

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRAJECTORY-BASED NEURAL DARWINISM IN CON- VOLUTIONAL NEURAL NETWORKS: VARIATION, COMPETITION, AND SELECTIVE RETENTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding how artificial neural networks develop and stabilize internal representations remains a central challenge in deep learning. Motivated by Edelman’s theory of Neural Darwinism, we investigate whether competitive, selection-like dynamics emerge during training and how they shape robustness and specialization. We introduce a unified trajectory-based Darwinian framework—the Neuron Darwinian Dynamics System (NDDS)—which is inspired by Darwinian principles of survival and selection, enabling the analysis of neuron activations, weights, and representational paths across diverse architectures and datasets. We conduct two complementary analyses: ablation experiments demonstrate that networks maintain accuracy under extensive neuron removal, revealing strong redundancy, yet exhibit sharp performance collapse beyond a critical threshold, identifying task-critical subsets. Dynamic trajectory analyses further reveal consistent evolutionary patterns: neurons categorized as survived sustain coherent representational trajectories, stronger weight norms, and higher activations, whereas eliminated neurons stagnate toward representational silence. Overall, these results support a Darwinian perspective on representation learning: CNNs achieve robustness through redundancy at early stages and progressively consolidate specialized neurons that underwrite stable, task-relevant representations.

1 INTRODUCTION

The success of deep learning is often attributed to its ability to construct hierarchical feature representations Chizat & Netrapalli (2024); Banerjee (2025), yet the mechanisms that govern representational stability and neuron specialization remain only partially understood. Prior work has primarily emphasized optimization dynamics or information-theoretic principles Butakov (2024), while comparatively limited attention has been paid to competitive processes unfolding at the level of individual neurons. In neuroscience, Edelman’s theory of Neural Darwinism proposes that neuronal populations evolve through variation, competition, and selective retention, thereby forming stable yet adaptable circuits. Building on this perspective, we investigate whether analogous competitive dynamics emerge in artificial neural networks and how they shape robustness and specialization.

Motivated by this, we introduce a unified trajectory-based Darwinian framework—the **Neuron Darwinian Dynamics System (NDDS)**—which formalizes neuron evolution in convolutional architectures through the lens of survival and selection. NDDS integrates trajectory-based analyses of representational dynamics, layer-wise inspection of activations, weights, and embeddings over training, together with controlled ablation to rigorously quantify representational resilience. This integrated view enables systematic comparison of neuron-level dynamics across models of varying depth and dataset complexity. Our experimental evaluation covers a spectrum of architectures and datasets, beginning with a three-layer MLP on MNIST and progressively extending to ResNet-18 on CIFAR-10, VGG-16 on CIFAR-100, and ResNet-50 on Tiny-ImageNet. Across these settings, neurons are categorized into survived, eliminated, and other groups according to long-term representational stability, providing a consistent lens for evaluating functional contributions. From an evolutionary perspective, the results reveal that different layers impose distinct selective pressures on neurons. Shallow layers exhibit highly variable and unstable trajectories, resembling an early exploration phase. Middle layers increasingly differentiate neurons into those maintaining sustained activity

054 and those drifting toward quiescence, suggestive of emergent selective filtering. Deep layers show
 055 a tendency toward contraction, where a relatively compact subset of neurons retains higher activation
 056 while others decline. These observations are consistent with Darwinian dynamics of variation
 057 and selection. Ablation studies further corroborate this interpretation, showing robustness under
 058 moderate perturbation and sharp collapse once the selectively retained subset is disrupted. We re-
 059 strict our analysis to Convolutional Neural Networks in this work, as their hierarchical structure and
 060 well-studied representational dynamics provide a controlled and interpretable setting for isolating
 061 neuron-level evolutionary mechanisms. In contrast, Transformers introduce attention-mediated in-
 062 teractions and layer normalization effects that confound neuron-level attribution, making them less
 063 suitable for our initial theoretical analysis. Collectively, these findings suggest that CNNs achieve
 064 robustness and representational specialization not solely through gradient-based optimization, but
 065 also through emergent neuron-level competition that parallels Darwinian selection principles.
 066

067 2 RELATED WORK

069 2.1 ON NEURAL NETWORKS ANALYSIS

070 A large body of work has investigated how neural networks form and consolidate internal structure,
 071 spanning pruning, representational similarity, loss geometry, and interpretability. Pruning studies
 072 demonstrate that overparameterized models contain trainable sparse subnetworks, with the Lottery
 073 Ticket Hypothesis Frankle & Carbin (2019) and its extensions Liu (2019); Sanh (2020); Lee (2019);
 074 Evcı (2020); Morcos (2019) showing that subnetworks can be identified via sensitivity measures
 075 Lee (2019), dynamic rewiring Evcı (2020), or transfer across tasks Morcos (2019). Representa-
 076 tion analyses such as SVCCA Raghu (2017) and CKA Kornblith (2019) reveal convergent layer-
 077 wise structures, while neural tangent kernel theory Jacot (2018) and deep linear dynamics Saxe
 078 (2014) provide analytic descriptions of training. Geometric studies show low-loss mode connectivity
 079 Garipov (2018); Draxler (2018) and neural collapse phenomena Han (2022), connecting optimiza-
 080 tion to generalization. Interpretability methods including Network Dissection Bau (2017), TCAV
 081 Kim (2018), Integrated Gradients Sundararajan (2017), and SHAP Lundberg & Lee (2017) further
 082 expose concept-level features, while symmetry and re-basin analyses Ainsworth (2023) link par-
 083 ameter permutations to solution geometry. Finally, work on large-batch training Keskar (2017) and
 084 dynamical isometry Pennington (2017) elucidates how optimization biases shape solution quality.
 085 Taken collectively, these perspectives highlight redundancy, convergence, and selection-like pres-
 086 sures in neural networks, aligning with our Darwinian view of neuron-level competition.
 087

088 2.2 NEURON DARWINIAN

089 The conceptual foundation for Darwinian mechanisms in neural systems was laid by Edelman’s
 090 theory of neuronal group selection, which frames brain function as variation among neuronal popu-
 091 lations, selective reinforcement of circuits, and inheritance of stable connectivity patterns Edelman
 092 (1987). Inspired by this paradigm, recent advances in artificial networks embed analogous varia-
 093 tion-selection processes across computational scales, challenging the dominance of gradient-only
 094 optimization. Du et al. reinterpret late-epoch backprop-trained models as “ancestral genomes” and
 095 evolve offspring via differential evolution to reduce overfitting and accelerate inference Du (2024).
 096 At the neuron level, NeuroFS dynamically prunes and regrows inputs under synaptic-plasticity con-
 097 straints to maintain adaptability under sparsity Zahra (2023). In dynamical systems, Czégel et al.
 098 show Darwinian neurodynamics in reservoir computing, where activity patterns are imperfectly
 099 copied and fitter variants selected, yielding emergent combinatorial problem solving Czégel (2021).
 100 Evolutionary processes also benefit spiking models: Shen et al. evolve excitatory-inhibitory circuits
 101 via spike-timing-dependent plasticity, achieving strong CIFAR-10 and ImageNet performance Shen
 102 (2023). At the architectural scale, Shafee et al. encode heritable “DNA” for evolving compact
 103 offspring networks Shafee (2018), while Chen et al. propose OPNP, a gradient-sensitivity-based
 104 pruning scheme that improves out-of-distribution robustness by selecting fitter neurons and par-
 105 ameters Chen (2023). Collectively, these works demonstrate a convergent trend: embedding varia-
 106 tion-selection mechanisms across synaptic, dynamical, and structural levels to improve adaptability,
 107 sparsity, and generalization beyond gradient descent. We extend this trajectory with a neuron-level
 108 temporal analysis framework that tracks activation trajectories to distinguish “survived” from “elim-
 109 inated” neurons, providing direct empirical evidence for Neural Darwinism in modern deep learning.

108
109
2.3 NEURON TRAJECTORY

110 Recent work increasingly examines neuron trajectories—the evolution of individual activations or
 111 weights across layers and time—as a lens on training dynamics, interpretability, and generalization.
 112 Fu et al. formalize learning trajectories and derive generalization bounds tied to their complexity
 113 Fu (2023). Pesme and Flammarion analytically characterize gradient-flow paths in two-layer diagonal
 114 networks, showing convergence through successive saddles to minimal-norm solutions Pesme &
 115 Flammarion (2023), while Han et al. connect MSE training to the emergence of neural collapse by
 116 analyzing proximity and dynamics along the central path Han (2022), and Ahn links threshold-like
 117 neuron emergence to edge-of-stability dynamics Ahn (2023). In mechanistic interpretability, Conmy
 118 et al. introduce ACDC to extract activation subcircuits via trajectory-based graph discovery Conmy
 119 (2023), and Syed et al. apply attribution patching along activation paths to reveal causal transformer
 120 subcircuits Syed (2024). Beyond static analysis, Li et al. adapt trajectory forecasting (AMAG)
 121 to predict future neuron activity Li (2023), while spiking models leverage trajectory-inspired optimi-
 122 zation to reduce firing load without loss of accuracy Shi (2024); Shen (2024). Together, these
 123 studies establish neuron trajectories as a unifying construct linking optimization dynamics, circuit
 124 discovery, and functional efficiency in modern networks.

125
126
3 METHOD

127 We formalize neuron evolution during training as a continuous-time dynamical system driven by
 128 both optimization gradients and intrinsic information-theoretic pressures. Intuitively, we treat each
 129 neuron as an evolving agent whose state is not only determined by its parameters but also by how
 130 it responds to data and gradients. This perspective allows us to study neural computation through
 131 the lens of dynamical systems and Darwinian selection Saxe (2014); Mei (2018); Chizat & Bach
 132 (2018).

133 Let a neural network $f_\theta : \mathcal{X} \rightarrow \mathcal{Y}$ consist of layers $\{L_k\}_{k=1}^D$, where layer L_k contains neurons
 134 $\{a_i^{(k)}\}_{i=1}^{n_k}$. Each neuron is parameterized by a weight vector $w_i^{(k)} \in \mathbb{R}^{d_{k-1}}$, bias $b_i^{(k)} \in \mathbb{R}$, and
 135 activation function σ . Its activation at time t is:

$$136 \quad a_i^{(k)}(x, t) := \sigma \left(w_i^{(k)}(t)^\top h^{(k-1)}(x, t) + b_i^{(k)}(t) \right), \quad (1)$$

137 where $h^{(k-1)}$ is the output from L_{k-1} and $h^{(0)} = x$. Thus, activations evolve jointly with weights
 138 and reflect both optimization and stochastic fluctuations Schoenholz (2017); Poole (2016).

141
142 3.1 NEURON DARWINIAN DYNAMICS SYSTEM (NDDS)

143 **Definition 3.1** (Neuron State Vector). To make this evolution explicit, we introduce the *neuron*
 144 *state vector*, which concatenates its trainable parameters, average activity, gradient statistics, and
 145 information-theoretic descriptors:

$$146 \quad \psi_i^{(k)}(t) := [w_i^{(k)}(t), b_i^{(k)}(t), \mu_i^{(k)}(t), g_i^{(k)}(t), \mathcal{I}_i^{(k)}(t)]. \quad (2)$$

147 Here we explicitly define each component and its domain/estimation modality:

$$148 \quad \mu_i^{(k)}(t) := \mathbb{E}_{x \sim \mathcal{D}} [a_i^{(k)}(x, t)], \quad (3)$$

$$149 \quad g_i^{(k)}(t) := \mathbb{E}_{x \sim \mathcal{D}} \left[\frac{\partial \mathcal{L}(x)}{\partial a_i^{(k)}(x, t)} \right], \quad (4)$$

$$150 \quad \mathcal{I}_i^{(k)}(t) := (\text{differential}) \text{ entropy proxy of the marginal law of } a_i^{(k)}(\cdot, t). \quad (5)$$

151 We emphasize estimation modality: expectations are taken with respect to the data distribution \mathcal{D} ;
 152 in practice they are approximated by empirical estimates over mini-batches. Throughout we reserve
 153 the symbol $\mathcal{L}(x)$ to denote the per-example loss.

154 The evolution of each neuron is then modeled as a differential equation:
 155

$$156 \quad \frac{d}{dt} \psi_i^{(k)}(t) = \mathbf{F}_\theta^{(k)}(\psi_i^{(k)}(t), \mathcal{D}, \mathcal{L}), \quad (6)$$

162 where $\mathbf{F}_\theta^{(k)}$ captures the joint effect of gradient-descent-like updates and intrinsic representational
 163 dynamics. This abstraction allows us to borrow tools from dynamical systems theory to analyze
 164 stability, convergence, and diversity of neurons Achille & Soatto (2018b).

165 **Assumption 3.2** (Smooth and Bounded Dynamics). We adopt a hypothesis compatible with practical
 166 discrete optimization. The parameter trajectory $\theta(t)$ is assumed to be absolutely continuous
 167 and piecewise C^1 in t (so that it admits a time-continuous interpolation), and $\mathbf{F}_\theta^{(k)}$ is locally Lipschitz
 168 in ψ on trajectories of interest. This formulation explicitly permits discretization effects arising
 169 from SGD and non-smooth activations (e.g. ReLU) by interpreting derivatives in the sense of
 170 absolutely continuous interpolation or Clarke subgradients when necessary. We assume standard
 171 smoothness and boundedness conditions on interpolated trajectories; detailed assumptions and dis-
 172 cretization-continuum error bounds are deferred to Appendix

173 **Assumption 3.3** (Local Gaussianity of pre-activations and diagnostic protocol). To avoid conflicts
 174 with non-negative, mass-at-zero activations (e.g. ReLU), we state the main parametric approxima-
 175 tion at the *pre-activation* level. Define the pre-activation

$$177 \quad z_i^{(k)}(x, t) := w_i^{(k)}(t)^\top h^{(k-1)}(x, t) + b_i^{(k)}(t), \quad (7)$$

178 and its smoothed version

$$179 \quad \tilde{z}_i^{(k)}(x, t) := z_i^{(k)}(x, t) + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma_\varepsilon^2). \quad (8)$$

181 Diagnostic procedures, variance proxies, and fallback strategies are deferred to the Appendix.

183 3.2 TRAJECTORY-BASED EVOLUTIONARY FITNESS

185 **Definition 3.4** (Neuron Trajectory). The trajectory of a neuron in state space is defined as

$$186 \quad \Gamma_i^{(k)} := \{\psi_i^{(k)}(t) \mid t \in [0, T]\}. \quad (9)$$

188 From this path we extract three complementary quantities:

189 **Definition 3.5** (Trajectory Length). The trajectory length of neuron i in layer k is the cumulative
 190 representational movement of its state vector $\psi_i^{(k)}$ measured with a block-wise scaling matrix $D^{(k)}$
 191 that normalizes heterogeneous components of ψ :

$$193 \quad \mathcal{A}_i^{(k)} := \int_0^T \left\| D^{(k)} \frac{d\psi_i^{(k)}(t)}{dt} \right\|_2 dt, \quad (10)$$

196 where $D^{(k)}$ is taken to be block-diagonal with positive diagonal blocks that rescale each block of ψ .
 197 The block-wise construction ensures no single block systematically dominates the norm and makes
 198 the quantity invariant to simple coordinate scalings within each block. For comparability across
 199 different training durations we use a time-averaged trajectory length; its formal definition and the
 200 discrete approximations used in experiments are provided in the Appendix.

