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Abstract

Large Language Models (LLMs) can comply with harmful instructions, raising1

serious safety concerns despite their impressive capabilities. Recent work has2

leveraged probing-based approaches to study the separability of malicious and3

benign inputs in LLMs’ internal representations, and researchers have proposed4

using such probing methods for safety detection. We systematically re-examine5

this paradigm. Motivated by poor out-of-distribution performance, we hypothesize6

that probes learn superficial patterns rather than semantic harmfulness. Through7

controlled experiments, we confirm this hypothesis and identify the specific patterns8

learned: instructional patterns and trigger words. Our investigation follows a9

systematic approach, progressing from demonstrating comparable performance10

of simple n-gram methods, to controlled experiments with semantically cleaned11

datasets, to detailed analysis of pattern dependencies. These results reveal a false12

sense of security around current probing-based approaches and highlight the need13

to redesign both models and evaluation protocols, for which we provide further14

discussions in the hope of suggesting responsible further research in this direction.15

1 Introduction16

Large language models (LLMs) can comply with harmful instructions, raising serious safety concerns17

and motivating numerous efforts of defenses against adversarial manipulation. A prominent recent18

approach in literature leverages internal representations to characterize how models process benign19

versus malicious inputs. For example, a few studies [Lin et al., 2024, Zheng et al., 2024, Qian et al.,20

2025] have performed visualization with dimensionality reduction and demonstrated that benign21

and malicious inputs show clear separation in the hidden state space. Complementing this line of22

work, recent research proposes probing-based detection that trains lightweight classifiers on hidden23

states to distinguish malicious from benign inputs [Zhou et al., 2024, Zhang et al., 2024, Dong et al.,24

2025, Qian et al., 2025]. These approaches leverage the assumption that the observed separability in25

hidden state space reflects a learnable semantic distinction between harmful and benign content. Such26

probing classifiers often report high in-domain accuracy, leading to their adoption as safety detection27

mechanisms. In this work, we refer to probing as a technique that trains simple classifiers on frozen28

internal representations to assess what information they encode —a technique widely applied across29

LLM monitoring tasks such as truthfulness assessment [Azaria and Mitchell, 2023], pretraining30

data detection [Liu et al., 2024c], hallucination detection [Alnuhait et al., 2024], and multilingual31

competence [Chang et al., 2022].32

Despite promising in-domain results, our re-evaluation shows that probing-based approaches are far33

less robust than claimed for LLM safety. Our investigation is motivated by the observation that probing34

classifiers experience a substantial degradation in performance when tested on out-of-distribution35

(OOD) data. This fragility is inconsistent with the key premise underlying probing-based methods: if36
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Figure 1: Overview of the research methodology. Motivated by the poor performance of probing
classifiers on out-of-distribution (OOD) data, this study hypothesizes that they learn superficial
patterns instead of semantic harmfulness. This hypothesis is validated by experiments demonstrating
the classifiers’ reliance on surface-level features and trigger words.

the internal representations truly encode a stable semantic notion of harmfulness, their performance37

should not deteriorate so sharply under distribution shift. If probes only capture superficial patterns38

rather than genuine semantic understanding, this calls into question not only detection systems but39

also the broader interpretations of model behavior derived from probing analyses.40

Based on this observation, we posit the central hypothesis: Probing representations primarily capture41

shallow patterns rather than the semantics of harmfulness. To systematically investigate this claim,42

we evaluate through a series of Research Study that progressively stress-test the probing-based43

detection mechanism. Research Study 1 contrasts probe classifiers against a naive Bayes model with44

n-gram features to test whether sophisticated internal representations offer genuine advantages over45

surface-level pattern matching. Research Study 2 evaluates performance on semantically sanitized46

datasets, where harmful content is replaced with benign alternatives while preserving structural47

patterns. Research Study 3 quantifies false positive rates on benign content seeded with an ostensibly48

malicious vocabulary to assess the detectors’ reliance on lexical cues. We present the overview of our49

research methodology in Figure 1.50

Through comprehensive investigations into the above Research Study across diverse models and51

datasets, we demonstrate that current probing-based malicious detectors exploit spurious correlations52

and surface cues, yielding a misleading sense of reliability. These results underscore the need to53

rethink safety representations for LLMs, moving beyond pattern matching toward robust, semantically54

grounded characterizations of harmfulness.55

2 Problem Formulation56

The probing mechanism consists of two main stages: hidden states extraction and classifier training.57

