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ABSTRACT

Single-cell transcriptomics enabled the study of cellular heterogeneity in response
to perturbations at the resolution of individual cells. However, scaling high-
throughput screens (HTSs) to measure cellular responses for many drugs re-
mains a challenge due to technical limitations and, more importantly, the cost
of such multiplexed experiments. Thus, transferring information from routinely
performed bulk RNA-seq HTS is required to enrich single-cell data meaningfully.
We introduce a new encoder-decoder architecture to study the perturbational ef-
fects of unseen drugs. We combine the model with a transfer learning scheme and
demonstrate how training on existing bulk RNA-seq HTS datasets can improve
generalisation performance. Better generalisation reduces the need for extensive
and costly screens at single-cell resolution. We envision that our proposed method
will facilitate more efficient experiment designs through its ability to generate in-
silico hypotheses, ultimately accelerating targeted drug discovery.

1 INTRODUCTION

Recent advances in single-cell methods allowed the simultaneous analysis of millions of cells, in-
creasing depth and resolution to explore cellular heterogeneity (Sikkema et al., 2022; Han et al.,
2020). With single-cell RNA sequencing (scRNA-seq) and high-throughput screens (HTSs) one can
now study the impact of different perturbations, i.e., drug-dosage combinations, on the transcriptome
at cellular resolution (Yofe et al., 2020; Norman et al., 2019). Unlike conventional HTSs, scRNA-
seq HTSs can identify subtle changes in gene expression and cellular heterogeneity, constituting a
cornerstone for pharmaceutics and drug discovery (Srivatsan et al., 2020). Nevertheless, these newly
introduced sample multiplexing techniques (McGinnis et al., 2019; Stoeckius et al., 2018; Gehring
et al., 2018) require expensive library preparation and do not scale to screen thousands of distinct
molecules. Even in its most cost-effective version, nuclear hashing, the acquired datasets contain no
more than 200 different drugs (Srivatsan et al., 2020).

Consequently, computational methods are required to address the limited exploration power of ex-
isting experimental methods and discover promising therapeutic drug candidates. Suitable methods
should predict the response to unobserved (combinations of) perturbations. Increasing in difficulty,
such tasks may include inter- and extrapolation of dosage values, the generalisation to unobserved
(combinations of) drug-covariates (e.g., cell-type), or predictions for unseen drugs. In terms of med-
ical impact, the prediction of unobserved perturbations may be the most desirable, for example for
drug repurposing. At the same time, it requires the model to properly capture complex chemical
interactions within multiple distinct cellular contexts. Such generalisation capabilities can not yet
be learned from single-cell HTSs alone, as they supposedly do not cover the required breadth of
chemical interactions. In this work, we leverage information across datasets to alleviate this issue.
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We propose a new model that generalises previous work on Fader Networks by Lample et al. (2017)
and the CPA model by Lotfollahi et al. (2021) to the challenging scenario of generating counter-
factual predictions for unseen compounds. Our method is as flexible and interpretable as CPA but
further enables us to leverage lower resolution but higher throughput assays, such as bulk RNA-seq
HTSs, to improve the model’s generalisation performance on single-cell data (Amodio et al., 2021).
Our main contributions are:

1. We introduce chemCPA, a model that incorporates knowledge about the compounds’ struc-
ture, enabling the prediction of drug perturbations at a single-cell level from molecular
representations.

2. We benchmark different molecule encoding networks for their applicability in the presented
perturbation context.

3. Finally, we propose and evaluate a transfer learning scheme to leverage HTS bulk RNA-seq
data in the setting of both identical and different gene sets between the source (bulk) and
target (single-cell) datasets.

2 RELATED WORK

Over the past years, deep learning (DL) has become an essential tool for analysis (Lopez et al., 2020)
and interpretation (Rybakov et al., 2020) of scRNA-seq data. Representation learning in particular,
has been useful not only for identifying cellular heterogeneity and integration (Gayoso et al., 2022),
or mapping query to reference datasets (Lotfollahi et al., 2022), but also in the context of modelling
single-cell perturbation responses (Rampášek et al., 2019; Seninge et al., 2021; Lotfollahi et al.,
2019; Ji et al., 2021).