201 **Definition 3.6** (Integrated entropy). The integrated entropy of neuron i accumulates a per-time
 202 estimate of the neuron's entropy over training:

$$203 \quad \mathfrak{H}_i^{(k)} := \int_0^T \mathcal{I}_i^{(k)}(t) dt, \quad (11)$$

206 where $\mathcal{I}_i^{(k)}(t)$ denotes a numerically stable estimator of the neuron's differential entropy at time t .
 207 For comparability we also consider the time-averaged form $\overline{\mathfrak{H}}_i^{(k)} := \frac{1}{T} \mathfrak{H}_i^{(k)}$.

209 When the Gaussian plug-in is appropriate (see Assumption 3.3) we use the variance-proxy with
 210 explicit numerical stabilization:

$$211 \quad \tilde{\mathcal{I}}_i^{(k)}(t) := \frac{1}{2} \log(\text{Var}_x[z_i^{(k)}(x, t)] + \sigma_\varepsilon^2 + \epsilon_{\text{var}}), \quad (12)$$

213 where $\sigma_\varepsilon^2 > 0$ is the additive smoothing noise variance introduced in Assumption 3.3 and $\epsilon_{\text{var}} > 0$ is
 214 a small numeric floor (e.g. 10^{-8}) to avoid $\log(0)$ and ensure robust estimation in finite samples. Note
 215 that the Gaussian plug-in differs from the differential entropy by the additive constant $\frac{1}{2} \log(2\pi e)$;
 when absolute entropy values are needed this constant is accounted for in post-processing.

216 **Definition 3.7** (Ablation-based utility). For neuron i in layer k define the instantaneous ablation-
217 based utility

$$218 \quad U_i^{(k)}(t) := \mathbb{E}_{x \sim \mathcal{D}} [\mathcal{L}(f_{\theta(t) \setminus i}; x) - \mathcal{L}(f_{\theta(t)}; x)], \quad (13)$$

219 where $f_{\theta \setminus i}$ denotes the network obtained by zeroing neuron i 's activation. By this convention
220 $U_i^{(k)}(t) > 0$ indicates the neuron is useful at time t .
221

222 **Definition 3.8** (Time-averaged utility). For comparability across training durations we use the time-
223 averaged utility

$$224 \quad \bar{U}_i^{(k)} := \frac{1}{T} \int_0^T U_i^{(k)}(t) dt. \quad (14)$$

226 **Definition 3.9** (Evolutionary fitness). To ensure comparability across heterogeneous quantities we
227 first perform layer-wise standardization (z-scoring) of each constituent statistic and then form a
228 convex combination. Concretely, let

$$229 \quad \hat{U}_i^{(k)} := \frac{\bar{U}_i^{(k)} - \mathbb{E}_j[\bar{U}_j^{(k)}]}{\text{SD}_j(\bar{U}_j^{(k)})}, \quad \hat{\mathcal{S}}_i^{(k)} := \frac{\bar{\mathcal{S}}_i^{(k)} - \mathbb{E}_j[\bar{\mathcal{S}}_j^{(k)}]}{\text{SD}_j(\bar{\mathcal{S}}_j^{(k)})}, \quad \hat{\mathfrak{H}}_i^{(k)} := \frac{\bar{\mathfrak{H}}_i^{(k)} - \mathbb{E}_j[\bar{\mathfrak{H}}_j^{(k)}]}{\text{SD}_j(\bar{\mathfrak{H}}_j^{(k)})}. \quad (15)$$

232 The fitness reads

$$233 \quad \Phi_i^{(k)} := \alpha \hat{U}_i^{(k)} - \beta \hat{\mathcal{S}}_i^{(k)} + \gamma \hat{\mathfrak{H}}_i^{(k)}, \quad \alpha, \beta, \gamma > 0, \quad (16)$$

235 where α, β, γ are either chosen from a small recommended grid after layer-wise normalization or de-
236 termined by a held-out validation objective. This z-scoring removes unit mismatches and stabilizes
237 comparisons across layers and architectures.

239 3.3 SELECTION AND SURVIVAL CRITERIA

241 To link fitness to survival, we define thresholds relative to population statistics:

242 **Definition 3.10** (Survived Neuron). Neuron i in layer k is *survived* if:

$$243 \quad \Phi_i^{(k)} \geq \mathbb{E}_j[\Phi_j^{(k)}] + \lambda \cdot \text{SD}(\Phi_j^{(k)}), \quad \lambda > 0. \quad (17)$$

245 This creates an evolutionary-like selection pressure, where only the most informative and stable
246 neurons persist Han (2015); Frankle & Carbin (2019); Morcos (2019).

247 **Lemma 3.11** (Instability with sustained entropy decay implies vanishing fitness). *Assume there exist*
248 *constants $c_H > 0$, $T_0 \geq 0$ and $c_S > 0$ such that for all $t \geq T_0$ the neuron's differential entropy*
249 *satisfies*

$$250 \quad \mathcal{H}(\rho_{i,t}^{(k)}) \leq -c_H t + C_H, \quad (18)$$

252 for some finite constant C_H , and furthermore the terminal fluctuation satisfies

$$253 \quad \frac{1}{\delta} \int_{t-\delta}^t \left\| \frac{d\psi_i^{(k)}(s)}{ds} \right\|_2^2 ds \geq c_S. \quad (19)$$

255 Assume also that the time-averaged utility $\bar{U}_i^{(k)}(T)$ and stochasticity $\bar{\mathcal{S}}_i^{(k)}(T)$ grow at most poly-
256 nomially in T . Then for any fixed positive weights $\alpha, \beta, \gamma > 0$ in equation 16 we have

$$258 \quad \lim_{T \rightarrow \infty} \Phi_i^{(k)}(T) = -\infty. \quad (20)$$

260 **Definition 3.12** (Gradient–Variance Contribution). For a neuron i in layer k we define the instanta-
261 neous gradient second moment

$$262 \quad q_i^{(k)}(t) := \mathbb{E}_x \left[\left(\frac{\partial \mathcal{L}(x)}{\partial a_i^{(k)}(x,t)} \right)^2 \right], \quad (21)$$

264 and the instantaneous activation variance

$$266 \quad \sigma_i^{2(k)}(t) := \text{Var}_x [a_i^{(k)}(x,t)]. \quad (22)$$

267 We then define the (time-averaged) *gradient–variance contribution* by

$$269 \quad \Delta_i^{(k)} := \frac{1}{T} \int_0^T \mathbb{E}_x \left[\left(\frac{\partial \mathcal{L}(x)}{\partial a_i^{(k)}(x,t)} \right)^2 \cdot \text{Var}_x [a_i^{(k)}(x,t)] \right] dt \quad (23)$$

270 **Theorem 3.13** (Fitness Threshold Implies Gradient–Variance Contribution). *Let $\Delta_i^{(k)}$ be as above.
 271 Suppose Assumptions 3.2 and 3.3 hold, and additionally there exists $\bar{c}_g > 0$ such that the time-
 272 averaged gradient second moment satisfies*

$$274 \quad 275 \quad \frac{1}{T} \int_0^T q_i^{(k)}(t) dt \geq \bar{c}_g. \quad (24)$$

276 *Assume also that $\bar{U}_i^{(k)}(T)$ and $\mathcal{S}_i^{(k)}(T)$ grow at most polynomially in T . Then there exist constants
 277 $\tau, \kappa > 0$ (depending on $\bar{c}_g, \alpha, \beta, \gamma$ and growth bounds) such that*

$$279 \quad \Phi_i^{(k)}(T) \geq \tau \Rightarrow \Delta_i^{(k)} \geq \kappa. \quad (25)$$

281 This result bridges our trajectory-based measure with a classical signal-to-noise criterion, showing
 282 that neurons with high fitness necessarily contribute to meaningful gradient–variance interactions
 283 Achille & Soatto (2018a); Martens (2020).

284 Overall, the Neuron Darwinian Dynamics System (NDDS) provides a principled framework to study
 285 representational dynamics under Neural Darwinism. Neurons are no longer seen as static units with
 286 fixed importance, but as evolving entities competing for survival through their trajectory length, sta-
 287 bility, and entropy. This formalism both explains empirical neuron pruning phenomena and predicts
 288 inter-layer propagation of specialization Raghu (2017); Jacot (2018).

290 4 EXPERIMENTS

292 We designed a series of experiments to examine whether CNNs exhibit dynamics consistent with
 293 Neural Darwinism, and how such processes shape robustness and representational specialization.
 294 Our analysis proceeds in two complementary strands. First, we conduct ablation experiments on
 295 a CNN trained on MNIST to quantitatively assess representational resilience under progressive
 296 neuron removal. Second, we perform dynamic trajectory analyses across multiple CNN archi-
 297 tectures and datasets—ResNet-50 on Tiny-ImageNet—within the framework of the NDDS, with
 298 additional experiments on a three-layer MLP-Net with MNIST, ResNet-18 with CIFAR-10, and
 299 VGG-16 with CIFAR-100 provided in the Appendix. These experiments share a common method-
 300 ology—tracking neuron activations, weights, and representational trajectories—while progressively
 301 scaling the model depth and dataset complexity. Across all settings, neurons are categorized into
 302 survived, eliminated, and other groups based on their long-term representational stability, providing
 303 a unified lens for comparing functional contributions across architectures and scales.

304 4.1 ABLATION EXPERIMENT

306 We conducted ablation experiments using a CNN trained on MNIST to test the resilience of its in-
 307 ternal representations under progressive neuron removal. The results are summarized in Figure 1.
 308 In the unperturbed network, accuracy reaches 99.3%, and the t-SNE projection reveals tight, well-
 309 separated clusters for each digit class, demonstrating a highly structured and linearly separable latent
 310 space. When 30% of the neurons are ablated, the accuracy remains essentially unchanged at 99.0%,
 311 and the clusters in the t-SNE embedding preserve their compactness and separation, indicating that
 312 the representational geometry is only minimally disturbed. This strongly suggests that the net-
 313 work possesses a large degree of representational redundancy. At 60% ablation, accuracy decreases
 314 slightly to 98.3%, and the clusters in the t-SNE space begin to expand and partially overlap, partic-
 315 ularly at their boundaries. Although separability is degraded, the global structure of the representa-
 316 tion is still preserved, implying that the network reallocates representational burden to the remaining
 317 subset of neurons. A qualitatively different figure emerges at 90% ablation: accuracy collapses to
 318 64.9%, and the t-SNE projection shows the complete dissolution of the cluster structure, with digit
 319 classes intermingled in a disorganized cloud. To summarize, these results provide direct evidence
 320 for a Darwinian view of neural representations. Up to moderate levels of ablation, redundant or
 321 weakly integrated neurons are eliminated while the core representational structure is maintained,
 322 preserving both accuracy and geometric separability. However, once the ablation encroaches upon
 323 the Darwinianly selected subset of neurons that are critical for maintaining task-relevant structure,
 324 both accuracy and representation quality collapse. This pattern demonstrates that artificial neural
 325 networks exhibit precisely the mixture of robustness and selectivity predicted by Neural Darwinism:

multiple neuronal assemblies initially compete to encode overlapping information, but only a small, stabilized ensemble ultimately sustains discriminative capacity under extreme perturbation.

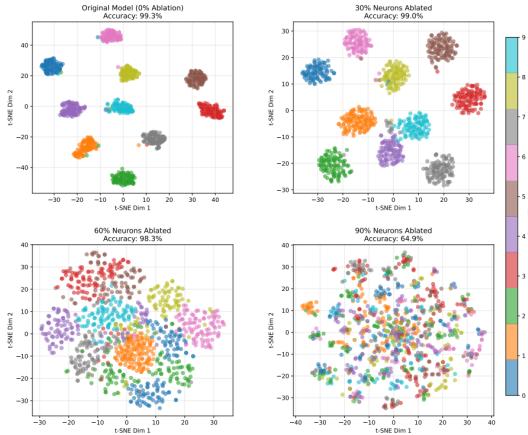


Figure 1: Ablation Experiment on MNIST with Random Neuron Removal.

4.2 RESNET-50 ON TINY-IMAGENET

4.2.1 DYNAMICS NEURON TRAJECTORY AND EVOLUTION ANALYSIS

The dynamic PCA trajectories for the shallow layer (Figure 2(a), top) provide a temporal view of representational changes across training. Each trajectory reflects the evolution of a neuron’s activation statistics in a low-dimensional PCA space. Survived neurons generally trace longer and more directionally consistent paths; this pattern is consistent with representational refinement and greater task-related adaptation. These trajectories tend to drift toward more structured regions of the PCA manifold, indicating a non-random reorganization that supports discriminative feature encoding. By contrast, eliminated neurons follow noticeably shorter, less exploratory trajectories that remain close to their initial locations in PCA space. This limited movement is consistent with functional stagnation in the sense of limited representational development. Such stagnation is consistent with patterns one might expect in early-stage selective pruning (i.e., neurons with limited representational change tend to be removed over training). Quantitative analysis reinforces these patterns. By the final epoch (Figure 2(c), top), survived neurons reach a median cumulative trajectory length of approximately 3.2 units, compared to 2.4 for eliminated neurons and around 2.3 for the other group. These results indicate an association between sustained representational movement (rather than initial position) and retention. Weight magnitude evolution (Figure 2(d), top) shows only minor differences across groups: eliminated neurons maintain slightly higher L2 norms than survived, with other neurons consistently lowest. The overall stability across training suggests that in shallow layers, synaptic resource allocation is relatively stable, with large-scale reallocation not yet evident.

The PCA trajectories for the middle layer (Figure 2(a), middle) capture a more pronounced divergence in representational dynamics across neuron types. Survived neurons traverse extended, often curved paths in the PCA space, largely oriented along PC1 (96.7% variance explained), with modest modulation along PC2 (3.1%). Although some trajectories exhibit partial rightward drift, clustering is weak and dispersion remains the dominant pattern. Eliminated neurons show substantially shorter displacements, remaining near their initialization points with fragmented paths. The intermediate other group exhibits moderate movement but does not match the sustained displacement of survivors. Trajectory length evolution (Figure 2(c), middle) highlights this separation: by the end of training, survived neurons reach approximately 3.8 cumulative units, while eliminated neurons plateau near 2.8, with the other group is even lower. The gap is wider than in the shallow layer, underscoring that sustained representational plasticity becomes increasingly decisive at mid-level processing stages. Weight magnitude evolution (Figure 2(d), middle) shows relatively stable rankings: eliminated neurons hold slightly higher norms than survived. The lack of pronounced growth for eliminated neurons—despite higher absolute values—suggests that strong initial parameterization was not matched by functional adaptation.

