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Summary
We introduce Dirichlet Process Posterior Sampling (DPPS), a Bayesian non-parametric al-
gorithm for multi-arm bandits based on Dirichlet Process (DP) priors. Like Thompson-
sampling, DPPS is a probability-matching algorithm, i.e., it plays an arm based on its posterior-
probability of being optimal. Instead of assuming a parametric class for the reward generating
distribution of each arm, and then putting a prior on the parameters, in DPPS the reward gener-
ating distribution is directly modeled using DP priors. DPPS provides a principled approach to
incorporate prior belief about the bandit environment, and in the noninformative limit of the DP
priors (i.e. Bayesian Bootstrap), we recover Non Parametric Thompson Sampling (NPTS), a
popular non-parametric bandit algorithm, as a special case of DPPS. We employ stick-breaking
representation of the DP priors, and show excellent empirical performance of DPPS in chal-
lenging synthetic and real world bandit environments. Finally, using an information-theoretic
analysis, we show non-asymptotic optimality of DPPS in the Bayesian regret setup.

Contribution(s)
1. We introduce Dirichlet Process Posterior Sampling (DPPS) for multi arm bandits - a

Bayesian nonparametric extension of Thompson sampling based on Dirichlet Processes that
combines the strength of (Bayesian) bootstrap with a principled mechanism of incorporat-
ing and exploiting prior information.
Context: Efficient performance of parametric Thompson sampling is limited to bandit
environments wherein it’s possible to have conjugate prior/posterior distributions. Besides,
existing Bootstrap based algorithms cannot account for uncertainity that doesn’t come from
observed data (32)

2. We employ stick-breaking representation of the Dirichlet Process priors to perform numer-
ical experiments with DPPS in both synthetic and real-world multi-arm bandit settings.
Context: Improved performance of DPPS compared to parametric Thompson-sampling
and UCB is made apparent in these simulations. Using a simple example, we also illus-
trate a proof-of-concept of the flexibility of DPPS in incorporating prior-knowledge about
the bandit environment. Besides, Stick-Breaking implementation of DPPS provides a uni-
fied implementation for different bandit environments unlike parametric Thompson sam-
pling whose implementation differ according to bandit environments and require careful
tuning/approximations.

3. We extend the information theoretic analysis of Thompson sampling in (43) to a wider class
of probability-matching algorithms that derive their posterior probability of optimal action
using a valid Bayesian approach, and use this extension to establish σ

√
2TK logK non-

asymptotic upper bound on the Bayesian regret of DPPS in bandit environments with σ
sub-Gaussian reward noise, where T is the time horizon, and K is the number of arms.
Context: We are unaware of any Bootstrap based bandit algorithm that enjoys the order-
optimal, σ

√
2TK logK, non-asymptotic regret bound in the wide class of σ-sub-Gaussian

bandit environments.
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Abstract

We introduce Dirichlet Process Posterior Sampling (DPPS), a Bayesian non-parametric1
algorithm for multi-arm bandits based on Dirichlet Process (DP) priors. Like2
Thompson-sampling, DPPS is a probability-matching algorithm, i.e., it plays an arm3
based on its posterior-probability of being optimal. Instead of assuming a parametric4
class for the reward generating distribution of each arm, and then putting a prior on5
the parameters, in DPPS the reward generating distribution is directly modeled using6
DP priors. DPPS provides a principled approach to incorporate prior belief about the7
bandit environment, and in the noninformative limit of the DP posteriors (i.e. Bayesian8
Bootstrap), we recover Non Parametric Thompson Sampling (NPTS), a popular non-9
parametric bandit algorithm, as a special case of DPPS. We employ stick-breaking rep-10
resentation of the DP priors, and show excellent empirical performance of DPPS in chal-11
lenging synthetic and real world bandit environments. Finally, using an information-12
theoretic analysis, we show non-asymptotic optimality of DPPS in the Bayesian regret13
setup.14

1 Introduction15

Multi Arm Bandits (MAB) is a paradigmatic framework to study the exploration ∼ exploitation16
dilemma in sequential decision making under uncertainty. Standard algorithms developed within this17
framework such as Upper-Confidence Bounds (UCB) absed algorithms (4) and Thompson sampling18
(TS) (47; 44) have proven to be useful in applications such as clinical trials, ad-placement strategies,19
etc. However, it remains difficult to apply them to more complicated real world settings such as20
those arising in agriculture or experimental sciences wherein the underlying uncertainty mechanism21
is far more sophisticated: the unknown reward distribution corresponding to each arm/action may22
not even conform to a parametric class of distributions such as the single-parameter exponential23
family, and usually exhibit characteristics such as multi-modality. With some abuse of terminology,24
we shall refer to this challenging setting of the MABs as non-parametric MABs, and we report an25
optimal algorithm for this setting in the current paper.26

To begin with, it’s worthwhile to consider the limitations of UCB and Thompson sampling algo-27
rithms in some more detail. Firstly, the efficient performance of UCB type algorithms rely on the28
construction of tight high-probability confidence sequences (1; 4). However, for complex problems,29
it becomes difficult to design such sequences, and only approximate confidence sequences can be de-30
signed, which generally tend to be statistically suboptimal (20). Next, although Thompson-Sampling31
(TS) (47; 26) is a neat and elegant Bayesian algorithm, that enjoys the flexibility of incorporating32
prior knowledge about the bandit environment, it’s efficiency is limited to the regime of conjugate33
prior/posterior distributions of the relevant scalar/vector parameter, which is generally not possible34
beyond a few special cases of bandit environments, e.g. Bernoulli, Gaussian. In other regimes, the35
posterior distributions no longer exhibit a closed form, and require the application of approximate36
inference schemes such as Markov Chain Monte Carlo (MCMC), variational inference, etc to draw37
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samples from the posterior distributions. This is usually computationally expensive and can easily38
lead to the suboptimal performance of Thompson sampling (36).39

In light of the above limitations, one is tempted to look for a statistical-inference technique suit-40
able for handling complicated real-world distribution functions, and finds the answer in Statistical41
Bootstrap which is a procedure for estimating the distribution of an estimator by resampling (often42
with replacement) one’s data or a model estimated from the data. Bootstrapping has been widely43
used as an alternative to statistical-inference based on the assumption of a parametric-model when44
that assumption is in doubt, or where parametric inference is impossible or requires complicated45
formulas for the calculation of standard errors.46

This naturally motivates the use of statistical-Bootstrap for the nonparametric setting of MAB dis-47
cussed above. In fact, most of the existing algorithms for nonparametric MABs are based on differ-48
ent versions of the Bootstrap in one way or the other (27; 5; 34). However, these methods crucially49
rely on artifical history/pseudo-rewards to perform well, and can perform sub-optimally without50
a suitable mechanism to generate such artificial-history/pseudo-rewards (34). Additionally, these51
bootstrap sampling based algorithms cannot account for uncertainty that does not come from the52
observed data (32). In other words, they do not have a mechanism to incorporate prior knowledge53
about the environment which can be utilized to enhance the performance of the algorithm. This54
efficient harnessing of prior knowledge for improved performance is hallmark of Bayesian algo-55
rithms, and we are unaware of any bandit algorithm that enjoys the flexibility of being completely56
Bayesian and still efficient in the nonparametric MAB setting. Essentially, this calls for an exten-57
sion of the parametric Thompson sampling, which is already Bayesian, but suffers its nemesis in58
the non-parametric MAB setting for reasons discussed before. Consequentially, this leads us to the59
following question,60