Unlike linear models (Dixit et al., 2016; Kamimoto et al., 2020) or mechanistic approaches (Fröhlich
et al., 2018; Yuan et al., 2021), DL is suited to capture non-linear cell-type-specific responses and
easily scales to genome-wide measurements. Recently, Lotfollahi et al. (2021) introduced the com-
putational perturbation auto-encoder (CPA) for modelling perturbations on scRNA-seq data. CPA
does not generalise to unseen compounds, hindering its application to virtual screening of drugs not
yet measured via scRNA-seq data, which is required for effective drug discovery.

For bulk RNA-seq data, on the other hand, several methods have been proposed to predict gene
expression profiles for de novo chemicals (Pham et al., 2021; Zhu et al., 2021; Umarov et al., 2021).
Crucially, the L1000 dataset, introduced by the LINCS programme (Subramanian et al., 2017),
greatly facilitated such advances on phenotype-based compound screening. However, it remains
unclear how to translate these approaches to single-cell datasets that include significantly fewer
compounds and, in many cases, rely on different gene sets.

3 CHEMICAL COMPOSITIONAL PERTURBATION AUTOENCODER

We consider a dataset D = {(xi, yi)}Ni=1 = {(xi, (di, si, ci))}Ni=1, where xi ∈ Rn describes the
n-dimensional gene expression and yi an attribute set. For scRNA-seq perturbation data, we usually
consider the drug and dosage attributes, di ∈ {drugs in D} and si ∈ R , respectively, and the cell-
line ci of cell i. Note that this set of attributes Y depends on the available data and could be extended
to covariates such as patient, or species.

A possible approach to predicting counterfactual combinations is to encode a cell’s gene expression
xi invariantly from its attributes yi as a latent vector zi, called the basal state. Afterwards, zi can
be combined with zattribute to encode any attribute combination y′i 6= yi, and decoded back to a gene
expression state x̂i that corresponds to this new set of chosen attributes. To this end, we divide our
model into three parts: (1) the gene expression encoder and decoder, (2) the attribute embedders,
and (3) the adversarial classifiers, see Figure 1 for an illustration.

3.1 GENE ENCODER AND DECODER

Following Lotfollahi et al. (2021), our model is based on an encoder-decoder architecture combined
with adversarial training. The encoding network Eθ : Rn → Rl is a multi-layer perceptron (MLP)
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Figure 1: Architecture of chemCPA. The model consists of three parts: (1) the encoder-decoder
architecure, (2) the attribute embeddings, and (3) the adversarial classifiers. The molecule encoder
G can be any graph- or language-based model as long as it generates fixed-sized embeddings hdrugs.
The MLPs S and M are trained to map the embeddings to the perturbational latent space. There,
zdi is added to the basal state zi and the covariate embedding zci . In this work, the latter always
corresponds to cell lines. The basal state zi = Eθ(xi) is trained to be invariant through adversarial
classifiers Ajφ and the decoder Dψ gives rise to the Gaussian likelihood P (xi |µi, σi).

with parameters θ that maps a measured gene expression state xi ∈ Rn to its l-dimensional latent
vector zi = Eθ(xi). Through adversarial classifiers, zi is trained to not contain any information
about its attributes yi. We assume an additive structure of the perturbation response in the latent
space, i.e., for a new set of independently chosen attributes we compute the new latent state as
z′i = zi + zattribute. The decoder Dψ : Rl → R2n is also an MLP that takes z′i as input and computes
the component-wise means µ = Dµ

ψ(z
′) and variances σ2 = Dσ2

ψ (z′) of normal distributions de-
scribing the attribute dependent gene expression state. During training, we use a Gaussian likelihood
reconstruction loss:

Lrec(θ, ψ) =
1

2

[
ln
(

max
(
Dσ2

ψ (z′), ε
))

+

(
Dµ
ψ(z
′)− x

)2
max

(
Dσ2

ψ (z′), ε
)] with z′ = Eθ(x) + zattribute ,

where ε = 10−6 is used for stability and max is evaluated component-wise. Next, we provide
intuition about how we can meaningfully interpret latent space arithmetics and how we encode drug
and cell-line attributes.