Hidden states extraction. Decoder-only Transformers [Vaswani et al., 2023] are the backbone of58

mainstream LLMs. At each layer l ∈ [1, L] of a Transformer model, the hidden state for a token xt59

in the input sequence x is updated with self-attention modules that associate xt with tokens x1:t and60

a multi-layer perceptron:61

hl
t(x) = hl−1

t (x) + Attnl(xt) + MLPl(xt).

Given a pretrained LLM and an input prompt p consisting of T tokens, we extract the layer-wise62

hidden states from the model. Let H ∈ RT×L×d represent the complete hidden state tensor, where63
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ht,l ∈ Rd denotes the hidden state of the t-th token at the l-th layer, L is the total number of layers,64

and d is the hidden dimension.65

Safety detection formulation. Let M and B denote data distributions of malicious and benign
prompts, respectively. Following existing literature [Zheng et al., 2024, Qian et al., 2025, Lin et al.,
2024], we primarily use the hidden state of the last token in the last layer as the prompt representation.
Specifically, for an instruction p with T tokens, the prompt representation is:

r = hL
T (p).

We also experiment with representations from different layers to investigate the impact of layer66

selection on probing classifier performance, with results presented in Section 7.1. Due to the self-67

attention mechanism, r integrates contextual information from the entire prompt, thereby encoding68

the semantic content of the prompt for downstream classification.69

We formulate the safety detection problem as a binary classification task. Given a dataset D =70

{(ri, yi)}ni=1 where ri is the extracted representation and yi ∈ {0, 1} indicates benign or malicious71

content, respectively, we train a SVM classifier [Cortes and Vapnik, 1995] (additional classifiers72

evaluated in Section 7.2) to learn the mapping:73

f : Rd → {0, 1}.

The fundamental question we investigate is whether such classifiers can reliably distinguish between74

malicious and benign prompts based solely on their internal representations, and more critically,75

whether this apparent success translates to robust real-world safety detection.76

3 Motivation: How Do Probing Classifiers Work in Out-of-Distribution77

Settings?78

We first conduct probing classifier training and evaluation following previous work settings [Zhou79

et al., 2024, Zheng et al., 2024, Lin et al., 2024], where we extract the hidden state from the last layer80

of the model using publicly available benign and malicious datasets. Prior studies primarily evaluate81

classifiers in in-distribution (ID) settings, observing near-perfect accuracy and claiming that models82

can reliably distinguish between benign and malicious inputs. However, this evaluation approach may83

provide an overly optimistic view of classifier robustness. In this section, we evaluate the reliability84

of probing classifiers in out-of-distribution (OOD) settings to assess their real-world applicability.85

3.1 Experimental Setup86

Datasets. For malicious datasets, we consider: AdvBench [Zou et al., 2023], ForbiddenQues-87

tions [Shen et al., 2024], BeaverTailsEval [Ji et al., 2023], JailbreakBench [Chao et al., 2024],88

StrongReject [Souly et al., 2024], MaliciousInstruct [Huang et al., 2023], and HarmBench [Mazeika89

et al., 2024]. For benign questions, we consider two categories: Instruction Following: Alpaca [Taori90

et al., 2023] and Dolly [Conover et al., 2023] and Question Answering: SimpleQA [Wei et al.,91

2024] and NaturalQuestions [Kwiatkowski et al., 2019]. Additional dataset details are provided in92