The dynamic PCA trajectories for the deep layer (Figure 2(a), bottom)) reveal the strongest differentiation in representational mobility. Survived neurons navigate long, structured arcs, reflecting continued refinement and consolidation of high-level semantic representations. These trajectories exhibit a clear convergence trend toward a more compact subregion of the PCA manifold, consistent with the emergence of attractor-like states that dominate the network’s final decision space. Eliminated neurons, in contrast, show markedly shorter trajectories, with minimal displacement beyond early training epochs, indicating rapid stagnation. Other neurons display partial mobility but fail to achieve the sustained, directional movement observed in survivors. Trajectory length analysis (Figure 2(c), bottom)) accentuates this contrast: by the final epoch, survived neurons reach 7 cumulative units, while eliminated neurons remain near 4. This substantial gap shows that greater representational plasticity is strongly associated with deep-layer survival. Weight magnitude evolution (Figure 2(d), bottom) exhibit a global decay across all neuron types, converging toward lower norms over training. Survived and eliminated neurons follow similar L2 trajectories with only slight divergence at convergence, while the other group tends toward lower values. These patterns are consistent with reduced differentiation of synaptic strength in deeper layers and indicate that survival correlates with only marginally higher residual weights. Overall, these findings are consistent with a progressively stronger association between our measured dynamics and neuron retention with increasing depth. In shallow layers, selection pressure is relatively permissive, with only subtle differences in trajectory and weight dynamics. In middle layers, divergence intensifies, as sustained plasticity becomes a critical factor for survival. In deep layers, we observe patterns consistent with consolidation—neurons that exhibit larger representational changes are more likely to be retained and may contribute disproportionately to high-level representations. These results are broadly consistent with components of the Neural Darwinism framework—variation, competition, and selective retention—insofar as our measures show compatible patterns.

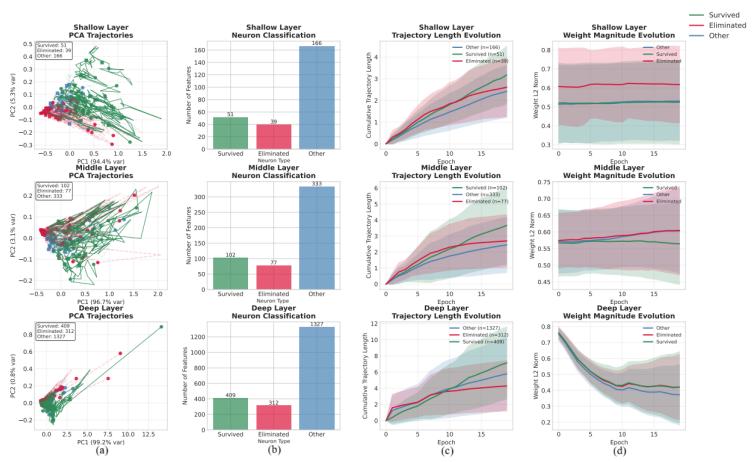


Figure 2: Dynamics Neuron Trajectory and Evolution Analysis on Tiny-ImageNet.

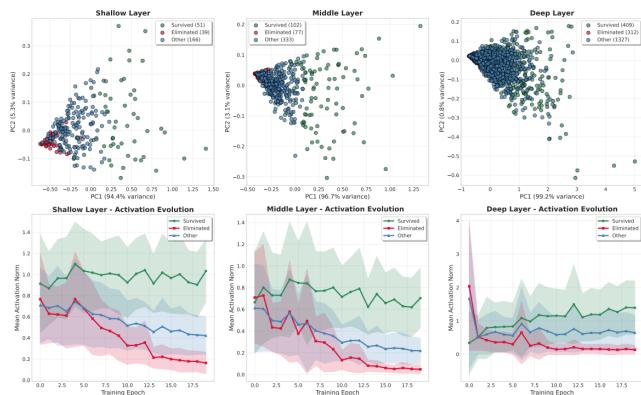
4.2.2 STATIC PCA AND ACTIVATION EVOLUTION

Figure 3 presents static PCA projections of final neuron states (top row) and mean activation norm trajectories (bottom row) across shallow, middle, and deep layer. In the shallow layer PC1 explains 94.4% of the variance (PC2 5.3%), which suggests that the final neuron population is largely confined to a single dominant axis in the projected space. Survived neurons (green) occupy a moderately dispersed region displaced from the origin, consistent with coordinated stabilization that does not form a tightly compact cluster. Eliminated neurons (red) form a compact cluster near the lower-left quadrant; this spatial concentration is consistent with lower mean activation magnitude. Other neurons (blue) lie in an intermediate zone, reflecting partial but incomplete adaptation. Activation dynamics are consistent with the PCA structure: on average survived neurons exhibit higher and more stable norms, eliminated neurons show a downward trend toward near-zero activity, and other neurons follow an intermediate trajectory.

In the middle layer PC1 accounts for 96.7% of variance (PC2 3.1%), indicating a stronger alignment to a single dominant direction compared to the shallow layer. Neurons distribute primarily along

432 this axis: survivors occupy the central and positive range of PC1, reflecting sustained functional
 433 activity; eliminated neurons cluster near the negative end of PC1, marking progressive silencing;
 434 and other neurons lie in between. Activation dynamics mirror this structure: survivors maintain
 435 consistently higher norms, eliminated neurons decay rapidly toward inactivity, and others exhibit
 436 moderate decline. These patterns are consistent with an increasingly directional consolidation in the
 437 middle layer: survivors tend to concentrate along the principal subspace while eliminated neurons
 438 are displaced toward the opposite pole.

439 In the deep layer PC1 captures 99.2% of the variance (PC2 0.8%), suggesting that neuron states
 440 are largely ordered along a single dominant axis in the projected space. Neurons concentrate into a
 441 dense central region dominated by other units; eliminated neurons tend to localize near the low-PC1
 442 boundary while survived neurons extend toward the positive-PC1 tail. Activation trajectories are
 443 consistent with this separation: survivors typically increase early in training and then stabilize at
 444 higher mean norms, eliminated neurons decline rapidly toward near-zero on average, and other units
 445 tend to plateau at intermediate values. These dynamics are consistent with an axis-aligned selection
 446 process in which survival status correlates with displacement along the dominant representational
 447 axis. Taken together, the layerwise progression is consistent with selection-like dynamics: initial
 448 heterogeneity, a preferential decline of low-activity units, and selective retention of survivors that
 449 increasingly align with task-relevant representational axes. The increasing dominance of a single
 450 principal axis and the widening separation in activation dynamics are consistent with a layerwise
 451 intensification of selective pressures, culminating in increased specialization in deeper layers.



452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 Figure 3: Static PCA and Activation Evolution on Tiny-ImageNet.

5 CONCLUSION

470 This study provides empirical evidence that CNNs exhibit representational dynamics that are
 471 consistent with the principles of Neural Darwinism. Across architectures and datasets, we observe
 472 recurring signatures of variation, competition, and selective retention: neurons initially follow di-
 473 verse representational trajectories, but only a subset sustains adaptive movement, stronger weight
 474 magnitudes, and higher activation norms. The ablation experiment highlights both robustness, aris-
 475 ing from representational redundancy, and fragility, once the implicitly selected subset of critical
 476 neurons is disrupted. Layerwise analyses further suggest that selection pressure intensifies with
 477 depth, culminating in compact ensembles of specialized neurons that dominate high-level feature
 478 encoding.

479 These findings advance our understanding of representation learning by framing it not solely as
 480 gradient-driven optimization, but also as an emergent selection-like process operating at the neuron
 481 level. This dual perspective highlights how neural networks balance redundancy with specialization.
 482 Future work may investigate whether similar dynamics generalize to recurrent and transformer
 483 architectures, and explore implications for pruning, interpretability, and biologically inspired models
 484 of computation.¹

485 ¹We used large language models (LLMs) only for polishing the writing; all scientific content is the authors' own.

486 REFERENCES
487

488 Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep rep-
489 resentations. *Journal of Machine Learning Research*, 19(50):1–34, 2018a.

490 Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations
491 through noisy computation. *IEEE transactions on pattern analysis and machine intelligence*, 40
492 (12):2897–2905, 2018b.

493 Kwangjun Ahn, et al. Learning threshold neurons via edge of stability. *Advances in Neural Infor-*
494 *mation Processing Systems*, 36:19540–19569, 2023.

495 Samuel Ainsworth, et al. Git re-basin: Merging models modulo permutation symmetries. In *The*
496 *Eleventh International Conference on Learning Representations*, 2023.

497 Alberto Alfarano, et al. Global lyapunov functions: a long-standing open problem in mathematics,
498 with symbolic transformers. *Advances in Neural Information Processing Systems*, 37:93643–
499 93670, 2024.

500 Prithaj Banerjee, et al. Deep networks learn features from local discontinuities in the label function.
501 In *The Thirteenth International Conference on Learning Representations*, 2025.

502 David Bau, et al. Network dissection: Quantifying interpretability of deep visual representations. In
503 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6541–6549,
504 2017.

505 Quentin Bertrand, et al. On the stability of iterative retraining of generative models on their own
506 data. In *The Twelfth International Conference on Learning Representations*, 2024.

507 Ivan Butakov, et al. Information bottleneck analysis of deep neural networks via lossy compression.
508 In *The Twelfth International Conference on Learning Representations*, 2024.

509 Chao Chen, et al. Optimal parameter and neuron pruning for out-of-distribution detection. *Advances*
510 *in Neural Information Processing Systems*, 36:52293–52311, 2023.

511 Lizhang Chen, et al. Lion secretly solves a constrained optimization: As lyapunov predicts. In *The*
512 *Twelfth International Conference on Learning Representations*, 2024.

513 Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
514 parameterized models using optimal transport. *Advances in neural information processing sys-*
515 *tems*, 31, 2018.

516 Lénaïc Chizat and Praneeth Netrapalli. The feature speed formula: a flexible approach to scale
517 hyper-parameters of deep neural networks. *Advances in Neural Information Processing Systems*,
518 37:62362–62383, 2024.

519 Arthur Conmy, et al. Towards automated circuit discovery for mechanistic interpretability. *Advances*
520 *in Neural Information Processing Systems*, 36:16318–16352, 2023.

521 Dániel Czégel, et al. Novelty and imitation within the brain: a darwinian neurodynamic approach to
522 combinatorial problems. *Scientific reports*, 11(1):12513, 2021.

523 Ilias Diakonikolas, et al. A spectral algorithm for list-decodable covariance estimation in relative
524 frobenius norm. *Advances in Neural Information Processing Systems*, 36:48819–48854, 2023.

525 Felix Draxler, et al. Essentially no barriers in neural network energy landscape. In *International*
526 *conference on machine learning*, pp. 1309–1318. PMLR, 2018.

527 Guodong Du, et al. Impacts of darwinian evolution on pre-trained deep neural networks. In *2024*
528 *IEEE International Conference on Systems, Man, and Cybernetics (SMC)*, pp. 1907–1912. IEEE,
529 2024.

530 Gerald M Edelman. *Neural Darwinism: The theory of neural group selection*. Basic Books, 1987.

540 Utku Evci, et al. Rigging the lottery: Making all tickets winners. In *International conference on*
 541 *machine learning*, pp. 2943–2952. PMLR, 2020.

542

543 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
 544 networks. In *International Conference on Learning Representations*, 2019.

545 Jingwen Fu, et al. Learning trajectories are generalization indicators. *Advances in Neural Informa-*
 546 *tion Processing Systems*, 36:71053–71077, 2023.

547

548 Michele Garibbo, et al. Taylor td-learning. *Advances in neural information processing systems*, 36:
 549 1061–1081, 2023.

550 Timur Garipov, et al. Loss surfaces, mode connectivity, and fast ensembling of dnns. *Advances in*
 551 *neural information processing systems*, 31, 2018.

552

553 Song Han, et al. Learning both weights and connections for efficient neural network. *Advances in*
 554 *neural information processing systems*, 28, 2015.

555

556 X.Y. Han, et al. Neural collapse under MSE loss: Proximity to and dynamics on the central path. In
 557 *International Conference on Learning Representations*, 2022.

558

559 Aaron Havens, et al. Exploiting connections between lipschitz structures for certifiably robust
 560 deep equilibrium models. *Advances in Neural Information Processing Systems*, 36:21658–21674,
 2023.

561

562 Arthur Jacot, et al. Neural tangent kernel: Convergence and generalization in neural networks.
 563 *Advances in neural information processing systems*, 31, 2018.

564

565 Nitish Shirish Keskar, et al. On large-batch training for deep learning: Generalization gap and sharp
 566 minima. In *International Conference on Learning Representations*, 2017.

567

568 Been Kim, et al. Interpretability beyond feature attribution: Quantitative testing with concept acti-
 569 vation vectors (tcav). In *International conference on machine learning*, pp. 2668–2677. PMLR,
 2018.

570

571 Simon Kornblith, et al. Similarity of neural network representations revisited. In *International*
 572 *conference on machine learning*, pp. 3519–3529. PMIR, 2019.

573

574 Axel Laborieux and Friedemann Zenke. Improving equilibrium propagation without weight sym-
 575 metry through jacobian homeostasis. In *The Twelfth International Conference on Learning Rep-*
 576 *resentations*, 2024.

577

578 Thomas Laurent, et al. Feature collapse. In *The Twelfth International Conference on Learning*
 579 *Representations*, 2024.

580

581 Namhoon Lee, et al. SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION
 582 SENSITIVITY. In *International Conference on Learning Representations*, 2019.

583

584 Jingyuan Li, et al. Amag: Additive, multiplicative and adaptive graph neural network for forecasting
 585 neuron activity. *Advances in Neural Information Processing Systems*, 36:8988–9014, 2023.

586

587 Sizhe Lester Li, et al. Controlling diverse robots by inferring jacobian fields with deep networks.
 588 *Nature*, pp. 1–7, 2025.

589

590 Zhuang Liu, et al. Rethinking the value of network pruning. In *International Conference on Learn-*
 591 *ing Representations*, 2019.

592

593 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances*
 594 *in neural information processing systems*, 30, 2017.

595

596 James Martens. New insights and perspectives on the natural gradient method. *Journal of Machine*
 597 *Learning Research*, 21(146):1–76, 2020.