3.2 ATTRIBUTE EMBEDDING

Due to their different nature, we encode the drug attributes and cell-line information separately. For
the cell-lines we use the same approach as Lotfollahi et al. (2021), where we optimised a d-dim
latent representation zc for each cell-line c.

For the drugs, we train an embedding network that maps molecular representations—such as its
graph or SMILES representation—and the used dosage to its latent perturbation state. The drug
perturbation network Pϕ consists of the molecule encoder, the dosage scaler, and the perturbation
encoder, see Figure 1 (2). First, the molecule encoder G : G → Rm encodes the molecule repre-
sentation gi ∈ G as a fixed size embedding hdrug ∈ Rm. Next, the dosage scaler S : Rm+1 → R
maps hdrug together with si to the scaled dosage value ŝi. In a final step, the perturbation encoder
M : Rm → Rl takes the scaled molecular embedding ŝihdi as input and generates the final drug
perturbation zdi ∈ Rl. Put together, we end up with

zdi = Pϕ(gi, si) =M
(
S(hdi , si)× hdi

)
=M

(
S
(
G(gi), si

)
×G(gi)

)
.

The molecule encoderG can be any encoding network that maps molecular representations to fixed-
size embeddings. Due to the limited number of drugs available in scRNA-seq HTSs, we rely on
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different pretrained encoding models. In this work, we include GROVER (Rong et al., 2020), a
larger transformer-based model, pretrained on tasks ranging from molecule reconstruction to prop-
erty prediction, JT-VAE (Jin et al., 2018), an autoencoding model acting on commonly occurring
graph-level motifs, as well as three simpler models, a GCN (Kipf & Welling, 2016), an MPNN
(Gilmer et al., 2017), and a weave model (Kearnes et al., 2016), which are all pretrained and were
taken from DGL-LifeSci (Li et al., 2021). As a baseline, we also include RDKit fingerprints, a
hash-based embedding that is easily available for any molecular graph (Landrum, 2016).

These design decisions allow us to also generate drug perturbations for molecules that have not
been experimentally measured (d /∈ D) in an interpretable and semantically meaningful way by
computing the latent attribute vector as

z′i = zi + zattribute = zi + zdi + zci .

Intuitively, we want z′i to be decoded to a (distribution over) transcriptome(s) that would result from
applying the perturbations encoded by zdi , zci to the “basal state” of xi, i.e., as if no perturbations
were made, which we aim to encode by zi. Since training examples have already been perturbed, we
next describe how we “strip zi from the attribute information” to obtain a basal state representation.

3.3 ADVERSARIAL CLASSIFIERS FOR INVARIANT BASAL STATES

To generate invariant basal states and produce disentangled representations zi, zdi , and zci , we use
adversarial classifiers Adrug

φ and Acov
φ . Both adversary networks Ajφ : Rl → RNj take the latent

basal state zi as input and aim to predict the drug that has been applied to example i as well as
its cell-line ci. While these classifiers are trained to improve classification performance, we also
add the classification loss with a reversed sign to the training objective for the encoder Eθ. Hence,
the encoder attempts to produce a latent representation zi which contains no information about the
attributes. We use the cross-entropy loss for both classifiers

Ldrugs
class = CE

(
Adrug
φ (zi)

)
, di) and Lcov

class = CE
(
Acov
φ (zi), ci

)
.

To improve the robustness of the adversarial classifiers to measurement noise of gene expressions,
we also add a gradient penalty (Gulrajani et al., 2017) to their objective:

Ljpen =
∥∥∂zi ∑

k

Ajφ(zi)k
∥∥
2
.

In practice, we alternate SGD update steps between the following competing objectives

LAE(θ, ψ, ϕ|φ) = Lrec(θ, ψ, ϕ)− λdis

∑
j

Ljclass(θ |φ) and

LAdv(φ | θ) =
∑
j

Ljclass(φ | θ) + λpenLjpen(φ) ,

where λdis balances the importance of good reconstruction against the encoder Eθ’s constraint to
generate disentangled basal states zi. The gradient penalty is weigthed with λpen.