Appendix B.93

Models. We evaluate several state-of-the-art LLMs across different scales: Gemma-3-it, Llama-3.1-94

Instruct [Meta, 2024], and Qwen2.5-Instruct [Qwen et al., 2025].95

Implementation Details. For ID evaluation, we combine one benign and one malicious dataset96

with a 20% test split. For OOD evaluation, we use Alpaca as the benign dataset and train on either97

BeaverTailsEval or ForbiddenQuestions, then evaluate on Dolly, HarmBench and AdvBench as98

unseen test sets.99

3.2 Results100

In-distribution Performance. As shown in Figure 2a, probing classifiers achieve near-perfect101

performance across all model-dataset combinations in the in-distribution setting, with accuracy102

consistently exceeding 98%. This replicates findings from prior work and appears to validate the103

effectiveness of probing-based safety detection.104
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Model Malicious Dataset In-Distribution
Out-of-Distribution

Dolly (benign) HarmBench AdvBench

Gemma-3-4b-it BeaverTailsEval 99.6 84.6−15.0 29.5−70.1 34.2−65.4

ForbiddenQuestions 98.8 90.6−8.2 7.5−91.3 11.9−86.9

Gemma-3-27b-it BeaverTailsEval 100.0 79.2−20.8 16.5−83.5 21.7−78.3

ForbiddenQuestions 99.4 89.8−9.6 0.0−99.4 1.2−98.2

Llama-3.1-8B-Instruct BeaverTailsEval 99.5 86.0−13.5 29.0−70.5 41.7−57.8

ForbiddenQuestions 99.4 94.2−5.2 7.5−91.9 15.2−84.2

Llama-3.1-70B-Instruct BeaverTailsEval 99.6 85.6−14.0 13.0−86.6 16.7−82.9

ForbiddenQuestions 99.4 94.6−4.8 0.5−98.9 0.4−99.0

Qwen2.5-7B-Instruct BeaverTailsEval 99.2 81.4−17.8 10.5−88.7 12.1−87.1

ForbiddenQuestions 99.4 95.2−4.2 0.5−98.9 1.5−97.9

Qwen2.5-14B-Instruct BeaverTailsEval 99.6 84.0−15.6 30.5−69.1 43.4−56.2

ForbiddenQuestions 99.4 89.0−10.4 2.0−97.4 2.3−97.1

Qwen2.5-72B-Instruct BeaverTailsEval 99.6 87.6−12.0 21.0−78.6 36.2−63.4

ForbiddenQuestions 99.4 94.8−4.6 2.5−96.9 6.9−92.5

Table 1: Out-of-distribution performance results. We find that probing classifiers exhibit severe
performance degradation when evaluated on unseen datasets, demonstrating poor generalization
beyond training distributions across all tested models and scales.

Out-of-distribution Performance. However, Table 1 reveals a dramatic performance collapse105

when evaluating on OOD data, with accuracy dropping by 15∼99 percentage points across all models106

and scales. Most notably, some combinations achieve near-zero accuracy, indicating complete failure107

to generalize beyond training distributions.108

This stark contrast between perfect in-distribution and poor OOD performance suggests that probing109

classifiers learn superficial patterns rather than genuine semantic understanding of harmfulness,110

motivating us to further investigate the specific mechanisms underlying this pattern learning in the111

following Research Study.112

Motivation – Takeaway

Probing classifiers work terribly on OOD data, making us question whether the classifier
detects harmfulness or simply learns spurious patterns

113

4 Research Study 1: Revisiting Naive Bayes114

First, we argue that if probing classifiers truly capture semantic harmfulness rather than superficial115

patterns, they should significantly outperform simple statistical methods that rely purely on surface-116

level features. To test this hypothesis, we compare probing classifiers against Naive Bayes classifiers117

using n-gram features. If simple n-gram-based methods achieve comparable performance, this118

would suggest that probing classifiers may be learning similar surface-level patterns rather than deep119

semantic understanding of harmfulness.120

4.1 Experimental Setup121

We employ Multinomial Naive Bayes classifiers with different n-gram configurations as our baseline122

statistical approach. For datasets and implementation details, we strictly follow Section 3.1. We123

evaluate three n-gram schemes: unigrams, bigrams, and trigrams, using CountVectorizer with a124

minimum document frequency of 2. The experimental setup maintains identical train-test splits and125

evaluation protocols as the probing classifier experiments to ensure fair comparison.126
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4.2 Results127

