuracy drop, surpassing FWTW, which can only prune 54.0% of the total FLOPs
but incurs a 1.38%accuracy drop. These results show that irrespective of the network architecture,
our MAEP produces a compact structure with competitive complexity.

4.2 COMPARISON ON IMAGENET
We further prune ResNet-18/50, DeiT-Tiny/Small and Swin-Tiny models with MAEP and present
a comparison with other contemporary methods on the challenging ImageNet dataset. The results
are summarized in Table 2. MAEP generally outperforms its counterparts across various aspects,
encompassing top-1 and top-5 accuracy as well as FLOPs reduction. Specifically, MAEP surpasses
SCOP, which achieves only 75.26% top-1 accuracy and a 54.6% reduction in FLOPs, both inferior
to that of MAEP. For ViT, our method achieves a 38.5% reduction in FLOPs on DeiT-Tiny, which
is larger than that of WDPruning, with a lower top-1 drop (-0.41% v.s. 1.10%) and top-5 drop
(-0.18% v.s. 1.01%). Moreover, this superiority extends to the larger Deit-Small model, where MAEP
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Table 3: Transferability of the trained MAE. Weights from each source model are utilized to train an
MAE, which is then applied to prune other target models.

Source
Target ResNet-56 VGG-16 ResNet-18 ResNet-50

ResNet-56 93.60 93.34 67.96 75.11
VGG-16 93.62 93.17 68.06 75.32

ResNet-18 93.72 93.05 68.18 75.48
ResNet-50 93.66 93.21 68.12 75.78

consistently outperforms alternative methods to a significant degree. For further results of actual
speedup, please refer to Table 5

4.3 TRANSFERABILITY OF THE TRAINED MAE
While we avoid the time-consuming training process for each convolutional layer’s MAE, it remains
impractical to train a unique MAE for every unpruned network. Remarkably, we observe that a
well-trained MAE exhibits transferability across different depths, architectures, and even datasets, as
evidenced by Table 3. To be specific, we train an individual MAE on each source model and then
utilize it to compress various target models. We set the compression rate to 50% for all cases. We
represent each component of the table as (#source, #target). In cases where the lenmax of the source
model is smaller than that of the target model, we reinitialize the projection layer in both the encoder
and decoder and only fine-tune it to ensure dimension alignment between source and target. The
results of (ResNet-18, ResNet-50) and (ResNet-50, ResNet-18) reveal the MAE’s ability to transfer
across depths, whether from deeper to shallower networks or vice versa. Furthermore, (ResNet-56,
VGG-16) achieves an accuracy of 93.34%, underscoring the MAE’s capability to transfer across
different architectural structures. Take ResNet-56 as the target, both (ResNet-18, ResNet-56) and
(ResNet-50, ResNet-56) achieve competitive results. This showcases the MAE’s potential to transfer
from complex datasets to simpler ones with identical architectural structures. Interestingly, the best
results of ResNet-56 are obtained when ResNet-18 is used as the source rather than ResNet-56 itself.
We speculate that this discrepancy may be correlated with the overfitting during the MAE training on
ResNet-56. Moreover, both (ResNet-56, ResNet-50) and (VGG-16, ResNet-50) yield satisfactory
outcomes. However, due to the limited representative ability of filters from lighter models, there
seems to exist a domain gap that hindering from optimal performance. In conclusion, owing to
this transferability, we contend that there is no necessity to train a unique MAE for every unpruned
network. Instead, a well-trained MAE can be regarded as a universal pruning criterion.

4.4 ABLATION STUDIES
Different pruning strategies. Fig. 4(a) shows the results of various pruning strategies when pruning
ResNet-56 on CIFAR-10, with pruning rates ranging from 10% to 90%. As the rate of pruning
increases, the fine-tuned accuracy of all strategies decreases. Still, we can observe that Strategy 3
consistently outperforms Strategy 2 in all cases. This superiority stems from its consideration of
inter-filter correlations by formulating pruning as a sample-without-replacement problem. Moreover,
Strategy 1 can yield superior performance when Nm is large enough. In our experiment, Nm = 5000
provided satisfactory results for ResNet-56. However, a decrease in Nm to 100 resulted in a significant
drop in accuracy. Fig. 4(b) provides additional insight into the computational complexity of various
strategies across layers with a 50% pruning rate. As the layer goes deeper, all strategies show an
upward trend of FLOPs required for pruning. The FLOPs occupation of Strategy 2 consistently falls
between that of the other two strategies, indicating it can provide a better computational efficacy. For
more complex networks like ResNet-50, a large value of Nm imposes a heavy computational burden,
making it impractical for efficient deployment.