598

599 Song Mei, et al. A mean field view of the landscape of two-layer neural networks. *Proceedings of*
 600 *the National Academy of Sciences*, 115(33):E7665–E7671, 2018.

594 Ari Morcos, et al. One ticket to win them all: generalizing lottery ticket initializations across datasets
 595 and optimizers. *Advances in neural information processing systems*, 32, 2019.
 596

597 Sejun Park, et al. What does automatic differentiation compute for neural networks? In *The Twelfth
 598 International Conference on Learning Representations*, 2024.

599 Jeffrey Pennington, et al. Resurrecting the sigmoid in deep learning through dynamical isometry:
 600 theory and practice. *Advances in neural information processing systems*, 30, 2017.
 601

602 Scott Pesme and Nicolas Flammarion. Saddle-to-saddle dynamics in diagonal linear networks. *Ad-
 603 vances in Neural Information Processing Systems*, 36:7475–7505, 2023.

604 Ben Poole, et al. Exponential expressivity in deep neural networks through transient chaos. *Ad-
 605 vances in neural information processing systems*, 29, 2016.
 606

607 Maithra Raghu, et al. Svcca: Singular vector canonical correlation analysis for deep learning dy-
 608 namics and interpretability. *Advances in neural information processing systems*, 30, 2017.
 609

610 Victor Sanh, et al. Movement pruning: Adaptive sparsity by fine-tuning. *Advances in neural infor-
 611 mation processing systems*, 33:20378–20389, 2020.
 612

613 A Saxe, et al. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks.
 614 In *Proceedings of the International Conference on Learning Representations 2014*. International
 Conference on Learning Representations 2014, 2014.
 615

616 Samuel S. Schoenholz, et al. Deep information propagation. In *International Conference on Learn-
 617 ing Representations*, 2017.
 618

619 Mohammad Javad Shafiee, et al. Deep learning with darwin: Evolutionary synthesis of deep neural
 620 networks. *Neural processing letters*, 48(1):603–613, 2018.
 621

622 Guobin Shen, et al. Brain-inspired neural circuit evolution for spiking neural networks. *Proceedings
 623 of the National Academy of Sciences*, 120(39):e2218173120, 2023.
 624

625 Hangchi Shen, et al. Rethinking the membrane dynamics and optimization objectives of spiking
 626 neural networks. *Advances in Neural Information Processing Systems*, 37:92697–92720, 2024.
 627

628 Xinyu Shi, et al. Spikingresformer: bridging resnet and vision transformer in spiking neural net-
 629 works. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 630 pp. 5610–5619, 2024.
 631

632 Andy Shih, et al. Parallel sampling of diffusion models. *Advances in Neural Information Processing
 633 Systems*, 36:4263–4276, 2023.
 634

635 Shikun Sun, et al. Inner classifier-free guidance and its taylor expansion for diffusion models. In
 636 *The Twelfth International Conference on Learning Representations*, volume 2, 2023.
 637

638 Mukund Sundararajan, et al. Axiomatic attribution for deep networks. In *International conference
 639 on machine learning*, pp. 3319–3328. PMLR, 2017.
 640

641 Aaquib Syed, et al. Attribution patching outperforms automated circuit discovery. In *Proceedings
 642 of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP*, pp.
 643 407–416, 2024.
 644

645 Dmitry Yarotsky. Learnability of high-dimensional targets by two-parameter models and gradient
 646 flow. *Advances in Neural Information Processing Systems*, 37:79144–79167, 2024.
 647

648 Atashgahi Zahra, et al. Supervised feature selection with neuron evolution in sparse neural networks.
 649 *Transactions on Machine Learning Research*, 2023(2), 2023.
 650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

648
649
A APPENDIX650
651
A.1 NOTATION AND PRELIMINARIES652
To maintain consistency with the main text, we briefly recap key notations:653
654
• Neural network $f_\theta : \mathcal{X} \rightarrow \mathcal{Y}$, layers $\{L_k\}_{k=1}^D$, where layer k contains n_k neurons indexed
655
by i .656
657
• Parameters of neuron i at layer k : weights $w_i^{(k)}(t) \in \mathbb{R}^{d_{k-1}}$, bias $b_i^{(k)}(t) \in \mathbb{R}$, activation
658
function σ .659
660
• Activation:

661
$$a_i^{(k)}(x, t) := \sigma \left(\langle w_i^{(k)}(t), h^{(k-1)}(x, t) \rangle + b_i^{(k)}(t) \right). \quad (26)$$

662
• Neuron state vector (compound state):

663
$$\psi_i^{(k)}(t) := \left[w_i^{(k)}(t), b_i^{(k)}(t), \mu_i^{(k)}(t), g_i^{(k)}(t), \mathcal{I}_i^{(k)}(t) \right], \quad (27)$$

664
where

665
666
$$\mu_i^{(k)}(t) = \mathbb{E}_{x \sim \mathcal{D}}[a_i^{(k)}(x, t)], \quad g_i^{(k)}(t) = \mathbb{E}_{x \sim \mathcal{D}} \left[\frac{\partial \mathcal{L}(x)}{\partial a_i^{(k)}(x, t)} \right], \quad (28)$$

667
668
and $\mathcal{I}_i^{(k)}(t)$ is the instantaneous differential (Shannon) entropy estimator of the activation
669
670
distribution. The integrated (accumulated) entropy over training is denoted $\mathfrak{H}_i^{(k)}$ as in the
671
main text.672
• State evolution (ODE form, main text eq.(6)):

673
674
$$\frac{d}{dt} \psi_i^{(k)}(t) = \mathbf{F}_\theta^{(k)}(\psi_i^{(k)}(t), \mathcal{D}, \mathcal{L}). \quad (29)$$

675
676
Other quantities such as trajectory length $\mathcal{A}_i^{(k)}$, terminal stochasticity $\mathcal{S}_i^{(k)}$, integrated entropy $\mathfrak{H}_i^{(k)}$,
677
678
and fitness $\Phi_i^{(k)}$ follow the main text definitions. **Notation remark:** throughout the manuscript we
679
reserve $\mathcal{L}(\cdot)$ exclusively for the per-example loss; the trajectory length is consistently denoted $\mathcal{A}_i^{(k)}$.680
681
A.2 SUPPLEMENTARY TECHNICAL ASSUMPTIONS682
683
We explicitly state additional mild assumptions needed for mathematical rigor and numerical stabil-
684
ity. These assumptions clarify the hidden conditions of the main results.685
Assumption S1 (Smoothness, boundedness, and trajectory length)686
687
For each layer k , the vector field $\mathbf{F}_\theta^{(k)}(\psi, t)$ is locally Lipschitz in ψ and measurable in t .
There exist constants $B_g, B_a, B_\psi > 0$ such that for all $t \geq 0$:

688
689
$$\|g_i^{(k)}(t)\| \leq B_g, \quad \text{Var}[a_i^{(k)}(t)] \leq B_a, \quad \|\psi_i^{(k)}(t)\| \leq B_\psi. \quad (30)$$

690
691
Moreover, the trajectory (arc) length $\mathcal{A}_i^{(k)}(T)$ is bounded for any finite T .692
Assumption S2 (Sub-exponential tails / sub-Gaussianity of activations)693
694
For all neurons i, k and times t , the distribution of $a_i^{(k)}(x, t)$ over $x \sim \mathcal{D}$ is sub-Gaussian
or at least has sub-exponential tails, enabling concentration bounds for sample estimators.695
Assumption S3 (Controlled Gaussian entropy approximation error)696
697
There exists a constant $C_{\text{gauss}} \geq 1$ such that for all neurons i, k and times t ,

698
699
$$\mathcal{I}_i^{(k)}(t) \leq \frac{1}{2} \log \left(2\pi e \text{Var}[a_i^{(k)}(t)] \right) \leq \mathcal{I}_i^{(k)}(t) + \log C_{\text{gauss}}. \quad (31)$$

700
701
This controlled approximation underpins the Gaussian plug-in used in experiments; when
this bound is violated the practitioner must rely on nonparametric estimators as described
in the main text.

702 A.3 WELL-POSEDNESS OF THE CONTINUOUS NDDS
703

704 Under Assumption S1, the vector field $\mathbf{F}_\theta^{(k)}$ is locally Lipschitz, thus by Picard–Lindelöf theorem
705 Shih (2023); Yarotsky (2024), for any initial value $\psi_i^{(k)}(0)$ there exists a unique local solution.
706 Boundedness and growth controls ensure global existence on finite intervals and continuous depen-
707 dence on initial conditions and parameters.

709 A.4 SMOOTH AND BOUNDED DYNAMICS
710

711 **Assumption A.1** (Smooth and Bounded Dynamics). We adopt a hypothesis compatible with practi-
712 cal discrete optimization. The parameter trajectory $\theta(t)$ is assumed to be absolutely continuous and
713 piecewise C^1 in t (so that it admits a time-continuous interpolation), and $\mathbf{F}_\theta^{(k)}$ is locally Lipschitz in
714 ψ on trajectories of interest. This formulation explicitly permits discretization effects arising from
715 SGD and non-smooth activations (e.g. ReLU) by interpreting derivatives in the sense of absolutely
716 continuous interpolation or Clarke subgradients when necessary.

717 Furthermore, there exist constants $B_g, B_a > 0$ such that for all $t \in [0, T]$ along the interpolated
718 trajectory:

$$719 \|g_i^{(k)}(t)\| \leq B_g, \quad \text{Var}[a_i^{(k)}(t)] \leq B_a. \quad (32)$$

720 Finally, we require that the trajectory length $\mathcal{A}_i^{(k)}$ (defined in equation 49) remains finite as $T \rightarrow \infty$;
721 for discrete checkpoints the forward-difference approximation in equation 51 is used and all
722 continuum claims are understood to hold up to discretization errors that vanish under standard time-
723 interpolation refinements.

725 A.4.1 DISCRETE CONTINUOUS TRAJECTORY LENGTH APPROXIMATION
726

727 **Setup.** Let $a : [0, T] \rightarrow \mathbb{R}^d$ be the neuron activation trajectory $a(t) \equiv a_i^{(k)}(t)$ appearing in As-
728 sumption "Smooth and Bounded Dynamics". Assume a is absolutely continuous on $[0, T]$ (hence
729 a.e. differentiable with $a' \in L^1([0, T]; \mathbb{R}^d)$) and has finite Trajectory length

$$730 \mathcal{A} = \int_0^T \|a'(t)\| dt < \infty. \quad (33)$$

733 For a uniform partition $0 = t_0 < t_1 < \dots < t_M = T$ with step size $\Delta t = T/M$ define the
734 forward-difference (discrete) trajectory length approximation

$$735 \widehat{\mathcal{A}}(\Delta t) = \sum_{m=1}^M \|a(t_m) - a(t_{m-1})\| = \sum_{m=1}^M \left\| \int_{t_{m-1}}^{t_m} a'(s) ds \right\|. \quad (34)$$

738 **Lemma A.2** (Discrete Continuous Trajectory Length Approximation). *Under the setup above the
739 following hold.*

741 1. **Convergence.** As the mesh $\Delta t \rightarrow 0$,

$$742 \widehat{\mathcal{A}}(\Delta t) \rightarrow \mathcal{A}. \quad (35)$$

744 In particular, for any sequence of partitions whose mesh size tends to zero the partition-
745 wise variation of a converges to the total variation (trajectory length) \mathcal{A} .

746 2. **Quantitative bound under extra smoothness.** If, in addition, a' is L -Lipschitz on $[0, T]$
747 (i.e. there exists $L > 0$ such that $\|a'(s) - a'(t)\| \leq L|s - t|$ for all $s, t \in [0, T]$), then there
748 exists a constant C (one may take $C = L$) such that for all sufficiently small Δt :

$$750 |\mathcal{A} - \widehat{\mathcal{A}}(\Delta t)| \leq CT \Delta t = O(\Delta t). \quad (36)$$

752 3. **Non-smooth activations (Clarke subgradient).** If a is only piecewise C^1 (for example due
753 to ReLU kinks) and is absolutely continuous, interpret a' in the Clarke subdifferential sense.
754 Then the convergence in part (1) still holds; moreover, whenever the extra smoothness of
755 part (2) holds on each C^1 segment the $O(\Delta t)$ bound applies up to contributions from
finitely many kink-boundary intervals, which vanish as $\Delta t \rightarrow 0$.

756 *Proof.* (1) **Convergence.** Absolute continuity of a implies a has bounded variation on $[0, T]$ and
 757

$$758 \quad \mathcal{A} = \text{Var}(a; [0, T]) = \sup_{\mathcal{P}} \sum_m \|a(t_m) - a(t_{m-1})\|, \quad (37)$$

759

760 where the supremum is taken over all finite partitions \mathcal{P} of $[0, T]$. For any fixed partition the sum
 761 $\sum_m \|a(t_m) - a(t_{m-1})\|$ is the variation of a over that partition and is therefore bounded above
 762 by \mathcal{A} . Standard results on functions of bounded variation state that for any sequence of partitions
 763 whose mesh tends to zero the corresponding partition-wise variation converges to the total variation.
 764 Applied to the uniform partitions above this yields

$$765 \quad \lim_{\Delta t \rightarrow 0} \widehat{\mathcal{A}}(\Delta t) = \mathcal{A}, \quad (38)$$

766

767 which proves (1).

768 (2) **Quantitative bound under Lipschitz derivative.** Assume a' is L -Lipschitz Havens (2023);
 769 Bertrand (2024). Fix an interval $I_m = [t_{m-1}, t_m]$. By the fundamental theorem of calculus and the
 770 Lipschitz property we can expand a' about the midpoint (or any point $\xi_m \in I_m$) to obtain
 771

$$772 \quad \int_{t_{m-1}}^{t_m} a'(s) ds = \Delta t a'(\xi_m) + r_m, \quad (39)$$

773

774 with the remainder satisfying $\|r_m\| \leq \frac{1}{2}L(\Delta t)^2$. Hence
 775

$$776 \quad \left\| \int_{t_{m-1}}^{t_m} a'(s) ds \right\| = \Delta t \|a'(\xi_m)\| + \delta_m, \quad |\delta_m| \leq \frac{1}{2}L(\Delta t)^2. \quad (40)$$

777

778 On the other hand,

$$779 \quad \int_{t_{m-1}}^{t_m} \|a'(s)\| ds = \Delta t \|a'(\xi_m)\| + \epsilon_m, \quad |\epsilon_m| \leq L(\Delta t)^2, \quad (41)$$

780

781 where the bound on ϵ_m follows from the same Lipschitz control on a' and the one-dimensional
 782 integral averaging error. Subtracting and summing over $m = 1, \dots, M$ yields
 783

$$784 \quad 0 \leq \mathcal{A} - \widehat{\mathcal{A}}(\Delta t) = \sum_{m=1}^M \left(\int_{t_{m-1}}^{t_m} \|a'(s)\| ds - \left\| \int_{t_{m-1}}^{t_m} a'(s) ds \right\| \right) \leq \sum_{m=1}^M (|\epsilon_m| + |\delta_m|). \quad (42)$$

785

786 Using the per-interval bounds $|\epsilon_m| \leq L(\Delta t)^2$, $|\delta_m| \leq \frac{1}{2}L(\Delta t)^2$ we obtain
 787

$$788 \quad |\mathcal{A} - \widehat{\mathcal{A}}(\Delta t)| \leq \frac{3}{2}LM(\Delta t)^2 = \frac{3}{2}LT\Delta t. \quad (43)$$

789

790 Thus the difference is $O(\Delta t)$; setting $C = \frac{3}{2}L$ (or taking the coarser but simpler $C = L$) yields the
 791 claimed linear-in- Δt bound.