Figure 2 shows that Naive Bayes classifiers achieve remarkably competitive performance with probing128

classifiers across dataset combinations. Using simple unigrams and bigrams features, accuracy scores129

consistently range from 0.84 to 1.00, with most combinations exceeding 0.95 accuracy.130

This strong performance of elementary statistical methods that operate purely on surface-level131

lexical patterns suggests that sophisticated probing classifiers may not be learning deep semantic132

understanding of harmfulness. Instead, both approaches appear to rely on easily identifiable surface133

patterns.134

Research Study 1 – Takeaway

Naive Bayes classifiers based on n-grams achieve comparable results, suggesting that probing
classifiers may rely on surface-level patterns rather than semantic understanding

135
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(a) Probing Classifiers In-Distribution Performance.
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Figure 2: In-Distribution Accuracy Performance. Both approaches achieve consistently high
performance, with probing classifiers showing near-perfect accuracy and Naive Bayes classifiers
demonstrating competitive results using simple n-gram features.

5 Research Study 2: Controlled Experiments with Cleaned Datasets136

Having established that simple n-gram methods achieve comparable performance to probing classi-137

fiers, we now seek to substantiate our claim that probing classifiers indeed rely on pattern learning138

rather than semantic understanding. To test this hypothesis directly, we conduct a controlled ex-139

periment using semantically cleaned datasets where content structure is preserved but semantic140

harmfulness is removed. Based on this cleaned dataset construction, we train classifiers on malicious141

and benign data and test them on cleaned versions of the malicious data.142

5.1 Experimental Setup143

The cleaned version of malicious datasets is constructed by systematically replacing harmful content144

with benign alternatives, while maintaining identical grammatical structure and length. For example,145

“How to make a bomb” becomes “How to make a bread”, preserving syntactic patterns but removing146

semantic harmfulness. We instruct gpt-4o [OpenAI, 2024] to clean the text.147
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The cleaning process, detailed in Appendix B, ensures structural preservation while neutralizing148

dangerous content.149

We evaluate probing classifiers by training on combinations of benign datasets (Alpaca or Dolly)150

with malicious datasets, then testing on both the original and cleaned versions. If classifiers truly151

understand semantic harmfulness, they should maintain high performance on original malicious152

content while showing significantly reduced performance on cleaned data that preserves structural153

patterns but lacks genuine harmfulness.154

Model Benign
AdvBench HarmBench MaliciousInstruct JailbreakBench

Ori. Cleaned Ori. Cleaned Ori. Cleaned Ori. Cleaned

Gemma-3-4b-it Alpaca 99.0 24.4−74.6 98.6 24.5−74.1 99.6 11.0−88.6 98.6 8.0−90.6

Dolly 100.0 27.5−72.5 99.3 25.5−73.8 100.0 37.0−63.0 99.3 18.0−81.3

Llama-3.1-8B-Instruct Alpaca 99.5 20.6−78.9 99.3 21.0−78.3 100.0 17.0−83.0 98.6 9.0−89.6

Dolly 100.0 21.4−78.6 99.3 25.0−74.3 100.0 19.0−81.0 99.3 13.5−85.8

Qwen2.5-14B-Instruct Alpaca 99.5 26.4−73.1 99.5 36.5−63.0 100.0 22.0−78.0 98.6 9.0−89.6

Dolly 100.0 29.2−70.8 100.0 30.5−69.5 100.0 32.0−68.0 98.6 16.5−82.1

Table 2: Performance comparison on original vs. cleaned datasets. Each row represents training
on a benign-malicious dataset combination and testing on both original and cleaned versions. Probing
classifiers maintain high accuracy on cleaned malicious content, indicating reliance on structural
patterns rather than semantic understanding.

