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ABSTRACT

Understanding how artificial neural networks develop and stabilize internal repre-
sentations remains a central challenge in deep learning. Motivated by Edelman’s
theory of Neural Darwinism, we investigate whether competitive, selection-like
dynamics emerge during training and how they shape robustness and specializa-
tion. We introduce a unified trajectory-based Darwinian framework—the Neuron
Darwinian Dynamics System (NDDS)—which is inspired by Darwinian princi-
ples of survival and selection, enabling the analysis of neuron activations, weights,
and representational paths across diverse architectures and datasets. We conduct
two complementary analyses: ablation experiments demonstrate that networks
maintain accuracy under extensive neuron removal, revealing strong redundancy,
yet exhibit sharp performance collapse beyond a critical threshold, identifying
task-critical subsets. Dynamic trajectory analyses further reveal consistent evolu-
tionary patterns: neurons categorized as survived sustain coherent representational
trajectories, stronger weight norms, and higher activations, whereas eliminated
neurons stagnate toward representational silence. Overall, these results support
a Darwinian perspective on representation learning: CNNs achieve robustness
through redundancy at early stages and progressively consolidate specialized neu-
rons that underwrite stable, task-relevant representations.

1 INTRODUCTION

The success of deep learning is often attributed to its ability to construct hierarchical feature repre-
sentations (Chizat & Netrapallil (2024)); Banerjee|(2025)), yet the mechanisms that govern representa-
tional stability and neuron specialization remain only partially understood. Prior work has primar-
ily emphasized optimization dynamics or information-theoretic principles [Butakov| (2024), while
comparatively limited attention has been paid to competitive processes unfolding at the level of in-
dividual neurons. In neuroscience, Edelman’s theory of Neural Darwinism proposes that neuronal
populations evolve through variation, competition, and selective retention, thereby forming stable
yet adaptable circuits. Building on this perspective, we investigate whether analogous competitive
dynamics emerge in artificial neural networks and how they shape robustness and specialization.

Motivated by this, we introduce a unified trajectory-based Darwinian framework—the Neuron Dar-
winian Dynamics System (NDDS)—which formalizes neuron evolution in convolutional architec-
tures through the lens of survival and selection. NDDS integrates trajectory-based analyses of repre-
sentational dynamics, layer-wise inspection of activations, weights, and embeddings over training,
together with controlled ablation to rigorously quantify representational resilience. This integrated
view enables systematic comparison of neuron-level dynamics across models of varying depth and
dataset complexity. Our experimental evaluation covers a spectrum of architectures and datasets,
beginning with a three-layer MLP on MNIST and progressively extending to ResNet-18 on CIFAR-
10, VGG-16 on CIFAR-100, and ResNet-50 on Tiny-ImageNet. Across these settings, neurons
are categorized into survived, eliminated, and other groups according to long-term representational
stability, providing a consistent lens for evaluating functional contributions. From an evolutionary
perspective, the results reveal that different layers impose distinct selective pressures on neurons.
Shallow layers exhibit highly variable and unstable trajectories, resembling an early exploration
phase. Middle layers increasingly differentiate neurons into those maintaining sustained activity
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and those drifting toward quiescence, suggestive of emergent selective filtering. Deep layers show
a tendency toward contraction, where a relatively compact subset of neurons retains higher activa-
tion while others decline. These observations are consistent with Darwinian dynamics of variation
and selection. Ablation studies further corroborate this interpretation, showing robustness under
moderate perturbation and sharp collapse once the selectively retained subset is disrupted. We re-
strict our analysis to Convolutional Neural Networks in this work, as their hierarchical structure and
well-studied representational dynamics provide a controlled and interpretable setting for isolating
neuron-level evolutionary mechanisms. In contrast, Transformers introduce attention-mediated in-
teractions and layer normalization effects that confound neuron-level attribution, making them less
suitable for our initial theoretical analysis. Collectively, these findings suggest that CNNs achieve
robustness and representational specialization not solely through gradient-based optimization, but
also through emergent neuron-level competition that parallels Darwinian selection principles.

2 RELATED WORK

2.1 ON NEURAL NETWORKS ANALYSIS

A large body of work has investigated how neural networks form and consolidate internal structure,
spanning pruning, representational similarity, loss geometry, and interpretability. Pruning studies
demonstrate that overparameterized models contain trainable sparse subnetworks, with the Lottery
Ticket Hypothesis Frankle & Carbin|(2019) and its extensions |Liu| (2019)); |Sanh! (2020); [Lee|(2019);
Evcil| (2020); Morcos| (2019) showing that subnetworks can be identified via sensitivity measures
Lee| (2019), dynamic rewiring |[Evci (2020), or transfer across tasks Morcos| (2019). Representa-
tion analyses such as SVCCA [Raghul (2017) and CKA [Kornblith| (2019) reveal convergent lay-
erwise structures, while neural tangent kernel theory [Jacot| (2018)) and deep linear dynamics |[Saxe
(2014) provide analytic descriptions of training. Geometric studies show low-loss mode connectivity
Garipov| (2018)); [Draxler| (2018) and neural collapse phenomena Han| (2022)), connecting optimiza-
tion to generalization. Interpretability methods including Network Dissection [Bau| (2017), TCAV
Kim| (2018)), Integrated Gradients [Sundararajan| (2017)), and SHAP [Lundberg & Lee|(2017) further
expose concept-level features, while symmetry and re-basin analyses |Ainsworth|(2023) link param-
eter permutations to solution geometry. Finally, work on large-batch training [Keskar| (2017 and
dynamical isometry |Pennington| (2017) elucidates how optimization biases shape solution quality.
Taken collectively, these perspectives highlight redundancy, convergence, and selection-like pres-
sures in neural networks, aligning with our Darwinian view of neuron-level competition.

2.2 NEURON DARWINIAN

The conceptual foundation for Darwinian mechanisms in neural systems was laid by Edelman’s
theory of neuronal group selection, which frames brain function as variation among neuronal popu-
lations, selective reinforcement of circuits, and inheritance of stable connectivity patterns Edelman
(1987). Inspired by this paradigm, recent advances in artificial networks embed analogous varia-
tion—selection processes across computational scales, challenging the dominance of gradient-only
optimization. Du et al. reinterpret late-epoch backprop-trained models as ’ancestral genomes” and
evolve offspring via differential evolution to reduce overfitting and accelerate inference [Dul (2024).
At the neuron level, NeuroFS dynamically prunes and regrows inputs under synaptic-plasticity con-
straints to maintain adaptability under sparsity [Zahra| (2023). In dynamical systems, Czégel et al.
show Darwinian neurodynamics in reservoir computing, where activity patterns are imperfectly
copied and fitter variants selected, yielding emergent combinatorial problem solving |Czégel| (2021).
Evolutionary processes also benefit spiking models: Shen et al. evolve excitatory—inhibitory circuits
via spike-timing—dependent plasticity, achieving strong CIFAR-10 and ImageNet performance Shen
(2023). At the architectural scale, Shafiee et al. encode heritable "DNA” for evolving compact
offspring networks Shafiee| (2018), while Chen et al. propose OPNP, a gradient-sensitivity—based
pruning scheme that improves out-of-distribution robustness by selecting fitter neurons and param-
eters |Chen| (2023). Collectively, these works demonstrate a convergent trend: embedding varia-
tion—selection mechanisms across synaptic, dynamical, and structural levels to improve adaptability,
sparsity, and generalization beyond gradient descent. We extend this trajectory with a neuron-level
temporal analysis framework that tracks activation trajectories to distinguish “’survived” from “elim-
inated” neurons, providing direct empirical evidence for Neural Darwinism in modern deep learning.
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2.3 NEURON TRAJECTORY

Recent work increasingly examines neuron trajectories—the evolution of individual activations or
weights across layers and time—as a lens on training dynamics, interpretability, and generalization.
Fu et al. formalize learning trajectories and derive generalization bounds tied to their complexity
Ful (2023)). Pesme and Flammarion analytically characterize gradient-flow paths in two-layer diago-
nal networks, showing convergence through successive saddles to minimal-norm solutions |Pesme &
Flammarion| (2023)), while Han et al. connect MSE training to the emergence of neural collapse by
analyzing proximity and dynamics along the central path Han|(2022), and Ahn links threshold-like
neuron emergence to edge-of-stability dynamics|Ahn|(2023)). In mechanistic interpretability, Conmy
et al. introduce ACDC to extract activation subcircuits via trajectory-based graph discovery (Conmy
(2023)), and Syed et al. apply attribution patching along activation paths to reveal causal transformer
subcircuits |Syed| (2024). Beyond static analysis, Li et al. adapt trajectory forecasting (AMAG)
to predict future neuron activity [Li (2023), while spiking models leverage trajectory-inspired opti-
mization to reduce firing load without loss of accuracy |Shi| (2024)); Shen| (2024). Together, these
studies establish neuron trajectories as a unifying construct linking optimization dynamics, circuit
discovery, and functional efficiency in modern networks.

3 METHOD

We formalize neuron evolution during training as a continuous-time dynamical system driven by
both optimization gradients and intrinsic information-theoretic pressures. Intuitively, we treat each
neuron as an evolving agent whose state is not only determined by its parameters but also by how
it responds to data and gradients. This perspective allows us to study neural computation through
the lens of dynamical systems and Darwinian selection [Saxe (2014)); Meil (2018); |Chizat & Bach
(2018).

Let a neural network fy : X — ) consist of layers {Lk}k[-):p where layer L; contains neurons

a(k) "k . Each neuron is parameterized by a weight vector w(k) € R%%-1_ bias b(-k) € R, and
7 =1 p Y g i 7
activation function o. Its activation at time ¢ is:

P (@) = o (wP O TR @, ) + 6P ) ()
where h(*~1) is the output from Lj_q and h(9) = z. Thus, activations evolve jointly with weights
and reflect both optimization and stochastic fluctuations |Schoenholz (2017); |Poole| (2016)).