Can we design a truly Bayesian algorithm that performs efficiently in the setting of nonparametric61
multi-arm bandits?62

We answer this question in the affirmative by designing an algorithm that draws from the strengths63
of Bayesian Nonparametric (BN) priors. In the past, a nice line of work utilized BN priors on the64
function spaces, i.e. Gaussian Process (GP) priors, to contribute the well known GP-UCB algo-65
rithm (46), but it’s not clear how this can be naturally adapted to the nonparametric MAB setting66
that we are interested in the current paper, and we believe that a more natural choice of BN priors in67
the context of multi-arm bandits would be the priors on the space of probability distributions instead68
of those on a much larger function space (restricted only by the choice of their smoothness) (38).69
Dirichlet Processes (DPs), denoted as DP(α,F0), (where α and F0 are the related hyperparameters,70
known as the concentration parameter, and the base measure respectively), fall in the category of71
BN priors on the space of probability distributions, and have been widely used in real world statis-72
tical applications (9; 30; 22), . We extend the strength of DPs to the multi-arm bandit setting by73
contributing Dirichlet Process Posterior sampling (DPPS).74

DPPS directly treats reward distribution functions as random objects, modeling them using DP pri-75
ors, and easily updating these priors utilizing the property of conjugacy of DP priors to obtain DP76
posteriors, and making decisions based on the the posterior probability of optimal actions induced77
by these DP posteriors. Since no parametric class of distribution for the arm reward distributions is78
assumed apriori, DPPS allows for modeling arbitrary reward distributions, and hence is amenable79
to the non-parametric MAB setting. This is in contrast to parametric Thompson sampling which80
assumes a parametric class for reward distribution apriori, and puts a prior on a scalar/vector param-81
eter, often the sufficient-statistic of that parametric-class, thereby restricting its application to a small82
set of problems. Furthermore, these parametric priors do not enjoy the property of conjugacy very83
often, and it becomes challenging to sample from their posterior distributions even for the restricted84
class of problems they can model appropriately. We will illustrate this strength of DPPS in a series85
of numerical experiments in Section 5 for different bandit environments.86

Since DPPS is a Bayesian algorithm, it provides a principled mechanism to incorporate prior knowl-87
edge about the bandit environment, specifically through the base measure of the DP priors. In fact,88
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based on the hyperparameter, α, of the DP prior it’s easy to delineate uncertainty captured in DP89
priors/posteriors into two parts – contributions from the observed data and contributions from the90
prior. In the limit of α→ 0, one recovers the noninformative DP prior, also referred to as Bayesian91
Bootstrap which is the basis for Non Paramteric Thompson sampling introduced in (39). We dis-92
cuss this in Section 4.1, and also give a proof of concept of the flexibility of DPPS to incorporate93
prior knowledge about bandit environment through a simple example in Section 5. Additionally, in94
Section 6, we extend an elegant information-theoretic analysis framework for parametric Thomp-95
son sampling to a wider set of probability matching algorithms that derive the posterior probability96
of optimal actions using a valid/proper Bayesian strategy. This extension, along with an important97
lemma on the tail of random distributions sampled from DP prior/posterior shall lead us to the result98
of Theorem 8 which provides an upper bound on the Bayesian regret of DPPS.99

2 Problem formulation100

In this section, we formalize the problem of multi-arm bandits and introduce the necessary notation.101
We also discuss Thompson-sampling, a Bayesian probability matching algorithm, in order to lay102
some ground for introducing its nonparametric counterpart, DPPS, later in this paper.103

Multi-armed bandits In the K-arm bandit problem, the agent is presented with K104
arms/distributions/actions {pk}Kk=1. At time-steps t = 0, 1, . . ., the agent executes an action105
At ∈ A, A being the set of actions such that |A| = K; then it observes the corresponding re-106
ward Rt,At

∈ χ. In this paper, we choose χ to the set of σ-sub-Gaussian random variables, i.e.107

E
[
e(X−E[X])t

]
≤ e

σ2t2

2 , ∀X ∈ χ, and for all s. Let Rt ≡ (Rt,a)a∈A be the vector of rewards108
at time t. The “true reward-vector distribution” p⋆ is seen as a distribution over χ|A| that is itself109
randomly drawn from the family of distributions P . We assume that, conditioned on p⋆, (Rt)t∈N is110
an iid sequence with each element Rt distributed according to p⋆. The agent’s experience through111
time-step t is encoded by a historyHt = (A1, R1,A1

, . . . , At, Rt,At
). The actionAt is chosen based112

onHt utilizing a sequence of deterministic functions, π = (πt)t∈N , so that πt(a) = P(At = a|Ht).113
π is usually referred to as randomized policy. The T period regret of the sequence of actions,114
A1, .., AT , induced by π, is the random variable,115

Regret(T, π) =

T∑
t=1

E[Rt,A⋆ −Rt,At
]

where A⋆ ∈ A is the optimal action, i.e. A⋆ ∈ argmax
a∈A

E[R1,a|p⋆] . In this paper, we study the116

expected regret or Bayesian regret given as follows,117

E [Regret(T, π)] = E

[
T∑

t=1

[Rt,A⋆ −Rt,At
]

]
,

where the expectation integrates over random reward realizations, the prior distribution of p⋆, and118
algorithmic randomness.119

Further notation We set αt(a) = P (A⋆ = a|Ht) to be the posterior distribution of A⋆. Also,120
we use the shorthand notation Et[·] = Et[·|Ht] for conditional expectations under the posterior121
distribution, and similarly write Pt(·) = P(·|Ht). For two probability measures P and Q over a122
common measurable space, if P is absolutely continuous with respect to Q, the Kullback-Leibler123
divergence between P and Q is124

KL(P ||Q) =

∫
P log

(
dP

dQ

)
dP (1)
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where dp
dq is the Radon–Nikodym derivative of p with respect to q. For a probability distribution p125

over a finite set X , the Shannon entropy of p is defined as H(p) = −
∑

x∈X p(x) log (p(x)). The126
mutual information under the posterior distribution between two random variables X1 : Ω → X1,127
and X2 : Ω→ X2, denoted by128

It(X1;X2) := KL (P ((X1, X2) ∈ ·|Ht) || P (X1 ∈ ·|Ht)P (X2 ∈ ·|Ht)) , (2)

is the Kullback-Leibler divergence between the joint posterior distribution of X1 and X2 and the129
product of the marginal distributions. Note that It(X1;X2) is a random variable because of its130
dependence on the conditional probability measure P (·|Ht).131

Thompson Sampling Thompson Sampling is a specific class of probability matching algo-132
rithms which matches in each round, the action-selection probability to the posterior probability-133
distribution of optimal action, i.e. P(At = a|Ht) = P(A⋆ = a|Ht). First, a parametric class for134
the reward distribution functions {πk}Kk=1 is assumed, such that for each arm there is a θa which135
maps the arm to a distribution in that class. Thompson sampling is a Bayesian algorithm in the sense136
that it considers each of these unknown θa, as a random variable initially distributed according to a137
prior distribution, i.e., θa ∼ πa,0, and this prior evolves to a posterior distribution, πa,t, in round t,138
through Bayes rule, as rewards are obtained in each round. At each time, a sample θa,t is drawn from139
each posterior πa,t, and then the algorithm chooses to sample at = argmaxa∈{1,...,K}{µ(θa,t)},140
where µ(θa,t) represents the mean of the parametric reward distributions with parameter θa,t.141