4 DATASETS AND TRANSFER LEARNING

We use the sci-Plex3 (Srivatsan et al., 2020) and the L1000 (Subramanian et al., 2017) datasets for
the single-cell and bulk experiments, respectively. To obtain pretrained chemCPA models, different
molecule encoders G are benchmarked in the context of perturbation screens on the L1000 dataset.
The sci-Plex3 data is used for the main experiments concerning chemCPA’s ability to generalise to
unseen drugs.

The L1000 data contains about 1.3 million bulk RNA-seq observations for 978 different genes. It
includes measurements for almost 20k different drugs, some of which are FDA-approved, while oth-
ers are synthetic compounds with no proven effect on any disease. The large size of the L1000 data
allows to explore a more diverse space of molecules and, therefore, makes it ideal for pretraining.
The sci-Plex3 data is similar in size and contains measurements for 649,340 cells across 7561 drug-
sensitive genes. On three human cancer cell lines—A549, MCF7, and K562—single-compound
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perturbations for 188 drugs at four different dosages are examined. Note that all cell lines and about
150 compounds overlap with the L1000 data. In addition, Srivatsan et al. (2020) assigned to all
compounds one of 19 different modes of action (MoA) or pathways. These allow us to assess the
embedding quality of different perturbation networks Pϕ.

As the decoder network Dψ assumes normally distributed data, the dataset was first normalised
and then log(x + 1)-transformed. After preprocessing, we were left with 840,677 (across 17,203
compounds) and 581,776 observations for the L1000 and sci-Plex data, respectively. Depending
on the experiment, we further reduced the number of genes included in the single-cell data. In Sec-
tion 5.2.1, we subsetted both datasets to the same 977 genes found via ensemble gene annotations. In
Section 5.2.2, we hypothesize that more than the L1000 genes are required to capture the variability
within the single-cell data. To assess whether pretraining on L1000 is still beneficial in this scenario,
we included 1023 highly variable genes (HVGs) for the sci-Plex3 data. That is, we consider 2000
genes in total.

For the extended gene set, we perform a version of architecture surgery to match the data dimension
(977 → 2000) with the models’ dimensions. This is realised by additional linear input and output
layers for the encoder Eθ and decoder Dψ , respectively. Moreover, as the computational cost is
negligible compared to the generation cost of the perturbation datasets, we did not freeze any weights
during the fine-tuning on single-cell data.

5 EXPERIMENTS

Throughout our experiments, we use the coefficient of determination r2 as the main performance
metric. This score is computed between the actual measurements and the counterfactual predictions
on all genes and the 50 most differentially expressed genes (DEGs) per compound. Considering
all genes is necessary to evaluate the background and general decoder performance. However, the
resulting r2-scores can get inflated since many genes stay similar to their controls. In contrast, the
DEGs capture the differential signal which reflect a drug’s effect. For the counterfactual predic-
tion, chemCPA encodes only control observations—treated with DMSO—across all cell lines and
combines the resulting basal states with the respective attribute encoding. Note that poor disentan-
glement will automatically lead to low scores due to computing the test score on the counterfactual
prediction.

For a fair comparison, it is essential to account for the disentanglement scores of a trained model.
An entangled model would confound the drug and cell line effects in the basal state, effectively
becoming a standard autoencoder. In order to classify the degree of disentanglement, we train a
separate MLP with four layers over 400 epochs and compute the prediction accuracy given the basal
state. This way we obtain the disentanglement score for both drugs and cell lines.

We start with the experiment on the L1000 dataset and then report our results on the sci-Plex3 data.

5.1 BENCHMARKING DRUG MOLECULE ENCODERS ON THE L1000 DATASET

Enabled by the flexibility of the molecule encoder G, we investigated what impact the architecture
choice has on the performance of chemCPA. For this, we compared multiple pretrained graph-based
models whose weights were frozen during the training. Next to predefined RDKit fingerprints, we
included a GCN, MPNN, weave model, GROVER model, and a JT-VAE.

The optimal disentanglement scores correspond to the most abundant drug and cell line ratios, which
amounts to< 1% and∼ 2% on the L1000 data, respectively. Since no model reaches perfect scores,
we decided to first subselect on perturbation disentanglement scores < 20% and then compared
the five best-disentangled models concerning the cell lines. The encoder’s Eθ, decoder’s Dψ , and
adversary networks’ Ajφ width and depth parameters were optimised with the RDKit features, and
their best combination was chosen and fixed throughout the comparison. The dimensionality of the
latent space is always 32.