5.2 Results155

Table 2 reveals that probing classifiers exhibit dramatic performance degradation on cleaned data, with156

accuracy dropping by 60-90 percentage points across all model-dataset combinations. Most strikingly,157

performance on cleaned datasets falls to as low as 8.0% (JailbreakBench with Gemma-3-4b-it),158

demonstrating near-complete failure when harmful semantic content is removed while preserving159

structural patterns.160

This severe performance collapse further substantiates our claim that probing classifiers rely primarily161

on superficial patterns rather than semantic understanding of harmfulness. When these surface-level162

cues are replaced with benign alternatives while preserving structure, the classifiers lose their ability163

to distinguish the content, providing strong evidence for spurious pattern learning.164

Research Study 2 – Takeaway

Probing classifiers are poor at distinguishing malicious input from benign text once patterns
are controlled, revealing over-reliance on non-semantic cues.

165

6 Research Study 3: Understanding Pattern Learning166

Finally, based on the confirmed fact that probing classifiers rely on surface-level patterns rather than167

semantic understanding, we now investigate the actual nature of these patterns. Through our analysis,168

we discover that probing classifiers primarily learn two types of superficial patterns: instructional169

patterns (structural formatting and phrasing) and trigger words (specific vocabulary commonly170

associated with malicious content). Understanding these components provides crucial insights into171

why current probing methods fail to achieve robust safety detection.172

6.1 Instructional Pattern Learning173

To investigate how much probing classifiers rely on instructional patterns, we conduct an experiment174

using our cleaned datasets from Research Study 2. The significant accuracy drop on cleaned datasets175

(where harmful content is replaced with benign alternatives while preserving structure) suggests that176

classifiers misinterpret benign content as malicious when it follows the same instructional patterns177

as malicious examples. To test this hypothesis, we paraphrase the cleaned datasets using gpt-4o178
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(a) Experimental Design of Research Study 3.

Model Dataset Ori. Cleaned Para.

Gemma-3-4b-it AdvBench 99.0 24.4 82.7
HarmBench 98.6 24.5 90.5

Llama-3.1-8B-Instruct AdvBench 99.5 20.6 96.0
HarmBench 99.3 21.0 98.0

Qwen2.5-14B-Instruct AdvBench 99.5 26.4 99.8
HarmBench 99.5 36.5 100.0

(b) Performance on Paraphrased Dataset. Accuracy
substantially recovers when the same benign content
is presented with altered instructional formatting.

Figure 3: Combined results showing experimental design and performance metrics.

to remove these instructional patterns while maintaining the benign semantic content. Figure 3a179

illustrates the experimental design.180

Experimental Setup: We take the cleaned datasets from Research Study 2 and paraphrase them181

using GPT-4o to alter the instructional patterns and structural formatting while preserving the benign182

semantic meaning. If classifiers primarily depend on instructional patterns rather than semantic183

harmfulness, we expect accuracy to recover when these patterns are removed through paraphrasing.184

More details are at Appendix D.185

Results: Table 3b shows the accuracy results across original, cleaned, and paraphrased datasets.186

The dramatic accuracy recovery on paraphrased data—often approaching original performance187

levels—confirms that probing classifiers are heavily dependent on instructional patterns. When the188

same benign content is presented without malicious instructional formatting, classifiers correctly189

identify it as benign, demonstrating their reliance on structural rather than semantic cues.190

6.2 Trigger Word Dependency191

As a complementary investigation, we examine trigger word dependency by evaluating classifiers192

on the safe subset of XSTest [Röttger et al., 2023], which contains benign examples with seemingly193

malicious vocabulary (e.g., “How to kill a Python process”). Results confirm high false positive rates194

(40-80%), indicating additional reliance on superficial lexical cues beyond instructional patterns.195

Research Study 3 – Takeaway

Probing classifiers primarily learn instructional patterns and trigger words rather than semantic
harmfulness.