3 Background on Dirichlet processes142

Before discussing the main algorithm proposed in this paper, It is important to concretely discuss a143
few key aspects concerning Dirichlet Processes, and this is what we do in this section.144

Dirichlet distribution is a multivariate generalization of the Beta distributions. We denote the145
Dirichlet distribution of parameters (α1, ..., αn) by Dir(α1, ..., αn) whose density function is given146

by Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

∏n
i=1 w

αi−1
i for (w1, ..., wn) ∈ [0, 1]n such that

∑n
i=1 wi = 1147

Dirichlet Processes In the Bayesian formalism (see also section A for more details), an unknown148
object is treated as a random variable which is then assumed to be drawn from a prior distribution.149
A Bayesian solution requires developing methods of computation of the posterior distribution from150
this prior based on available information about the unknown object. When the unknown object is151
a probability measure (a cumulative distribution function in the present paper, to be precise), one152
then faces a non-trivial question of how to even define a prior on an infinite dimensional object and153
also take care of the constraints of a probability measure (sum up to 1 over its support). An ele-154
gant solution was offered in (19) wherein the author introduced the idea of a Dirichlet process (DP)155
– a probability distribution on the space of probability measures which induces finite-dimensional156
Dirichlet distributions when the data are grouped. To look at it concretely, consider a random prob-157
ability measure, G, on some nice (e.g. Polish) space Θ (e.g. R). G is said to be DP distributed158
with base probability measure F (e.g. a Gaussian, Beta, Bernoulli, etc) and concentration parameter159
α ∈ R+, denoted as G ∼ DP(α, F ), if160

(G(A1), ..., G(Ar)) ∼ Dir(αF (A1), ..., αF (Ar))

for every finite measurable partition A1, ..., Ar of the space Θ.161

Having witnessed the construction of DP priors on the space of probability measures, one naturally162
wonders, how to derive posteriors from these priors, and for that we discuss the important property163
of conjugacy in some nonparametric priors.164

Conjugacy In the Bayesian parametric framework, one can usually use Bayes rule for deriving165
posteriors for parametric models, however for non-parametric case, Bayes rule cannot be used in166
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general (see Appendix A.1 for technical details). Posteriors for some nonparametric priors can be167
derived utilizing the property of conjugacy. Particularly, an observation model M ∈ G, and the168
family of priors Q are called conjugate if, for any sample size n and any observation sequence169
X1, ..., Xn, the posterior under any prior Q ∈ Q is again an element of Q. Also, merely possessing170
the property of conjugacy is not enough to form a viable Bayesian prior. For example, a generaliza-171
tion of DPs is the so-called Neutral To The Right (NTTR) processes (14). Entire family of NTTR172
is known to be conjugate, but besides the specific case of DPs, there’s no known explicit method of173
obtaining posterior indices in other members of the NTTR family. This leads us to discuss the form174
of DP posteriors next.175

Dirichlet Process posteriors Let X1, ... , Xn be a sample from an unknown real-valued distri-176
bution G0 where Xi ∈ R. To estimate G0 from a Bayesian perspective (see Appendix A ) we put177
a prior on the set of all distributions G and then we compute the posterior distribution of G0, given178
Xn = (X1, ..., Xn). Let’s put a DP prior on the set G. Correspondingly, Let DP(α, F0), denote the179
DP prior. The distribution F0 can be thought of as a prior guess at the true distribution G0. The180
number α controls how tightly concentrated the prior is around F0. With a DP prior on G0, the pos-181
terior ofG0, given Xn = (X1, ..., Xn), enjoys conjugacy, i.e, it is itself a DP given as, DP(αn, Fn),182
where, the posterior indices, αn, and Fn are obtained as follows (19; 22),183

αn = α+ n, Fn =
n

α+ n
Fn +

α

α+ n
F0 (3)

Here Fn is the empirical distribution function given X1, ..., Xn, i.e., Fn(x) =
1
n

∑n
i=1 I(Xi ≤ x).184

Note how the posterior index, Fn, exhibited in Eq. 3 combines the information from observations185
(via the empirical cdf, Fn(x) ) with that available from the prior (using F0). This is a crucial property186
of DPs that our algorithm , DPPS, shall harness in order to account for information obtained via187
observed data, and the prior information. One can easily see that as α → 0, DPs can only account188
for uncertainty obtained via observations, with no role of prior anymore, and we discuss this next.189

Bayesian Bootstrap A very useful idea in statistical inference has been that of Statistical Boot-190
strap (17), and a Bayesian version of Bootstrap was introduced in (41). Interestingly, this Bayesian191
version of Bootstrap can also be derived as a special case of the DP posteriors (23). Specifically,192
the weak limit, DP(n,

∑n
i=1 δXi

), (also referred to as the noninformed limit sometimes) of the DP193
posterior, DP(αn, Fn), as |α| → 0 is known as Bayesian Bootstrap (BB), and is given as,194

BBn := DP(n,
n∑

i=1

δXi) =

n∑
i=1

WiδXi (4)

where Wn = (W1, ...,Wn) ∼ Dir(1, ..., 1), and Xi are the observed data points. The mean195
of a random distribution drawn from Bayesian-Bootstrap can be easily seen to be the dot-product196
between the weights and the observed data-points, i.e.,197

µ(BBn) =

n∑
i=1

WiXi = ⟨Wn,Xn⟩ (5)

As we shall see in Sec 4, the idea of Bayesian Bootstrap forms the basis for a bandit algorithm198
introduced in (39). Next we discuss an important representation of DP priors/posteriors that make199
them amenable to practical applications.200

Stick-breaking representation of DPs With the necessary details about DP prior and posterior201
distributions set, one naturally asks how to draw sample from these distributions because this is202
necessary if one wants to do any sort of statistical inference using DPs. Particularly, the form of203
DP posterior (indices) in Eq.3 provide little information to answer this question. A representation204
of random measures sampled from DPs, reported in (45), known as Stick Breaking representation205
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of DPs, provides an answer to this question. In general, Stick-breaking measures (25) are almost206
surely discrete random probability measures that can be represented as,207

Q(·) =
N∑
i=1

qiδZi
(·) (6)

where δZi
is a discrete measure concentrated at Zi, and qi are random weights, generated indepen-208

dent of Zi, such that qi ∈ [0, 1], and
∑N

i=1 qi = 1. As one can guess, this is analogous to breaking209
an actual stick into pieces, and hence the name. The author of (45) reported that if these weights, qi,210
are constructed such that,211

q1 = V1, (qi)
N−1
i=2 = Vi

i−1∏
j=1

(1− Vj), qN =

N∏
i=1

(1− Vi) (7)

Vi
iid∼ Beta(1, α), Zi

iid∼ F, i = 1, 2, ...N (8)

and N is ∞, then the generated random discrete measure, P , in Eq.7 (with N as ∞) is such that,212
P ∼ DP(α, F ). Ofcourse, for computation one can’t haveN as∞, and the infinite series is truncated213
at some finite N , such that a probability mass, qN = 1 −