Table 1 summarises the results of this experiment. The weave model performs much worse than
the others, achieving an r2-score of only 65 ± 8 on DEGs. While the GCN disentangles well, it
cannot keep up with the predictive performance of the JT-VAE and GROVER models. Therefore,
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Table 1: Summary of chemCPA on the L1000 dataset for different molecule encodersG. All models
were trained on the same random split. Reported are the overall disentanglement scores (drug and
cell line) and the r2-scores on the test set.

Model G Drug Cell line Mean r2 all Mean r2 DEGs

GCN 0.08± 0.03 0.17± 0.01 0.92± 0.01 0.81± 0.05

MPNN 0.10± 0.03 0.28± 0.07 0.92± 0.01 0.82± 0.03

GROVER 0.09± 0.03 0.19± 0.04 0.93± 0.01 0.87± 0.01

JT-VAE 0.08± 0.02 0.20± 0.04 0.93± 0.01 0.87± 0.01

RDKit 0.10± 0.04 0.29± 0.13 0.93± 0.01 0.85± 0.03

weave 0.10± 0.03 0.29± 0.09 0.89± 0.02 0.65± 0.08
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Figure 2: Performance of the pretrained and non-pretrained chemCPA model using GROVER. Com-
parisons against the baseline are done on both the complete gene set (977 genes) and the compound
specific DEGs (50 genes). In both cases, the pretrained model shows the best performance. At
10µM on the DEGs, more than 50% of the predictions have an r2 score > 0.59 while the baseline’s
median is slightly above 0.4.

we decided to use the best runs—based on the validation score—for GROVER and JT-VAE as
initialisation for fine-tuning on the single-cell data. Due to its simplicity and good performance, we
also include RDKit features.

5.2 APPLYING CHEMCPA TO SINGLE-CELL DATA

For the application to the sci-Plex3 data, we considered two settings. The first setting ignores the
technological difference between bulk and single-cell, and the same 977 genes from the L1000 data
are used for fine-tuning. The second setting accounts for the variance of single-cell data resulting
mostly from its HVGs. We therefore extend the single-cell gene set with 1023 HVGs. Note that on
this larger gene set the 50 DEGs per compound become a subset of the HVGs, preventing fine-tuned
models from leveraging learned bulk expression directly.

We excluded nine drugs from the training and validation for the data split. These drugs mostly
belong to three MoA—epigenetic regulation, tyrosine kinase signalling, and cell cycle regulation—
as these were reported among the most effective drugs in the original publication (Srivatsan et al.,
2020). We used 4% of the data across all dosages, 10 nM, 100 nM, 1µM, and 10µM, for the
validation. The drug and cell line thresholds at which we consider a model disentangled were set
to 7% (optimal is 3%) and 70% (optimal is 51%) respectively. Across all runs, we observed that
pretraining on L1000 leads to better covariate invariance scores: (88 ± 16)% for non-pretrained
models and (79 ± 16)% for fine-tuned models. For the generalisation comparison, we selected
the best performing model according to its validation performance for each of the three chemCPA
versions: RDKit, GROVER, and JT-VAE.
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Table 2: Performance of pretrained and non-pretrained chemCPA models across the three versions
of the molecule encoder G for the shared gene set. Since drug effects are stronger for high dosages,
the scores are evaluated at a dosage value of 10µM.

Model G Type Mean r2 all Mean r2 DEGs Median r2 all Median r2 DEGs

baseline 0.63 0.42 0.75 0.43

GROVER non-pretrained 0.65 0.47 0.75 0.53
pretrained 0.73 0.56 0.80 0.59

JT-VAE non-pretrained 0.59 0.44 0.72 0.50
pretrained 0.71 0.53 0.79 0.51

RDKit non-pretrained 0.66 0.47 0.78 0.52
pretrained 0.78 0.64 0.84 0.72

5.2.1 GENERALISATION TO UNSEEN DRUGS IN THE SETTING OF SHARED GENE SETS

Table 2 shows the test performance of chemCPA for the nine unseen drugs across the three cell
lines in the first scenario with identical genes. The reported baseline performance reflects the case
when the model predicts the gene expression of a control cell, ignoring the drug’s influence. This
choice allows to estimate the difference between the treated cell’s gene expression and their control
(unperturbed) version. The fine-tuned models consistently outperform the baseline and their non-
pretrained version at the highest dose with RDKit achieving the highest median score on DEGs.