792 (3) **Non-smooth activations and Clarke subgradient.** If a is piecewise C^1 (typical when activations like ReLU produce kinks) then a is still absolutely continuous and has bounded variation. The
 793 set $K \subset [0, T]$ of non-differentiable points is closed and of Lebesgue measure zero (in common
 794 architectures it is finite or a countable set with no accumulation inside $[0, T]$). The contribution of
 795 intervals that contain points of K can be localized: by refining the partition one can make the total
 796 length of intervals that intersect K arbitrarily small, hence their contribution to \mathcal{A} and to the discrete
 797 sum is arbitrarily small. On each C^1 segment the argument of part (2) applies; summing segment-
 798 wise yields the same $O(\Delta t)$ behaviour up to vanishing boundary contributions. More conceptually,
 799 one may replace a' by any measurable selection from the Clarke generalized derivative Park (2024)
 800 and repeat the preceding estimates; the measure-zero nondifferentiable set does not affect the lim-
 801 iting equality $\widehat{\mathcal{A}}(\Delta t) \rightarrow \mathcal{A}$ nor the $O(\Delta t)$ rate when the Lipschitz condition holds on the smooth
 802 pieces.
 803

804 **Remark.** In typical empirical settings the checkpoint count M is large (e.g. hundreds or thousands),
 805 so $\Delta t = T/M$ is small and the discretization error $|\mathcal{A} - \widehat{\mathcal{A}}(\Delta t)|$ is negligible compared to stochastic
 806 fluctuations induced by SGD. The theoretical statements above make precise that all continuous-
 807 time claims involving \mathcal{A} hold up to an $O(\Delta t)$ discretization error which vanishes under standard
 808 time-interpolation refinements. \square

810 A.5 LOCAL GAUSSIANITY OF PRE-ACTIVATIONS AND DIAGNOSTIC PROTOCOL
811812 **Assumption A.3** (Local Gaussianity of pre-activations and diagnostic protocol). To avoid conflicts
813 with non-negative, mass-at-zero activations (e.g. ReLU), we state the main parametric approxima-
814 tion at the *pre-activation* level. Define the pre-activation

815
$$z_i^{(k)}(x, t) := w_i^{(k)}(t)^\top h^{(k-1)}(x, t) + b_i^{(k)}(t), \quad (44)$$

816

817 and its smoothed version

818
$$\tilde{z}_i^{(k)}(x, t) := z_i^{(k)}(x, t) + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma_\varepsilon^2). \quad (45)$$

819

820 For every neuron i and for any short time window $[s, s + \tau]$ (with τ chosen to balance local station-
821 arity and sample requirements) we assume that the empirical law of $\tilde{z}_i^{(k)}(\cdot, s)$ is well-approximated
822 by a Gaussian $\mathcal{N}(\mu_{z,i}^{(k)}(s), \sigma_{z,i}^{2(k)}(s))$ in the sense that there exists a small tolerance $\eta > 0$ and a
823 divergence metric $\text{dist}(\cdot, \cdot)$ such that for a large fraction of checkpoints $s \in [0, T]$,

824
$$\text{dist}(\text{Law}(\tilde{z}_i^{(k)}(\cdot, s)), \mathcal{N}(\mu_{z,i}^{(k)}(s), \sigma_{z,i}^{2(k)}(s))) \leq \eta. \quad (46)$$

825

826 When downstream analysis requires activation-level entropy (post-activation), practitioners must
827 either transform the Gaussian approximation via the known mapping $\sigma(\cdot)$ and report the accuracy of
828 that transformation, or employ a consistent nonparametric estimator for the activation distribution
829 and report estimator sensitivity.

830 A numerically-stable variance-proxy is used when the pre-activation Gaussian plug-in is accepted:

831
$$\tilde{\mathcal{I}}_i^{(k)}(t) := \frac{1}{2} \log(\text{Var}_x[z_i^{(k)}(x, t)] + \sigma_\varepsilon^2 + \epsilon_{\text{var}}). \quad (47)$$

832

833 If the Gaussian diagnostic fails (i.e. the empirical divergence exceeds η) the practitioner must fall
834 back to nonparametric estimators and report the fraction of checkpoints failing the diagnostic and a
835 sensitivity comparison between plug-in and nonparametric estimates.837 A.6 NEURON TRAJECTORY
838839 **Definition A.4** (Neuron Trajectory). The trajectory of a neuron in state space is defined as

840
$$\Gamma_i^{(k)} := \{\psi_i^{(k)}(t) \mid t \in [0, T]\}. \quad (48)$$

841

842 From this path we extract three complementary quantities:

843 **Definition A.5** (Trajectory Length). The trajectory length of neuron i in layer k is the cumulative
844 representational movement of its state vector $\psi_i^{(k)}$ measured with a block-wise scaling matrix $D^{(k)}$
845 that normalizes heterogeneous components of ψ :

846
$$\mathcal{A}_i^{(k)} := \int_0^T \left\| D^{(k)} \frac{d\psi_i^{(k)}(t)}{dt} \right\|_2 dt, \quad (49)$$

847

848 where $D^{(k)}$ is taken to be block-diagonal with positive diagonal blocks that rescale each block of ψ .
849 The block-wise construction ensures no single block systematically dominates the norm and makes
850 the quantity invariant to simple coordinate scalings within each block.851 When comparability across different training durations is required we also use the time-averaged arc
852 length

853
$$\bar{\mathcal{A}}_i^{(k)} := \frac{1}{T} \mathcal{A}_i^{(k)}. \quad (50)$$

854

855 Under discrete training (checkpoints or optimization steps with index spacing Δt) we employ the
856 forward-difference approximation

857
$$\mathcal{A}_i^{(k)} \approx \sum_{t=0}^{N-1} \left\| D^{(k)} \frac{\psi_i^{(k)}(t+1) - \psi_i^{(k)}(t)}{\Delta t} \right\|_2 \Delta t, \quad (51)$$

858

859 where N is the number of recorded checkpoints and Δt is the (possibly non-unit) interval between
860 checkpoints; taking $\Delta t = 1$ recovers the step-indexed form.

864 A.7 INTEGRATED ENTROPY
865866 **Definition A.6** (Integrated entropy). The integrated entropy of neuron i accumulates a per-time
867 estimate of the neuron's (differential) entropy over training:

868
$$\mathfrak{H}_i^{(k)} := \int_0^T \mathcal{I}_i^{(k)}(t) dt, \quad (52)$$

870

871 where $\mathcal{I}_i^{(k)}(t)$ denotes a numerically stable estimator of the neuron's differential entropy at time t
872 (estimated from mini-batches and moving averages). For comparability we also consider the time-
873 averaged form $\bar{\mathfrak{H}}_i^{(k)} := \frac{1}{T} \mathfrak{H}_i^{(k)}$.
874875 When the Gaussian plug-in is appropriate (see Assumption 3.3) we use the variance-proxy with
876 explicit numerical stabilization:
877

877
$$\tilde{\mathcal{I}}_i^{(k)}(t) := \frac{1}{2} \log(\text{Var}_x[z_i^{(k)}(x, t)] + \sigma_\varepsilon^2 + \epsilon_{\text{var}}), \quad (53)$$

878

879 where $\sigma_\varepsilon^2 > 0$ is the additive smoothing noise variance introduced in Assumption 3.3 and $\epsilon_{\text{var}} > 0$ is
880 a small numeric floor (e.g. 10^{-8}) to avoid $\log(0)$ and ensure robust estimation in finite samples. Note
881 that the Gaussian plug-in differs from the differential entropy by the additive constant $\frac{1}{2} \log(2\pi e)$;
882 when absolute entropy values are needed this constant is accounted for in post-processing.
883

In discrete form the accumulated entropy used in experiments is

884
$$\mathfrak{H}_i^{(k)} \approx \sum_{t=0}^{N-1} \tilde{\mathcal{I}}_i^{(k)}(t) \Delta t, \quad (54)$$

885
886

with Δt equal to the checkpoint interval. When the Gaussian assumption is questionable (e.g. ReLU
activations with large mass at zero), we complement the variance-proxy with nonparametric estimators.
Estimation uses mini-batch averages with an exponential moving-average smoothing window.
887890 A.8 PRACTICAL ESTIMATOR FOR ABLATION-BASED UTILITY
891892 **Definition A.7** (Ablation-based utility). For neuron i in layer k define the instantaneous ablation-
893 based utility

894
$$U_i^{(k)}(t) := \mathbb{E}_{x \sim \mathcal{D}} [\mathcal{L}(f_{\theta(t) \setminus i}; x) - \mathcal{L}(f_{\theta(t)}; x)], \quad (55)$$

895

where $f_{\theta \setminus i}$ denotes the network obtained by zeroing neuron i 's activation. By this convention
 $U_i^{(k)}(t) > 0$ indicates the neuron is useful at time t .
896897 Direct computation of equation 55 for every neuron at every checkpoint is computationally pro-
898hibitive. We therefore recommend and use a calibrated first-order Taylor approximation Garibbo
900 (2023); Sun (2023) as a default estimator (and validate it against ground-truth partial ablations on
901 small models):
902

903
$$U_i^{(k)}(t) \approx -\mathbb{E}_x \left[\frac{\partial \mathcal{L}(x)}{\partial a_i^{(k)}(x, t)} \cdot a_i^{(k)}(x, t) \right] =: U_i^{(k), \text{lin}}(t). \quad (56)$$

904

905 Optionally, a second-order correction may be included when Hessian-vector products are affordable.
906 In practice we compute $U_i^{(k), \text{lin}}(t)$ using a held-out validation subset of size $m \ll |\mathcal{D}|$ (randomly
907 sampled) and report the estimator variance and a small-sample calibration against exact ablation on
a subset of neurons.
908909 A.9 DETAILED PROOFS OF MAIN LEMMAS AND THEOREMS
910911 **Lemma A.8** (Instability with sustained entropy decay implies vanishing fitness). *Assume there exist*
912 *constants $c_H > 0$, $T_0 \geq 0$ and $c_S > 0$ such that for all $t \geq T_0$ the neuron's differential entropy*
913 *satisfies*

914
$$\mathcal{H}(\rho_{i,t}^{(k)}) \leq -c_H t + C_H, \quad (57)$$

915

for some finite constant C_H , and furthermore the terminal fluctuation satisfies

916
$$\frac{1}{\delta} \int_{t-\delta}^t \left\| \frac{d\psi_i^{(k)}(s)}{ds} \right\|_2^2 ds \geq c_S. \quad (58)$$

917

918 Assume also that the time-averaged utility $\bar{U}_i^{(k)}(T)$ and stochasticity $\bar{\mathcal{S}}_i^{(k)}(T)$ grow at most polynomially in T . Then for any fixed positive weights $\alpha, \beta, \gamma > 0$ in equation 16 we have
919
920

$$921 \lim_{T \rightarrow \infty} \Phi_i^{(k)}(T) = -\infty. \quad (59)$$

922

923 *Proof.* A linear-in-time growth of the relative entropy $\text{KL}(\rho_{i,t}^{(k)} \| \rho_{\text{ref}})$ implies that the neuron's differential entropy (and hence the Gaussian plug-in proxy used in $\mathfrak{H}_i^{(k)}$) decreases sufficiently fast. After the layer-wise standardization in equation 16, this persistent loss of information eventually dominates the (assumed at-most-polynomial) contributions from \bar{U} and $\bar{\mathcal{S}}$, driving $\Phi_i^{(k)}(T) \rightarrow -\infty$. \square
924
925
926
927

928 **Theorem A.9** (Fitness Threshold Implies Gradient–Variance Contribution). *Let $\Delta_i^{(k)}$ be as above. Suppose Assumptions 3.2 and 3.3 hold, and additionally there exists $\bar{c}_g > 0$ such that the time-averaged gradient second moment satisfies*
929
930
931

$$932 \frac{1}{T} \int_0^T q_i^{(k)}(t) dt \geq \bar{c}_g. \quad (60)$$

933

934 Assume also that $\bar{U}_i^{(k)}(T)$ and $\bar{\mathcal{S}}_i^{(k)}(T)$ grow at most polynomially in T . Then there exist constants
935 $\tau, \kappa > 0$ (depending on $\bar{c}_g, \alpha, \beta, \gamma$ and growth bounds) such that
936

$$937 \Phi_i^{(k)}(T) \geq \tau \Rightarrow \Delta_i^{(k)} \geq \kappa. \quad (61)$$

938

939 *Proof.* Under Assumption 3.3 the time-averaged pre-activation variance $\bar{\sigma}^2 :=$
940 $\frac{1}{T} \int_0^T \text{Var}_x[z_i^{(k)}(x, t)] dt$ is related to $\mathfrak{H}_i^{(k)}$ via the Gaussian plug-in. After the layer-wise z-
941 scoring used in equation 16 a lower bound on Φ yields a lower bound on $\bar{\sigma}^2$ up to contributions
942 from \mathcal{L} and \mathcal{S} . Combining this with the time-averaged lower bound on $q_i^{(k)}$ gives
943

$$944 \Delta_i^{(k)} \geq \bar{c}_g \cdot \bar{\sigma}^2, \quad (62)$$

945 and the constants τ, κ follow by quantitative bookkeeping of the contributions of \mathcal{L} and \mathcal{S} . \square
946

947 A.10 DISCRETE-TIME APPROXIMATION AND RELATION TO SGD

948

949 Actual training proceeds in discrete time steps, typically iterations or epochs. The continuous-time
950 NDDS dynamics approximate the discrete SGD updates as follows:
951

- 952 • Discrete parameter update:

$$953 \theta_{t+1} = \theta_t - \eta_t \hat{\nabla}_\theta \mathcal{L}(B_t; \theta_t), \quad (63)$$

954 where B_t is the mini-batch at step t .

