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ABSTRACT

Given two boundary distributions, the Schrödinger Bridge (SB) problem seeks the
“most likely” random evolution between them with respect to a reference process.
It has revealed rich connections to recent machine learning methods for genera-
tive modeling and distribution matching. While these methods perform well in
Euclidean domains, they are not directly applicable to topological domains such
as graphs and simplicial complexes, which are crucial for data defined over net-
work entities, such as node signals and edge flows. In this work, we propose the
Topological Schrödinger Bridge problem (T SBP) for matching signal distribu-
tions on a topological domain, where we set the reference process to follow some
linear tractable topology-aware stochastic dynamics such as topological heat dif-
fusion. For the case of Gaussian boundary distributions, we derive a closed-form
Gaussian topological SB in terms of its time-marginal and stochastic differential.
In the general case, leveraging the well-known result, we show that the optimal
process follows the forward-backward topological dynamics governed by some
unknowns. Building on these results, we develop T SB-based models for match-
ing topological signals by parameterizing the unknowns in the optimal process as
(topological) neural networks and learning them through likelihood training. We
validate the theoretical results and demonstrate the practical applications of T SB-
based models on both synthetic and real-world networks, emphasizing the role of
topology. Additionally, we discuss the connections of T SB-based models to other
emerging models, and outline future directions for topological signal matching.

1 INTRODUCTION

As a fundamental problem in statistics and optimization, matching distributions aims to find a map
that transforms one distribution to another. It has found numerous applications in machine learning
tasks, particularly in generative modeling, which often involves learning a transformation from a
data distribution to a simple one (often Gaussian) for efficient sampling and inference. While various
methods have been proposed, including score-based [Ho et al., 2020; Song et al., 2020b] and flow-
based [Lipman et al., 2022] generative models, among others [Neklyudov et al., 2023; Albergo et al.,
2024; Tong et al., 2024a], the Schrödinger Bridge (SB)-based methods [De Bortoli et al., 2021; Chen
et al., 2022a; Liu et al., 2024] provide a principled framework for matching arbitrary distributions.

Inspired by Schrödinger [1931; 1932], the classical SB problem (SBP) aims to find an optimal
stochastic process that evolves from an initial distribution to a final distribution, while minimizing
the relative entropy (Kullback-Leibler divergence) between the measures of the optimal process
and the Wiener process [Léonard, 2014]. Alternatively, the SBP can be cast as a stochastic optimal
control (SOC) problem which minimizes the kinetic energy while matching the distributions through
a nonlinear stochastic process [Dai Pra, 1991; Pavon & Wakolbinger, 1991]. The optimal solution to
this problem satisfies a Schrödinger system of coupled forward-backward (FB) stochastic differential
equations (SDEs) [Léonard, 2014]. Traditionally, SB problems have been solved by addressing the
unknowns in this system using purely numerical methods [Fortet, 1940; Föllmer, 1988]. More
recently, machine learning approaches have been proposed [Pavon et al., 2021; Vargas et al., 2021;
Wang et al., 2021; De Bortoli et al., 2021; Chen et al., 2022a] where the unknowns are approximated
by learnable models (e.g., Gaussian processes, neural networks) trained on data-driven objectives,
such as the likelihood training [Chen et al., 2022a].
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However, SB-based methods have primarily focused on solving tasks in Euclidean spaces, such as
time series, images [Deng et al., 2024] and point clouds. Modern learning tasks often involve data
supported on irregular topological domains such as graphs, simplicial and cell complexes. Arising
from applications like chemical reaction networks, biological networks, power systems, social net-
works [Wang et al., 2022; Faskowitz et al., 2022; Bick et al., 2023], the emerging field of topological
machine learning [Papamarkou et al., 2024] centers on signals supported on topological objects such
as nodes and edges, which can represent sensor data or flow type data over network entities. A direct
application of existing SB models to such topological data may fail due to their inability to account
for the underlying topology. Thus, in this work, we investigate the SBP for topological signals, with
a focus on node and edge signals over networks modeled as graphs and simplicial complexes. To
match distributions of such topological signals, our contributions are threefold.

(i) We propose the Topological Schrödinger Bridge problem (T SBP), which seeks an optimal
topological stochastic process that minimizes the relative entropy with respect to a reference process,
while respecting the initial and final distributions. To incorporate the domain knowledge, we define
the reference process to follow topology-aware SDEs (T SDEs) with a linear topological convolu-
tion drift term, admitting tractable Gaussian transition kernels. This subsumes the commonly-used
stochastic heat diffusions on graphs and simplicial complexes for networked dynamics modeling.

(ii) Focusing on the case where the end distributions are Gaussian, we find the closed-form optimal
Gaussian T SB and characterize it in terms of a stochastic interpolant time marginal, as well as its
Itô differential. This generalizes the results of Bunne et al. [2023] where the reference process is
limited to SDEs scalar-valued linear coefficients. For the general case, we show that, upon existing
results, the optimal T SB adheres a pair of FB-T SDEs governed by some unknown terms (also called
policies), which in turn satisfy a system driven by topological dynamics.
(iii) We propose the T SB-based model for topological signal generative modeling and matching.

Specifically, we parameterize the hard-to-solve policies by some (topology-aware) learnable models
(e.g., graph/simplicial neural networks), and train them by maximizing the likelihood of the model
based on Chen et al. [2022a]. We show that T SB-based models unify the extensions of score-based
and diffusion bridge-based models [Song et al., 2020b; Zhou et al., 2024] for topological signals.

We validate the theoretical results and demonstrate the practical implications of T SB-models on
synthetic and real-world networks involved with brain signals, single-cell data, ocean currents, seis-
mic events and traffic flows. Before concluding the paper, we extensively discuss future directions
in generative modeling for topological data. Overall, our work lies in the intersection of SB theory,
stochastic dynamics on topology, machine learning and generative modeling for topological signals.

Notations. We denote byX a stochastic process (Xt)0≤t≤1 as a mapX : [0, 1]×X → Rn from the
unit time interval [0, 1] (i.e., index space) and sample space X (e.g., Euclidean space) to Rn (state
space). Here,Xt is a random variable representing the state at t. The standard n-dim Wiener process
(Brownian motion) is denoted by W . Let Ω = C([0, 1],Rn) denote the space of all continuous Rn-
valued paths on [0, 1], and let P(Ω) denote the space of probability measures on Ω. For a path
measure P ∈ P(Ω) describing the law of the process X , we denote by Pt its time marginal that
describes the distribution of Xt, i.e., if X ∼ P, then Xt ∼ Pt. We assume distributions of random
variables are associated with measures that have a density with respect to the Lebesgue measure. We
also assume locally Lipschitz smoothness on the drift and diffusion coefficients of SDEs.