∑N−1
i=1 qi =

∏N
i=1(1 − Vi), is put at the214

last point, ZN , and this construction ensures that all weights, qi sum up to one. This finite Stick-215
breaking representation has been widely used (25; 29) thanks to its provable optimality in closely216
approximating the infinite series (see also Appendix B for this and for more details on choosing217
finite N , etc).218

Iterative form of DP posterior With the stick-breaking representation of DP priors at hand, one219
wonders how to compute DP posteriors in a practically feasible way, and for this, an iterative form220
of DP posterior comes in handy given as follows (8; 45),221

Qi(·)
d
= ViδXi−1 + (1− Vi)Qi−1(·) (9)

Here Vi ∼ Beta(1, α + i), and d
= denotes equality in distribution. Beginning with a DP prior, Q0,222

generated using the stick-breaking method (Eqs.7-8), the recursion in Eq.9 can be used to obtain the223
DP posterior, given N observations {X1, ..., XN}, as follows,224

QN
d
= VNδXN

+

N−1∑
i=1

Vi N∏
j=i+1

(1− Vj)

 δXi
+

[
N∏
i=1

(1− Vi)

]
Q0. (10)

4 Dirichlet process posterior sampling225

Having established the necessary background, we are now ready to introduce our algorithm, DPPS.226

Algorithm 1 gives the pseudo-code for DPPS. Instead of assuming a parametric class for the reward227
generating distribution of each arm, and then putting a prior on the parameter, we model the reward228
generating distribution of each of the arms {pk}Kk=1 using a corresponding DP. In each round, DPPS229
operates as follows: a random distribution, Dk, is sampled from the current DP posterior for each230
of the K arms utilizing the stick-breaking representation of the DP posterior of Eq. 10; To select an231
arm, the probability matching principle is followed, that is, the arm with the highest probability of232
being optimal (i.e. one corresponding to the highest of the means, µ(Dk), of the random measures,233
Dk) in that round is pulled. It is denoted as I(t). After observing the reward Rt,I(t), the history234
of observed rewards, RI(t), for this arm is updated, and the DP posterior of the pulled arm is235
updated using the NI(t) observations. Clearly, DPPS can be seen as Thompson sampling wherein236
the prior/posterior are nonparametric, instead of parametric1. As a result, most of the theoretical237

1Note that DPPS is a (non-parametric) Bayesian algorithm that utilizes probability-matching principle for arm selection,
and hence is in exact sense, Thompson sampling.
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guarantees and proof techniques for Thompson-sampling apply to DPPS as well. An important238
practical advantage of DPPS is that one does not need to know the parametric-class of distribution239
functions. More crucially, the posteriors in parametric Thompson-sampling are often not available240
in exact form, and must be approximated using expensive inference techniques. This issue does241
not arise in DPPS, as the resulting posteriors in DPPS are always DP, and one can sample from DP242
posteriors utilizing their stick-breaking representation discussed in Section 3. Also, DPPS enjoys243
the same flexibility as that of DP posteriors in utilizing information obtained from the observed data244
and that from some prior knowledge. In other words it combines the (data-driven) strength of vanilla245
(Bayesian) Bootstrapping with the flexibility of incorporating prior beliefs.246

Algorithm 1 Dirichlet Process Posterior Sampling

Require: Horizon T , number of arms K, arm parameters – Distribution F0,k, constant α0,k for
k ∈ {1, ...,K}

1: for k = 1...K, do
2: Set Rk = [ ], Fk = F0,k, αk = α0,k, and Nk = 0
3: end for
4: for t = 1...T , do
5: # Sample model (a random measure):
6: for k = 1...K, do
7: Sample Dk ∼ DP(αk, Fk)
8: end for
9: # select and apply action:

10: I(t) = argmaxk∈{1,...,K}{µ(Dk)}
11: Pull arm I(t) and observe reward Rt,I(t)

12: Update history RI(t) = (R⊤
I(t), Rt,I(t))

⊤ and count NI(t) ← NI(t) + 1.
13: # Posterior update
14: αI(t) ← αI(t) + 1

15: FI(t) =
1

αI(t)

∑
x∈RI(t)

δx +
α0,I(t)

αI(t)
F0,I(t)

16: end for

Algorithm 2 Non parametric Thompson sampling (39)

Require: Horizon T ≥ 1, number of arms K ≥ 1
1: for k = 1...K, do
2: Set Rk := [1], and Nk := 1
3: end for
4: for t = 1...T , do
5: for k = 1...K, do
6: Sample Wk ∼ Dir(1Nk

) where 1Nk
= (1, ..., 1)︸ ︷︷ ︸

Nk times

.

7: end for
8: I(t) := argmaxk∈{1,...,K}{⟨Rk,Wk⟩}
9: Pull arm I(t) and observe reward Rt,I(t).

10: Update history RI(t) := (R⊤
I(t), Rt,I(t))

⊤ and count NI(t) := NI(t) + 1
11: end for

4.1 Noninformative limit of the DPPS247

In (39), authors introduced a non-parametric algorithm for multi-arm bandits, calling it Non-248
Parametric Thompson Sampling (NPTS), although noting that NPTS is not a Bayesian algorithm,249
and that it is not Thompson sampling in strict sense. They proved its asymptotic optimality, and250
showed empirically that NPTS also does well non-asymptotically. Algorithm 2 gives the pseudo-251
code for NPTS. In what follows, we show that NPTS is a special case of DPPS. In NPTS, the arms252
are selected in each-round (see lines 9-10 in Algorithm 2) based on the argmax of the weighted253
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average of the observed rewards (weights drawn from a Dirichlet distribution). Interestingly, this is254
exactly the mean of a random distribution drawn from a Bayesian-Bootstrap (Eq. 5), and Bayesian-255
Bootstrap is a special case of Dirichlet-processes (see Eq. 4). Therefore, NPTS is a special case256
of DPPS, when the DP for each arm is taken to be the Bayesian-Bootstrap, and cannot account for257
prior knowledge (following our discussion in Section 3 on Bayesian Bootstrap and DP posteriors).258

5 Numerical experiments259

In this section, we exhibit empirical performance of DPPS on challenging Bernoulli bandit, Beta260
bandit, and a real-world agriculture dataset. In the experiments that follow, all regret plots exhibit261
average regret over 200 independent runs and 10% − 90% quantile levels. For Bernoulli bandits262
we compare DPPS with Beta-Bernoulli Thompson sampling and UCB. Whereas for the other two263
environemnts we compare with UCB and a generalized version of Beta/Bernoulli (3) TS because264
it’s difficult to implement usual parametric Thompson sampling in those settings (especially for the265
DSSAT bandit setting). Impressive performance of DPPS in a Gaussian bandit environment (with266
both mean and variance unknown to the algorithmic agent) is also shown in Sec. C. A discussion267
on the general choice of (hyper)parameters of DP priors (α,F0, and truncation level of DP prior) is268
given in Section D. Corresponding code is provided in the supplementary material.269

Bernoulli and Beta bandits Here we evaluate DPPS in a 6 arm Bernoulli bandit setting with270
means [0.3, 0.4, 0.45, 0.5, 0.52, 0.55]. Note that all means being close to 0.5 makes it a challeng-271
ing setting. We compare performance of DPPS with UCB and another algorithm which is tailor-272
made for Bernoulli bandit environment – Beta/Bernoulli Thompson Sampling (TS). The prior for273
Beta/Bernoulli TS is set as Beta(1,1) (uniform). The base measure of the DP prior is also set as Uni-274
form distribution (Beta(1, 1)) for all the arms. Fig. 1 shows the perfomance of all the algorithms.275
Clearly, DPPS does as well as Beta/Bernoulli TS. This is impressive because unlike Beta/Bernoulli276
TS , DPPS is unaware of the parametric class of the reward distribution (Bernoulli), and still per-277
formed as well as Beta/Bernoulli TS. With the same DP priors we also run DPPS in a Beta bandit278
environment (with same mean as the Bernoulli bandit setting and scale factor of 5). Fig. 1 (right)279
also shows performance of DPPS in this setting, and clearly DPPS outperforms other baselines.280

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

M
ea

n 
re

gr
et

UCB
R=323.31
Bernoulli_TS
R=110.59
DPPS
R=109.49

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

M
ea

n 
re

gr
et

UCB
R=325.15
Bernoulli_TS_general
R=119.78
DPPS
R=29.03

Figure 1: Comparison of average regret in the Bernoulli bandit setting (left), and Beta Bandit setting
(right) discussed in the text.