3.1 NEURON DARWINIAN DYNAMICS SYSTEM (NDDS)

Definition 3.1 (Neuron State Vector). To make this evolution explicit, we introduce the neuron
state vector, which concatenates its trainable parameters, average activity, gradient statistics, and
information-theoretic descriptors:

e (1) = [w @), 8P @), 10, o @), V(). @)
Here we explicitly define each component and its domain/estimation modality:
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Ii(k) (t) := (differential) entropy proxy of the marginal law of az(»k) (-, t). 5)

We emphasize estimation modality: expectations are taken with respect to the data distribution D;
in practice they are approximated by empirical estimates over mini-batches. Throughout we reserve
the symbol £L(x) to denote the per-example loss.

The evolution of each neuron is then modeled as a differential equation:

d
20 () =P (7 (1), D, £), (©)
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where F((,k) captures the joint effect of gradient-descent-like updates and intrinsic representational

dynamics. This abstraction allows us to borrow tools from dynamical systems theory to analyze
stability, convergence, and diversity of neurons |Achille & Soatto| (2018b)).

Assumption 3.2 (Smooth and Bounded Dynamics). We adopt a hypothesis compatible with prac-
tical discrete optimization. The parameter trajectory 6(t) is assumed to be absolutely continuous
and piecewise C'! in ¢ (so that it admits a time-continuous interpolation), and Fék) is locally Lips-
chitz in v on trajectories of interest. This formulation explicitly permits discretization effects aris-
ing from SGD and non-smooth activations (e.g. ReLU) by interpreting derivatives in the sense of
absolutely continuous interpolation or Clarke subgradients when necessary. We assume standard
smoothness and boundedness conditions on interpolated trajectories; detailed assumptions and dis-
cretization—continuum error bounds are deferred to Appendix

Assumption 3.3 (Local Gaussianity of pre-activations and diagnostic protocol). To avoid conflicts
with non-negative, mass-at-zero activations (e.g. ReLLU), we state the main parametric approxima-
tion at the pre-activation level. Define the pre-activation

2P (@, 1) = w® () TR () + 07 (8), 7

7

and its smoothed version
(k) (x,t) == zl-(k)(a:, t) +e, e~ N(0,02). (8)

?

Diagnostic procedures, variance proxies, and fallback strategies are deferred to the Appendix.

3.2 TRAJECTORY-BASED EVOLUTIONARY FITNESS

Definition 3.4 (Neuron Trajectory). The trajectory of a neuron in state space is defined as
D= (P (t) | £ € [0,TT}. )

From this path we extract three complementary quantities:
Definition 3.5 (Trajectory Length). The trajectory length of neuron ¢ in layer % is the cumulative

representational movement of its state vector wik measured with a block-wise scaling matrix D(*)
that normalizes heterogeneous components of ):

AP / HD(k) vy H dt, (10)

7

where D) is taken to be block-diagonal with positive diagonal blocks that rescale each block of ).
The block-wise construction ensures no single block systematically dominates the norm and makes
the quantity invariant to simple coordinate scalings within each block. For comparability across
different training durations we use a time-averaged trajectory length; its formal definition and the
discrete approximations used in experiments are provided in the Appendix.

Definition 3.6 (Integrated entropy). The integrated entropy of neuron ¢ accumulates a per-time
estimate of the neuron’s entropy over training:

T
H® ::/ 70 (1) at, (1n)
0

where Ii(k) (t) denotes a numerically stable estimator of the neuron’s differential entropy at time ¢.

For comparability we also consider the time-averaged form Eﬁ’“) = %Y)Z(.k).

When the Gaussian plug-in is appropriate (see Assumption [3.3) we use the variance-proxy with
explicit numerical stabilization:

M) = 1 3 log( Var, 12 (2, 6)] + 02 + €var) (12)

where 02 > ( is the additive smoothing noise variance introduced in Assumptlonnand €var > 018
a small numeric floor (e.g. 10~%) to avoid log(0) and ensure robust estimation in finite samples. Note
that the Gaussian plug-in differs from the differential entropy by the additive constant % log(2me);
when absolute entropy values are needed this constant is accounted for in post-processing.
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Definition 3.7 (Ablation-based utility). For neuron ¢ in layer k define the instantaneous ablation-
based utility

k
UM () = Eann [L(foni @) — L(fory: )], (13)
where fg\; denotes the network obtained by zeroing neuron 4’s activation. By this convention

U,i(k) (t) > 0 indicates the neuron is useful at time ¢.
Definition 3.8 (Time-averaged utility). For comparability across training durations we use the time-

averaged utility
T = / ot (14)

Definition 3.9 (Evolutionary fitness). To ensure comparability across heterogeneous quantities we
first perform layer-wise standardization (z-scoring) of each constituent statistic and then form a
convex combination. Concretely, let

) TP gV am SP oY) e Y -6
Ui =———m, — S T———m » T ——m -
SD,(T") SD, (51") SD; (5.
The fitness reads
(k) (k) (k) ~ (k)

where «, 3, v are either chosen from a small recommended grid after layer-wise normalization or de-
termined by a held-out validation objective. This z-scoring removes unit mismatches and stabilizes
comparisons across layers and architectures.

3.3 SELECTION AND SURVIVAL CRITERIA

To link fitness to survival, we define thresholds relative to population statistics:
Definition 3.10 (Survived Neuron). Neuron ¢ in layer k is survived if:

o > ;@] +x-sD@"), A>o. (17)
This creates an evolutionary-like selection pressure, where only the most informative and stable

neurons persistHan| (2015); |[Frankle & Carbin|(2019); |Morcos|(2019).

Lemma 3.11 (Instability with sustained entropy decay implies vanishing fitness). Assume there exist
constants cg > 0, Ty > 0 and cg > 0 such that for all t > Ty the neuron’s differential entropy
satisfies

H(pW)) < —ent+ Cr, (18)
for some finite constant C'y, and furthermore the terminal fluctuation satisfies
do'® )
H Vi H ds > cs. (19)

Assume also that the time-averaged utility UE )(T) and stochasticity Sf-k) (T') grow at most polyno-
mially in T. Then for any fixed positive weights o, 3,7 > 0 in equation[16)we have
lim ®"(T) = —. (20)
T—o00

Definition 3.12 (Gradient—Variance Contribution). For a neuron 7 in layer k£ we define the instanta-
neous gradient second moment

k 8£($) 2
) =E| (=) | @
Oa;”’ (z,t)
and the instantaneous activation variance
U?(k) (t) := Var, [agk)(x,t)}. (22)
We then define the (time-averaged) gradient—variance contribution by
e oL 2
AR = = / E, [(T@) - Var, [a(” (x,t)]] dt (23)
T Jo da;"’ (z,t)
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Theorem 3.13 (Fitness Threshold Implies Gradient—Variance Contribution). Let Al(-k) be as above.
Suppose Assumptions and [3.3| hold, and additionally there exists ¢, > 0 such that the time-
averaged gradient second moment satisfies

1"
- / g\ () dt > 2. (24)
T Jo

Assume also that Uﬁk) (T') and Si(k) (T") grow at most polynomially in T. Then there exist constants
T,k > 0 (depending on ¢y, o, B,y and growth bounds) such that

a1y >r = AW >k 25)

This result bridges our trajectory-based measure with a classical signal-to-noise criterion, showing
that neurons with high fitness necessarily contribute to meaningful gradient—variance interactions
Achille & Soatto| (2018a)); Martens| (2020)).

Overall, the Neuron Darwinian Dynamics System (NDDS) provides a principled framework to study
representational dynamics under Neural Darwinism. Neurons are no longer seen as static units with
fixed importance, but as evolving entities competing for survival through their trajectory length, sta-
bility, and entropy. This formalism both explains empirical neuron pruning phenomena and predicts
inter-layer propagation of specialization Raghu| (2017)); Jacot| (2018).

4 EXPERIMENTS

We designed a series of experiments to examine whether CNNs exhibit dynamics consistent with
Neural Darwinism, and how such processes shape robustness and representational specialization.
Our analysis proceeds in two complementary strands. First, we conduct ablation experiments on
a CNN trained on MNIST to quantitatively assess representational resilience under progressive
neuron removal. Second, we perform dynamic trajectory analyses across multiple CNN archi-
tectures and datasets—ResNet-50 on Tiny-ImageNet—within the framework of the NDDS, with
additional experiments on a three-layer MLP-Net with MNIST, ResNet-18 with CIFAR-10, and
VGG-16 with CIFAR-100 provided in the Appendix. These experiments share a common method-
ology—tracking neuron activations, weights, and representational trajectories—while progressively
scaling the model depth and dataset complexity. Across all settings, neurons are categorized into
survived, eliminated, and other groups based on their long-term representational stability, providing
a unified lens for comparing functional contributions across architectures and scales.

4.1 ABLATION EXPERIMENT

We conducted ablation experiments using a CNN trained on MNIST to test the resilience of its in-
ternal representations under progressive neuron removal. The results are summarized in Figure
In the unperturbed network, accuracy reaches 99.3%, and the t-SNE projection reveals tight, well-
separated clusters for each digit class, demonstrating a highly structured and linearly separable latent
space. When 30% of the neurons are ablated, the accuracy remains essentially unchanged at 99.0%,
and the clusters in the t-SNE embedding preserve their compactness and separation, indicating that
the representational geometry is only minimally disturbed. This strongly suggests that the net-
work possesses a large degree of representational redundancy. At 60% ablation, accuracy decreases
slightly to 98.3%, and the clusters in the t-SNE space begin to expand and partially overlap, partic-
ularly at their boundaries. Although separability is degraded, the global structure of the representa-
tion is still preserved, implying that the network reallocates representational burden to the remaining
subset of neurons. A qualitatively different figure emerges at 90% ablation: accuracy collapses to
64.9%, and the t-SNE projection shows the complete dissolution of the cluster structure, with digit
classes intermingled in a disorganized cloud. To summarize, these results provide direct evidence
for a Darwinian view of neural representations. Up to moderate levels of ablation, redundant or
weakly integrated neurons are eliminated while the core representational structure is maintained,
preserving both accuracy and geometric separability. However, once the ablation encroaches upon
the Darwinianly selected subset of neurons that are critical for maintaining task-relevant structure,
both accuracy and representation quality collapse. This pattern demonstrates that artificial neural
networks exhibit precisely the mixture of robustness and selectivity predicted by Neural Darwinism:
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multiple neuronal assemblies initially compete to encode overlapping information, but only a small,
stabilized ensemble ultimately sustains discriminative capacity under extreme perturbation.