- 955 • For small learning rate η_t , the discrete updates approximate the stochastic differential equation
956 $d\theta_t = -\mathbb{E}_x[\nabla_\theta \mathcal{L}(x; \theta_t)]dt + \sqrt{\eta_t} \Sigma(\theta_t)dW_t,$
957 with W_t Brownian motion and Σ the noise covariance.

- 960 • Correspondingly, the neuron state differences

$$961 \Delta\psi_i^{(k)}(t) := \psi_i^{(k)}(t+1) - \psi_i^{(k)}(t) \quad (65)$$

962

963 approximate $\frac{d}{dt} \psi_i^{(k)}(t)$.

- 964 • Therefore,

$$966 \mathcal{A}_i^{(k)} \approx \sum_t \|\Delta\psi_i^{(k)}(t)\|_2, \quad \mathcal{S}_i^{(k)} \approx \frac{1}{\delta} \sum_{t=T-\delta}^{T-1} \|\Delta\psi_i^{(k)}(t)\|_2^2, \quad \mathfrak{H}_i^{(k)} \approx \sum_t \mathcal{I}_i^{(k)}(t). \quad (66)$$

967

968 Discrete estimation errors arise from step size, mini-batch noise, and finite sample effects. In all
969 discrete approximations used in experiments we adopt the same block-wise scaling matrix $D^{(k)}$ that
970 appears in the continuous trajectory length definition (main text Eq. equation 49) to ensure consistent
971 units across measurements.

972 A.11 NUMERICAL ESTIMATION OF KEY QUANTITIES
973974 **Definition A.10** (Mean activation and mean gradient). Given an evaluation dataset $\mathcal{D}_{\text{eval}}$, the mean
975 activation and mean gradient of neuron i in layer k are estimated as

976
$$\mu_i^{(k)} = \frac{1}{|\mathcal{D}_{\text{eval}}|} \sum_{x \in \mathcal{D}_{\text{eval}}} a_i^{(k)}(x), \quad g_i^{(k)} = \frac{1}{|\mathcal{D}_{\text{eval}}|} \sum_{x \in \mathcal{D}_{\text{eval}}} \frac{\partial \mathcal{L}(x)}{\partial a_i^{(k)}(x)}. \quad (67)$$

979 **Definition A.11** (Activation variance). The variance of activations is estimated as the unbiased
980 sample variance over $\mathcal{D}_{\text{eval}}$:

982
$$\widehat{\text{Var}}[a_i^{(k)}] = \frac{1}{|\mathcal{D}_{\text{eval}}| - 1} \sum_{x \in \mathcal{D}_{\text{eval}}} (a_i^{(k)}(x) - \mu_i^{(k)})^2. \quad (68)$$

984 **Definition A.12** (Differential entropy). We consider three standard estimators for the entropy of
985 activations:987 1. **Gaussian plug-in:**

988
$$\widehat{\mathcal{I}}_{\text{gauss}} = \frac{1}{2} \log\left(2\pi e \widehat{\text{Var}}[a_i^{(k)}]\right), \quad (69)$$

990 with a numeric floor $\epsilon_{\text{var}} > 0$ (Eq. equation 53) to avoid degeneracy.991 2. **Kernel density estimation (KDE):** Estimate density $\widehat{p}(z)$ via KDE and compute

993
$$\widehat{\mathcal{I}} = - \int \widehat{p}(z) \log \widehat{p}(z) dz. \quad (70)$$

995 3. **K-nearest neighbor (Kozachenko–Leonenko):** Nonparametric entropy estimation based
996 on neighbor distances.998 **Definition A.13** (Trajectory length and terminal stochasticity). From saved parameter snapshots at
999 discrete steps t , define the scaled increment

1000
$$\Delta \psi_i^{(k)}(t) := \left\| D^{(k)}(\psi_i^{(k)}(t+1) - \psi_i^{(k)}(t)) \right\|_2, \quad (71)$$

1002 where $D^{(k)}$ is the block-wise scaling matrix. Then the trajectory length and terminal stochasticity
1003 are given by

1004
$$\mathcal{A}_i^{(k)} = \sum_t \Delta \psi_i^{(k)}(t), \quad \mathcal{S}_i^{(k)} = \frac{1}{\delta} \sum_{t=T-\delta}^{T-1} (\Delta \psi_i^{(k)}(t))^2. \quad (72)$$

1008 A.12 MULTILAYER COUPLED DYNAMICS

1009 At the layer level, survival is not independent. Let $\Psi^{(k)}(t) = [\psi_i^{(k)}(t)]_{i \in \mathcal{N}_k}$ be the joint state of all
1010 neurons in layer k . We define the *inter-layer coupling operator*: We restrict attention to sensitivities
1011 between *activations* of adjacent layers. Let

1013
$$J_{k \rightarrow k+1}(t) := \frac{\partial h^{(k+1)}(t)}{\partial h^{(k)}(t)} \quad (73)$$

1016 denote the Jacobian mapping pre-activations/activations in layer k to those in layer $k+1$ (evaluated
1017 pointwise and averaged over data when necessary) Li (2025); Laborieux & Zenke (2024). For
1018 neurons indexed $i \in \mathcal{N}_k, j \in \mathcal{N}_{k+1}$, we write the element-wise sensitivity as

1019
$$\mathcal{C}_{k \rightarrow k+1}^{(i,j)}(t) := \frac{\partial a_j^{(k+1)}(t)}{\partial a_i^{(k)}(t)}. \quad (74)$$

1022 To obtain a layer-level scalar measure that is robust to width, we define the *layer influence* by the
1023 width-normalized average operator norm:

1024
$$\mathbf{M}_{k,k+1}(t) := \frac{1}{|\mathcal{N}_k||\mathcal{N}_{k+1}|} \sum_{i \in \mathcal{N}_k} \sum_{j \in \mathcal{N}_{k+1}} \|\mathcal{C}_{k \rightarrow k+1}^{(i,j)}(t)\|_{2 \rightarrow 2}, \quad (75)$$

1026 where $\|\cdot\|_{2 \rightarrow 2}$ denotes the induced (spectral) norm of the scalar-to-scalar sensitivity (for scalar
 1027 activations this is absolute value). Equivalently one may use the averaged Frobenius norm divided by
 1028 $\sqrt{|\mathcal{N}_k| |\mathcal{N}_{k+1}|}$ for implementation convenience Diakonikolas (2023); Laurent (2024); both variants
 1029 are equivalent up to constant factors and we report which we use in experiments.

1030 **Definition A.14** (Darwinian Flow Energy). The Darwinian flow energy is defined as

$$1032 \quad \mathcal{E}_{\text{Darwin}} := \sum_{k=1}^D \sum_{l=1}^D \int_0^T \mathbf{M}_{k,l}(t) \phi(\text{JS}(\rho^{(k)}(t) \parallel \rho^{(l)}(t))) dt, \quad (76)$$

1035 or, alternatively,

$$1036 \quad \mathcal{E}_{\text{Darwin}}^W := \sum_{k,l} \int_0^T \mathbf{M}_{k,l}(t) \phi(W_1(\rho^{(k)}(t), \rho^{(l)}(t))) dt. \quad (77)$$

1039 **Theorem A.15** (Coupled Survival Principle). *Suppose that for some $\mu > 0$ and a subset $\mathcal{S}^{(k)} \subseteq$
 1040 $\{1, \dots, n_k\}$ of survived neurons at layer k , the layer-to-layer coupling matrix $\mathbf{M}_{k,k+1}(t)$ satisfies*

$$1041 \quad \sum_{i \in \mathcal{S}^{(k)}} \mathbf{M}_{k,k+1}(i, j)(t) \geq \epsilon > 0, \quad (78)$$

1044 for all neurons j in layer $k+1$ and all sufficiently large t .

1045 *Then, there exists $\eta = \eta(\mu, \epsilon, \text{Lipschitz constants}) > 0$ such that at least an η proportion of neurons
 1046 in layer $k+1$ achieve high fitness (survival).*

1048 *Proof.* Positive lower bounds on coupling imply sustained energy inflow to downstream neurons.
 1049 Via the Lipschitz continuity of the fitness function and the smoothness of the dynamics, survival of
 1050 upstream neurons forces a positive measure of downstream neurons to cross the survival threshold.
 1051 \square

1052 **Theorem A.16** (Global Convergent Specialization). *If the total Darwinian flow energy $\mathcal{E}_{\text{Darwin}} \geq$
 1053 $\epsilon > 0$ is bounded away from zero and the fitness functions $\Phi_i^{(k)}$ are sufficiently smooth and Lipschitz
 1054 continuous, then as $t \rightarrow \infty$, the proportion of neurons with fitness below any fixed threshold tends
 1055 to zero.*

1057 *Proof.* Construct a suitable Lyapunov function based on the sum over neurons of a decreasing con-
 1058 vexit function of their fitness values Chen (2024); Alfarano (2024). The positive lower bound on
 1059 Darwinian flow energy ensures the Lyapunov function decreases over time, implying convergence
 1060 to the set of neurons with high fitness. LaSalle’s invariance principle excludes non-convergent os-
 1061 cillations. \square

1063 A.13 ADDITIONAL EXPERIMENTS ON THREE-LAYER MLP-NET WITH MNIST

1065 A.13.1 DYNAMICS NEURON TRAJECTORY AND EVOLUTION ANALYSIS.

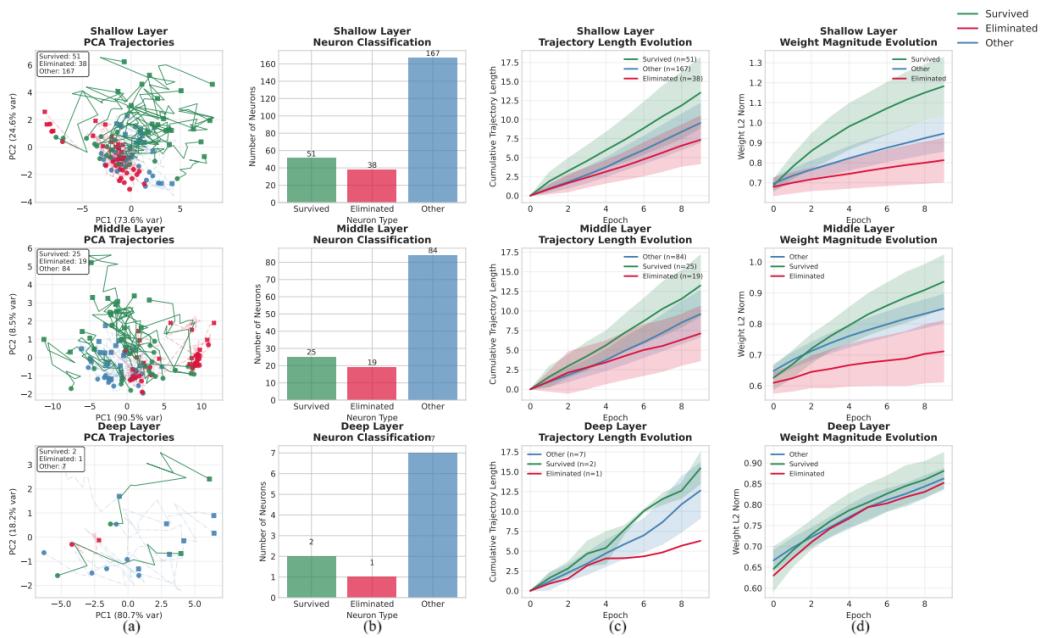
1066 Figure 4(a), top shows the PCA-projected trajectories of shallow-layer neurons across training. Sur-
 1067 vived neurons (green) follow relatively long and directed paths, indicating sustained representational
 1068 change. Their motion exhibits fewer reversals than eliminated neurons (red), which instead display
 1069 short and irregular trajectories, often collapsing toward the origin. This contrast is reflected quanti-
 1070 tatively in Figure 4(c), top, where cumulative trajectory length grows steadily for survived neurons.
 1071 The weight dynamics in Figure 4(d), top reinforce this pattern: survived neurons exhibit increasing
 1072 L_2 norms of incoming weights, whereas eliminated neurons remain almost flat, suggesting a gradual
 1073 withdrawal of representational capacity. Collectively, these results indicate that even in the shallow
 1074 layer, gradient descent implicitly differentiates between neurons that maintain sustained alignment
 1075 with the loss signal and those that do not.

1076 In the middle layer (Figure 4(a), middle), the divergence becomes more pronounced. Survived neu-
 1077 rons trace longer and more coherent trajectories, while eliminated neurons remain short and close
 1078 to the origin. This is supported by Figure 4(c), middle, where the cumulative trajectory length of
 1079 eliminated neurons grows at a substantially lower rate than that of survived neurons, already show-
 ing a marked slowdown by Epoch 2. Weight norms (Figure 4(d), middle) again show a separation,

1080 with growth for survived neurons and almost stagnation for eliminated ones. Compared to the shal-
 1081 low layer, the selective bottleneck appears stronger: neurons that fail to establish early alignment
 1082 with the optimization signal are rapidly marginalized. This suggests that middle-layer neurons, re-
 1083 ceiving both bottom-up and top-down gradients, undergo more stringent selection toward functional
 1084 specialization.

1085 The deep layer presents a smaller sample size, but a similar trend is observable. As shown in Fig-
 1086 ure 4(a), bottom, survived neurons follow more extended trajectories, while the eliminated neuron
 1087 remains nearly static. Correspondingly, trajectory length (Figure 4(c), bottom) and weight norm
 1088 evolution (Figure 4(d), bottom) both indicate continued adaptation for survived neurons but not for
 1089 the eliminated one. Although the limited number of neurons precludes strong statistical claims, the
 1090 observed divergence suggests that selection pressures persist even near the output. Importantly, this
 1091 implies that architectural proximity to the loss signal alone does not guarantee survival; functional
 1092 alignment remains necessary.

1093 Overall, Figure 4 highlights a consistent layer-wise pattern: shallow-layer neurons exhibit the ear-
 1094 liest divergence, middle-layer neurons experience intensified selection with clearer separation be-
 1095 tween survived and eliminated groups, and deep-layer neurons—though fewer—still reflect selective
 1096 retention. These results support the view that neuron survival is not imposed externally but emerges
 1097 from the training dynamics, with selection pressures varying in strength across depth.