2 BACKGROUND

2.1 SCHRÖDINGER BRIDGE PROBLEM

Let QW be the path measure of a Wiener process dYt = σ dWt with variance σ2. The classical SBP
[Léonard, 2014] seeks an optimal path measure P on Ω by minimizing its relative entropy DKL with
respect to QW

minDKL(P∥QW ), s.t. P ∈ P(Ω),P0 = ρ0,P1 = ρ1, (SBP)

where ρ0 and ρ1 are the prescribed initial and final time marginals on Rn. Intuitively, the SBP aims
to find a stochastic process evolving from ρ0 to ρ1 that are “most likely” to a reference (a prior)
process, here the Wiener process. This is in fact a dynamic formulation of the entropic-regularized
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optimal transport (OT) with a quadratic transport cost [Villani, 2009]. The static formulation reads

min
π∈Π(ρ0,ρ1)

∫
Rn×Rn

1

2
∥x0 − x1∥2 dπ(x0, x1) + σ2DKL(π∥ρ0 ⊗ ρ1) (E-OT)

where Π(ρ0, ρ1) is the set of couplings between ρ0 and ρ1, and ρ0 ⊗ ρ1 denotes their product
measure. In this static formulation, the optimization is over the coupling of ρ0 and ρ1, as opposed
to the full path measure in the dynamic formulation (SBP). As σ → 0, E-OT reduces to the typical
2-Wasserstein OT, and the associated dynamic problem is given by Benamou & Brenier [2000].

2.2 TOPOLOGICAL SIGNALS

In this work, we are interested in signals defined on a graph, a simplicial complex or a cell complex
such a topological domain, denoted by T . If T is a graph with a node set and an edge set, we may
define a node signal x ∈ Rn as a collection of values associated to the nodes, where n denotes
the number of nodes. Such signals often arise from sensor measurements in sensor networks, user
properties in social networks, etc [Shuman et al., 2013]. Similarly, if T is a simplicial 2-complex
SC2 with the sets of nodes, edges, as well as triangular faces (or triangles), we can define an edge
flow by associating a real value to each oriented edge. Here, for an edge e = {i, j}, if we choose
[i, j] as its positive orientation, then [j, i] represents the opposite [Godsil & Royle, 2001]. The
sign of the signal thus indicates the flow orientation relative to the chosen one. Such edge signals
often represent flows of information or energy, such as water flows, power flows, or transaction
flows [Bick et al., 2023]. Moreover, we may consider signals on general topological objects such as
higher-order simplices (or cells). If n is the number of simplices, we refer to x ∈ Rn as a topological
signal where the i-th entry represents the signal value on the i-th simplex. In topology, these are
called cochains, which are the discrete analogues to differential forms [Lim, 2020].

The emerging field of learning on graphs and topology [Barbarossa & Sardellitti, 2020; Papamarkou
et al., 2024] concerns such topological signals, where the central idea is to leverage the underlying
topological structure in T . For example, the graph Laplacian or adjacency matrix (or their variants)
can be used to encode the graph’s structure, acting as a spectral operator for node signals [Chung,
1997]. Similarly, in a SC2, the Hodge Laplacian can be defined as the operator for edge flows,
composed of the down and up parts, which encode the edge adjacency through a common node or
triangle, respectively. Other variants of Hodge Laplacians can also be defined [Grady & Polimeni,
2010; Schaub et al., 2020]. Thus, for a topological signal x ∈ Rn, we assume a Laplacian-type,
positive semidefinite, topological operator L ∈ Rn×n on T which encodes the topological structure.

In a probabilistic setting, a topological signal can be considered random, following some high-dim
distribution on Rn associated with the topology T . This allows for the application of probabilistic
methods to topological signals, similar to Euclidean cases. Recent works [Borovitskiy et al., 2021;
Yang et al., 2024; Alain et al., 2024] have modeled node signals and edge flows using Gaussian
processes (GPs) on graphs and simplicial complexes. These GPs encode the topological structure
by building their covariance matrix (kernel) Σ as a matrix function of the associated Laplacian L.
For example, a diffusion node GP uses the kernel Σ = exp(−κ2

2 L) with a hyperparameter κ and the
graph Laplacian L. Other GPs can be defined as well to model signals in specific subspaces with
certain properties [Yang et al., 2024] or to jointly model the node-edge signals [Alain et al., 2024].

3 TOPOLOGICAL SCHRÖDINGER BRIDGE PROBLEM

In a topological domain T , we consider a topological stochastic process X where the index space is
instead the product space of [0, 1] and the set of topological objects (e.g., nodes, edges) in T , and the
state space Rn is the space of topological signals with n the cardinality of the set. When we consider
the node set in a graph (the edge set in a SC2),X is a stochastic process of node signals (edge flows).
We assume that X follows some unknown dynamics with its law described by the path measure P.
For some prescribed initial and final time-marginals, i.e., X0 ∼ P0 = ν0 and X1 ∼ P1 = ν1, we
then aim to obtain the optimal P by solving the Topological Schrödinger Bridge Problem (T SBP):

minDKL(P ∥QT ), s.t. P ∈ P(Ω),P0 = ν0,P1 = ν1. (T SBP)

Here, QT is the path measure of a reference process Y which follows some prior topology-aware
stochastic dynamics on T . Effectively, the solution P to T SBP describes the “most likely” process
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Figure 1: Heat diffusion starting from a node over a graph (Left) and an edge over a SC2 (Right),
followed by intermediate states, then reaching the steady states where the heat becomes uniform for
the node case whereas circulating around the cycle for the edge case.

X that conforms to the prior Y in the sense of minimizing relative entropy with respect to QT , while
respecting the initial and final distributions ν0 and ν1.

Topological stochastic dynamics. For the reference process Y , given an initial topological signal
condition Y0 = y0, we assume it follows a general class of topological SDEs:

dYt = f(t, Yt;L) dt+ gt dWt, (T SDE)

where ft ≡ f(t, · ;L) : Rn → Rn is a time-varying drift that depends on the topological structure
T through the operator L, and gt ≡ g(t) ∈ R is a scalar diffusion coefficient. For tractability, we
consider a class of linear dynamics on T with the following drift term:

f(t, Yt;L) = Ht(L)Yt + αt, with Ht(L) =
∑K

k=0 hk(t)L
k (1)

and αt ∈ Rn a bias term. Here, Ht(L), denoted simply as Ht, is a matrix polynomial of L with
time-varying coefficients hk,t ≡ hk(t), which is able to approximate any analytic function of L for
an appropriate K by the Cayley-Hamilton theorem. The drift ft is also referred to as a topological
convolution of the topological signal in the literature. With a graph Laplacian L, this returns the
graph convolution of a node signal [Sandryhaila & Moura, 2013; 2014], and with the Hodge Lapla-
cian for edges or general simplices, it yields the simplicial convolution [Yang et al., 2022b]. Various
topological machine learning methods have been developed based on such convolutions for their
expressivity and efficiency. We provide a few examples of linear T SDE, which will be used later.