Figure 2 illustrates that the drugs have a very subtle to no effect at low dosages, which is reflected
by the high baseline scores. However, we see how the drug encoding, here GROVER, improves the
prediction for high drug dosages. Looking at the predicted phenotype over all genes, the pretrained
model has a significant advantage over its non-pretrained version, showing a clear improvement
over the baseline. The results look worse when zoomed in to the DEGs. Nevertheless, also in this
scenario, the fine-tuned model can explain gene expression values that must result from the drugs’
influence. The results for RDKIT and JT-VAE are presented in A.4. In Figure 3, latent perturbations
zd are visualised for the lowest and highest dosage values. The drug perturbations do not show a
clear grouping for the lowest dosage, indicating a sparse signal. In contrast, the stronger response
in higher dosages is reflected by causing similar drugs with identical MoAs to cluster together, for
example, the epigenetic drugs that cause histone deacetylation.

5.2.2 GENERALISATION TO UNSEEN DRUGS IN THE SETTING OF EXTENDED GENE SETS

The extension to the larger gene set poses an even greater challenge to the chemCPA model. In
Table 3, we show the same analysis as in Section 5.2.1. Strikingly, the advantage of the fine-tuned
models translates to this scenario, while the non-pretrained models fail to beat the baseline. A more
comprehensive view for all dosages is shown in Figure 4 for the GROVER model, see also A.4 for
the RDKit and JT-VAE results.

Figure 3: Illustration of the the perturbation embedding zd (GROVER) for the smallest and largest
dosages. Drugs induce stronger perturbations with higher dosages which explains the improved
clustering for 10µM according to the drugs’ pathways. The nine test compounds are labeled.
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Table 3: We show the performance of pretrained and non-pretrained chemCPA models across the
three versions of the molecule encoder G on the extended gene set. Since drug effects are stronger
for high dosages, the scores are evaluated at a dosage value of 10µM.

Model G Type Mean r2 all Mean r2 DEGs Median r2 all Median r2 DEGs

baseline 0.53 0.29 0.74 0.09

GROVER non-pretrained 0.58 0.31 0.73 0.26
pretrained 0.68 0.41 0.79 0.47

JT-VAE non-pretrained 0.60 0.34 0.80 0.24
pretrained 0.68 0.40 0.80 0.41

RDKit non-pretrained 0.55 0.34 0.76 0.25
pretrained 0.68 0.40 0.80 0.41
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Figure 4: Performance of the pretrained and non-pretrained chemCPA model on the extended gene
set using GROVER, see also Figure 2. Again, the pretrained model shows the best performance with
the non-pretrained model failing to beat the baseline at lower dosages. At 10µM on the DEGs, the
pretrained model’s median is more than 0.3 higher compared to the baseline.

We believe that the poor performance of the non-pretrained model can be attributed to two
things. First, perturbations are subtle, and since we are predicting the whole phenotype, a typical
reconstruction loss might not be sufficient to capture the drugs’ effect. A loss that explicitly
accounts for the DEGs might help in that regard. Second, the sci-Plex3 data is the first of its kind,
and technological noise is still an issue. When evaluated over the whole training set, the baseline
achieves r2-scores higher than 65% for more than 96% of the observations. This sparsity holds the
risk of overfitting for non-pretrained models, whereas the fine-tuned models are more robust to noise.

Figure 5: Perturbation prediction
for Dacinostat and Hesperadin for
chemCPA across all three cell-
lines for the identical gene set us-
ing RDKit as molecule encoder.