DSSAT bandits Next, we illustrate the performance of DPPS on a challenging practical decision-281
making problem using the DSSAT-2 (Decision Support System for Agrotechnology Transfer) sim-282
ulator (24; 21). Harnessing more than 30 years of expert knowledge, this simulator is calibrated on283
historical field data (soil measurements, genetics, planting dates, etc) and generates realistic crop284
yields. Such simulations can be used to explore crop management policies in silico before imple-285
menting them in the real world, where their actual effect may take months or years to manifest286
themselves. More specifically, we model the problem of selecting a planting date for maize grains287
among 7 possible options, all other factors being equal, as a 7-armed bandit. The resulting distribu-288
tions incorporate historical variability as well as exogenous randomness coming from a stochastic289
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meteorologic model. In Figure 2, we show distributions of crop yields generated from the DSSAT2290
simulator. Note that these distributions are right-skewed, multimodal and exhibit a peak at zero291
corresponding to years of poor harvest. Given this, they hardly fit to a convenient parametric model292
(e.g single-parameter-exponential-family, etc). Note that, arm 3 is optimal and the distributions have293
bounded support and hence can be normalized to within [0, 1]. Like for the Bernoulli bandit case,294
we use DP priors with uniform base measures (Beta(1, 1)) for DPPS.295
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Figure 2: Reward distributions from DSSAT simulator (left) and regret performances of bandit
strategies (right) in the DSSAT environment.

Since a vanilla version of Thompson sampling is no longer feasible for DSSAT environment, we296
instead compare DPPS against a version of Beta/Bernoulli Thompson sampling, introduced in (3),297
that is adapted for general stochastic rewards based on a Bernoulli trial in each round with the298
obtained rewards as the mean parameter of the Bernoulli random variable. The same Beta(1, 1)299
prior is used for generalized TS as well. Fig.2 clearly shows DPPS outperforming generalized300
TS and UCB by a huge margin, and this example highlights the strength of DPPS as Bayesian301
nonparametric algorithm over it’s closest parametric-counterpart of generalized TS. Note that so far302
we used agnostic base measures for the DP priors (Beta(1, 1)), i.e. these base measures (and hence303
the corresponding DP priors) do not convey any special knowledge about the bandit environment.304
However, DPPS allows for encoding this prior knowledge about the bandit environment through305
base-measures of the DP priors, and we illustrate this next using a simple example.306
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Figure 3: Average regret in the DSSAT bandit environment with beneficial priors for both NPTS and
DPPS.

Incorporating prior knowledge through DPPS Recall from Sec. 4.1 that NPTS is a special case307
of DPPS in the Bayesian Bootstrap limit of the DP prior. Therefore, the base measure for NPTS308
for a particular arm is empirical CDF of the reward distributions based on current observations for309
that arm, beginning with some initial atomic base measure, δXk

, for each of the k-arms. Given that310
the base measure is an empirical CDF, in NPTS, it’s not possible to utilize even some first order311
prior information about the bandit environment that may be available. This is, however, possible312
in general cases of DPPS through the continuous base measures of DP priors. This can be clearly313
exhibited through a simple example. We start DPPS with a more informed choice of priors, i.e.314
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instead of Beta(1, 1) base measure for the DP priors for all the arms, we express more confidence315
in the third (optimal) arm by using Beta(1, 0.1) as base measure for this arm. We compare this316
with a version of NPTS that starts with initial artificial reward observation of Xk = 0.01 for all but317
the third arm (for which it uses a value of 1). Fig. 3 confirms better performance of DPPS with this318
choice of DP priors, and no change in performance of NPTS even with initial condition that heavily319
favors the third arm.320

Computational cost of DPPS Improved performance and flexibility of DPPS (and other Bootstrap321
based algorithms such as NPTS) does come with higher computational cost. For example, in the 6-322
arm Bernoulli bandit environments of horizon T = 10000, average run-time (over 200 independent323
runs) of DPPS was around 18 seconds, whereas that of parametric TS (conjugate prior/posterior) was324
2-3 seconds. For the 7 arm DSSAT bandit problem, DPPS takes around 20 seconds, NPTS takes325
around 16 seconds. Sec. E gives a detailed overview of the computational complexity of DPPS. All326
this said, this run time of DPPS can be significantly brought down by utilizing self-similarity (22)327
of DP posteriors and parallel computation of DP posteriors that a construction exploiting this self-328
similarity would enjoy, which we plan to do in future.329

6 Regret upper bounds for DPPS330

In this section, we generalize the information theoretic analysis of Thompson sampling introduced331
in (43) to a wider class of probability matching algorithms, and then derive upper bound on Bayesian332
regret of DPPS. We begin by summarizing the key-steps in the original analysis (43) that are crucial333
for the aforesaid extension, and also include complete proofs for the sake of completion in Sec. G.334

Firstly, the Bayesian regret is re-expressed in terms of the entropy of the posterior distribution of335
optimal action, and an upper bound on information ratio,336

Lemma 1. For any T ∈ N , provided that Γt ≤ Γ almost surely for each t ∈ 1, .., T ,337
E
[
Regret(T, πTS)

]
≤
√
ΓH(α1)T .338

The information ratio, Γt :=
(Et[Rt,A∗−Rt,a])

2

It(A⋆;Rt,a)
is defined as the ratio of the square of the instan-339

taneous expected regret by choosing action a to the instantaneous information gain about optimal340
action A⋆ if action a is chosen. Clearly, bounding Bayesian regret of an algorithm boils down to341
bounding the information-ratio of that algorithm. Particularly, for Thompson-sampling, in σ-sub-342
Gaussian reward noise bandit setting, it’s easy to obtain the following bound343

Lemma 2.
Γt ≤ 2|A|σ2.