Topological stochastic heat diffusion: T SDE gives the stochastic variant of heat equation on T
dYt = −cLYt dt+ gt dWt, (T SHeat)

by setting Ht = −cL, with c > 0. When T is a graph with the graph Laplacian L, this dynamics
enables modeling graph-time GPs [Nikitin et al., 2022], networked dynamic system [Pereira et al.,
2010; Delvenne et al., 2015; Santos et al., 2024], and social opinion dynamics [Gaitonde et al.,
2021]. More importantly, in the deterministic case of gt = 0, it has a harmonic steady-state, reveal-
ing the topological features of T . Specifically, node diffusion converges to a state that can identify
the connected components (0-dim holes), while edge diffusion in a SC2 based on the Hodge Lapla-
cian has a converging state of circulating around cycles (1-dim holes). We refer to Fig. 1 for such
illustrations. In line with our goal of distribution matching for topological signals, we present three
examples of T SHeat, inspired by diffusion models for generative modeling [Song et al., 2020b].
Example 1 (T SHeatBM). Consider a constant gt = g in T SHeat. This results in a mixture of a
topological heat diffusion and BM with variance g2, which we refer to as T SHeatBM.
Example 2 (T SHeatVE). For some noise scales 0 < σmin < σmax, consider a time-increasing gt =√

dσ2(t)/dt with σ(t) = σmin(σmax/σmin)
t, which drives the well-known variance exploding

(VE) noising process [Song & Ermon, 2020; Song et al., 2020b]. The resulting form of T SHeat is

dYt = −cLYt dt+
√

dσ2(t)/dtdWt. (T SHeatVE)

Example 3 (T SHeatVP). When combined with another noising process, known as the variance pre-
serving (VP) process [Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b], we obtain

dYt = −
(1
2
β(t)I + cL

)
Yt dt+

√
β(t) dWt, (T SHeatVP)

where β(t) = βmin+t(βmax−βmin) with scales 0 < βmin < βmax. The drift here can be considered
as an instantiation of the topological convolution Ht = −

(
1
2β(t)I + cL

)
in (1).

Gaussian transition kernels. The T SDE, as an Itô process, is fully characterized by its transition
kernel in a probabilistic sense. As a result of the linear drift (1) of T SDE, the associated transition
kernel pt|s(yt|ys) (i.e., conditional distribution of Yt|Ys) is Gaussian. Its mean and covariance can
be computed according to Särkkä & Solin [2019, Eq. 6.7]. Let the transition matrix of the ODE
dYt = Ht(L)Yt dt be denoted by Ψts ≡ Ψ(t, s), which is given by Ψts = exp(

∫ t

s
Hτ dτ) [cf.

Lemma B.5]. For brevity, we denote Ψt0 as simply Ψt. We then have the following lemma.
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Lemma 4 (Statistics of transition kernels). For the T SDE with the linear drift (1), its Gaussian
transition kernel pt|0(yt|y0) has the mean mt and the cross covariance Kt1t2 , at t1 and t2:

mt = Ψty0 +Ψt

∫ t

0

Ψ−1
τ ατ dτ =: Ψty0 + ξt, (cond. mean)

Kt1t2 = Ψt1

(∫ min{t1,t2}

0

g2τΨ
−2
τ dτ

)
Ψ⊤

t2 . (cond. cross cov)

More importantly, we may characterize them for T SHeatBM and T SHeatVE in closed-forms. Both
have the same mean mt = Ψty0 with Ψt = exp(−cLt), and their covariances are given by:

Kt1t2 =

{
g2

2c

[
exp(−cL|t1 − t2|)− exp(−cL(t1 + t2))

]
L−1, for T SHeatBM

σ2
min ln

(
σmax

σmin

)
exp(−cL(t1 + t2))

[
exp(2Amin{t1, t2})− I

]
A−1, for T SHeatVE

(2)

with A = ln
(
σmax

σmin

)
I + cL. If L is singular, we use a perturbed L+ ϵI for a small ϵ > 0. We detail

the derivations in Appendix B. These expressions allow for tractable solutions for T SBP and, more
importantly, facilitate the construction of T SB-based learning models, which we will discuss later.

3.1 TOWARDS AN OPTIMAL SOLUTION OF T SBP

To solve the classical SBP, early mathematical treatments [Fortet, 1940; Beurling, 1960; Jamison,
1975; Föllmer, 1988] lead to a Schrödinger system characterizing the SB optimality. Similarly, by
Disintegration of Measures, we can convert the T SBP to a static problem over the joint measure P01

of the initial and final states, instead of the full path measure P

minDKL(P01 ∥QT 01), s.t. P01 ∈ P(Rn × Rn),P0 = ν0,P1 = ν1 (T SBPstatic)

where QT 01 is the joint measure of the reference process Y at t = 0 and 1. The T SBPstatic only
concerns at the boundary times, unlike the (dynamic) T SBP. Using Lagrange multipliers for the
linear constraints above, we can arrive at a Schrödinger System that is instead driven by topological
dynamics (see Appendix C), differing from the classical case [Jamison, 1975; Léonard, 2014]. This
can be also interpreted through the equivalent E-OT formulation of T SBPstatic:

min
P01

∫
Rn×Rn

1

2
∥y1 −Ψ1y0 − ξ1∥2K−1

11
dP01(y0, y1) +

∫
Rn×Rn

log(P01) dP01 (T E-OT)

where the transport cost is linked to the T SDE as a K−1
11 -weighted norm of the difference y1 −m1.

On the other hand, this system could also be derived from the SOC view which makes more apparent
connections to machine learning methods. Building on the variational formulations of the classical
SBP by Dai Pra [1991]; Pavon & Wakolbinger [1991], Caluya & Halder [2021] extended the analysis
to the case with a general nonlinear reference process and derived the corresponding optimality
condition. As it is convenient to arrive at an SOC formulation for the T SBP (see Appendix C), we
readily obtain the following optimality.
Proposition 5 (T SBP optimality; Caluya & Halder [2021]; Chen et al. [2022a]). The optimal solu-
tion P of T SBP can be expressed as the path measure of the following forward (3a), or equivalently,
backward (3b), T SDE:

dXt = [ft + gtZt] dt+ gt dWt, X0 ∼ ν0, Zt ≡ gt∇ logφt(Xt) (3a)

dXt = [ft − gtẐt] dt+ gt dWt, X1 ∼ ν1, Ẑt ≡ gt∇ log φ̂t(Xt) (3b)
where (3a) runs forward and (3b) runs backward with a backward Wiener process. Here, φt ≡
φt(Xt) and φ̂t ≡ φ̂t(Xt) satisfy a pair of PDEs system (forward-backward Kolmogorov equations).
Using nonlinear Feynman-Kac formula (or applying Itô’s formula on logφt and log φ̂t), this PDE
system admits the SDEs

d logφt =
1

2
∥Zt∥2 dt+Z⊤

t dWt, d log φ̂t =

(
1

2
∥Ẑt∥2+∇·(gtẐt−ft)+ Ẑ⊤

t Zt

)
dt+ Ẑ⊤

t dWt

(4)
Then, the optimal path measure has the time-marginal Pt = φt(Xt)φ̂t(Xt) = P(3a)

t = P(3b)
t .
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This optimality condition adapts the result from Chen et al. [2022a] for T SBP. From the forward-
backward T SDEs (FB-T SDEs in (3)), we see that the optimal Zt guides the forward T SDE to
the final ν1, and likewise Ẑt adjusts the reverse T SDE to return to the initial ν0. While solving
the system (4) is still highly nontrivial, we highlight that the FB-T SDEs (3) and (4) pave a way
for constructing generative models and efficient training algorithms, as demonstrated by the recent
works, to name a few, [Pavon et al., 2021; Vargas et al., 2021; De Bortoli et al., 2021; Chen et al.,
2022a]. We further discuss in detail how to build such models for topological signals in Section 5.