Variation in hyperparameter γ. The balancing between hard and easy samples is controlled by
coefficients γ. We vary γ between 0, 1, 5, and 10 to explore its impact on the MAE. Fig. 4(b) shows
the impact on the test loss, with MAE trained on ResNet-56. Compared to γ = 0, the introduction of
a balanced weighting factor into MAE’s training (γ = 1) leads to a reduction in the test loss. Given
the linear correlation between MAE’s test loss and the pruned model’s accuracy, a well-trained MAE
offers a more precise evaluation of filter importance. However, as γ grows to 5, hard samples dominate
the initial training stage, resulting in a narrowing loss term on easy samples, which inevitably slows
down the convergence speed. As γ further increases, the test loss fails to reach the desired scope
within the given epochs, indicating that γ must be carefully selected for proper balance.
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(a) Performance comparison (b) Complexity comparison (c) Various settings of γ

(d) Mask ratio (e) Architecture comparison

Figure 4: (a) Accuracy and (b) complexity comparison of different pruning strategies of ResNet-56
on CIFAR-10 dataset. (c) Test loss of MAE with different values of γ. (d) Comparison between
different mask ratios of MAE. (e) Architectural choices of MAE.

Mask ratio of MAE. According to the original MAE He et al. (2021), the mask ratio seriously
influences the final performance of the model. Therefore, we conduct a systematic investigation into
the impact of it in our approach, and the results are presented in Fig. 4(d). We vary it from 15∼90%
when pruning ResNet-56 on Cifar-10. From the curves of the test loss, it can be seen that the MAE
under different mask ratios can all converge, with no significant gap in the final loss. Moreover, from
the accuracy before (denote as accpre) and after (accpost) fine-tuning, it is evident that all variants
of MAE effectively identify and filter out unimportant parameters. We hypothesize that MAE is
insensitive to mask ratios due to its robust generalization ability and the fact that it does not need to
perfectly reconstruct the parameters to discriminate the importance between them.

Impact of MAE Architecture. To verify whether the architecture of MAE affects the performance
of the pruned model, we conduct a series of ablation experiments, where the results are depicted in
Fig. 4(e). Adhering to the design principles of MAE, we proceed to reconstruct the parameters of
ResNet-56 using MAE-Base, MAE-Small, and MAE-Tiny, respectively. The training curves exhibit
not much distinctions across various architectures, except that MAE-Base’s training is more unstable
and tends to slightly overfitting. In terms of post-pruning accuracy, all variants perform similarly,
implying that even the most lightweight MAE-Tiny can serve well as an importance indicator.

5 CONCLUSION

We propose a novel structured pruning method, MAEP, to obtain a compact structure of deep neural
networks. MAEP brings new insights into the field by building the bridge between pruning and
self-supervised learning, shedding light on the potential of MAE as an efficient importance indica-
tor. MAEP (1) proposes an efficient training pipeline, which expedites convergence and enhances
stability; (2) proves that MAE can uncover the semantic features both visually and quantitatively
through masked image modeling, indicating a better-trained MAE can lead to a better-pruned model;
(3) explores diverse pruning strategies and strike a balance between performance and algorithm
complexity by formulating it as a sample-without-replacement problem. Experiments on multiple
datasets and structures demonstrate that MAEP can effectively reduce the FLOPs of CNNs/ViTs
while achieving superior accuracy compared to other state-of-the-art methods. Ablation studies
further provide additional evidence of the trained MAE’s capacity to transfer across different network
structures and datasets, highlighting its potential as a universal pruning criterion.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

Datasets. The proposed MAEP is evaluated through empirical experiments on two widely used
image classification datasets, CIFAR-10 Krizhevsky (2009) and ImageNet Deng et al. (2009), to
demonstrate its effectiveness. The CIFAR-10 dataset consists of 60,000 32x32 images with 10
classes, where 50,000 images are used for training, and the remaining 10,000 images are used for
testing. On the other hand, the large-scale ImageNet dataset includes 1.28 million 224x224 training
images and 50,000 validation images drawn from 1,000 categories. For both datasets, the data
was preprocessed by subtracting the mean and dividing the standard deviation, and the same data
augmentation approach as He et al. (2020b) is used.