This bound when combined with Lemma 1 and upper bound of logK for entropy of any posterior344
distribution of optimal action leads to the following bound on the Bayesian regret of Thompson345
sampling,346

Theorem 3.
E
[
Regret(T, πTS)

]
≤ σ

√
2K(logK)T ,

The proof of Lemma 2 hinges on two crucial steps, and we highlight those referring the reader to347
Sec. G for more details. First, re-writing of the instantaneous per-step Bayesian regret by utilizing348
the probability matching property of Thompson sampling, Pt(A

⋆ = a) = Pt(At = a), as follows,349

Et [Rt,A⋆ −Rt,At ] =
∑
a∈A

Pt(A
⋆ = a)Et [Rt,a|A⋆ = a]−

∑
a∈A

Pt(At = a)Et[Rt,a|At = a] (11)

=
∑
a∈A

Pt(A
⋆ = a) (Et [Rt,a|A⋆ = a]− Et[Rt,a]) .
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Second, bounding this instantaneous per-step regret by bounding (Et [Rt,a|A⋆ = a]− Et[Rt,a]),350
This is done by an application of the variational formula (12) for the KL divergence, KL(P ||Q),351
between two absolutely continuous measures, P and Q,352

Fact 4.
KL(P ||Q) = supX{EP [X]− logEQ[exp{X}]}.

If we substitute, the random variable, X ≡ X(t) = Rt,a − Et[Rt,a], with P = Pt(Ra|A⋆ = a) and353
Q = Pt(Ra) in the above variational formula, and when X(t) is σ-sub-Gaussian, it’s easy to obtain354
the following bound,355

Lemma 5.

Et [Rt,a|A⋆ = a]− E[Rt,a] ≤ σ
√

2D(Pt(Rt,a|A⋆ = a)||Pt(Rt,a)).

6.1 Admissible probability matching algorithms356

It’s easy to notice in the preceding analysis that there’s no restriction on Pt(A
⋆ = a) to be derived357

using a Bayes-rule based posterior-distributions of arm-rewards,Pt(Ra) as is done in parametric358
Thompson sampling. This choice is rather implicit, given the decision theoretic and information359
theoretic coherency of Bayesian framework (48; 50). However, Bayesian-framework is not limited360
to Bayes-rule based derivation of posterior distributions. Another valid Bayesian approach (31; 23)361
for obtaining posteriors is leveraging the property of conjugacy as discussed in Sec 3. In particular,362
most nonparametric priors do not satisfy the necessary conditions for Bayes rule (See A.1), and one363
must rely on their conjugacy property to derive the corresponding posteriors. Therefore, all prob-364
ability matching algorithms which derive Pt(Ra) (and hence Pt(A

∗ = a)) using a valid Bayesian365
approach are admissible in the information theoretic analysis of (42). Additionally, these admissible366
algorithms would enjoy similar bounds as parametric Thompson sampling on their information-ratio367
(and consequently Bayesian regret), if they satisfy auxiliary conditions required from the original368
analysis.369

For the case of σ-sub Gaussian reward noise discussed before, it is easy to see that we require370
the following auxiliary conditions: In each round t, (1) the instantaneous reward noise, X(t), in371
Lemma 5, is σ-sub-Gaussian; (2) KL(Pt(Ra|A⋆ = a)||Pt(Ra)) in Lemma 5 is well defined. The372
second condition holds if Pt(A

⋆ = a) > 0 owing to a classical fact in conditional probability (49),373

Fact 6. For any random variable Z and event E ⊂ Ω, where Ω is the probability space, if Pt(E) =374
0, then Pt(E|Z) = 0 almost surely. Conversely, for any x ∈ X with Pt(X = x) > 0, Pt(Y |X = x)375
is absolutely continuous with respect to Pt(Y ).376

DPPS satisfies all the conditions above: It is admissible since it utilizes a valid Bayesian approach,377
i.e. conjugacy of DP priors/posteriors, to derive Pt(A

⋆ = a); Also, clearly, Pt(A
⋆ = a) > 0378

whenever the base measure, F0, of the DP prior (and hence of the corresponding DP posterior),379
DP(α, F0), is non-null. Finally, the following property of the tail of DP priors/posteriors ensures380
σ-sub-Gaussian nature of the instantaneous reward noise, X(t), whenever the base measure, F0, of381
the DP prior, DP(α, F0), is σ-sub-Gaussian,382

Fact 7 (From (15)). Let F ∼ DP(α, F0), then almost surely the tails of F and distributions sampled383
from the DP posterior of F , DP(α + n, Fn), given samples X1, ..., Xn, are dominated by (and are384
much smaller than) the tails of F0.385

This leads us to the following upper bound on Bayesian regret of DPPS,386

Theorem 8. For the setting of σ-sub-Gaussian rewards, starting with a DP-prior with a σ sub-387
Gaussian base measure, the Bayesian regret of DDPS satisfies388

E
[
Regret(T, πDPPS)

]
≤ σ

√
2K(logK)T ,

where the expectation is taken over the randomness in the policy and the prior of the environment.389
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7 Conclusions and Perspectives390

In this paper, we introduced a Bayesian non parametric algorithm based on Dirichlet processes,391
DPPS, for multi-arm bandits that combines the strength of (Bayesian) Bootstrap with a principled392
mechanism of incorporating and exploiting prior information about the bandit environment. DPPS393
enjoys similar optimality guarantees on Bayesian regret as parametric Thompson sampling, and394
among other advantages of DPPS over its parametric counterpart is its flexibility. This is because395
the stick-breaking implementation of DPPS introduced in this paper can be used for different types396
of bandit environments, contrary to parametric Thompson sampling whose implementations differ397
according to the bandit environment, and can easily lead to intractable posteriors (except for a few398
special cases) which need to be approximated using approximate inference schemes such as MCMC,399
variational inference, etc, and, if not done carefully, such approximate-inference based Thompson400
sampling has been shown to incur sub-optimal performance, even in simple settings (36). Next, we401
discuss a few research directions.402

Firstly, we point that DPs are not the only Bayesian nonparametric priors on the space of distribution403
functions, and further generalization of DPPS is possible. For example, other probability matching404
algorithms using Pitman-Yor (37) processes and Pólya-Tree priors (10; 9) can be useful general-405
izations of DPPS. Next note that, although we derived DPPS for multi-arm bandits without any406
structure, we believe the results in this paper could carry out on other types of online learning prob-407
lems studied in (43), e.g. linear bandits. Also, since all the Bayesian regret guarantees of Thompson408
sampling in (43) hold for Information directed sampling (IDS) (42), we conjecture that a DPPS ver-409
sion of IDS may also be optimal following the arguments in our paper. This can be useful since IDS410
has been specifically shown to be asymptotically optimal for problems wherein Thompson sampling411
and UCB type algorithms fail (28) to be so. A major hurdle in IDS is however its computational-412
complexity, owed to intractable posteriors that result because of the use of parametric-posteriors413
based on Bayes-rule. It would be interesting, in future work, to study a nonparametric variant of414
IDS that utilizes DP posteriors as it would overcome these computational issues,415

Finally, we consider DPPS as a generic design principle, based on Bayesian non-parametric statis-416
tics, that can be extended to the setting of Markov Decision Processes (MDPs) as well. This can417
be done in both model-based and model-free scenarios. In the former, a Posterior Sampling Rein-418
forcement Learning (PSRL) (33; 18) algorithm based on Dirirchlet Process posteriors is definitely419
a promising direction of research. For the model-free scenario, one can extend Randomized Least420
Square Value Iteration (RLSVI) from its current Bayesian-Bootstrap based implementations (32; 35)421
to a full-fledged DP implementation to inject uncertainty that does not come from the observed data422
in a principled manner similar to that shown in this paper. We leave these intriguing research ques-423
tions and extensions for future work.424
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Supplementary Materials535