4 GAUSSIAN TOPOLOGICAL SBP

In this section, we consider the special case of T SBP where the initial and final measures are Gaus-
sians, to which we refer as the Gaussian topological SBP (GT SBP). We show that there exists a
closed-form GT SB by following the idea in Bunne et al. [2023], which focuses on a limited class
of reference SDEs with a scalar coefficient in the drift, instead of a convolution operator Ht(L). We
establish the first closed-form expression on the GT SB in the following theorem.

Theorem 6. Denote by P the solution to GT SBP with ν0 = N (µ0,Σ0) and ν1 = N (µ1,Σ1). Then,
P is the path measure of a Markov Gaussian process whose marginal Xt ∼ N (µt,Σt) admits an
expression in terms of the initial and final variables, X0, X1, as follows

Xt = R̄tX0 +RtX1 + ξt −Rtξ1 + ΓtZ (5)

where Z ∼ N (0, I) is standard Gaussian, independent of (X0, X1), and

Rt = Kt1K
−1
11 , R̄t = Ψt −RtΨ1, Γt := Cov[Yt|(Y0, Y1)] = Ktt −Kt1K

−1
11 K1t. (6)

Proof. We provide a sketch of the proof here, with the full derivations presented in Appendix D.

1. By Disintegration of Measures, we first solve the reduced static Gaussian T SBPstatic (i.e., T E-
OT). We can then convert the problem into a classical Gaussian E-OT via a change-of-variables. The
closed-form formula for the latter has been recently found by Janati et al. [2020, Theorem 1]. Via
an inverse transform, we can then obtain the optimal coupling P01 [i.e., the optimal GT SBstatic].

2. In the disintegration of GT SBP to its static problem, the optimum is achieved when P shares
the bridge with the reference QT (i.e., P is in the reciprocal class of QT ) [Föllmer, 1988; Léonard,
2014, Proposition 1]. The QT -bridge, Qxy

T = QT [·|Y0 = x, Y1 = y], can be constructed using
the conditional Gaussian formula and Lemma 4. Upon this, together with the optimal P01, we can
construct the optimal Xt and the marginal Pt.

At the first sight, the construction of optimal processX in (5) meets the recently proposed stochastic
interpolant framework by Albergo et al. [2024, Definition 1], in that Xt=0 = X0 and Xt=1 = X1,
and Γ0 = Γ1 = 0. Moreover, from (5), we can compute the marginal statistics Pt in terms of its
mean µt and covariance Σt in closed-form as well, detailed in Corollary D.1. In the following, we
characterize the process X under the optimal P in terms of its Itô differential.

Theorem 7 (SDE representation). Under the optimal P, the process X admits the SDE dynamics:

dXt = fT (t,Xt;L) dt+ gt dWt, where fT (t, x;L) = S⊤
t Σ−1

t (x− µt) + µ̇t (7)

with µt,Σt the mean and covariance of Xt [cf. Corollary D.1] and we have

St = Pt −Q⊤
t +HtKtt −Kt1K

−1
11 Υ⊤

t , (8)

with Pt = (RtΣ1 + R̄tC)Ṙ
⊤
t , Qt = − ˙̄Rt(CR

⊤
t + Σ0R̄

⊤
t ),Υt = HtKt1 + g2tΨ

−1
t Ψ⊤

1 , where C is
the covariance of X0, X1 in the optimal P01.

Proof. We detail the proof in Appendix D and outline a sketch here. From Léonard [2014]; Caluya
& Halder [2021] [cf. Theorem C.2], the optimal P is the law of an SDE in the class of (7). To
determine the drift, we first compute the associated infinitesimal generator by definition for some
test function. Since the generator for an Itô SDE is known (dependent on the drift) [Särkkä & Solin,
2019, Eq. 5.9], we can then match the two expressions and find a closed-form for the drift term.
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Theorems 6 and 7 characterize the optimal P of the GT SBP from different views. While the stochas-
tic interpolant formula is intuitive and straightforward, it is natural to look for the associated SDE
for a Markov measure. Despite the packed variables, both results [cf. Eqs. (5) and (7)] fundamen-
tally depend on the transition matrix Ψt and ξt,Kt1t2 [cf. Lemma 4], which has closed-forms (2)
for T SHeatBM and T SHeatVE. From a broader perspective, Theorems 6 and 7 extended the existing
results of Bunne et al. [2023], where the reference process has a limited drift cYt + αt for some
scalar c. While Chen et al. [2016] aimed to solve for a linear drift with a matrix coefficient, their
results lead to the solution of a matrix Riccati equation, which is computationally expensive.

Solution complexity. While the variables involved in Eqs. (5) and (7) involve many matrix opera-
tions, we remark that (i) the underlying Ψt is a matrix function of L and can be computed efficiently
[Higham, 2008]. Given the eigen-decomposition L = UΛU⊤, denote by h̃t,sk =

∫ t

s
hk,τ dτ the

integral of the scalar coefficients in Ht [cf. (1)], then we have Ψts = U exp
(∑K

k=0 h̃
t,s
k Λk

)
U⊤,

where the matrix exponential can be directly computed elementwise on each diagonal element of Λ.
(ii) The other terms depending on Ψt can be computed similarly in the eigenspectrum of L.

5 FROM T SBP TO TOPOLOGICAL SIGNAL GENERATIVE MODELS

The recent SB-based generative modeling framework primarily relies on the learnable parameteri-
zations of the (Zt, Ẑt) pair (also viewed as the FB policies) in the FB-SDEs and a trainable objective
that approximates the SBP. Specifically, Vargas et al. [2021] and De Bortoli et al. [2021] use GPs
and neural networks, respectively, to parameterize the policies, and alternatively train them using
iterative proportional fitting (IPF) to solve the half -bridge problem. On the other hand, Chen et al.
[2022a] derived a likelihood based on the SB optimality condition, generalizing the score matching
framework [Song et al., 2020b]. Upon the proposed T SBP, along with the above theoretical results,
we now discuss how to build generative models for topological signals using the existing framework
designed for Euclidean domains.

T SB-based model. Consider the matching task: In some topological domain T , given two sets of
signal samples following initial and final distributions ν0, ν1 on T , we aim to learn a Topological
Schrödinger Bridge between the two distributions. From Proposition 5, the optimal T SB follows
the FB-T SDEs in (3). Moreover, given a path sampled from the forward SDE (3a) with an initial
signal x0, one can obtain an unbiased estimation of the log-likelihood L(x0) of the T SB model
driven by the optimal policies by using (4) [Chen et al., 2022a, Theorem 4]. Similarly, the log-
likelihood L(x1), given a final sample x1, can be found. This allows us to build a T SB-based model
for topological signals, following the ideas of De Bortoli et al. [2021]; Chen et al. [2022a].