1119 Figure 4: Dynamics Neuron Trajectory and Evolution Analysis on MNIST.
 1120

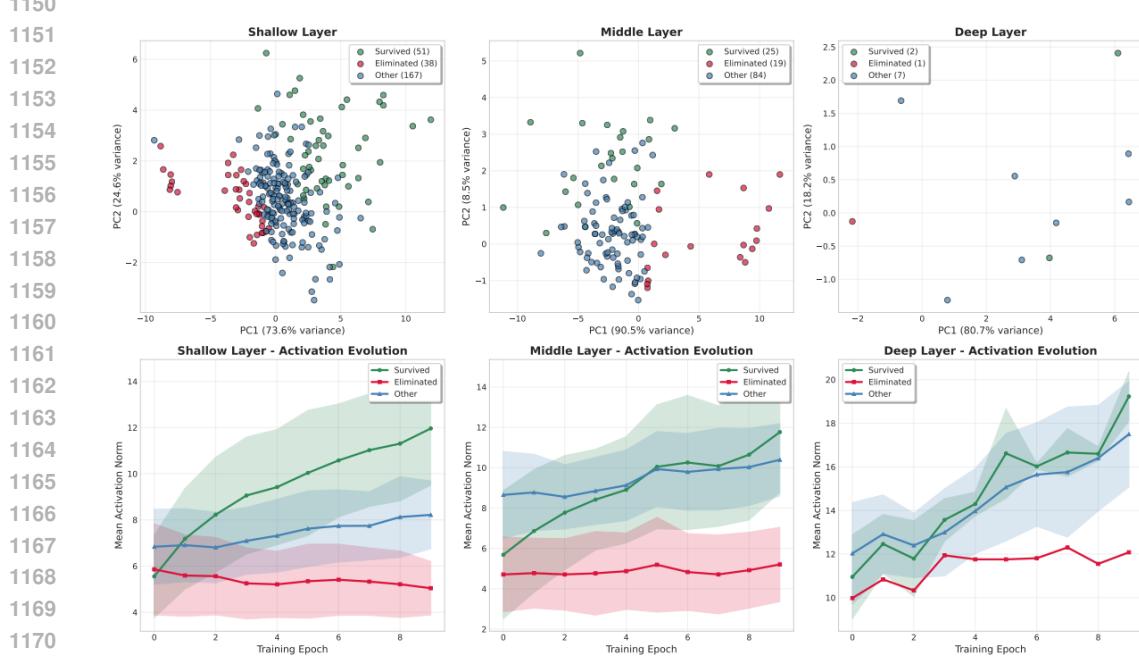
1122 A.13.2 STATIC PCA AND ACTIVATION EVOLUTION

1124 Figure 5 (top-left) presents the final-epoch PCA projection of first-layer neuron activations. Neurons
 1125 categorized as survived occupy relatively dispersed regions, often farther from the origin, which cor-
 1126 relates with higher activation magnitude and greater variance. Eliminated neurons cluster near the
 1127 origin, suggesting low-output states with reduced contribution to the representational space. The
 1128 majority of neurons fall into the other category, exhibiting intermediate positions without clear clus-
 1129 tering, reflecting heterogeneous or drifting roles during training. The activation-norm trajectories
 1130 (Figure 5, bottom-left) provide a temporal view of this differentiation. Survived neurons increase
 1131 their average norm across epochs, indicating sustained engagement with learning signals. Elim-
 1132 inated neurons, in contrast, display a gradual decline toward low, stable norms, consistent with func-
 1133 tional silencing. The "other" group remains in an intermediate range, suggesting partial adaptation
 without clear reinforcement or suppression.

1134 In the middle layer (Figure 5, top-middle), the PCA projection reveals that eliminated neurons are
 1135 shifted toward the positive-PC1 periphery, while survived neurons occupy a broader and more hetero-
 1136 geneous region spanning both central and peripheral zones. The activation trajectories (bottom-
 1137 middle) sharpen this divergence: survived neurons exhibit a sustained rise in activation norm,
 1138 whereas eliminated neurons remain suppressed with only marginal growth. Taken as a whole, these
 1139 patterns suggest that selection-like dynamics manifest most clearly in intermediate layers, where
 1140 neurons are actively sorted into amplifying versus stagnant trajectories.

1141 For the deep layer (Figure 5, top-right), the neuron count is small (only 2 survived and 1 eliminated),
 1142 limiting statistical strength. The survived units exhibit higher final activation norms (bottom-right),
 1143 whereas the eliminated unit declines toward a baseline. While this pattern resembles earlier layers,
 1144 the small sample size precludes strong generalization.

1145 Overall, the combination of static PCA projections and dynamic activation curves provides comple-
 1146 mentary evidence of neuron-level differentiation across depth. These results are consistent with the
 1147 hypothesis that overparameterized networks allocate representational capacity unevenly, with some
 1148 neurons reinforced while others become marginalized. However, the analyses are correlational and
 1149 limited by dimensionality reduction and sample imbalance, particularly in deeper layers.



1161 Figure 5: Static PCA and Activation Evolution on MNIST.
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169

1174 A.14 ADDITIONAL EXPERIMENTS ON RESNET-18 WITH CIFAR-10

1176 A.14.1 DYNAMICS NEURON TRAJECTORY AND EVOLUTION ANALYSIS

1177 The shallow layer dynamic PCA trajectories (Figure 6(a), top) show that neuron activations in early
 1178 convolutional layers—often assumed to encode low-level, generic features—already exhibit signs
 1179 of representational divergence. Survived neurons tend to follow more stable and moderately di-
 1180 rected paths in the PCA manifold, with reduced dispersion over training, suggesting a gradual con-
 1181 solidation toward more compact representational regions. In contrast, eliminated neurons display
 1182 more irregular trajectories, with frequent directional changes and less coherence, indicating com-
 1183 paratively unstable representational roles. This difference is also reflected in the cumulative tra-
 1184 jectory length evolution (Figure 6(c), top): survived neurons maintain consistently higher cumulative
 1185 movement compared to eliminated neurons, suggesting greater adaptability and sustained rep-
 1186 resentational change across epochs. While the absolute gap is modest, survived neurons display more
 1187 continuous directional displacement, whereas eliminated neurons tend to plateau earlier, consistent
 1188 with a potential stagnation of their representational contribution. From a structural perspective, the

1188 weight magnitude evolution (Figure 6(d), top) indicates that the convolutional filters corresponding
 1189 to survived neurons generally retain slightly higher L2 norms throughout training, while those
 1190 of eliminated neurons remain lower. This trend is consistent with the interpretation that neurons
 1191 contributing more strongly to gradient pathways receive relatively greater synaptic reinforcement,
 1192 whereas others undergo gradual attenuation. Collectively, these results suggest that even shallow
 1193 layers are subject to competitive dynamics, where only subsets of neurons demonstrating sustained
 1194 utility remain functionally active.

1195 The middle layers serve as a transitional zone between low-level and high-level representations, and
 1196 this role is reflected in the diversity of neuron trajectory dynamics. As shown in the dynamic PCA
 1197 projections (Figure 6(a), middle), neurons in these layers exhibit heterogeneous representational
 1198 paths over training. Survived neurons tend to follow longer and more coherent trajectories, often
 1199 traversing distinct regions of the PCA manifold, suggesting a gradual alignment with intermediate-
 1200 level features. By contrast, many eliminated neurons show less coherent movement, with shorter and
 1201 more irregular trajectories, though some maintain moderate displacement comparable to the other
 1202 group. The cumulative trajectory length curves (Figure 6(c), middle) provide quantitative support for
 1203 these observations: on average, survived neurons reach greater cumulative lengths than eliminated
 1204 or other neurons, reflecting more sustained representational plasticity. Eliminated neurons continue
 1205 to grow but at a slower rate, with later signs of stagnation. A similar pattern is visible in the weight
 1206 magnitude evolution (Figure 6(d), middle), where survived neurons exhibit slightly higher L2 norms
 1207 than eliminated neurons. Although the difference is modest, its persistence across epochs indicates
 1208 that neurons contributing more to the task tend to retain larger weight magnitudes. As a whole, these
 1209 results suggest that the middle layers serve as a representational bottleneck where neurons undergo
 1210 implicit selection, retaining those with flexible and task-relevant transformations.

1211 In the deep layer, the contrast between neuron groups becomes more pronounced. As illustrated by
 1212 the dynamic PCA trajectories (Figure 6(a), bottom), survived neurons follow long, smooth, and more
 1213 aligned paths through representation space, frequently converging to structured low-dimensional
 1214 subspaces. These neurons appear to encode abstract, class-discriminative information that supports
 1215 final classification. In contrast, eliminated neurons reveal short, noisy, and non-convergent trajec-
 1216 tories, often stagnating or oscillating without clear direction, suggesting limited long-term utility. This
 1217 distinction is also evident in the trajectory length evolution (Figure 6(c), bottom), where survived
 1218 neurons maintain the highest cumulative distances relative to eliminated neurons. These lengths re-
 1219 flect sustained representational change that tracks increasing class separability. Moreover, the varia-
 1220 nce among survived neurons is smaller, suggesting more constrained roles in the deep layer. The
 1221 weight magnitude evolution (Figure 6(d), bottom) further highlights this separation: survived neu-
 1222 rons retain high L2 norms, while eliminated neurons undergo progressive attenuation. The resulting
 1223 divergence is strongest in this layer, consistent with stronger selective pressure as representations
 1224 become more task-specific.

1225 Overall, these findings are consistent with the framework of Neural Darwinism: across layers, neu-
 1226 rons exhibit competitive dynamics shaped by their sustained utility. While shallow layers already
 1227 show signs of divergence, the middle layers intensify selective processes, and the deep layers con-
 1228 solidate highly specialized neurons. The evidence from trajectory dynamics and weight evolution
 1229 collectively supports the interpretation that representational selection operates hierarchically, shap-
 1230 ing survival and elimination throughout the network.

A.14.2 STATIC PCA AND ACTIVATION EVOLUTION

1231 In Figure 7 left and bottom-left, the PCA projection (97.8% variance explained by PC1) shows that
 1232 survived neurons occupy a relatively more compact region of the activation space, while eliminated
 1233 neurons are scattered toward peripheral, low-density zones. Other neurons form a diffuse cloud
 1234 spanning both regions. The activation evolution curves corroborate this structure: survived neurons
 1235 sustain moderately higher activation norms with gradual stabilization, whereas eliminated neurons
 1236 display persistently weak activations, and others remain intermediate. These patterns suggest that
 1237 even at early layers—traditionally considered low-level feature extractors—there is already a degree
 1238 of representational competition, consistent with the Neural Darwinism view that selection pressure
 1239 operates from the outset of learning.

1240 In Figure 7 middle and bottom-middle, the PCA embedding (94.2% variance explained by PC1)
 1241 reveals a clearer differentiation than in shallow layers. Survived neurons cluster more tightly along

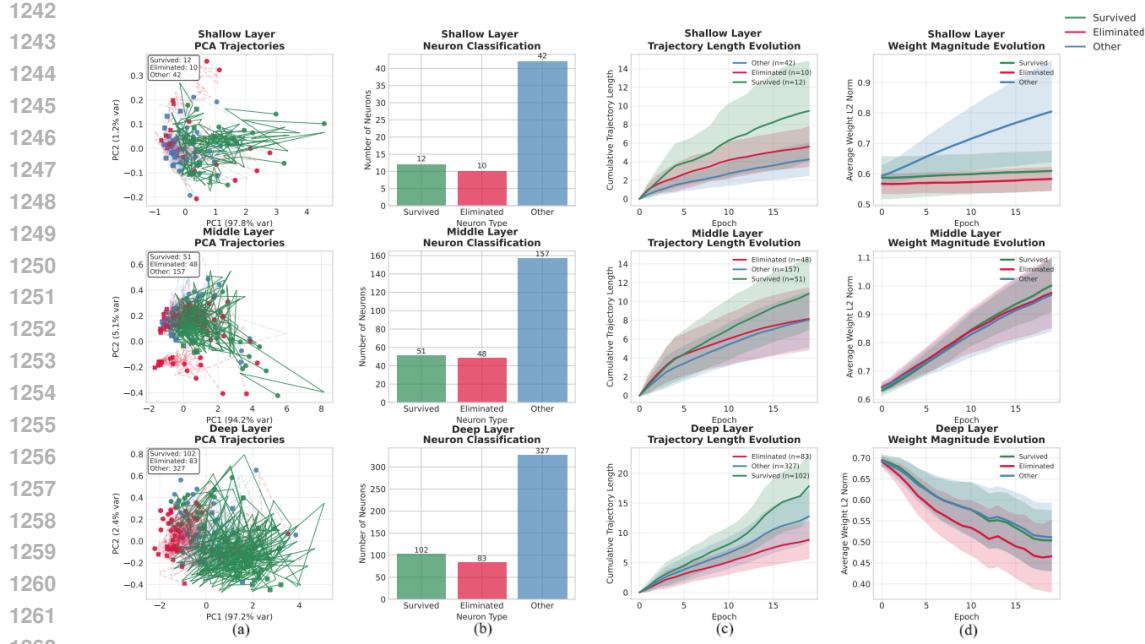


Figure 6: Dynamics Neuron Trajectory and Evolution Analysis on CIFAR-10.

dominant axes, while eliminated neurons are dispersed across orthogonal or low-density subspaces. Other neurons span an intermediate gradient, partially overlapping both groups. The activation dynamics mirror this structure: survived neurons maintain higher, stable activations, eliminated neurons steadily decline. These findings are consistent with the hypothesis that middle layers face stronger selective pressure, as they form an intermediate representational bottleneck where neurons must converge toward task-relevant manifolds to persist.

In Figure 7 right and bottom-right, in the final layer (97.2% variance explained by PC1), survived neurons are broadly distributed along the dominant axis but relatively compact along PC2, indicating alignment to a high-variance representational subspace. Eliminated neurons are concentrated in the lower-PC1 region, while others populate an intermediate zone overlapping both groups. The activation evolution curves reinforce this separation: survived neurons sustain the highest activation norms with relative stability, eliminated neurons remain consistently suppressed, and others occupy intermediate levels. Therefore, the static and dynamic views suggest that deep layers culminate the Darwinian competition, consolidating a high-utility representational manifold surrounded by marginal units.