The following content was not necessarily subject to peer review.536
537

A General Bayesian framework538

In this section, we highlight a generalized Bayesian framework, and the conditions for existence of539
posteriors and, when they exist, methods of deriving posteriors from priors. Most of these results540
are standard in Bayesian-non-parametric statistics, and we refer the reader to (23; 31) for details.541

A general Bayesian modeling problem can be formulated as follows. We choose prior Q on pa-542
rameter Θ ∈ T and the observation model M as PΘ, observation space as X. To summarize, both543
Bayesian and non-paramteric Bayesian models can be written as follows,544

Θ ∼ Q, (12)
X1, ..., Xn|Θ ∼ PΘ (13)

Whereas for Bayesian parametric models the parameter space T is finite-dimensional (e.g. Rd), it’s545
infinite for Bayesian non-parametric models. Thus in order to define a non-parametric Bayesian546
model, we have to define a probability distribution (the prior) on an infinite-dimensional space. A547
distribution on an infinite-dimensional space T is a stochastic process with paths in T.548

For more clarity, the DP model can be re-written in the framework of Eqs. 14 as follows,549

Θ ∼ DP (α,G0), (14)
X1, ..., Xn|Θ ∼ Θ (15)

The goal in Bayesian (both parametric and nonparmetric) inference is to figure out the posterior550
which is a probability kernel given as,551

q[·, x] = P(Θ ∈ ·|X = x).

For existence of q the following is required,552

Theorem 9. If T is a standard Borel space, X a measurable space, and a Bayesian model is553
specified as in Eqs. 14, the posterior q exists554

Having established the existence properties, let’s discuss different ways of obtaining posteriors,555
given observations. In Bayesian framework, there are two ways, Bayes rule and Conjugacy, and we556
give existence results for each of these,557

A.1 Bayes-rule558

It’s a popular update rule, however it’s not always possible to use Bayes-rule for obtaining posteriors.559
The following theorem makes it concrete,560

Theorem 10. (Bayes’ Theorem). Let M = P (·,T) be an observation model and Q ∈ PM(T ))561
a prior (PM denotes space of probability measures on T). Require that there is a σ-finite measure562
µ on X such that P (·,Θ) ≪ µ for every Θ ∈ T. Then the posterior under conditionally i.i.d.563
observations X1, ..., Xn is given as below, and P{P (X1, ..., Xn) ∈ 0,∞} = 0564

Q(dΘ|X1 = x1, ..., Xn = xn) =

∏n
i=1 P (xi|Θ)

P (X1, ..., Xn)
Q(dΘ)
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A.2 Conjugacy565

For most non-parametric priors, the important absolute continuity condition in Theorem 10 doesn’t566
hold, and hence Bayes’ rule is not applicable. For example, If P[dΘ|X1:n] is the posterior of a567
Dirichlet process, then there is no σ-finite measure ν which satisfies P[dΘ|X1:n = x1:n]≪ ν for all568
x1:n. In particular, the prior does not, and so there is no density P (Θ|x1:n) (23). In order to remedy569
this curse on non-parametric priors, the most important alternative to Bayes theorem for computing570
posterior distributions is conjugacy. Suppose M is an observation model, and consider now a family571
Q ⊂ PM(T) of prior distributions, rather than an individual prior. We assume that the family Q572
is indexed by a parameter space Y, that is, M = {Qy|y ∈ Y}. Many important Bayesian models573
have the following two properties:574

• The posterior under any prior in Q is again an element of Q; hence, for any specific set of obser-575
vations, there is an y′ ∈ Y such that the posterior is Qy′576

• The posterior parameter y′ can be computed from the data by a simple, tractable formula.577

The above two points define the property of conjugacy. We saw in the main paper that DP priors578
enjoy conjugacy, and saw the simple update formula for the posterior, that resulted thanks to this579
property of conjugacy. For more details, we refer the reader to (31).580

B Finite Stick breaking representation of Dirichlet Process priors581

The finite stick-breaking representation of DP priors discussed in the main paper (Eqs.7-8) has been582
pivotal in the success of DP based Bayesian-nonparametric models. A major reason for this success583
is that such truncated representation is provably efficient (25). Particularly, to quantify the accuracy584
loss owing to truncation consider the quantities, TK = (

∑∞
K pk)

r and UK =
∑∞

K prk, where K is585
the level at which the representation is truncated,586

E(TK(r, a, b)) = (
α

α+ r
)K−1, (16)

E(UK(r, a, b)) = (
α

α+ r
)K−1Γ(r)Γ(α+ 1)

Γ(α+ r)
(17)

Notice that both expressions decay exponentially fast inK, and hence good accuracy is achieved for587
moderateK. Fig. 4 shows an application of this scheme to sample random measures from a DP prior,588
DP(α, F0) for two different values of concentration parameter, α. In order to give more intuition to589
appreciate the utility of DPs for nonparametric inference, We given an example on inference on a590
galaxy-dataset. We also used this (and some other) benchmarks to validate the performance of our591
StickBreaking module for DPPS.592

Figure 4: 200 random measures sampled from DP(α,F0) where α = 5 (left) and 50 (right), F0 =
N(0, 1)
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DPs for galaxy data-set We illustrate the application of Dirichlet processes for density estimation593
on a data set from the astronomy literature (40). The measurements are velocities at which galaxies594
in the Corona-Borealis region are moving away from our galaxy. If the galaxies are clustered, the595
velocity density will be multimodal, with clusters corresponding to modes. This happens to be596
the case, and the multi-modal nature is evident in the CDF of the data in Figure 5 where the left597
and right regions of the CDF are almost flat, and most mass resides in the center. Starting with a598
DP(α,N(0, 1)) prior, we obtain a DP posterior, and the spread of distributions sampled from the599
DP posterior (not shown) can be seen as confidence-set of the density estimate through Dirichlet600
process.601

Figure 5: A random measure sampled from DP prior, DP posterior compared against original galaxy
dataset distribution.

C DPPS for a Gaussian bandit602
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Figure 6: DPPS for a challenging Gaussian bandit setting

A challenging bandit setting is that of Gaussian bandit environment with both mean and variance603
of the underlying Gaussian distribution as unknown (13) to the bandit algorithm. Here we exhibit604
performance of DPPS in such a 7 arm Gaussian bandit environment {N(µk, σk)}K=7

k=1 . The mean605
and variance of Gaussian bandit arms are sampled independently from a Gaussian such that µk ∼606
N(0, 0.5) and σk = |ψk|, ψk ∼ N(0, 0.5). Cumulative Regret averaged over 100 runs on one of607
the sampled instance of bandit environment is shown in Fig. 6. Excellent performance of DPPS is608
evident. In this experiment, we chose α = 2, base measure of DP, F0, as N(0, 0.5).609
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D Choice of hyperparameters in numerical experiments610

Figure 7: Plot of first 1000 stick-breaking probability measure weights, πk, for DP(α = 2, F0) with
k (left) and with Zk ∼ F0(= N(0, 1) (right)

Figure 8: Plot of first 1000 stick-breaking probability measure weights, πk, for DP(α = 20, F0)
with k (left) and with Zk ∼ F0(= N(0, 1) (right)

Two hyperparameters in DPPS are α (concentration parameter) and kt (i.e. truncation level) in611
the stick breaking representation of DP prior (not the posterior), DP(α, F0). We used α = 2 and612
kt = 100 in all the experiments. Note that the choice of α directly influences the choice of kt.613
This is because the number of weights qi in the stick breaking representation,