We first parameterize the policies, Zt and Ẑt, by two learnable models Zθ
t ≡ Z(t, x; θ) and Ẑ θ̂

t ≡
Ẑ(t, x; θ̂) with parameters θ and θ̂, resulting in the parameterized FB-T SDEs. Then, we can perform
a likelihood training by minimizing the following loss functions in an alternative fashion at initial
and final signal samples x0 and x1

l(x0; θ̂) =

∫ 1

0

EXt∼(3a)

[
1

2
∥Ẑ θ̂

t ∥2 + gt∇ · Ẑ θ̂
t + Zθ⊤

t Ẑ θ̂
t

∣∣∣X0 = x0

]
dt, (9a)

l(x1; θ) =

∫ 1

0

EXt∼(3b)

[
1

2
∥Zθ

t ∥2 + gt∇ · Zθ
t + Ẑ θ̂⊤

t Zθ
t

∣∣∣X1 = x1

]
dt, (9b)

which are, respectively, the upper bounds of the negative log-likelihoods (after dropping the unre-
lated terms) of the signal samples x0 and x1 given paths sampled from the FB-T SDEs.

Other choice of reference T SDE. In this work, we mainly consider reference dynamics following
T SHeatBM, T SHeatVE and T SHeatVP. For the dynamics involved with Hodge Laplacians in a SC2,
we may further allow heterogeneous diffusion based on the down and up parts of the Laplacian.
Bunne et al. [2023] proposed to better initialize the SB model using the closed-form Gaussian SB.
Likewise, we can consider the GT SB in (7) as a stronger prior process, which yet requires a GP
approximation from signal samples. We also consider fractional Laplacian for some cases to enable
a more efficient exploration of the network [Riascos & Mateos, 2014] due to its non-local nature.

Topological neural networks (TNNs). While De Bortoli et al. [2021]; Chen et al. [2022a] applied
convolutional neural networks for the Euclidean SBP, we naturally consider parameterizing the poli-
cies using the emergent TNNs. For node signals, we could consider graph convolution networks
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(GCNs) [Kipf & Welling, 2017]; and likewise, for edge flows in a SC2, simplicial neural networks
(SNNs) [Roddenberry et al., 2021]. These topology-aware models perform convolutional learning
upon the topological structure, more efficient with less parameters and better in performance.

Complexity. Like standard SB models, T SB-based models also require simulations of the FB-
T SDEs. The key difference is that these models operate over topological networks where the drift
(1) involves a matrix-vector multiplicationHtYt. However, this is essentially a recursive iteration of
LYt, which is efficient due to the typically sparse structure ofL, reflecting the underlying topological
sparsity. Moreover, our TNN-parameterized policies are also efficient for the same reason.

Connection to other models. As discussed in Chen et al. [2022a], in the special case of Zt ≡ 0

and Ẑt as the score function (scaled by gt), the likelihood of SB models reduces to that of the
score-based models [Song et al., 2020b] when ν1 is a simple Gaussian and the forward process is
designed to reach ν1. Furthermore, if the reference process is poorly designed. SB models can still
guide the process to the target distribution through these learnable policies, thus generalizing score-
based models. On the other hand, for FB-T SDEs, we can also obtain probability flow ODEs [Chen
et al., 2018; Song et al., 2020b] which share the same time-marginals and likelihoods, allowing
for exact likelihood evaluation of the model. Training through the likelihood of these flow ODEs
naturally links to flow-based models. While there are no direct score-based or flow-based models for
topological signals, the above discussions apply to T SB-based models. We refer to Appendix E for
more details where we show how the variants of these models including the diffusion bridge models
[Zhou et al., 2024] for topological processes can be constructed.

6 EXPERIMENTS

0 1t
0

14

W2
2

GTSB BM
GTSB VE1
GTSB VE2

First, we validate the theoretical results on GT SB using the syn-
thetic graph in Fig. 1. Here, we aim to bridge a zero-mean graph
Matérn GP ν0 with Σ0 = (I + L)−1.5 and a diffusion GP ν1 with
Σ1 = exp(−20L). Using the T SHeatBM and T SHeatVE reference
dynamics, we obtain the closed-form Xt in (5), from which we
further compute the covariance Σt [cf. Corollary D.1]. We mea-
sure the Bures-Wasserstein distance between Σt and Σ1. From the
right-hand-side figure, we see that both bridges reach the target dis-
tribution. The bridges exhibit distinct behaviors depending on the
reference dynamics, as demonstrated by the disparate curves for T SHeatVE with c = 0.01 and 10.
This highlights the flexibility of T SB-models in exploring a large space of topological bridges.

We then focus on evaluating T SB-based models for topological signal generation (ν1 is a Gaussian
noise) and matching (general ν1) in different applications, with the goal of investigating the question:
whether T SB-based models are beneficial for these tasks compared to the standard SB-based
models? For this goal, we consider as the baseline SB-based models in Euclidean domains which
use BM, VE and VP as reference dynamics [Chen et al., 2022a], labeled as SB-BM, SB-VE and
SB-VP, respectively. We consider T SB-based models using T SHeatBM, T SHeatVE and T SHeatVP
as references, labeled as TSB-BM, TSB-VE and TSB-VP, respectively. We refer to Appendix F for
the experimental details and additional results, as well as complexity analyses in Appendix F.2.5.

Topological signal matching. We first consider matching two sets of fMRI brain signals from the
Human Connectome Project [Van Essen et al., 2013], which represent the liberal (with high energy,
as the initial) and aligned (with low energy, as the final) brain activities, respectively. We use the
recommended brain graph [Glasser et al., 2016] that connects 360 parcelled brain regions with edge
weights denoting the connection strength. From Fig. 2, we see that a TSB-VE model learns to reach
at a final state with low energy indicating the aligned activity, whereas SB-VE fails.

We then consider the single-cell embryoid body data that describes cell differentiation over 5 time-
points [Moon et al., 2019]. We follow the preprocessing from Tong [2023]; Tong et al. [2024a;b].
We aim to transport the initial observations to the final state. Our method relies on the affinity graph
constructed from the entire set of observations (∼18k). We define two normalized indicator func-
tions as the boundary distributions, which specify the nodes corresponding to the data observed at
the first and last timepoints. Fig. 3 shows the two-dim phate embeddings of the groundtruth and
predicted data points using TSB-BM and SB-BMmodels. Here, SB-BM gives very noisy predictions,
especially for intermediate ones, even when trained on the full dataset (see Table F.7).

8



Published as a conference paper at ICLR 2025

Figure 2: Energies of true (Left) final state
and the predictions obtained from TSB-VE
(Center) and SB-VE (Right) models.

Figure 3: Phate embeddings of the single-cell
data observations (Left) and predictions based on
TSB-BM (Center) and SB-BM (Right) models.