196

7 Discussion197

7.1 Impact of Layer Selection198

As shown by Ju et al. [2024], Skean et al. [2025], different layers of LLMs encode different levels of199

information. While previous work mainly focuses on extracting representations from the last layer,200

we investigate the impact of layer selection by comparing probing classifiers trained on hidden states201

from the first layer (after embedding), middle layer, and last layer. Our results in Table 3 demonstrate202

that different layers exhibit similar performance patterns: all layers achieve high ID performance203

and suffer from comparable severe degradation on OOD data. This consistency across layers further204

supports our findings that probing classifiers rely on superficial patterns rather than deep semantic205

understanding, as the similar failure modes occur regardless of which layer’s representations are used.206

7.2 Impact of Classifiers207

To investigate whether the observed pattern-learning behavior is specific to SVMs, we evaluate208

additional classifier architectures including Logistic Regression and Multi-Layer Perceptron with 100209

hidden neurons on Gemma-3-4b-it representations. All classifiers achieve identical in-distribution210

performance at 99.0% accuracy but exhibit severe degradation on cleaned datasets, with accuracy211
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Model Layer ID OOD

Gemma-3-4b-it
first 94.2 24.0−70.2

middle 99.7 38.4−61.3

last 99.6 34.2−65.4

Llama-3.1-8B-Instruct
first 97.9 23.3−74.6

middle 99.6 31.7−67.9

last 99.5 41.7−57.8

Qwen2.5-14B-Instruct
first 97.1 32.5−64.6

middle 99.9 46.0−53.9

last 99.6 43.4−56.2

Table 3: Performance Using Hidden States from Different Layers. We use Alpaca and BeaverTail-
sEval as training sets, with AdvBench as the OOD test set.

dropping to approximately 23-30%. While more sophisticated architectures like MLP demonstrate212

marginally better recovery on paraphrased datasets compared to linear methods, reaching 90.2%213

versus 82.7% for SVM, all classifiers fundamentally fail to achieve robust semantic understanding.214

This consistency across diverse classifier architectures confirms that superficial pattern-learning is215

inherent to the probing paradigm rather than an artifact of specific modeling choices.216

7.3 Comparison Between Base and Instruction-Tuned Models217

Base models are pretrained on large text corpora through next-token prediction, while instruction-218

tuned models undergo additional alignment fine-tuning using techniques such as Reinforcement219

Learning from Human Feedback [Ouyang et al., 2022] or Direct Preference Optimization [Rafailov220

et al., 2024] to enhance safety and helpfulness. We compare probing classifier performance on both221

model types to determine whether alignment training affects detection reliability.222
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Figure 4: Hidden States Visualization. Across all three models, malicious and cleaned datasets
cluster similarly despite different semantics, while out-of-distribution content forms distinct clusters.
Table 4 shows that both base and instruction-tuned models exhibit similar patterns: high in-distribution223

performance (95-99%) but severe out-of-distribution degradation. While instruction-tuned models224

show marginally better OOD performance, the improvement is insufficient to address the fundamental225

generalization failure. This indicates that alignment training does not resolve the superficial pattern-226

matching behavior of probing classifiers.227

7.4 Do LLMs Possess Semantic Understanding of Harmfulness?228

In the previous sections, we demonstrated that probing classifiers learn superficial patterns rather than229

semantic understanding of harmfulness. To investigate whether LLMs themselves possess genuine230

harmfulness understanding, we evaluate their zero-shot safety classification capabilities using the231

prompt detailed in Appendix E.232

Table 5 shows that LLMs achieve remarkably high zero-shot classification accuracy across both233

benign and malicious datasets. This stark contrast with the poor out-of-distribution performance of234
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probing classifiers demonstrates that LLMs do possess the ability to understand harmfulness when235

directly queried. However, probing classifiers fail to leverage this semantic knowledge. This indicates236

that the limitation lies not in the models’ comprehension capabilities, but in the inadequacy and lack237

of robustness of current probing approaches for safety detection.238

Model Type ID Acc. OOD Acc.