Original Model (0% Ablation) 30% Neurons Ablated
Accuracy: 99.3% Accuracy: 99.0%

Digit Class.

Figure 1: Ablation Experiment on MNIST with Random Neuron Removal.

4.2 RESNET-50 ON TINY-IMAGENET

4.2.1 DYNAMICS NEURON TRAJECTORY AND EVOLUTION ANALYSIS

The dynamic PCA trajectories for the shallow layer (Figure [2[(a), top) provide a temporal view of
representational changes across training. Each trajectory reflects the evolution of a neuron’s activa-
tion statistics in a low-dimensional PCA space. Survived neurons generally trace longer and more
directionally consistent paths; this pattern is consistent with representational refinement and greater
task-related adaptation. These trajectories tend to drift toward more structured regions of the PCA
manifold, indicating a non-random reorganization that supports discriminative feature encoding. By
contrast, eliminated neurons follow noticeably shorter, less exploratory trajectories that remain close
to their initial locations in PCA space. This limited movement is consistent with functional stagna-
tion in the sense of limited representational development. Such stagnation is consistent with patterns
one might expect in early-stage selective pruning (i.e., neurons with limited representational change
tend to be removed over training). Quantitative analysis reinforces these patterns. By the final epoch
(Figure [2[c), top), survived neurons reach a median cumulative trajectory length of approximately
3.2 units, compared to 2.4 for eliminated neurons and around 2.3 for the other group. These results
indicate an association between sustained representational movement (rather than initial position)
and retention. Weight magnitude evolution (Figure [2d), top) shows only minor differences across
groups: eliminated neurons maintain slightly higher L2 norms than survived, with other neurons
consistently lowest. The overall stability across training suggests that in shallow layers, synaptic
resource allocation is relatively stable, with large-scale reallocation not yet evident.

The PCA trajectories for the middle layer (Figure [2[(a), middle) capture a more pronounced diver-
gence in representational dynamics across neuron types. Survived neurons traverse extended, often
curved paths in the PCA space, largely oriented along PC1 (96.7% variance explained), with modest
modulation along PC2 (3.1%). Although some trajectories exhibit partial rightward drift, cluster-
ing is weak and dispersion remains the dominant pattern. Eliminated neurons show substantially
shorter displacements, remaining near their initialization points with fragmented paths. The inter-
mediate other group exhibits moderate movement but does not match the sustained displacement of
survivors. Trajectory length evolution (Figure 2[c), middle)) highlights this separation: by the end
of training, survived neurons reach approximately 3.8 cumulative units, while eliminated neurons
plateau near 2.8, with the other group is even lower. The gap is wider than in the shallow layer,
underscoring that sustained representational plasticity becomes increasingly decisive at mid-level
processing stages. Weight magnitude evolution (Figure 2[d), middle)) shows relatively stable rank-
ings: eliminated neurons hold slightly higher norms than survived. The lack of pronounced growth
for eliminated neurons—despite higher absolute values—suggests that strong initial parameteriza-
tion was not matched by functional adaptation.
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The dynamic PCA trajectories for the deep layer (Figure 2[a), bottom)) reveal the strongest differ-
entiation in representational mobility. Survived neurons navigate long, structured arcs, reflecting
continued refinement and consolidation of high-level semantic representations. These trajectories
exhibit a clear convergence trend toward a more compact subregion of the PCA manifold, consistent
with the emergence of attractor-like states that dominate the network’s final decision space. Elim-
inated neurons, in contrast, show markedly shorter trajectories, with minimal displacement beyond
early training epochs, indicating rapid stagnation. Other neurons display partial mobility but fail
to achieve the sustained, directional movement observed in survivors. Trajectory length analysis
(Figure |ch), bottom)) accentuates this contrast: by the final epoch, survived neurons reach 7 cu-
mulative units, while eliminated neurons remain near 4. This substantial gap shows that greater
representational plasticity is strongly associated with deep-layer survival. Weight magnitude evolu-
tion (Figure 2(d), bottom) exhibit a global decay across all neuron types, converging toward lower
norms over training. Survived and eliminated neurons follow similar L2 trajectories with only slight
divergence at convergence, while the other group tends toward lower values. These patterns are
consistent with reduced differentiation of synaptic strength in deeper layers and indicate that sur-
vival correlates with only marginally higher residual weights. Overall, these findings are consistent
with a progressively stronger association between our measured dynamics and neuron retention with
increasing depth. In shallow layers, selection pressure is relatively permissive, with only subtle dif-
ferences in trajectory and weight dynamics. In middle layers, divergence intensifies, as sustained
plasticity becomes a critical factor for survival. In deep layers, we observe patterns consistent with
consolidation—neurons that exhibit larger representational changes are more likely to be retained
and may contribute disproportionately to high-level representations. These results are broadly con-
sistent with components of the Neural Darwinism framework—variation, competition, and selective
retention—insofar as our measures show compatible patterns.

Shallow Layer Shallow Layer
ieuron Classification ajectory Len: Weight Magnitude E:

Figure 2: Dynamics Neuron Trajectory and Evolution Analysis on Tiny-ImageNet.

4.2.2 StATIC PCA AND ACTIVATION EVOLUTION

Figure 3] presents static PCA projections of final neuron states (top row) and mean activation norm
trajectories (bottom row) across shallow, middle, and deep layer. In the shallow layer PC1 explains
94.4% of the variance (PC2 5.3%), which suggests that the final neuron population is largely con-
fined to a single dominant axis in the projected space. Survived neurons (green) occupy a moderately
dispersed region displaced from the origin, consistent with coordinated stabilization that does not
form a tightly compact cluster. Eliminated neurons (red) form a compact cluster near the lower-
left quadrant; this spatial concentration is consistent with lower mean activation magnitude. Other
neurons (blue) lie in an intermediate zone, reflecting partial but incomplete adaptation. Activation
dynamics are consistent with the PCA structure: on average survived neurons exhibit higher and
more stable norms, eliminated neurons show a downward trend toward near-zero activity, and other
neurons follow an intermediate trajectory.

In the middle layer PC1 accounts for 96.7% of variance (PC2 3.1%), indicating a stronger alignment
to a single dominant direction compared to the shallow layer. Neurons distribute primarily along
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this axis: survivors occupy the central and positive range of PC1, reflecting sustained functional
activity; eliminated neurons cluster near the negative end of PC1, marking progressive silencing;
and other neurons lie in between. Activation dynamics mirror this structure: survivors maintain
consistently higher norms, eliminated neurons decay rapidly toward inactivity, and others exhibit
moderate decline. These patterns are consistent with an increasingly directional consolidation in the
middle layer: survivors tend to concentrate along the principal subspace while eliminated neurons
are displaced toward the opposite pole.

In the deep layer PC1 captures 99.2% of the variance (PC2 0.8%), suggesting that neuron states
are largely ordered along a single dominant axis in the projected space. Neurons concentrate into a
dense central region dominated by other units; eliminated neurons tend to localize near the low-PC1
boundary while survived neurons extend toward the positive-PC1 tail. Activation trajectories are
consistent with this separation: survivors typically increase early in training and then stabilize at
higher mean norms, eliminated neurons decline rapidly toward near-zero on average, and other units
tend to plateau at intermediate values. These dynamics are consistent with an axis-aligned selection
process in which survival status correlates with displacement along the dominant representational
axis. Taken together, the layerwise progression is consistent with selection-like dynamics: initial
heterogeneity, a preferential decline of low-activity units, and selective retention of survivors that
increasingly align with task-relevant representational axes. The increasing dominance of a single
principal axis and the widening separation in activation dynamics are consistent with a layerwise
intensification of selective pressures, culminating in increased specialization in deeper layers.

Shallow Layer Middle Layer Deep Layer

Figure 3: Static PCA and Activation Evolution on Tiny-ImageNet.

5 CONCLUSION

This study provides empirical evidence that CNNs exhibit representational dynamics that are con-
sistent with the principles of Neural Darwinism. Across architectures and datasets, we observe
recurring signatures of variation, competition, and selective retention: neurons initially follow di-
verse representational trajectories, but only a subset sustains adaptive movement, stronger weight
magnitudes, and higher activation norms. The ablation experiment highlights both robustness, aris-
ing from representational redundancy, and fragility, once the implicitly selected subset of critical
neurons is disrupted. Layerwise analyses further suggest that selection pressure intensifies with
depth, culminating in compact ensembles of specialized neurons that dominate high-level feature
encoding.

These findings advance our understanding of representation learning by framing it not solely as
gradient-driven optimization, but also as an emergent selection-like process operating at the neuron
level. This dual perspective highlights how neural networks balance redundancy with specialization.
Future work may investigate whether similar dynamics generalize to recurrent and transformer ar-
chitectures, and explore implications for pruning, interpretability, and biologically inspired models
of computation.

"We used large language models (LLMs) only for polishing the writing; all scientific content is the authors’
own.



Under review as a conference paper at ICLR 2026

REFERENCES

Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep rep-
resentations. Journal of Machine Learning Research, 19(50):1-34, 2018a.

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations
through noisy computation. IEEE transactions on pattern analysis and machine intelligence, 40
(12):2897-2905, 2018b.

Kwangjun Ahn, et al. Learning threshold neurons via edge of stability. Advances in Neural Infor-
mation Processing Systems, 36:19540-19569, 2023.

Samuel Ainsworth, et al. Git re-basin: Merging models modulo permutation symmetries. In The
Eleventh International Conference on Learning Representations, 2023.

Alberto Alfarano, et al. Global lyapunov functions: a long-standing open problem in mathematics,
with symbolic transformers. Advances in Neural Information Processing Systems, 37:93643—
93670, 2024.