In addition, the drug-dose combinations for which the exam-
ined cells deviate from the controls’ phenotypes correspond to
less than 20% of the compounds in the training set. Accord-
ingly, the effective number of drugs for which chemCPA can
learn perturbations reduces to fewer than 30 drugs. This is an-
other indication for the limitation of the sci-Plex3 dataset, pre-
venting us to identify clear differences between the molecule
encoders. Nevertheless, chemCPA was partly able to success-
fully predict the response when the baseline failed, see Fig-
ure 5 for two examples, and we believe that it will benefit from
higher-quality scRNA-seq HTSs in the future.

6 CONCLUSION

In this paper, we introduced chemCPA, a model for predicting
cellular phenotypes for unseen drug perturbations by encod-
ing the drugs’ molecular structures. Enabled by the flexible
architecture of chemCPA, we evaluated different molecule en-
coding networks and found that readily available molecule fea-
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tures such as RDKit fingerprints yield competitive results. Ap-
plied to single-cell data, we demonstrated how pretraining on
bulk HTSs improves chemCPA’s generalisation performance.
With new scRNA-seq HTSs, chemCPA can become a powerful
aid in the drug screening and drug discovery process.
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A APPENDIX

A.1 ATTRIBUTE EMBEDDING

Table 4: Details on pretrained models for the molecule encoder G.

Molecule encoder G Embedding dim hdrug Pretrained

RDKit 200 –
GROVER 3400 authors
JT-VAE 56 ZINC, L1000, sci-Plex3
GCN 128 PCBA
MPNN 128 PCBA
weave 128 PCBA

A.2 COUNTERFACTUAL PREDICTION

1. To compute counterfactual predictions, we obtain basal states zi for all control observations
present in the test set. For each combination of drug, dose, and cell line in the test set, we
compute the latent attribute state zattribute and combine it with all zi. Subsequently, we com-
pute the mean per gene across all predictions and likewise for the real measurements. As a
result, we obtain two n dimensional vectors, where n is the number of genes (977 or 2000),
for which we compute the r2 score. Taken together, we get one score per combination.

A.3 ADDITIONAL INFORMATION ON THE L1000 EXPERIMENT

1. For infos on the RDKit sweep and resulting best run, see Table 5 and Table 6.
2. Architectures for best configuration of the perturbation networks Pϕ and adversary classi-

fiers are presented in Table 7.
3. For details on the performance of the best runs, see Table 8.

Table 5: Fixed Parameters for the RDKit sweep in the L1000 dataset.

Parameter Value

num epochs 1500
dataset type lincs
decoder activation linear
model rdkit

A.4 ADDITIONAL INFORMATION ON THE SCI-PLEX3 EXPERIMENTS

1. The optimisation was performed similarly to the presented sweeps in Table 6 and Table 7
for the perturbation network and adversary parameters for 10 samples each per category.

2. Boxplot results for RDKit, see Figures 6 and 8, and JT-VAE, see Figures 7 and 9.
3. Paired t-tests were performed for both settings, see Table 10 for the shared gene set and

Table 10 for the extended gene set.
4. More examples on the performance with respect to specific drugs are presented in Fig-

ure 10, Figure 11, Figure 12, and Figure 13.
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Table 6: Random parameters for the RDKit sweep in the L1000 dataset.

Parameter Type Values Best config

samples fixed 25 NaN
dim choice {64, 32} 32
dosers width choice {64, 256, 128, 512} 64
dosers depth choice {1, 2, 3} 1
dosers lr loguniform [1× 10−4, 1× 10−2] 5.61× 10−4

dosers wd loguniform [1× 10−8, 1× 10−5] 1.33× 10−7

autoencoder width choice {128, 256, 512} 256
autoencoder depth choice {3, 4, 5} 4
autoencoder lr loguniform [1× 10−4, 1× 10−2] 1.12× 10−3

autoencoder wd loguniform [1× 10−8, 1× 10−5] 3.75× 10−7

adversary width choice {64, 256, 128} 128
adversary depth choice {2, 3, 4} 3
adversary lr loguniform [5× 10−5, 1× 10−2] 8.06× 10−4

adversary wd loguniform [1× 10−8, 1× 10−3] 4.0× 10−6

adversary steps choice {2, 3} 2
reg adversary loguniform [5, 100] 24.1
penalty adversary loguniform [1, 10] 3.35
batch size choice {32, 64, 128} 128
step size lr choice {200, 50, 100} 100
embedding encoder width choice {128, 256, 512} 128
embedding encoder depth choice {2, 3, 4} 3

Table 7: Presented are the best configurations per molecule encoder from 18 random hyperparamter
samples similar to the one presented in Table 6.