Model Architectures. To provide a fair comparison with other methods, the evaluation of our method
is performed on various mainstream CNN and ViT models. For CNNs, it includes models like
VGGNet Simonyan & Zisserman (2014), ResNet series He et al. (2015), and DenseNet Huang et al.
(2016) For ViTs, the method is tested on DeiT Touvron et al. (2021) and SWIN Liu et al. (2021).
For the default structure of MAE, we set the output dim of the encoder and decoder to 768 and 512,
respectively. The depth of the encoder and decoder are 12 and 8 with 64 as the dimension of each
head.

Implementation Details. We follow the traditional train-prune-finetune pipeline in most of the
pruning methods. To train the baseline networks, we use the popular stochastic gradient descent
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(SGD) optimizer with momentum. For the CIFAR-10 dataset, we train the networks using a mini-
batch size of 256 for 200 epochs with a momentum of 0.9, starting with an initial learning rate of
0.1. On the other hand, for the ImageNet dataset, we choose the pre-trained weights from Pytorch
Library. The MAE is trained for 8000 epochs with a batchsize of 256, using AdamW Loshchilov &
Hutter (2017) optimizer with an initial learning rate 1.5× 10−4. The hyperparameter γ is set to 1 by
default. We prune along the output dimension of convolutional layers in CNNs and FFNs in ViTs. For
pruning ViT, we also prune the hidden dimension of the self-attention module (e.g. WQ/WK/WV ).
Due to limited computational resources, we set the pruning rate of different components to be the
same and do not tune it additionally. Theoretically, a proper adjustment can further motivate the
potential of MAEP. During fine-tuning of the pruned model, we adopt the warm-up strategy and
cosine annealing strategy to adjust the learning rate. For the CIFAR-10 dataset, we finetune the
pruned model for 400 epochs, while on ImageNet, the number of finetuning epochs is 120 for CNNs
and 300 for transformers (the same setting on which they are originally pre-trained). To ensure the
reproducibility of our results, we conduct each experiment three times and report the mean value for
comparison.

A.2 MORE EXPERIMENTAL RESULTS

A.2.1 PRUNING SELF-ATTENTION MODULE

feature accpre(%) accpost(%)
WQ 1.00 73.98
WK 1.25 74.20
WV 1.07 74.07

Concat 1.00 73.98
Mean 1.40 74.01

Table 4: Impact of choosing different
parts to prune the self-attention module
with the pruning ratio of it is set to 50%.
WK shows the best results over others.

In contrast to CNNs, in which convolutional layers are the
dominant component, there exists the unique self-attention
module in ViTs. By default, we leverage the inherent
semantic information in WK to guide the pruning of self-
attention. However, we also measure the impact of using
different parts as anchors for pruning half of the dimension
of self-attention in DeiT-Tiny, where the results are sum-
marized in Table 4. In terms of the results, WK is slightly
better than the other settings. Although the pre-finetuning
accuracy of taking average is slightly higher, it eventually
does not show a consistent advantage. It is also worth
mentioning that the results of concatenating the weights of
self-attention are identical to using WQ. Our hypothesis is
that this occurs because WQ is more challenging to reconstruct compared to the other components,
making it dominant in the pruning process.

Table 5: Measurement of inference speedup (images per second) of models on ImageNet dataset. The
experiments are carried out on Nvidia RTX4090 GPU with 256 as the batchsize.

Model FLOPs↓(%) Speedup Top-1 Acc. (%)

DeiT-Tiny
30.8 1.22× 73.53
38.5 1.34× 72.61
46.2 1.38× 71.70

DeiT-Small 36.3 1.29× 80.40
Swin-Tiny 33.4 1.19× 80.99
ResNet-50 60.5 1.27× 76.10

A.2.2 THROUGHPUT MEASUREMENT

Considering that FLOPs only reflect the complexity of the model and are not sufficiently objective,
we further measured the throughput of the pruned model. We set the batchsize to 256 and measure it
on Nvidia RTX4090 GPUs, where the experimental results are summarized in Table 5. For example,
while reducing FLOPs by 38.5%, MAEP enables DeiT-Tiny to gain 72.61% top-1 accuracy with
1.34× throughput improvement. However, the speedup on ResNet-50 is not satisfactory, presumably
owing to the repeated dimension transformations with excessive residual connections that inhibit the
inference speedup.
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