A.15 ADDITIONAL EXPERIMENTS ON VGG-16 ON CIFAR-100

A.15.1 DYNAMICS NEURON TRAJECTORY AND EVOLUTION ANALYSIS

In the shallow layer of Figure 8, the dynamic PCA trajectory analysis reveals early indications of neuronal differentiation consistent with the principles of Neural Darwinism. Survived neurons—characterized by relatively higher activation levels and modestly higher weight magnitudes—tend to originate near the PCA origin at the start of training and progressively diverge along more extended and directionally consistent paths in activation space (Figure 8(a), top). Their trajectories exhibit sustained cumulative displacement over the training epochs (Figure 8(c), top), suggesting continued adaptation. Although the paths are often noisy and irregular, the outward spread indicates a gradual specialization process that may enable distinct low-level feature subspaces to emerge under task-driven gradient signals. By contrast, eliminated neurons generally follow more compact trajectories, remaining closer to the origin and displaying shorter cumulative displacements (Figure 8(a,c), top). Their temporal variance is lower and their trajectory curvature less pronounced, implying reduced representational change. The L2 weight norms of this group are on average slightly lower than those of survived neurons, but the distributions remain strongly overlapping (Figure 8(d),

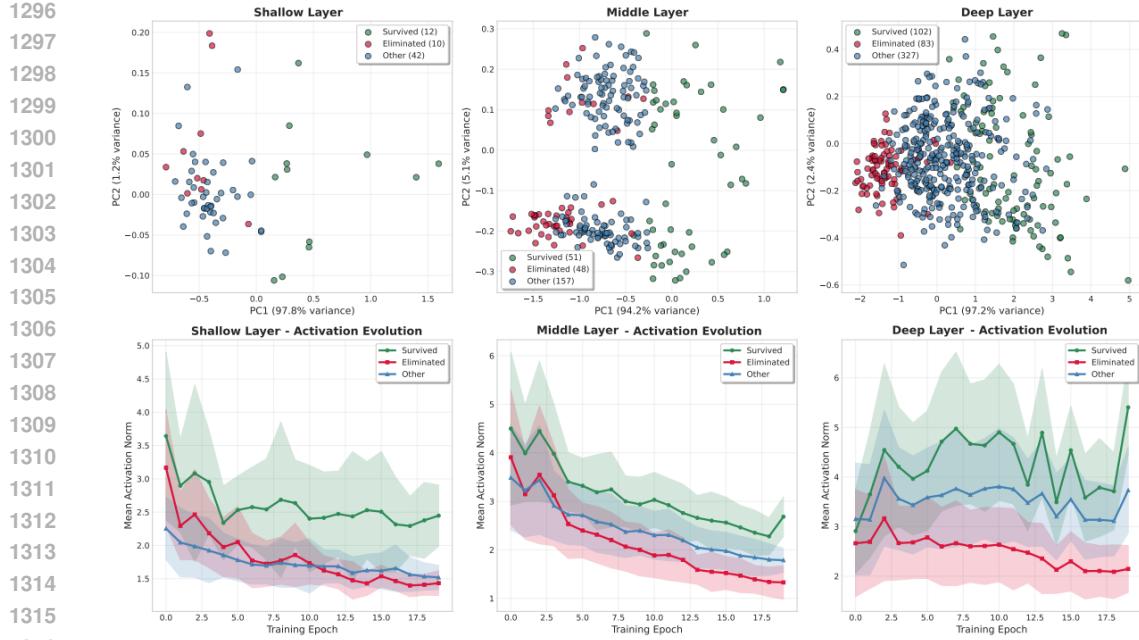


Figure 7: Static PCA and Activation Evolution on CIFAR-10.

top). While gradient flow is not directly quantified, the limited representational mobility is consistent with the interpretation that these neurons receive weaker or less task-relevant updates during training. The neurons classified as other occupy an intermediate position. Their trajectories are more diffuse and less directionally stable (Figure 8(a), top), with cumulative lengths that are broadly comparable to those of survived neurons but accompanied by larger variance (Figure 8(c), top). Some display periods of outward displacement before stabilizing, while others remain closer to the origin throughout. This heterogeneity suggests that they represent a transitional population whose role is not firmly consolidated within the finite training horizon. Overall, these patterns support a local form of Neural Darwinism: within the shallow layer, a subset of neurons progressively differentiates and maintains higher representational activity, whereas others remain less engaged and gradually lose relative influence. The emergence of such divergence close to the raw input highlights that selection pressures may act from the earliest stages of learning.

In the middle layer—where hierarchical abstractions become more pronounced—the selective dynamics appear intensified relative to the shallow layer. PCA trajectories (Figure 8(a), middle) show that many survived neurons diverge from the origin early and continue outward with sustained displacement, though their paths remain noisy and variable. While most neurons cluster near the PCA origin, a modest subset of survived neurons extends into more distinct regions of the projection space, suggesting partial occupation of differentiated representational subspaces. Eliminated neurons, by contrast, display shorter or less stable trajectories: some show brief excursions before returning toward the origin, whereas others remain in intermediate positions without consistent outward drift. The other neurons again form a heterogeneous group, with some traveling considerable distances but frequently changing direction, and others staying confined near the origin. Quantitatively (Figure 8(c), middle), survived neurons accumulate the greatest trajectory lengths by the final epoch, though the margin over other groups is modest (approximately 0.3–0.4 units). In terms of weight evolution (Figure 8(d), middle), all neuron types exhibit monotonic L2 norm decay, with survived neurons showing a slightly slower decline and thus ending with marginally higher magnitudes. This suggests that survival is associated with maintaining relatively stronger synaptic weights, though the effect size is small. Collectively, the middle layer illustrates an intensification of competitive dynamics, where survived neurons maintain more persistent representational mobility, eliminated neurons adapt weakly or transiently, and the majority of units remain in flux without converging to stable roles.

In the deep layer—the final fully connected stage before classification—the rate of representational change appears increased, consistent with a late-phase consolidation process. Survived neurons continue to accumulate trajectory length (Figure 8(c), bottom), but at a quicker rate compared to earlier layers. In the PCA projection (Figure 8(a), bottom), these neurons drift outward from the origin and follow moderately directed paths, with curvature and displacement gradually increasing over time. This pattern indicates partial stabilization, consistent with their role in encoding higher-level, semantically richer features that require fewer adjustments once tuned. Weight magnitude curves (Figure 8(d), bottom) similarly show that survived neurons maintain slightly higher norms than eliminated and other neurons, though the separation remains limited. Eliminated neurons in the deep layer exhibit shorter cumulative trajectory lengths and modestly lower weight norms. While some early movement is evident, their displacement growth slows considerably, and their PCA positions remain relatively central, indicating constrained representational change. The other group again occupies an intermediate position, with moderate representational shifts and weight growth, suggesting residual but limited contribution to the final predictive function.

In summary, these observations align with a Neural Darwinism perspective in which neuronal survival reflects continued representational mobility and modestly stronger synaptic weights, while elimination corresponds to reduced or transient adaptation. Importantly, the presence of a large heterogeneous other group underscores that selection pressure operates continuously, and many neurons remain in transition rather than converging to stable roles. The progression from shallow to middle to deep layers reflects a gradual sharpening of selection, culminating in a smaller set of stabilized neurons in the deepest layer.

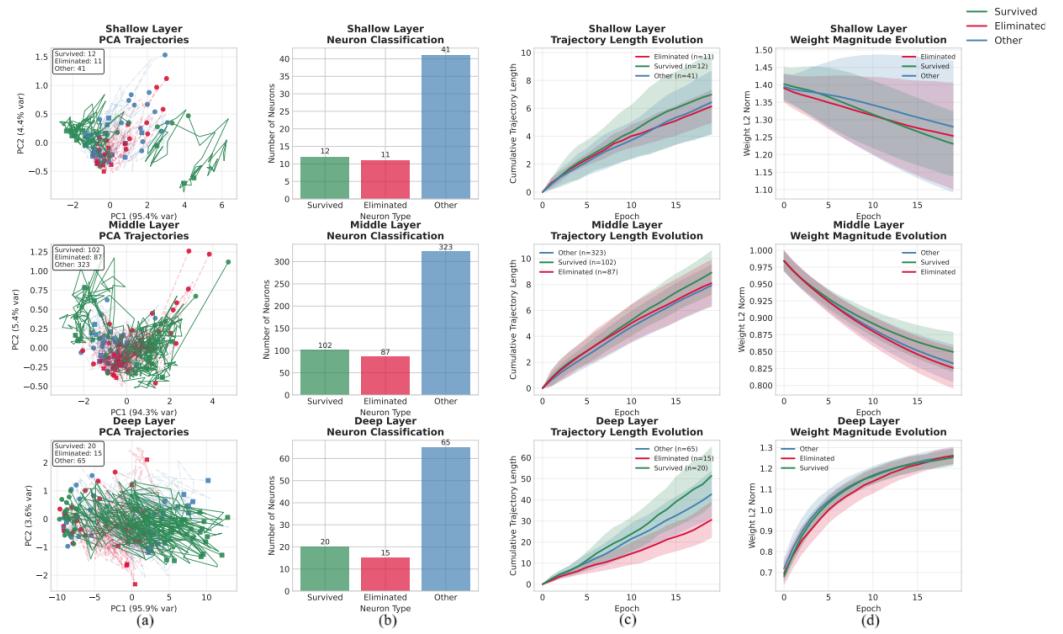


Figure 8: Dynamics Neuron Trajectory and Evolution Analysis on CIFAR-100.

A.15.2 STATIC PCA AND ACTIVATION EVOLUTION

In the shallow layer, the final-epoch PCA projection in Figure 9 left shows that the first two principal components account for approximately 99% of the total variance (PC1: 95.4%, PC2: 4.4%), indicating that most inter-neuron activation variability can be represented in a low-dimensional subspace. Despite the limited receptive fields of early convolutional layers, survived neurons (green) occupy more peripheral regions of the PCA plane, with greater dispersion from the origin and from one another, suggesting a tendency toward differentiated feature sensitivities. By contrast, eliminated neurons (red) remain densely concentrated near the origin, reflecting low variance and limited representational differentiation. The activation evolution curves in Figure 9 bottom-left reinforce this observation: neurons with persistently higher activation norms tend to survive, while those with steadily declining norms move toward elimination. The distribution of survived neurons suggests

1404 diversity in low-level tuning—potentially edges or localized textures—that broadens the expressive
 1405 basis available for subsequent layers. While the pattern is not definitive, it is qualitatively consistent
 1406 with a threshold-like competitive process, in line with selection mechanisms hypothesized in Neural
 1407 Darwinism.

1408 In the middle layer, the PCA projection in Figure 9 middle explains roughly 99% of the variance
 1409 (PC1: 94.3%, PC2: 5.4%). Here, survived neurons (green) are broadly distributed across the PCA
 1410 space, often forming multiple partially separated groups, whereas eliminated neurons (red) cluster
 1411 tightly near the origin. The other group (blue) occupies an intermediate band, positioned between
 1412 the high-variance survived regions and the low-variance eliminated cluster. Activation evolution
 1413 patterns (Figure 9 bottom-middle) reveal that survived neurons maintain high and relatively stable
 1414 activation norms, eliminated neurons exhibit a consistent decline, and others remain at intermediate
 1415 levels with mild fluctuations. The spread of survived neurons across the PCA space suggests an
 1416 increasing degree of representational diversification at this stage, corresponding to the formation of
 1417 mid-level abstractions. The non-random structure—characterized by local coherence within groups
 1418 and broader separation between groups—indicates systematic partitioning of representational space.
 1419 The central concentration of eliminated neurons, coupled with their declining activations, is consis-
 1420 tent with redundancy or reduced gradient flow, whereas the transitional behavior of the other group
 1421 may reflect delayed specialization.

1422 In the deep layer, corresponding to the final fully connected stage, the PCA projection in Figure 9
 1423 right shows that the first two principal components explain about 99% of the variance (PC1: 95.9%,
 1424 PC2: 3.6%). This high concentration of variance suggests a compressed and highly structured rep-
 1425 resentational space, consistent with the role of this layer in integrating features for classification.
 1426 Survived neurons are predominantly located in peripheral regions of the PCA plane, often grouped
 1427 into small clusters. The activation trajectories in Figure 9 bottom-right show that survived neurons
 1428 maintain higher and often increasing activation norms across training epochs, indicating sustained
 1429 engagement in the final decision space. By contrast, eliminated neurons cluster near the PCA ori-
 1430 gin and exhibit consistently lower activation magnitudes and slower growth, suggestive of early
 1431 functional deactivation. Other neurons occupy intermediate positions, with activation dynamics re-
 1432 flecting transient or weak selectivity that does not consolidate into either survival or elimination.

1433 Overall, the three-layer comparison in Figure 9 highlights a consistent pattern: variance in activa-
 1434 tions is concentrated in a few dominant dimensions, survived neurons occupy more dispersed regions
 1435 and sustain higher activity levels, while eliminated neurons remain near the origin with declining
 1436 activations. The other group exhibits transitional characteristics, reflecting instability or incomplete
 1437 specialization. The combined static and dynamic views are qualitatively consistent with a selection-
 1438 based process in which functionally distinctive neurons persist and redundant ones fade, echoing
 1439 principles of Neural Darwinism.

1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

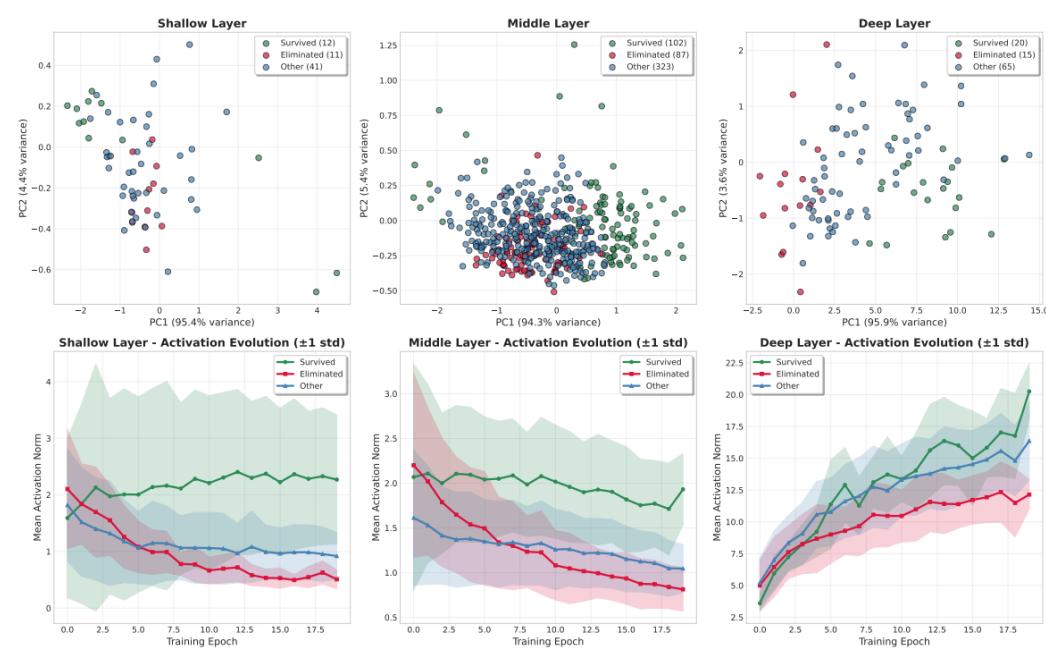


Figure 9: Static PCA and Activation Evolution on CIFAR-100.

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511