Prithaj Banerjee, et al. Deep networks learn features from local discontinuities in the label function.
In The Thirteenth International Conference on Learning Representations, 2025.

David Bau, et al. Network dissection: Quantifying interpretability of deep visual representations. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6541-6549,
2017.

Quentin Bertrand, et al. On the stability of iterative retraining of generative models on their own
data. In The Twelfth International Conference on Learning Representations, 2024.

Ivan Butakov, et al. Information bottleneck analysis of deep neural networks via lossy compression.
In The Twelfth International Conference on Learning Representations, 2024.

Chao Chen, et al. Optimal parameter and neuron pruning for out-of-distribution detection. Advances
in Neural Information Processing Systems, 36:52293-52311, 2023.

Lizhang Chen, et al. Lion secretly solves a constrained optimization: As lyapunov predicts. In The
Twelfth International Conference on Learning Representations, 2024.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing sys-
tems, 31, 2018.

Lénaic Chizat and Praneeth Netrapalli. The feature speed formula: a flexible approach to scale
hyper-parameters of deep neural networks. Advances in Neural Information Processing Systems,
37:62362-62383, 2024.

Arthur Conmy, et al. Towards automated circuit discovery for mechanistic interpretability. Advances
in Neural Information Processing Systems, 36:16318—-16352, 2023.

Déniel Czégel, et al. Novelty and imitation within the brain: a darwinian neurodynamic approach to
combinatorial problems. Scientific reports, 11(1):12513, 2021.

Ilias Diakonikolas, et al. A spectral algorithm for list-decodable covariance estimation in relative
frobenius norm. Advances in Neural Information Processing Systems, 36:48819-48854, 2023.

Felix Draxler, et al. Essentially no barriers in neural network energy landscape. In International
conference on machine learning, pp. 1309-1318. PMLR, 2018.

Guodong Du, et al. Impacts of darwinian evolution on pre-trained deep neural networks. In 2024
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1907-1912. IEEE,
2024.

Gerald M Edelman. Neural Darwinism: The theory of neural group selection. Basic Books, 1987.

10



Under review as a conference paper at ICLR 2026

Utku Evci, et al. Rigging the lottery: Making all tickets winners. In International conference on
machine learning, pp. 2943-2952. PMLR, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Jingwen Fu, et al. Learning trajectories are generalization indicators. Advances in Neural Informa-
tion Processing Systems, 36:71053-71077, 2023.

Michele Garibbo, et al. Taylor td-learning. Advances in neural information processing systems, 36:
1061-1081, 2023.

Timur Garipov, et al. Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in
neural information processing systems, 31, 2018.

Song Han, et al. Learning both weights and connections for efficient neural network. Advances in
neural information processing systems, 28, 2015.

X.Y. Han, et al. Neural collapse under MSE loss: Proximity to and dynamics on the central path. In
International Conference on Learning Representations, 2022.

Aaron Havens, et al. Exploiting connections between lipschitz structures for certifiably robust
deep equilibrium models. Advances in Neural Information Processing Systems, 36:21658-21674,
2023.

Arthur Jacot, et al. Neural tangent kernel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31, 2018.

Nitish Shirish Keskar, et al. On large-batch training for deep learning: Generalization gap and sharp
minima. In International Conference on Learning Representations, 2017.

Been Kim, et al. Interpretability beyond feature attribution: Quantitative testing with concept acti-
vation vectors (tcav). In International conference on machine learning, pp. 2668-2677. PMLR,
2018.

Simon Kornblith, et al. Similarity of neural network representations revisited. In International
conference on machine learning, pp. 3519-3529. PMIR, 2019.

Axel Laborieux and Friedemann Zenke. Improving equilibrium propagation without weight sym-
metry through jacobian homeostasis. In The Twelfth International Conference on Learning Rep-
resentations, 2024.

Thomas Laurent, et al. Feature collapse. In The Twelfth International Conference on Learning
Representations, 2024.

Namhoon Lee, et al. SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION
SENSITIVITY. In International Conference on Learning Representations, 2019.

Jingyuan Li, et al. Amag: Additive, multiplicative and adaptive graph neural network for forecasting
neuron activity. Advances in Neural Information Processing Systems, 36:8988-9014, 2023.

Sizhe Lester Li, et al. Controlling diverse robots by inferring jacobian fields with deep networks.
Nature, pp. 1-7, 2025.

Zhuang Liu, et al. Rethinking the value of network pruning. In International Conference on Learn-
ing Representations, 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1-76, 2020.

Song Mei, et al. A mean field view of the landscape of two-layer neural networks. Proceedings of
the National Academy of Sciences, 115(33):E7665-E7671, 2018.

11



Under review as a conference paper at ICLR 2026

Ari Morcos, et al. One ticket to win them all: generalizing lottery ticket initializations across datasets
and optimizers. Advances in neural information processing systems, 32, 2019.

Sejun Park, et al. What does automatic differentiation compute for neural networks? In The Twelfth
International Conference on Learning Representations, 2024.

Jeffrey Pennington, et al. Resurrecting the sigmoid in deep learning through dynamical isometry:
theory and practice. Advances in neural information processing systems, 30, 2017.

Scott Pesme and Nicolas Flammarion. Saddle-to-saddle dynamics in diagonal linear networks. Ad-
vances in Neural Information Processing Systems, 36:7475-7505, 2023.

Ben Poole, et al. Exponential expressivity in deep neural networks through transient chaos. Ad-
vances in neural information processing systems, 29, 2016.

Maithra Raghu, et al. Svcca: Singular vector canonical correlation analysis for deep learning dy-
namics and interpretability. Advances in neural information processing systems, 30, 2017.

Victor Sanh, et al. Movement pruning: Adaptive sparsity by fine-tuning. Advances in neural infor-
mation processing systems, 33:20378-20389, 2020.

A Saxe, et al. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks.
In Proceedings of the International Conference on Learning Represenatations 2014. International
Conference on Learning Represenatations 2014, 2014.

Samuel S. Schoenholz, et al. Deep information propagation. In International Conference on Learn-
ing Representations, 2017.

Mohammad Javad Shafiee, et al. Deep learning with darwin: Evolutionary synthesis of deep neural
networks. Neural processing letters, 48(1):603-613, 2018.

Guobin Shen, et al. Brain-inspired neural circuit evolution for spiking neural networks. Proceedings
of the National Academy of Sciences, 120(39):e2218173120, 2023.

Hangchi Shen, et al. Rethinking the membrane dynamics and optimization objectives of spiking
neural networks. Advances in Neural Information Processing Systems, 37:92697-92720, 2024.

Xinyu Shi, et al. Spikingresformer: bridging resnet and vision transformer in spiking neural net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5610-5619, 2024.

Andy Shih, et al. Parallel sampling of diffusion models. Advances in Neural Information Processing
Systems, 36:4263-4276, 2023.

Shikun Sun, et al. Inner classifier-free guidance and its taylor expansion for diffusion models. In
The Twelfth International Conference on Learning Representations, volume 2, 2023.

Mukund Sundararajan, et al. Axiomatic attribution for deep networks. In International conference
on machine learning, pp. 3319-3328. PMLR, 2017.

Aaquib Syed, et al. Attribution patching outperforms automated circuit discovery. In Proceedings
of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pp.
407-416, 2024.

Dmitry Yarotsky. Learnability of high-dimensional targets by two-parameter models and gradient
flow. Advances in Neural Information Processing Systems, 37:79144-79167, 2024.

Atashgahi Zahra, et al. Supervised feature selection with neuron evolution in sparse neural networks.
Transactions on Machine Learning Research, 2023(2), 2023.

12



Under review as a conference paper at ICLR 2026

A APPENDIX
A.1 NOTATION AND PRELIMINARIES
To maintain consistency with the main text, we briefly recap key notations:

* Neural network fy : X — ), layers {Lk}szl, where layer k contains nj, neurons indexed

by <.
 Parameters of neuron ¢ at layer k: weights wgk)(t) € R9-1, bias bgk)(t) € R, activation
function o.
* Activation:
aP(@,1) = o (), 1D (@, 1) + 6 0)) (26)
* Neuron state vector (compound state):
o) = [wP @, o7 @), 10, 90, 70 @) 27)
where
0L(x
b0 = Eple® @0)]. o (0) = o || g
Oa; "’ (x,t)

and Ii(k) (t) is the instantaneous differential (Shannon) entropy estimator of the activation

distribution. The integrated (accumulated) entropy over training is denoted .V)l(k) as in the
main text.

* State evolution (ODE form, main text eq.(6)):

d

20 () = FP (7 0),D,£). 29)
Other quantities such as trajectory length .Al(»k), terminal stochasticity Si(k), integrated entropy $) Ek),

and fitness <I>£-k) follow the main text definitions. Notation remark: throughout the manuscript we
reserve L(+) exclusively for the per-example loss; the trajectory length is consistently denoted .Al(k).

A.2 SUPPLEMENTARY TECHNICAL ASSUMPTIONS

We explicitly state additional mild assumptions needed for mathematical rigor and numerical stabil-
ity. These assumptions clarify the hidden conditions of the main results.

Assumption S1 (Smoothness, boundedness, and trajectory length)

For each layer k, the vector field Fék) (1, ) is locally Lipschitz in 1) and measurable in ¢.
There exist constants By, B,, By, > 0 such that for all £ > 0:

g (@)l < By, Varlal® ()] < Ba, [0 (0)] < By. (30)

Moreover, the trajectory (arc) length Agk) (T') is bounded for any finite 7.

Assumption S2 (Sub-exponential tails / sub-Gaussianity of activations)
For all neurons ¢, k£ and times ¢, the distribution of al(-k)(:v, t) over  ~ D is sub-Gaussian

or at least has sub-exponential tails, enabling concentration bounds for sample estimators.