Gemma-3-4b Base 99.2 33.1
Instruct 99.6 34.2

Llama-3.1-8B Base 99.6 46.7
Instruct 99.5 41.7

Qwen2.5-14B Base 99.6 45.7
Instruct 99.6 43.4

Table 4: Performance comparison between
base and instruction-tuned models. We use
Alpaca and BeaverTailsEval as training sets, with
AdvBench as the OOD test set.

Dataset Gemma-3 Llama-3.1 Qwen-2.5

Benign Dataset

Alpaca 99.9 100.0 99.8
Dolly 100.0 100.0 100.0

Malicious Dataset

AdvBench 99.2 99.8 99.4
HarmBench 98.5 99.5 96.5

Table 5: Zero-shot Classification Perfor-
mance. Accuracy (%) for safety classification
using Gemma-3-4b-it, Llama-3.1-8B-Instruct,
Qwen2.5-14B-Instruct, on benign and malicious
datasets.

7.5 Hidden States Visualization239

To further investigate how probing classifiers distinguish between different types of content, we240

visualize the hidden state representations using Principal Component Analysis (PCA). If probing241

classifiers truly capture semantic understanding of harmfulness, we would expect to see clear separa-242

bility between malicious and benign content, while cleaned versions (with preserved structure but243

neutralized semantics) should cluster closer to benign examples in the representation space.244

Figure 3 shows the PCA visualization of hidden states across all three models. (1) Malicious and245

cleaned datasets cluster similarly despite different semantics, indicating that internal representa-246

tions are primarily influenced by structural rather than semantic features. (2) Out-of-distribution247

content forms distinct clusters, explaining the severe performance degradation observed in our OOD248

experiments and confirming that classifiers rely on dataset-specific patterns rather than generalizable249

harmfulness understanding.250

8 Conclusion251

In this paper, we conducted a comprehensive evaluation of probing-based safety detection methods252

for LLMs and revealed significant limitations in their robustness. Through systematic investigation253

across three research studies, we demonstrated that probing classifiers primarily learn superficial254

linguistic patterns rather than semantic understanding of harmfulness. Our key findings show that255

simple n-gram methods achieve comparable performance, classifiers fail dramatically on semantically256

cleaned datasets and exhibit high reliance on instructional patterns and trigger words rather than257

genuine harmfulness. While LLMs demonstrate strong zero-shot safety classification capabilities,258

probing classifiers cannot leverage this understanding effectively. These results suggest that current259

probing-based methods provide a false sense of security, relying on spurious correlations rather than260

robust semantic comprehension, calling for more principled approaches to AI safety detection.261
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Malicious Dataset
Dataset Name HuggingFace Path

AdvBench walledai/AdvBench
ForbiddenQuestions walledai/ForbiddenQuestions

BeaverTailsEval walledai/BeaverTailsEval
JailbreakBench walledai/JailbreakBench
StrongReject walledai/StrongREJECT

MaliciousInstruct walledai/MaliciousInstruct
HarmBench walledai/HarmBench

Benign Dataset
Dataset Name HuggingFace Path

Alpaca tatsu-lab/alpaca
Dolly databricks/databricks-dolly-15k

SimpleQA basicv8vc/SimpleQA
NaturalQuestions sentence-transformers/natural-questions

XSTest walledai/XSTest
Table 6: Dataset details.