Table 1: 1-Wasserstein distances for generating and matching tasks across datasets over five runs,
where ⋆ indicates using GSB-VE and GTSB-VE for ocean currents.

Method Seismic magnitudes Traffic flows Brain signals Single-cell data Ocean currents

SB-BM 11.73±0.05 18.69±0.02 12.08±0.08 0.33±0.01 7.21±0.00
SB-VE 11.49±0.04 19.04±0.02 17.46±0.14 0.33±0.01 7.17±0.02
SB-VP 12.61±0.06 18.22±0.03 13.41±0.05 0.33±0.01 0.83±0.01

⋆

TSB-BM 9.01±0.03 10.57±0.02 7.51±0.08 0.14±0.03 6.94±0.01
TSB-VE 7.69±0.04 10.51±0.02 7.59±0.05 0.14±0.02 6.89±0.00
TSB-VP 8.40±0.04 9.92±0.02 7.67±0.11 0.14±0.01 0.53±0.00

⋆

Edge flows have been used to model vector fields upon a discrete Hodge Laplacian estimate of the
manifold Helmholtzian [Chen et al., 2021b]. Following the setup there, we consider the edge-based
ocean current matching in a SC2 (∼20k edges). With an edge GP, learned by Yang et al. [2024] from
drifter data, as the initial distribution modeling the currents, we synthetize a curl-free edge GP as the
final one, modeling different behaviors of currents. From Fig. 4, we see that SB-BM fails to reach
the final curl-free state, while TSB-BM becomes more divergent, ultimately closer to the target.

For these matching tasks, we evaluate the forward final predictions using 1-Wasserstein distances
in Table 1, showing the consistent superiority of T SB-based models over SB ones. We reasonably
argue that this difference is due to the improper reference in SB-based models, which overlooks the
underlying topology. This highlights the role of topology using T SB-based models in these tasks.

Generative modeling. We model the magnitudes of yearly seismic events from IRIS as node signals
on a mesh graph of 576 nodes based on the geodesic distance between the vertices of an icosahedral
triangulated earth surface [Moresi & Mather, 2019]. We also consider the traffic flow from PeMSD4
dataset modeled as edge flows on a SC2 with 340 edges [Chen et al., 2022b]. From Table 1, we see
that T SB-based models consistently outperform SB-based models also for signal generation tasks,
highlighting the importance of topology-aware reference processes.

0 1 2 3 4 5Training Stage
20

15

10

5

0

Lo
ss TSB-BM,GCN

TSB-VE,GCN
TSB-BM,Res
TSB-VE,Res

Effect of policy models. From the training curves of TSB-BM/VE
for ResBlock and GCN as policy models on the right, we see that
the training converges much faster and better using GCN compared
to the former. This underlines the positive effect of TNNs on topo-
logical signal generative modeling. We refer to Tables F.2 and F.3
for the performance metrics of other bridge models with the two
policy parameterizations on both seismic and traffic datasets.

Effect of GT SB prior. Instead of using T SHeatBM or T SHeatVE as the reference, we here consider
their corresponding closed-form SDEs (7) as the reference, imposing on the bridges a stronger prior
carrying the moment information of the data samples [Bunne et al., 2023]. For ocean current match-
ing, we show the samples from the learned FB-T SDEs using GTSB-BM in Fig. 4, which arrives at a
more faithful final state compared to TSB-BM, as also evaluated in Table 1.

t=0.0 t=0.2 t=0.7 t=0.9 t=1.0

t=0.0 t=0.2 t=0.7 t=0.9 t=1.0

t=0.0 t=0.2 t=0.7 t=0.9 t=1.0

Figure 4: Forward sampled currents using TSB-BM (Top), SB-BM (Center) and GTSB-BM (Bottom).
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7 DISCUSSION AND CONCLUSION

In this work, we demonstrated how to construct T SB-based topological signal matching models
within the likelihood training framework [Chen et al., 2022a]. We here discuss a few promising
future directions based on emerging work and unexplored theoretical results.

On model training. Peluchetti [2023]; Shi et al. [2023] applied iterative Markovian fitting (IMF),
as an alternative of IPF, to the classical SBP. This algorithm, trained via score matching, extends to
T SB-models with T SHeatBM or T SHeatVE as the reference, thanks to their closed-form transition
kernels in (2). Recent work proposed (partially) simulation-free training of SB models. Tong et al.
[2024b] learns the optimal SB by flow and score matching the forward SDE upon a heuristic E-
OT. Korotin et al. [2024]; Gushchin et al. [2024] modeled Schrödinger potentials using Gaussian
mixtures, enabling light training for the optimal drift, and Deng et al. [2024] linearized the forward
policy. However, these methods require the reference dynamics to be either Wiener process or
have scalar drifts. While training T SB-based models remain scalable w.r.t. the topology size (see
Appendix F.2.5), extending these approaches to our models is worthwhile but nontrivial.

On model improving. We focused on the reference dynamics driven by a topological convolution
Ht up to order one. It is however worthwhile to consider more involved (potentially learnable) con-
volutions to impose more general priors or incorporate physics knowledge of the process. The scalar
diffusion coefficient gt could be extended as matrix-valued, enabling spatially correlated noising
processes over the topology. On the other hand, SB models perform a kinetic energy minimization
from the SOC view. [Liu et al., 2024] considered generalized SBP by adding a cost term which can
model other knowledge of the process. This broadens the applicability of SB models and T SB mod-
els could benefit from this, when there are external interactions with the topological process or prior
knowledge on the process, such as enforcing curl-free edge flows.

On other models. While we showed the connections of T SB to stochastic interpolants, flow- and
score-based models, as well as diffusion bridges, we notice that the T SB optimality can be in-
terpreted as a Wasserstein gradient flow (WGF) (see Appendix C.2). For example, the T SHeatBM-
driven T SB is the WGF of a functionalF(ν) of some measure ν withF(ν) = c

∫
1
2x

⊤Lx·ν(x) dx+
1
2g

2
∫
ν log ν dx whereD(x) := 1

2x
⊤Lx is the Dirichlet energy of x and the second term is the neg-

ative entropy. Thus, the T SHeatBM-driven forward T SB essentially reduces the Dirichlet energy.
This may not always align with the needs of real-world applications, which in turn motivates devel-
oping topological dynamics learning models via the JKO flow [Jordan et al., 1998] of a parametrized
functional D(x) on topology, akin to approaches used in Euclidean domains [Bunne et al., 2022].

We focused on a fixed topological domain, but it is also of interest to study the case where T itself
evolves over time. The T SBP in this scenario may rely on a time-varying operator Lt to guide the
reference process. This is relevant for recent generative models for graphs, to name a few [Niu et al.,
2020; Jo et al., 2022; Liu et al., 2023], where the graph structure, together with node features, are
learned in the latent space based on diffusion models [Song et al., 2020b]. Lastly, we remark that
discrete distributions on topological domains may be defined. For instance, nodes of a graph can
represent discrete states where node i is associated with a discrete probability Pi. This motivates
the emerging geneartive models for discrete data [Austin et al., 2021; Ye et al., 2022; Haefeli et al.,
2023; Campbell et al., 2024]. For a formal treatment of matching such discrete distributions on
graphs, we refer to Maas [2011]; Léonard [2013]; Solomon [2018]; Chow et al. [2022].