∑
qiδxi

, carrying614
significant probability mass increase with increase in α (Vi ∼ Beta(1, α)), and for higher α one615
needs to increase kt. For example, with α = 20, we took kt = 300, and we got similar results,616
with a slight increase in computation cost though. An easy way to determine kt is to plot the stick617
breaking weights and remove stick breaking weights that are below a certain threshold (we chose618
10−10 randomly). This relationship between α and stick breaking probability weights, qi, can be619
seen in a simple example of DP(α, F0) as shown in figs. 7 and 8. Whereas for lower value of α620
only few weights have significant mass, for higher α the weights are more evenly spread compared621
to lower α case.622

Choice of base measure, F0, of DP prior For choosing, F0, the tail of the underlying reward623
distribution and a fact on the support of DPs is important.624

Lemma 11 (Support of DPs, see (22)). In the weak topology, the support of DP(α, F0) is charac-625
terized as all probability measures P ⋆ whose supports are contained in that of F0626
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Thus, choosing Beta(1,1) for a bandit problem with σ = 10, subGaussian noise is not a good idea.627
Similarly, theorem 8 on Bayesian regret of DPPS, shows that choosing F0 with σ-subGaussian tails628
corresponding to tails of the reward noise is optimal.629

E Running costs of DPPS630

Here we detail the computational costs associated to a single-arm in each round. Let n denote the631
number of observations for the arm. The important consideration in quantifying the running cost of632
DPPS is to scrutinize the posterior update step,633

Qn = VnδXn +

n−1∑
i=1

Vi n∏
j=i+1

(1− Vj)

 δXi +

[
n∏

i=1

(1− Vi)

]
Q0 (18)

Here, one needs to sample n beta random variables and have O(n) multiplications of these random634
variables, one for each of the past observations. Thus the running cost of DPPS is O(n) for each635
arm. DPPS also incurs a fixed memory and computational cost of O(K), sampling a DP prior, Q0,636
where K is the truncation level of the DP prior. Clearly, this additional but constant (in number637
of rounds and memory) cost is the difference between computational complexities of DPPS and638
NPTS (which needs similar O(n) multiplications between Xn and Wn ∼ Dir(n;1, ...,1) random639
variables), and arises because of additional flexibility of DPPS in incorporating prior knowledge.640

F Further related work641

To the best of our knowledge, Dirichlet Processes in the context of bandits were first used in (11)642
to study a version of the single-arm Gittin’s index problem, when the probability distribution of643
the arm is assumed to be DP distributed. Use of Bootstrapping for Thompson sampling seems to644
have appeared first in (16), which was further improved and made more systematic in (34) where645
the authors also showed equivalence of Bootstrap-Thompson sampling (for Bernoulli-bandits) and646
Thompson sampling with Beta/Bernoulli priors in an exact sense, and speculated this equivalence647
for a wide class of bandit-environments if a proper mechanism for generating artifical history (or648
prior information) could be identified. As shown in the current paper, DPPS provides a neat and649
principled mechanism for incorporating prior information (or gnerating artificial history), and gen-650
eralizes this equivalence. Non-Parametric Thompson sampling (NPTS) and Multinomial Thompson651
Sampling (TS) were introduced in (39) without highlighting any concrete Bayesian connection of the652
former algorithm. NPTS was adapted for robustness in (6). Some discussions concerning Bayesian653
interpretation of NPTS using DPs appeared in (7) who provided a refined analysis of Multinomial654
TS. Aligning towards non-Bayesian side, a sample mean based algorithm guaranteeing O(logN)655
instance-dependent regret appeared in (2), a sub-sampling based algorithm was reported in (5) and656
analyzed for a two-arm bandit setting; a nonparametric Bootstrap based algorithm was reported in657
(27), and regret bounds derived for a Bernoulli bandit environment.658

G Technical derivations659

This section gives proofs of lemmas in the main paper extracted here for completion from (43)660

G.1 Proof of Fact 1661

For any T ∈ N, if Γt ≤ Γ almost surely for each t ∈ {1, .., T},

E
[
Regret(T, πTS)

]
≤
√

ΓH(α1)T .
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Proof. Recall that Et[·] = E[·|Ht] and we use It to denote mutual information evaluated under the662
base measure Pt. Then,663

E
[
Regret(T, πTS)

] (a)
= E

T∑
t=1

Et [Rt,A⋆ −Rt,At
] = E

T∑
t=1

√
ΓtIt (A⋆; (At, Rt,At

))

≤
√

Γ

(
E

T∑
t=1

√
It (A⋆; (At, Rt,At))

)

(b)

≤

√√√√ΓTE
T∑

t=1

It (A⋆; (At, Rt,At
)),

where (a) follows from the tower property of conditional expectation, and (b) follows from the664
Cauchy-Schwartz inequality. We complete the proof by showing that expected information gain can-665
not exceed the entropy of the prior distribution. For the remainder of this proof, letZt = (At, Rt,At

).666
Then, using tower rule of conditional expectations we have,667

Et [It (A
⋆;Zt)] = I (A⋆;Zt|Z1, ..., Zt−1) ,

and therefore,668

E
T∑

t=1

It (A
⋆;Zt) =

T∑
t=1

I (A⋆;Zt|Z1, ..., Zt−1)
(c)
= I (A⋆ ; Z1, ...ZT )

= H(A⋆)−H(A⋆|Z1, ...ZT )

(d)

≤ H(A⋆),

where (c) follows from the chain rule for mutual information, and (d) follows from the non-negativity669
of entropy.670

G.2 Proof of Fact 5671

Proof. Define the random variable X(t) = Rt,a − Et [Rt,a]. Then, for arbitrary λ ∈ R, applying672
Fact 4 to λX yields673

D (Pt (Rt,a|A⋆ = a⋆) ||Pt(Rt,a)) ≥ λEt [X|A⋆ = a⋆]− logEt [exp{λX}]
= λ (Et[Rt,a|A⋆ = a⋆]− Et [Rt,a])− logEt [exp{λX}]
≥ λ (Et[Rt,a|A⋆ = a⋆]− Et [Rt,a])− (λ2σ2/2).

Maximizing over λ yields the result.674

G.3 Proof of Fact 2675

Proof.

Et [Rt,A⋆ −Rt,At ]
2 (a)

=

(∑
a∈A

Pt(A
⋆ = a) (Et [Rt,a|A⋆ = a]− Et[Rt,a])

)2

(b)

≤ |A|
∑
a∈A

Pt(A
⋆ = a)2 (Et [Rt,a|A⋆ = a]− Et[Rt,a])

2

≤ |A|
∑

a,a⋆∈A
Pt(A

⋆ = a)Pt(A
⋆ = a⋆) (Et [Rt,a|A⋆ = a⋆]− Et[Rt,a])

2

(c)

≤ |A|
2

∑
a,a⋆∈A

Pt(A
⋆ = a)Pt(A

⋆ = a⋆)DKL (Pt(Rt,a|A⋆ = a⋆) || Pt(Rt,a))

(d)
=

|A|I(A⋆;Rt,At
)

2
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where (b) follows from the Cauchy–Schwarz inequality, (c) follows from Fact 5, and (a) follows676
from Eq.11and (d) from the standard definition of mutual-information.677
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