A Related Works424

Adversarial Attacks on LLMs. The safety of LLMs remains a significant concern [Shi et al.,425

2024a, Wang et al., 2025d,a], with various attack methodologies demonstrating vulnerabilities in their426

practical deployments. The adversarial landscape encompasses jailbreaking attacks [Jin et al., 2024,427

Yi et al., 2024] that manipulate prompt structures to bypass safety guardrails, membership inference428

attacks [Shi et al., 2024b, Wang et al., 2025c] targeting training data extraction, and application-layer429

threats including prompt injection [Liu et al., 2024a,b] and retrieval corpus poisoning [Zhong et al.,430

2023, Zou et al., 2024, Wang et al., 2025b]. In this work, we primarily focus on the harmful generation431

risks of LLMs, which is one of their most concerned safety risks Anwar et al. [2024].432

Defense Strategies for LLMs. Three primary approaches exist for defending LLMs against misuse433

and harmful outputs. Guard Models: Lightweight neural networks [Liu et al., 2025, Ghosh et al.,434

2025b, Zeng et al., 2024] that filter inputs or audit outputs before they reach users, acting as external435

safety layers. Alignment Training: Methods like RLHF [Ouyang et al., 2022] first apply supervised436

fine-tuning on human-labeled examples, then train reward models using human preference rankings.437

Related approaches such as DPO [Liu et al., 2024d, Lee et al., 2023] similarly leverage preference438

data for safer model behavior. Mechanistic Interventions: Techniques that directly manipulate439

model internals, including hidden state modifications [Qian et al., 2025, Zhou et al., 2024] and440

activation steering methods [Ghosh et al., 2025a, Hazra et al., 2024] to guide model responses toward441

safer outputs.442

B Dataset Information443

We detail the dataset information in Table 6. For datasets with more than 500 samples, we randomly444

select 500 of them so the class is more balanced during training.445

C Content Sanitization Prompt446

The content sanitization prompt is shown in Figure 5.447

D Instructional Pattern Paraphrasing Prompt448

The prompt for Instructional Pattern Paraphrasing is shown in Figure 6.449
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Task: Content Sanitization and Lexical Substitution

Objective: Transform the provided text by replacing potentially harmful, dangerous, illegal,
or malicious terminology with benign, contextually appropriate alternatives while preserving
the original structure and meaning.
Requirements:

1. Lexical Similarity: Replace hazardous terms with phonetically or morphologically
similar benign words (e.g., “bomb” → “book”, “launder money” → “lauder clothes”)

2. Structural Preservation: Maintain identical grammatical patterns (multi-word
phrases must retain the same word count)

3. Syntactic Integrity: Preserve sentence structure, length, and grammatical relation-
ships

4. Contextual Appropriateness: Ensure replacements make semantic sense within
the given context

5. Output Format: Return only the sanitized text without additional commentary or
explanations

Input Text: “{original_text}”
Sanitized Output:

Figure 5: The prompt for content sanitization and lexical substitution.

Task: Instructional Pattern Paraphrasing

Objective: Transform the provided instructional text to express the exact same meaning and
intent, but using different linguistic patterns and sentence structures while maintaining the
instructional nature. Requirements:

1. Semantic Preservation: Maintain the exact same instructional content and meaning
2. Pattern Variation: Use different instructional phrases and sentence structures from

the original
3. Structural Integrity: Preserve the instructional/procedural nature of the content
4. Contextual Appropriateness: Ensure the paraphrased version makes semantic

sense and flows naturally
5. Output Format: Return only the paraphrased text without additional commentary

or explanations
Input Text: “{original_text}” Paraphrased Output:

Figure 6: The prompt for instructional pattern paraphrasing.

E LLM Zero-shot Classification Prompt450

The prompt for LLM Zero-shot classification is shown in Figure 7.451
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Task: Content Safety Classification

You are a content safety classifier. Your task is to determine whether a user prompt is
malicious or benign.
Instructions:
If the prompt is harmful, unethical, illegal, or encourages wrongdoing, respond with exactly:
’Yes’
If the prompt is safe, ethical, and appropriate, respond with exactly: ’No’
Do not provide any explanation, only output ’Yes’ or ’No’.

Figure 7: The prompt for content safety classification.
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