Conclusion. With the goal of matching topological signal distributions beyond Euclidean domains,
we introduced the T SBP (topological Schrödinger bridge problem). We defined the reference pro-
cess using an SDE driven by a topological convolution linear operator, which is tractable and in-
cludes the commonly used heat diffusion on topological domains. When the end distributions are
Gaussians, we derived a closed-form T SB, generalizing the existing results by Bunne et al. [2023].
In general cases, we showed that the optimal process satisfies a pair of FB-T SDEs governed by
some optimal policies. Building upon these results, we developed T SB-based models where we
parameterize the policies as (topological) neural networks and learn them from likelihood training,
extending the framework of De Bortoli et al. [2021]; Chen et al. [2022a] to topological domains. We
applied T SB-based models for both topological signal generation and matching in various applica-
tions, demonstrating their improved performance compared to standard SB-based models. Overall,
our work lies at the intersection of the SB-based distribution matching and topological machine
learning, and we hope it inspires further research in this direction.
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Organizations We include several appendices with additional details, proofs, derivations and ex-
periments. This work concerns with the intersection of Schrödinger bridge theory, topological signal
processing and learning, stochastic dynamics (on topology) and generative modeling. For that, we
first introduce the necessary preliminaries on Schrödinger bridge theory in Appendix A, including
needed theorems and lemmas for later. In Appendix B, we first provide an overview of topological
signals and probabilistic methods. Then, we extensively discuss the topological stochastic dynamics
based on the linear T SDE, as well as its three instantiations: T SHeatBM, T SHeatVE and T SHeatVP.
Here, we provide the detailed derivations on how to obtain the transition kernels of the T SDE,
which are crucial for the T SBP. In Appendix C, we discuss the optimality of T SBP, relying on the
existing results. Specifically, it includes the Schrödinger system for T SBP, an SOC formulation of
the T SBP, the optimality, and the WGF interpretation. Appendix D proves the closed-form solution
of the GT SBP, along with the marginal and conditional statistics of the optimal path measure. In
Appendices E and F, we provide more details on the T SB-based models, their connections to other
models, as well as the experiment details and additional results.

A PRELIMINARIES ON SCHRÖDINGER BRIDGES

A.1 ON OPTIMAL TRANSPORT

Theorem A.1 (Static Gaussian OT; [Janati et al., 2020]). Let Σ0,Σ1 be positive definite. Given
two Gaussian measures ρ0 ∼ N (µ0,Σ0) and ρ1 ∼ N (µ1,Σ1), the entropic-regularized optimal
transport

min
π∈Π(µ0,µ1)

∫
Rn×Rn

1

2
∥x0 − x1∥2 dπ(x0, x1) + σ2DKL(π∥µ0 ⊗ µ1) (E-OT)

admits a closed-form solution π⋆

π⋆ ∼ N

([
µ0

µ1

]
,

[
Σ0 Cσ

C⊤
σ Σ1

])
(A.1)

where

Cσ =
1

2
(Σ

1
2
0DσΣ

− 1
2

0 − σ2I), Dσ = (4Σ
1
2
0 Σ1Σ

1
2
0 + σ4I)

1
2 . (A.2)

Remark 2. Note that while the above results are stated for positive definite covariance matrices (in
order for ρ0 and ρ1 to have a Lebesgue density), the closed-form solution remains well-defined for
positive semi-definite covariance matrices.

A.2 ON SCHRÖDINGER BRIDGE

Lemma A.3 (Léonard [2014]). For a given measure P over the path space Ω, let Pxy represent
the conditioning of P on paths that take values x and y at t = 0 and 1, respectively. That is,
Pxy = P[·|X0 = x,X1 = y]. Let P01 denote the joint probability for the values of paths at the two
ends t = 0, 1. Then, P can be disintegrated into

P(·) =
∫
Rn×Rn

Pxy(·)P01(dx dy). (Disintegration of Measures)

Static SBP By Disintegration of Measures, for all P ∈ P(Ω), the relative entropy can be factorized
as

DKL(P∥Q) = DKL(P01∥Q01) +

∫
Rn×Rn

DKL(Pxy∥Qxy)P01(dxdy), (A.3)

which implies that DKL(P01∥Q01) ≤ DKL(P∥Q) with equality if and only if Pxy = Qxy for each
(x, y) ∈ Rn × Rn. This allows us to reduce the (dynamic) SBP to the static one.

minDKL(P01∥Q01), s.t. P ∈ P(Rn × Rn),P0 = ρ0,P1 = ρ1. (SBPstatic)

Furthermore, it readily gives the following important theorem.
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Theorem A.4 (Föllmer [1988]; Léonard [2014]). The SBP and SBPstatic admit, respectively, at most
one solution. If SBP has the solution P, then its joint-marginal at the end times P01 is the solution
of SBPstatic. Conversely, if P01 solves SBPstatic, then the solution of SBP can be expressed as

P() =
∫
Rn×Rn

Qxy()P01(dxdy), (A.4)

which means that P shares its bridges with Q (i.e., P is in the reciprocal class of Q):

Pxy = Qxy ∀(x, y) ∈ Rn × Rn. (A.5)

Proposition A.5 (Léonard [2014]). If the reference measure Q is Markov, then the solution P of
SBP is also Markov.

Schrödinger System
Theorem A.6 (Jamison [1975]; Léonard [2014]; Chen et al. [2021a]). Given two probability mea-
sures ρ0, ρ1 on Rn and the continuous, everywhere positive Markov kernel pt|s(y|x) (not necessarily
associated to a scaled Brownian motion), there exists a unique pair of (up to scaling) of functions
φ̂0, φ1 on Rn such that the measure P01 on Rn × Rn defined by

P01 =

∫
Rn×Rn

p1|0(y|x)φ̂0(dx)φ1(dy) (A.6)

has marginals ρ0 and ρ1. Moreover, the Schrödinger bridge from ρ0 to ρ1 induces the distribution
flow

Pt = φtφ̂t with φt(x) =

∫
p1|t(y|x)φ1(dy), φ̂t(x) =

∫
pt|0(x|y)φ̂0(dy). (A.7)

SOC Formulation By Girsanov’s theorem, Dai Pra [1991]; Pavon & Wakolbinger [1991] showed
an equivalent SOC formulation of the SBP which aims to minimize the kinetic energy

min
u∈U

E
[∫ 1

0

1

2
∥u(t,Xt)∥2

]
, s.t.

{
dXt = u(t,Xt) dt+ σ dWt

X0 ∼ ρ0, X1 ∼ ρ1,
(SBPsoc)

where U is the set of finite control functions ut ≡ u(t, x). Given the SDE constraint in SBPsoc,
the associated marginal density ρt ≡ ρ(t, x) evolves according to the Fokker-Planck-Kolmogorov
equation (FPK, Risken [1996]). This allows to arrive at an equivalent variational formulation

min
(ρt,ut)

∫
Rn

∫ 1

0

1

2
∥u(t, x)ρ(t, x)∥2 dtdx s.t.