Assumption S3 (Controlled Gaussian entropy approximation error)
There exists a constant Cgayss > 1 such that for all neurons 4, £ and times ¢,

1
(1) < ; log (2me Varla{® (0)]) < 7 (1) + 10g Cgaes- 31
This controlled approximation underpins the Gaussian plug-in used in experiments; when

this bound is violated the practitioner must rely on nonparametric estimators as described
in the main text.
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A.3 WELL-POSEDNESS OF THE CONTINUOUS NDDS

Under Assumption S1, the vector field F((,k) is locally Lipschitz, thus by Picard—Lindelsf theorem

Shih| (2023)); [Yarotsky| (2024), for any initial value ¢§k)(0) there exists a unique local solution.
Boundedness and growth controls ensure global existence on finite intervals and continuous depen-
dence on initial conditions and parameters.

A.4 SMOOTH AND BOUNDED DYNAMICS

Assumption A.1 (Smooth and Bounded Dynamics). We adopt a hypothesis compatible with practi-
cal discrete optimization. The parameter trajectory 6(t) is assumed to be absolutely continuous and

piecewise C'! in ¢ (so that it admits a time-continuous interpolation), and F((,k) is locally Lipschitz in
1) on trajectories of interest. This formulation explicitly permits discretization effects arising from
SGD and non-smooth activations (e.g. ReLU) by interpreting derivatives in the sense of absolutely
continuous interpolation or Clarke subgradients when necessary.

Furthermore, there exist constants By, B, > 0 such that for all ¢ € [0, 7] along the interpolated
trajectory:

19 ()] < By,  Var[a™ (1)] < B, (32)

Finally, we require that the trajectory length Agk) (defined in equation remains finite as T —
oo; for discrete checkpoints the forward-difference approximation in equation [51] is used and all
continuum claims are understood to hold up to discretization errors that vanish under standard time-
interpolation refinements.

A.4.1 DISCRETE CONTINUOUS TRAJECTORY LENGTH APPROXIMATION

Setup. Let a : [0,7] — R? be the neuron activation trajectory a(t) = agk) (t) appearing in As-
sumption ”Smooth and Bounded Dynamics”. Assume a is absolutely continuous on [0, 7] (hence
a.e. differentiable with a’ € L([0, T]; R%)) and has finite Trajectory length

T
A = / |a’(t)|| dt < oo. (33)
0

For a uniform partition 0 = ¢y < t; < --- < tpr = T with step size At = T/M define the
forward-difference (discrete) trajectory length approximation

M M tm
Aat) = Y [altm) - altn-)|| = Z_ H/ a(s) ds. (34)

m=1 tm—1

Lemma A.2 (Discrete Continuous Trajectory Length Approximation). Under the setup above the
following hold.

1. Convergence. As the mesh At — 0,

o~

A(At) — A. (35)

In particular, for any sequence of partitions whose mesh size tends to zero the partition-
wise variation of a converges to the total variation (trajectory length) A.

2. Quantitative bound under extra smoothness. If, in addition, ' is L-Lipschitz on [0, T
(i.e. there exists L > 0 such that ||’ (s) — ' (t)|| < L|s —t| for all s,t € [0,T)), then there
exists a constant C' (one may take C = L) such that for all sufficiently small At:

|[A—A(At)| < CTAt = O(AY). (36)

3. Non-smooth activations (Clarke subgradient). If a is only piecewise C (for example due
to ReLU kinks) and is absolutely continuous, interpret a' in the Clarke subdifferential sense.
Then the convergence in part (1) still holds, moreover, whenever the extra smoothness of
part (2) holds on each C* segment the O(At) bound applies up to contributions from
finitely many kink-boundary intervals, which vanish as At — 0.
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Proof. (1) Convergence. Absolute continuity of a implies a has bounded variation on [0, T and

A = Var(e;[0,T]) = st;pz a(tm) — a(tm—1)]],

(37

where the supremum is taken over all finite partitions P of [0, T]. For any fixed partition the sum
Ym lla(tm) — a(tpm—1)|| is the variation of a over that partition and is therefore bounded above
by A. Standard results on functions of bounded variation state that for any sequence of partitions
whose mesh tends to zero the corresponding partition-wise variation converges to the total variation.
Applied to the uniform partitions above this yields

lim A(At) = A, (38)

At—0
which proves (1).
(2) Quantitative bound under Lipschitz derivative. Assume a’ is L-Lipschitz [Havens| (2023);

Bertrand| (2024). Fix an interval I,,, = [t;,—1, t;n]- By the fundamental theorem of calculus and the
Lipschitz property we can expand a’ about the midpoint (or any point &,,, € I,;,) to obtain

t'm,
/ a'(s)ds = Ata (&) + Tm, (39)
tm—1
with the remainder satisfying ||r,,, || < $L(At)?. Hence
tm,
1 a(s)ds|| = At |’ ()| + 6m, 6] < 2L(At)% (40)
tm—1
On the other hand,
tm
/ la’(s)l ds = At [la’ (Em) | + €m,  lem] < L(AL)?, (41)
tm—1
where the bound on ¢, follows from the same Lipschitz control on @’ and the one-dimensional
integral averaging error. Subtracting and summing over m = 1,..., M yields
R M t M
0<A-Aan=Y" (/ o/ (s)]] ds — H/ ‘(s)ds]) < > (lenl +10m)-
m=1 b — m=
Using the per-interval bounds |e,,| < L(At)?, |6,,| < 1 L(At)? we obtain
A~ A(A)] < gLM(At)2 = gLTAt. (43)

Thus the difference is O(At); setting C' = %L (or taking the coarser but simpler C' = L) yields the
claimed linear-in-A¢ bound.

(3) Non-smooth activations and Clarke subgradient. If a is piecewise O (typical when activa-
tions like ReL.U produce kinks) then a is still absolutely continuous and has bounded variation. The
set K C [0,T] of non-differentiable points is closed and of Lebesgue measure zero (in common
architectures it is finite or a countable set with no accumulation inside [0, T]). The contribution of
intervals that contain points of K can be localized: by refining the partition one can make the total
length of intervals that intersect K arbitrarily small, hence their contribution to .4 and to the discrete
sum is arbitrarily small. On each C'! segment the argument of part (2) applies; summing segment-
wise yields the same O(At) behaviour up to vanishing boundary contributions. More conceptually,
one may replace a’ by any measurable selection from the Clarke generalized derivative Parkl (2024)
and repeat the preceding estimates; the measure-zero nondifferentiable set does not affect the lim-
iting equality A(A¢) — A nor the O(At) rate when the Lipschitz condition holds on the smooth
pieces.

Remark. In typical empirical settings the checkpoint count M is large (e.g. hundreds or thousands),
so At = T/M is small and the discretization error |4 — A(At)| is negligible compared to stochastic
fluctuations induced by SGD. The theoretical statements above make precise that all continuous-
time claims involving .4 hold up to an O(At) discretization error which vanishes under standard
time-interpolation refinements. O
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A.5 LOCAL GAUSSIANITY OF PRE-ACTIVATIONS AND DIAGNOSTIC PROTOCOL

Assumption A.3 (Local Gaussianity of pre-activations and diagnostic protocol). To avoid conflicts
with non-negative, mass-at-zero activations (e.g. ReLU), we state the main parametric approxima-
tion at the pre-activation level. Define the pre-activation

2 () = () TR (@, ) + 07 (1), (44)
and its smoothed version
W) =Pt +e, e~ N(0,02). (45)

For every neuron ¢ and for any short time window [s, s + 7] (with 7 chosen to balance local station-
arity and sample requirements) we assume that the empirical law of z( )( s) is well-approximated
by a Gaussian N (,ug? (s), j(lk )(s)) in the sense that there exists a small tolerance 7 > 0 and a
divergence metric dlst( -) such that for a large fraction of checkpoints s € [0, T,

dist(Law (27 (-, 8)), N () (5), 07 (s))) < . (46)

When downstream analysis requires activation-level entropy (post-activation), practitioners must
either transform the Gaussian approximation via the known mapping o (-) and report the accuracy of
that transformation, or employ a consistent nonparametric estimator for the activation distribution
and report estimator sensitivity.

A numerically-stable variance-proxy is used when the pre-activation Gaussian plug-in is accepted:
fi(k)( t) =1 log(VarbL[ (k )(a:,t)] +o2+ evar). 47)

If the Gaussian diagnostic fails (i.e. the empirical divergence exceeds 7)) the practitioner must fall
back to nonparametric estimators and report the fraction of checkpoints failing the diagnostic and a
sensitivity comparison between plug-in and nonparametric estimates.

A.6 NEURON TRAJECTORY

Definition A.4 (Neuron Trajectory). The trajectory of a neuron in state space is defined as

" = {p (1) |t € [0,T]}. (48)

From this path we extract three complementary quantities:
Definition A.5 (Trajectory Length). The trajectory length of neuron 7 in layer & is the cumulative

representational movement of its state vector wik measured with a block-wise scaling matrix D(*)
that normalizes heterogeneous components of ):

a0 = [ ot

where D(¥) is taken to be block-diagonal with positive diagonal blocks that rescale each block of 1.
The block-wise construction ensures no single block systematically dominates the norm and makes
the quantity invariant to simple coordinate scalings within each block.

When comparability across different training durations is required we also use the time-averaged arc
length

k) _

—( 1w
A = 2 A (50)

Under discrete training (checkpoints or optimization steps with index spacing At) we employ the
forward-difference approximation

AD & ZHD(k)w (HA)t wgk)(t)’LAt, (51)

where N is the number of recorded checkpoints and At is the (possibly non-unit) interval between
checkpoints; taking At = 1 recovers the step-indexed form.
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A.7 INTEGRATED ENTROPY

Definition A.6 (Integrated entropy). The integrated entropy of neuron ¢ accumulates a per-time
estimate of the neuron’s (differential) entropy over training:

T
ok = / M (¢) dt, (52)
0

where Ii(k)(t) denotes a numerically stable estimator of the neuron’s differential entropy at time ¢
(estimated from mini-batches and moving averages). For comparability we also consider the time-

averaged form EE") = %ﬁgk).