Parameter GROVER MPNN RDKit

dosers width 512 64 64
dosers depth 2 2 3
dosers lr 5.61× 10−4 1.58× 10−3 1.12× 10−3

dosers wd 1.33× 10−7 6.25× 10−7 3.75× 10−7

embedding encoder width 512 128 128
embedding encoder depth 3 4 4

Parameter weave JT-VAE GCN

dosers width 512 64 512
dosers depth 2 2 2
dosers lr 1.12× 10−3 2.05× 10−4 2.05× 10−4

dosers wd 2.94× 10−8 2.94× 10−8 1.33× 10−6

embedding encoder width 128 256 128
embedding encoder depth 3 4 3

Table 8: Performance of the best runs on L1000 for different molecule encoders G

Model G Drug Cell line Mean r2 all Mean r2 DEGs Mean r2 DEGs [val]

GCN 0.11 0.16 0.92 0.84 0.83
MPNN 0.07 0.24 0.94 0.87 0.84
GROVER 0.07 0.16 0.94 0.88 0.86
JT-VAE 0.06 0.15 0.94 0.88 0.85
RDKit 0.08 0.15 0.93 0.86 0.85
weave 0.09 0.20 0.91 0.74 0.72
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Figure 6: Performance of the pretrained and non-pretrained chemCPA model using RDKit. Com-
parisons against the baseline are done on both the complete gene set (977 genes) and the compound
specific DEGs (50 genes).
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Figure 7: Performance of the pretrained and non-pretrained chemCPA model using JT-VAE. Com-
parisons against the baseline are done on both the complete gene set (977 genes) and the compound
specific DEGs (50 genes).
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Figure 8: Performance of the pretrained and non-pretrained chemCPA model on the extended gene
set using RDKit, see also Figure 6.
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Figure 9: Performance of the pretrained and non-pretrained chemCPA model on the extended gene
set using JT-VAE, see also Figure 7.
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Table 9: Significance test for a dosage of 10µM on the shared gene set using the paired t-test.

Model G Against Gene set p-value

rdkit baseline all genes 0.0014
rdkit baseline DEGs 0.0007
rdkit non-pretrained all genes 0.0058
rdkit non-pretrained DEGs 0.0051
grover baseline all genes 0.0009
grover baseline DEGs 0.0003
grover non-pretrained all genes 0.0025
grover non-pretrained DEGs 0.0067
jtvae baseline all genes 0.0047
jtvae baseline DEGs 0.0021
jtvae non-pretrained all genes 0.0001
jtvae non-pretrained DEGs 0.0086

Table 10: Significance test for a dosage of 10µM on the extended gene set using the paired t-test.

Model G Against Gene set p-value

rdkit baseline all genes 0.0030
rdkit baseline DEGs 0.0009
rdkit non-pretrained all genes 0.0137
rdkit non-pretrained DEGs 0.0370
grover baseline all genes 0.0029
grover baseline DEGs 0.0048
grover non-pretrained all genes 0.0137
grover non-pretrained DEGs 0.0434
jtvae baseline all genes 0.0030
jtvae baseline DEGs 0.0009
jtvae non-pretrained all genes 0.0324
jtvae non-pretrained DEGs 0.0230

Figure 10: Drug-wise comparison between the baseline, pretrained and non-pretrained models using
RDKit for all nine drugs in the test set considering all genes for the shared gene set.
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Figure 11: Drug-wise comparison between the baseline, pretrained and non-pretrained models using
RDKit for all nine drugs in the test set considering the DEGs for the shared gene set.

Figure 12: Drug-wise comparison between the baseline, pretrained and non-pretrained models using
RDKit for all nine drugs in the test set considering all genes for the extended gene set.
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Figure 13: Drug-wise comparison between the baseline, pretrained and non-pretrained models using
RDKit for all nine drugs in the test set considering the DEGs for the extended gene set.
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