When the Gaussian plug-in is appropriate (see Assumption [3.3) we use the variance-proxy with
explicit numerical stabilization:

IH (@) = Llog(Var, [z (@, 6)] + 02 + evar), (53)

where 02 > ( is the additive smoothing noise variance introduced in Assumptlonnand €var > 018
a small numeric floor (e.g. 10~%) to avoid log(0) and ensure robust estimation in finite samples. Note
that the Gaussian plug-in differs from the differential entropy by the additive constant % log(2me);
when absolute entropy values are needed this constant is accounted for in post-processing.

In discrete form the accumulated entropy used in experiments is

o) ~ Z I (54)

with At equal to the checkpoint interval. When the Gaussian assumption is questionable (e.g. ReLU
activations with large mass at zero), we complement the variance-proxy with nonparametric estima-
tors. Estimation uses mini-batch averages with an exponential moving-average smoothing window.

A.8 PRACTICAL ESTIMATOR FOR ABLATION-BASED UTILITY

Definition A.7 (Ablation-based utility). For neuron ¢ in layer k& define the instantaneous ablation-
based utility

UP(t) = Euop [L(fonis ) — L(foy )], (55)
where fg\; denotes the network obtained by zeroing neuron 4’s activation. By this convention

U,i(k) (t) > 0 indicates the neuron is useful at time ¢.

Direct computation of equation [55] for every neuron at every checkpoint is computationally pro-
hibitive. We therefore recommend and use a calibrated first-order Taylor approximation Garibbo
(2023); |Sun| (2023)) as a default estimator (and validate it against ground-truth partial ablations on
small models):

[ 2@
“LoaP (z,t) "
Optionally, a second-order correction may be included when Hessian-vector products are affordable.

In practice we compute Ui(k)’lin(t) using a held-out validation subset of size m < |D| (randomly
sampled) and report the estimator variance and a small-sample calibration against exact ablation on
a subset of neurons.

(z,8)| = UM ), (56)

K2

U(k)(t) R —

K3

A.9 DETAILED PROOFS OF MAIN LEMMAS AND THEOREMS

Lemma A.8 (Instability with sustained entropy decay implies vanishing fitness). Assume there exist
constants cg > 0, Ty > 0 and cg > 0 such that for all t > T} the neuron’s differential entropy
satisfies

H(PN)) < —ent+ Cr, (57)
for some finite constant C'yy, and furthermore the terminal fluctuation satisfies
(k)
H 9, H ds > cs. (58)
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Assume also that the time-averaged utility ng) (T') and stochasticity Sf-’“) (T') grow at most polyno-

mially in T. Then for any fixed positive weights o, 3,7 > 0 in equation[I6|we have
lim ®")(T) = —. (59)

T—o0

Proof. A linear-in-time growrh of the relative entropy KL(pZ(-? || pref) implies that the neuron’s dif-

ferential entropy (and hence the Gaussian plug-in proxy used in $) Ek)) decreases sufficiently fast. Af-
ter the layer-wise standardization in equation [I6] this persistent loss of information eventually dom-

inates the (assumed at-most-polynomial) contributions from U and S, driving (I)Z(.k) (T) — —c0. O

Theorem A.9 (Fitness Threshold Implies Gradient—Variance Contribution). Let Agk) be as above.
Suppose Assumptions [3.2] and [3.3| hold, and additionally there exists ¢, > 0 such that the time-
averaged gradient second moment satisfies

1 /7

— / ¢ (t)dt > ¢,. (60)
0

Assume also that ng) (T) and Si(k) (T') grow at most polynomially in T. Then there exist constants

T,k > 0 (depending on ¢y, o, 3,y and growth bounds) such that
oMy >r = AW >k (61)

Proof. Under Assumption the time-averaged pre-activation variance o2 =
+ fOT Var, [sz)(;v,t)} dt is related to 5‘35’“) via the Gaussian plug-in. After the layer-wise z-

scoring used in equation |16/ a lower bound on ® yields a lower bound on 2 up to contributions
(k)

from £ and §. Combining this with the time-averaged lower bound on ¢, gives
A >, .02, (62)
and the constants 7, x follow by quantitative bookkeeping of the contributions of £ and S. O

A.10 DISCRETE-TIME APPROXIMATION AND RELATION TO SGD

Actual training proceeds in discrete time steps, typically iterations or epochs. The continuous-time
NDDS dynamics approximate the discrete SGD updates as follows:

* Discrete parameter update:
01 = 0, — Vo L(By: 0y), (63)
where B, is the mini-batch at step .

* For small learning rate 7, the discrete updates approximate the stochastic differential equa-
tion
with W; Brownian motion and X the noise covariance.

* Correspondingly, the neuron state differences

Av (1) = (¢ 1) = o (1) (65)
approximate %w;k)(t).
¢ Therefore,
| Tl
k k k k k k
AP = 3180 W), ST~ 2 Y I8P OI3, o0~ 3T 0. ©6)
+ t=T-6 t

Discrete estimation errors arise from step size, mini-batch noise, and finite sample effects. In all
discrete approximations used in experiments we adopt the same block-wise scaling matrix D(*) that
appears in the continuous trajectory length definition (main text Eq. equation9) to ensure consistent
units across measurements.
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A.11 NUMERICAL ESTIMATION OF KEY QUANTITIES

Definition A.10 (Mean activation and mean gradient). Given an evaluation dataset Dey,1, the mean
activation and mean gradient of neuron ¢ in layer k are estimated as

() _ 1 (k) (k) 1 L (x)
1y a; '(x), g¢;° = —_—, (67)
‘Deval| Z |Deval| Z 8(15“ (1’)

TE€Deval T€Doval

Definition A.11 (Activation variance). The variance of activations is estimated as the unbiased
sample variance over Degy,1:

1
Varla) = ——— 3 (" (2) — ). (68)

|Deval| -1 TE€Deval

Definition A.12 (Differential entropy). We consider three standard estimators for the entropy of
activations:

1. Gaussian plug-in:
fgauss = %log(Qﬂ'e Var[al(-k)]) , (69)
with a numeric floor eyay > 0 (Eq. equation[53)) to avoid degeneracy.

2. Kernel density estimation (KDE): Estimate density p(z) via KDE and compute

~

To_ / () log (=) d=. (70)

3. K-nearest neighbor (Kozachenko-Leonenko): Nonparametric entropy estimation based
on neighbor distances.

Definition A.13 (Trajectory length and terminal stochasticity). From saved parameter snapshots at
discrete steps t, define the scaled increment

Ap(1) = | DB+ 1) - v ) |, an

2

where D(®) is the block-wise scaling matrix. Then the trajectory length and terminal stochasticity

are given by
T-1

1
AP = ZAW) s =5 Z (A (72)

t=T-9

A.12 MULTILAYER COUPLED DYNAMICS

At the layer level, survival is not independent. Let TF) (1) = [@/J(k)( t)]ien, be the joint state of all
neurons in layer k. We define the inter-layer coupling operator: We restrict attention to sensitivities
between activations of adjacent layers. Let

Ohk+1) (t)
Oh(k)(t)

denote the Jacobian mapping pre-activations/activations in layer k to those in layer k + 1 (evaluated
pointwise and averaged over data when necessary) Li (2025); [Laborieux & Zenke| (2024). For
neurons indexed i € Ny, j € N1, we write the element-wise sensitivity as

8a§_k+1)(t)
0a" (t)

To obtain a layer-level scalar measure that is robust to width, we define the layer influence by the
width-normalized average operator norm:

(4,4)
M1 (8) = ‘NkHNk+1| ZGXN: ]G%k:-f—l (G AR{C] PP (75)

Jk—>k+1 (t) = (73)

C I (8) = (74)
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where || - ||2—2 denotes the induced (spectral) norm of the scalar-to-scalar sensitivity (for scalar
activations this is absolute value). Equivalently one may use the averaged Frobenius norm divided by

V/|Nk||[Ng41]| for implementation convenience Diakonikolas| (2023); [Laurent (2024); both variants
are equivalent up to constant factors and we report which we use in experiments.

Definition A.14 (Darwinian Flow Energy). The Darwinian flow energy is defined as

D D T
EDarwin ::ZZ /O My, (t) §IS(p8) (1) || pD(2))) dt, (76)

k=11=1

or, alternatively,

T
Ebarwin = D / My () Wi (0™ (1), p V(1)) dt. (77)
kg 70
Theorem A.15 (Coupled Survival Principle). Suppose that for some i > 0 and a subset S**) C
{1,...,nk} of survived neurons at layer k, the layer-to-layer coupling matrix My, ;41 (t) satisfies
D My ggaliyj)(t) = e >0, (78)
ieSk)

for all neurons j in layer k + 1 and all sufficiently large t.

Then, there exists 1 = n(u, €, Lipschitz constants) > 0 such that at least an 1) proportion of neurons
in layer k + 1 achieve high fitness (survival).

Proof. Positive lower bounds on coupling imply sustained energy inflow to downstream neurons.
Via the Lipschitz continuity of the fitness function and the smoothness of the dynamics, survival of
upstream neurons forces a positive measure of downstream neurons to cross the survival threshold.

O

Theorem A.16 (Global Convergent Specialization). If the total Darwinian flow energy Eparwin >

€ > 0 is bounded away from zero and the fitness functions @Ek) are sufficiently smooth and Lipschitz
continuous, then as t — 0o, the proportion of neurons with fitness below any fixed threshold tends
to zero.

Proof. Construct a suitable Lyapunov function based on the sum over neurons of a decreasing con-
vex function of their fitness values |Chen| (2024)); |Alfarano| (2024). The positive lower bound on
Darwinian flow energy ensures the Lyapunov function decreases over time, implying convergence
to the set of neurons with high fitness. LaSalle’s invariance principle excludes non-convergent os-
cillations. O

A.13 ADDITIONAL EXPERIMENTS ON THREE-LAYER MLP-NET WITH MNIST
A.13.1 DYNAMICS NEURON TRAJECTORY AND EVOLUTION ANALYSIS.

Figure f[(a), top shows the PCA-projected trajectories of shallow-layer neurons across training. Sur-
vived neurons (green) follow relatively long and directed paths, indicating sustained representational
change. Their motion exhibits fewer reversals than eliminated neurons (red), which instead display
short and irregular trajectories, often collapsing toward the origin. This contrast is reflected quanti-
tatively in Figure f[c), top, where cumulative trajectory length grows steadily for survived neurons.
The weight dynamics in Figure[d{(d), top reinforce this pattern: survived neurons exhibit increasing
L5 norms of incoming weights, whereas eliminated neurons remain almost flat, suggesting a gradual
withdrawal of representational capacity. Collectively, these results indicate that even in the shallow
layer, gradient descent implicitly differentiates between neurons that maintain sustained alignment
with the loss signal and those that do not.

In the middle layer (Figure [d(a), middle), the divergence becomes more pronounced. Survived neu-
rons trace longer and more coherent trajectories, while eliminated neurons remain short and close
to the origin. This is supported by Figure ffc), middle, where the cumulative trajectory length of
eliminated neurons grows at a substantially lower rate than that of survived neurons, already show-
ing a marked slowdown by Epoch 2. Weight norms (Figure 4[d), middle) again show a separation,
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with growth for survived neurons and almost stagnation for eliminated ones. Compared to the shal-
low layer, the selective bottleneck appears stronger: neurons that fail to establish early alignment
with the optimization signal are rapidly marginalized. This suggests that middle-layer neurons, re-
ceiving both bottom-up and top-down gradients, undergo more stringent selection toward functional
specialization.

The deep layer presents a smaller sample size, but a similar trend is observable. As shown in Fig-
ure Eka), bottom, survived neurons follow more extended trajectories, while the eliminated neuron
remains nearly static. Correspondingly, trajectory length (Figure fc), bottom) and weight norm
evolution (Figure Ekd), bottom) both indicate continued adaptation for survived neurons but not for
the eliminated one. Although the limited number of neurons precludes strong statistical claims, the
observed divergence suggests that selection pressures persist even near the output. Importantly, this
implies that architectural proximity to the loss signal alone does not guarantee survival; functional
alignment remains necessary.

Overall, Figure [ highlights a consistent layer-wise pattern: shallow-layer neurons exhibit the ear-
liest divergence, middle-layer neurons experience intensified selection with clearer separation be-
tween survived and eliminated groups, and deep-layer neurons—though fewer—still reflect selective
retention. These results support the view that neuron survival is not imposed externally but emerges
from the training dynamics, with selection pressures varying in strength across depth.
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Figure 4: Dynamics Neuron Trajectory and Evolution Analysis on MNIST.

A.13.2 StATIC PCA AND ACTIVATION EVOLUTION

Figure 5] (top-left) presents the final-epoch PCA projection of first-layer neuron activations. Neurons
categorized as survived occupy relatively dispersed regions, often farther from the origin, which cor-
relates with higher activation magnitude and greater variance. Eliminated neurons cluster near the
origin, suggesting low-output states with reduced contribution to the representational space. The
majority of neurons fall into the other category, exhibiting intermediate positions without clear clus-
tering, reflecting heterogeneous or drifting roles during training. The activation-norm trajectories
(Figure [5] bottom-left) provide a temporal view of this differentiation. Survived neurons increase
their average norm across epochs, indicating sustained engagement with learning signals. Elimi-
nated neurons, in contrast, display a gradual decline toward low, stable norms, consistent with func-
tional silencing. The “other” group remains in an intermediate range, suggesting partial adaptation
without clear reinforcement or suppression.
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In the middle layer (Figure 5} top-middle), the PCA projection reveals that eliminated neurons are
shifted toward the positive-PC1 periphery, while survived neurons occupy a broader and more het-
erogeneous region spanning both central and peripheral zones. The activation trajectories (bottom-
middle) sharpen this divergence: survived neurons exhibit a sustained rise in activation norm,
whereas eliminated neurons remain suppressed with only marginal growth. Taken as a whole, these
patterns suggest that selection-like dynamics manifest most clearly in intermediate layers, where
neurons are actively sorted into amplifying versus stagnant trajectories.

For the deep layer (Figure[3} top-right), the neuron count is small (only 2 survived and 1 eliminated),
limiting statistical strength. The survived units exhibit higher final activation norms (bottom-right),
whereas the eliminated unit declines toward a baseline. While this pattern resembles earlier layers,
the small sample size precludes strong generalization.

Overall, the combination of static PCA projections and dynamic activation curves provides comple-
mentary evidence of neuron-level differentiation across depth. These results are consistent with the
hypothesis that overparameterized networks allocate representational capacity unevenly, with some
neurons reinforced while others become marginalized. However, the analyses are correlational and
limited by dimensionality reduction and sample imbalance, particularly in deeper layers.
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Figure 5: Static PCA and Activation Evolution on MNIST.

A.14 ADDITIONAL EXPERIMENTS ON RESNET-18 WITH CIFAR-10

A.14.1 DYNAMICS NEURON TRAJECTORY AND EVOLUTION ANALYSIS

The shallow layer dynamic PCA trajectories (Figure [6[a), top) show that neuron activations in early
convolutional layers—often assumed to encode low-level, generic features—already exhibit signs
of representational divergence. Survived neurons tend to follow more stable and moderately di-
rected paths in the PCA manifold, with reduced dispersion over training, suggesting a gradual con-
solidation toward more compact representational regions. In contrast, eliminated neurons display
more irregular trajectories, with frequent directional changes and less coherence, indicating com-
paratively unstable representational roles. This difference is also reflected in the cumulative trajec-
tory length evolution (Figure [6{c), top): survived neurons maintain consistently higher cumulative
movement compared to eliminated neurons, suggesting greater adaptability and sustained represen-
tational change across epochs. While the absolute gap is modest, survived neurons display more
continuous directional displacement, whereas eliminated neurons tend to plateau earlier, consistent
with a potential stagnation of their representational contribution. From a structural perspective, the
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weight magnitude evolution (Figure [6[d), top) indicates that the convolutional filters correspond-
ing to survived neurons generally retain slightly higher L2 norms throughout training, while those
of eliminated neurons remain lower. This trend is consistent with the interpretation that neurons
contributing more strongly to gradient pathways receive relatively greater synaptic reinforcement,
whereas others undergo gradual attenuation. Collectively, these results suggest that even shallow
layers are subject to competitive dynamics, where only subsets of neurons demonstrating sustained
utility remain functionally active.

The middle layers serve as a transitional zone between low-level and high-level representations, and
this role is reflected in the diversity of neuron trajectory dynamics. As shown in the dynamic PCA
projections (Figure [6[a), middle), neurons in these layers exhibit heterogeneous representational
paths over training. Survived neurons tend to follow longer and more coherent trajectories, often
traversing distinct regions of the PCA manifold, suggesting a gradual alignment with intermediate-
level features. By contrast, many eliminated neurons show less coherent movement, with shorter and
more irregular trajectories, though some maintain moderate displacement comparable to the other
group. The cumulative trajectory length curves (Figure[6|c), middle) provide quantitative support for
these observations: on average, survived neurons reach greater cumulative lengths than eliminated
or other neurons, reflecting more sustained representational plasticity. Eliminated neurons continue
to grow but at a slower rate, with later signs of stagnation. A similar pattern is visible in the weight
magnitude evolution (Figure[6{d), middle), where survived neurons exhibit slightly higher L2 norms
than eliminated neurons. Although the difference is modest, its persistence across epochs indicates
that neurons contributing more to the task tend to retain larger weight magnitudes. As a whole, these
results suggest that the middle layers serve as a representational bottleneck where neurons undergo
implicit selection, retaining those with flexible and task-relevant transformations.

In the deep layer, the contrast between neuron groups becomes more pronounced. As illustrated by
the dynamic PCA trajectories (Fi gure@a), bottom), survived neurons follow long, smooth, and more
aligned paths through representation space, frequently converging to structured low-dimensional
subspaces. These neurons appear to encode abstract, class-discriminative information that supports
final classification. In contrast, eliminated neurons reveal short, noisy, and non-convergent trajecto-
ries, often stagnating or oscillating without clear direction, suggesting limited long-term utility. This
distinction is also evident in the trajectory length evolution (Figure [6c), bottom), where survived
neurons maintain the highest cumulative distances relative to eliminated neurons. These lengths re-
flect sustained representational change that tracks increasing class separability. Moreover, the vari-
ance among survived neurons is smaller, suggesting more constrained roles in the deep layer. The
weight magnitude evolution (Figure [6(d), bottom) further highlights this separation: survived neu-
rons retain high L2 norms, while eliminated neurons undergo progressive attenuation. The resulting
divergence is strongest in this layer, consistent with stronger selective pressure as representations
become more task-specific.

Overall, these findings are consistent with the framework of Neural Darwinism: across layers, neu-
rons exhibit competitive dynamics shaped by their sustained utility. While shallow layers already
show signs of divergence, the middle layers intensify selective processes, and the deep layers con-
solidate highly specialized neurons. The evidence from trajectory dynamics and weight evolution
collectively supports the interpretation that representational selection operates hierarchically, shap-
ing survival and elimination throughout the network.

A.14.2 StATIC PCA AND ACTIVATION EVOLUTION

In Figure 7] left and bottom-left, the PCA projection (97.8% variance explained by PC1) shows that
survived neurons occupy a relatively more compact region of the activation space, while eliminated
neurons are scattered toward peripheral, low-density zones. Other neurons form a diffuse cloud
spanning both regions. The activation evolution curves corroborate this structure: survived neurons
sustain moderately higher activation norms with gradual stabilization, whereas eliminated neurons
display persistently weak activations, and others remain intermediate. These patterns suggest that
even at early layers—traditionally considered low-level feature extractors—there is already a degree
of representational competition, consistent with the Neural Darwinism view that selection pressure
operates from the outset of learning.

In Figure [7] middle and bottom-middle, the PCA embedding (94.2% variance explained by PC1)
reveals a clearer differentiation than in shallow layers. Survived neurons cluster more tightly along
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Figure 6: Dynamics Neuron Trajectory and Evolution Analysis on CIFAR-10.

dominant axes, while eliminated neurons are dispersed across orthogonal or low-density subspaces.
Other neurons span an intermediate gradient, partially overlapping both groups. The activation
dynamics mirror this structure: survived neurons maintain higher, stable activations, eliminated
neurons steadily decline. These findings are consistent with the hypothesis that middle layers face
stronger selective pressure, as they form an intermediate representational bottleneck where neurons
must converge toward task-relevant manifolds to persist.

In Figure [7) right and bottom-right, in the final layer (97.2% variance explained by PC1), survived
neurons are broadly distributed along the dominant axis but relatively compact along PC2, indicating
alignment to a high-variance representational subspace. Eliminated neurons are concentrated in
the lower-PC1 region, while others populate an intermediate zone overlapping both groups. The
activation evolution curves reinforce this separation: survived neurons sustain the highest activation
norms with relative stability, eliminated neurons remain consistently suppressed, and others occupy
intermediate levels. Therefore, the static and dynamic views suggest that deep layers culminate
the Darwinian competition, consolidating a high-utility representational manifold surrounded by
marginal units.

A.15 ADDITIONAL EXPERIMENTS ON VGG-16 ON CIFAR-100
A.15.1 DYNAMICS NEURON TRAJECTORY AND EVOLUTION ANALYSIS

In the shallow layer of Figure [§] the dynamic PCA trajectory analysis reveals early indications
of neuronal differentiation consistent with the principles of Neural Darwinism. Survived neu-
rons—characterized by relatively higher activation levels and modestly higher weight magni-
tudes—tend to originate near the PCA origin at the start of training and progressively diverge along
more extended and directionally consistent paths in activation space (Figure[§(a), top). Their trajec-
tories exhibit sustained cumulative displacement over the training epochs (Figure[§]c), top), suggest-
ing continued adaptation. Although the paths are often noisy and irregular, the outward spread indi-
cates a gradual specialization process that may enable distinct low-level feature subspaces to emerge
under task-driven gradient signals. By contrast, eliminated neurons generally follow more compact
trajectories, remaining closer to the origin and displaying shorter cumulative displacements (Figure
Ba.c), top). Their temporal variance is lower and their trajectory curvature less pronounced, im-
plying reduced representational change. The L2 weight norms of this group are on average slightly
lower than those of survived neurons, but the distributions remain strongly overlapping (Figure[§|d),
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Figure 7: Static PCA and Activation Evolution on CIFAR-10.

top). While gradient flow is not directly quantified, the limited representational mobility is con-
sistent with the interpretation that these neurons receive weaker or less task-relevant updates during
training. The neurons classified as other occupy an intermediate position. Their trajectories are more
diffuse and less directionally stable (Figure[8[a), top), with cumulative lengths that are broadly com-
parable to those of survived neurons but accompanied by larger variance (Figure [§{c), top). Some
display periods of outward displacement before stabilizing, while others remain closer to the origin
throughout. This heterogeneity suggests that they represent a transitional population whose role is
not firmly consolidated within the finite training horizon. Overall, these patterns support a local form
of Neural Darwinism: within the shallow layer, a subset of neurons progressively differentiates and
maintains higher representational activity, whereas others remain less engaged and gradually lose
relative influence. The emergence of such divergence close to the raw input highlights that selection
pressures may act from the earliest stages of learning.

In the middle layer—where hierarchical abstractions become more pronounced—the selective dy-
namics appear intensified relative to the shallow layer. PCA trajectories (Figure [8fa), middle) show
that many survived neurons diverge from the origin early and continue outward with sustained dis-
placement, though their paths remain noisy and variable. While most neurons cluster near the PCA
origin, a modest subset of survived neurons extends into more distinct regions of the projection
space, suggesting partial occupation of differentiated representational subspaces. Eliminated neu-
rons, by contrast, display shorter or less stable trajectories: some show brief excursions before
returning toward the origin, whereas others remain in intermediate positions without consistent out-
ward drift. The other neurons again form a heterogeneous group, with some traveling considerable
distances but frequently changing direction, and others staying confined near the origin. Quantita-
tively (Figure[§[c), middle), survived neurons accumulate the greatest trajectory lengths by the final
epoch, though the margin over other groups is modest (approximately 0.3-0.4 units). In terms
of weight evolution (Figure [§(d), middle), all neuron types exhibit monotonic L2 norm decay,
with survived neurons showing a slightly slower decline and thus ending with marginally higher
magnitudes. This suggests that survival is associated with maintaining relatively stronger synaptic
weights, though the effect size is small. Collectively, the middle layer illustrates an intensification
of competitive dynamics, where survived neurons maintain more persistent representational mobil-
ity, eliminated neurons adapt weakly or transiently, and the majority of units remain in flux without
converging to stable roles.

25



Under review as a conference paper at ICLR 2026

In the deep layer—the final fully connected stage before classification—the rate of representational
change appears increased, consistent with a late-phase consolidation process. Survived neurons con-
tinue to accumulate trajectory length (Figure[§|c), bottom), but at a quicker rate compared to earlier
layers. In the PCA projection (Figure[§[a), bottom), these neurons drift outward from the origin and
follow moderately directed paths, with curvature and displacement gradually increasing over time.
This pattern indicates partial stabilization, consistent with their role in encoding higher-level, seman-
tically richer features that require fewer adjustments once tuned. Weight magnitude curves (Figure
[B[d), bottom) similarly show that survived neurons maintain slightly higher norms than eliminated
and other neurons, though the separation remains limited. Eliminated neurons in the deep layer
exhibit shorter cumulative trajectory lengths and modestly lower weight norms. While some early
movement is evident, their displacement growth slows considerably, and their PCA positions remain
relatively central, indicating constrained representational change. The other group again occupies an
intermediate position, with moderate representational shifts and weight growth, suggesting residual
but limited contribution to the final predictive function.

In summary, these observations align with a Neural Darwinism perspective in which neuronal sur-
vival reflects continued representational mobility and modestly stronger synaptic weights, while
elimination corresponds to reduced or transient adaptation. Importantly, the presence of a large het-
erogeneous other group underscores that selection pressure operates continuously, and many neurons
remain in transition rather than converging to stable roles. The progression from shallow to middle
to deep layers reflects a gradual sharpening of selection, culminating in a smaller set of stabilized
neurons in the deepest layer.
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Figure 8: Dynamics Neuron Trajectory and Evolution Analysis on CIFAR-100.

A.15.2 StATIC PCA AND ACTIVATION EVOLUTION

In the shallow layer, the final-epoch PCA projection in Figure [9]left shows that the first two prin-
cipal components account for approximately 99% of the total variance (PC1: 95.4%, PC2: 4.4%),
indicating that most inter-neuron activation variability can be represented in a low-dimensional sub-
space. Despite the limited receptive fields of early convolutional layers, survived neurons (green)
occupy more peripheral regions of the PCA plane, with greater dispersion from the origin and from
one another, suggesting a tendency toward differentiated feature sensitivities. By contrast, elimi-
nated neurons (red) remain densely concentrated near the origin, reflecting low variance and limited
representational differentiation. The activation evolution curves in Figure [9] bottom-left reinforce
this observation: neurons with persistently higher activation norms tend to survive, while those with
steadily declining norms move toward elimination. The distribution of survived neurons suggests
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diversity in low-level tuning—potentially edges or localized textures—that broadens the expressive
basis available for subsequent layers. While the pattern is not definitive, it is qualitatively consistent
with a threshold-like competitive process, in line with selection mechanisms hypothesized in Neural
Darwinism.

In the middle layer, the PCA projection in Figure 0] middle explains roughly 99% of the variance
(PC1: 94.3%, PC2: 5.4%). Here, survived neurons (green) are broadly distributed across the PCA
space, often forming multiple partially separated groups, whereas eliminated neurons (red) cluster
tightly near the origin. The other group (blue) occupies an intermediate band, positioned between
the high-variance survived regions and the low-variance eliminated cluster. Activation evolution
patterns (Figure [0] bottom-middle) reveal that survived neurons maintain high and relatively stable
activation norms, eliminated neurons exhibit a consistent decline, and others remain at intermediate
levels with mild fluctuations. The spread of survived neurons across the PCA space suggests an
increasing degree of representational diversification at this stage, corresponding to the formation of
mid-level abstractions. The non-random structure—characterized by local coherence within groups
and broader separation between groups—indicates systematic partitioning of representational space.
The central concentration of eliminated neurons, coupled with their declining activations, is consis-
tent with redundancy or reduced gradient flow, whereas the transitional behavior of the other group
may reflect delayed specialization.

In the deep layer, corresponding to the final fully connected stage, the PCA projection in Figure [9]
right shows that the first two principal components explain about 99% of the variance (PC1: 95.9%,
PC2: 3.6%). This high concentration of variance suggests a compressed and highly structured rep-
resentational space, consistent with the role of this layer in integrating features for classification.
Survived neurons are predominantly located in peripheral regions of the PCA plane, often grouped
into small clusters. The activation trajectories in Figure 0] bottom-right show that survived neurons
maintain higher and often increasing activation norms across training epochs, indicating sustained
engagement in the final decision space. By contrast, eliminated neurons cluster near the PCA ori-
gin and exhibit consistently lower activation magnitudes and slower growth, suggestive of early
functional deactivation. Other neurons occupy intermediate positions, with activation dynamics re-
flecting transient or weak selectivity that does not consolidate into either survival or elimination.

Overall, the three-layer comparison in Figure [0 highlights a consistent pattern: variance in activa-
tions is concentrated in a few dominant dimensions, survived neurons occupy more dispersed regions
and sustain higher activity levels, while eliminated neurons remain near the origin with declining
activations. The other group exhibits transitional characteristics, reflecting instability or incomplete
specialization. The combined static and dynamic views are qualitatively consistent with a selection-
based process in which functionally distinctive neurons persist and redundant ones fade, echoing
principles of Neural Darwinism.
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