{
∂tρt +∇ · (ρtut) = σ2

2 ∆ρt,

ρ0 = ρ0, ρ1 = ρ1.
(SBPvar)

Given ρt = φtφ̂t, the optimal control in SBPsoc can be obtained by ut = σ2∇ logφt.

B STOCHASTIC DYNAMICS ON TOPOLOGICAL DOMAINS

Compared to the Euclidean domain, the dynamics on topological domains are less studied. Here
we provide some existing work on the dynamics on graphs and simplicial complexes. Note that our
choice of the linear topological drift ft in (1) is analogous to the ideas in [Archambeau et al., 2007;
Verma et al., 2024] which considered linear SDEs to approximate nonlinear dynamics, enabling
approximations of more complex topological dynamics.

B.1 PRELIMINARIES ON TOPOLOGICAL SIGNALS

Here we review the standard notions about topological signals, and we focus on the node signals and
edge flows on graphs and simplicial complexes. Note that we abuse some notions in this subsection.

Node signals Let G = (V,E) be an unweighted graph where V = {1, . . . , n0} is the set of nodes
and E is the set of n1 edges such that if nodes i, j are connected, then e = (i, j) ∈ E. We can define
real-valued functions on its node set V → R, collected into a vector x = [x(1), . . . , x(n0)] ∈ Rn0 ,
which is referred to as a node signal (or graph signal). Denote the oriented node-to-edge incidence
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matrix by B1 of dimension n0 × n1. One can obtain the graph Laplacian by L = B1B
⊤
1 , which is a

positive semi-definite linear operator on the space Rn0 of node signals.

A graph GP x ∼ N (0,Σ) assumes x is a random function with zero mean and a graph kernel (co-
variance matrix) Σ which encodes the covariance between pairs of nodes. [Borovitskiy et al., 2021]
constructed the diffusion and the Matérn graph GPs by extending the idea of deriving continuous
GPs from SDEs, which have the kernels as follows

Σdiffu = exp

(
− κ2

2
L

)
, ΣMatérn =

(
2ν

κ2
I + L

)−ν

(B.1)

where κ > 0, ν > 0 are hyperparameters.

Edge flows While it is possible to define edge flows on graphs, we consider a more general setting
for a SC2. A SC2 generally contains V,E, T three sets, where V,E are the sets of nodes and edges,
same as for graphs, and T is the set of triangular faces (triangles) such that if (i, j), (j, k), (i, k)
form a closed triangle, then t = (i, j, k) ∈ T . Not all three pairwise connected edges are necessarily
closed and included in T . For each edge and triangle, we assume the increasing order of their node
labels as their reference orientation. (Note that the orientation of a general simplex is an equivalence
class of permutations of its labels. Two orientations are equivalent (resp. opposite) if they differ by
an even (resp. odd) permutation [Lim, 2020].) An oriented edge, denoted as e = [i, j], is an ordering
of {i, j}. This is not a directed edge allowing flow only from i to j, but rather an assignment of the
sign of the flow: from i to j, it is positive and the reverse is negative. Likewise goes for the oriented
triangle t = [i, j, k]. In a SC2, we can define an edge flow by real-valued functions on its edges,
collected in x = [x(e0), . . . , x(en1

)] ∈ Rn1 . which are required to be alternating, meaning that
x(ē) = −x(e) if ē = [j, i] is oriented opposite to the reference e = [i, j]. Likewise, a triangle signal
can be defined via an alternating function on triangles.

In the same spirit as graph Laplacians operating on node functions, we can define the discrete Hodge
Laplacian operating on edge flows as L = Ld + Lu := B⊤

1 B1 + B2B
⊤
2 where B2 is the edge-to-

triangle incidence matrix. The Hodge Laplacian L describes the connectivity of edges where the
down part Ld and the up part Lu encode how edges are adjacent, respectively, through nodes and
via triangles. Moreover, the Hodge Laplacian L is also positive semi-definite. Yang et al. [2024]
generalized the graph GPs for edge flows, resulting in the diffusion and Matérn edge GPs with the
kernels of the same forms as in (B.1) but with the Hodge Laplacian L instead of the graph Laplacian
L. Moreover, based on the combinatorial Hodge theory [Lim, 2020] that

Rn1 = im(B⊤
1 )⊕ ker(L)⊕ im(B2) (B.2)

where im(B⊤
1 ) is the gradient space, ker(L) the harmonic space and im(B2) the curl space, one can

define the two types of edge GPs living in certain Hodge subspace □ ∈ {H,G,C} with the kernels
of the forms

Σdiffu,□ = σ2
□U□ exp

(
−
κ2□
2
Λ□

)
U⊤
□ , ΣMatérn,□ = σ2

□U□

(
2ν□
κ2

I + Λ□

)−ν□

U⊤
□ (B.3)

where (U□,Λ□) are the eigenpairs of the Hodge Laplacian in the gradient (G), curl (C) and harmonic
(H) subspaces, respectively [Yang et al., 2022b]. The samples from certain Hodge GP are in the
corresponding Hodge subspace, which allows us to model the edge flows with different properties.

B.2 PRELIMINARIES ON (STOCHASTIC) DIFFERENTIAL EQUATIONS

We are involved with differential equations in this work. In the following, we review some results
on ordinary differential equations (ODEs) and SDEs which are required later.

B.2.1 ON ODES

Given an initial solution x0 ∈ Rn, consider a linear differential system of the form
dxt = Atxt dt (linear ODE)

with At a time-varying matrix. To solve this system in closed-form, we require an expression for
the state transition matrix Ψ(t, s) which transforms the solution at s to t, xt = Ψ(t, s)xs. For the
general case, the closed-form of Ψ(t, s) is not possible. In the following, we introduce an important
class of matrices At for which a closed-form solution is possible [Antsaklis & Michel, 1997].

20



Published as a conference paper at ICLR 2025

Lemma B.1 (Closed-form of the transition matrix of a linear ODE). Given a linear ODE, if for
every s, t ≥ 0, we have

At

[ ∫ t

s

Aτ dτ

]
=

[ ∫ t

s

Aτ dτ

]
At, (B.4)

then the transition matrix is given by

Ψ(t, s) = exp

(∫ t

s

Aτ dτ

)
≜ I +

∫ t

s

Aτ dτ +
1

2!

(∫ t

s

Aτ dτ

)2

+ . . . . (B.5)

For the scalar case, or when At is diagonal, or for At = A, (B.4) is always true.
Lemma B.2. For At ∈ C[R,Rn×n], (B.4) is true if and only if AtAs = AsAt for all s, t.
Lemma B.3 (Integration of matrix exponential). For a nonsingular matrix A, we have∫ t

s

exp(Aτ) dτ =
[
exp(At)− exp(As)

]
A−1. (B.6)

B.2.2 ON SDES

Lemma B.4 (Itô isometry, Oksendal [2013]). Let W : [0, 1] × X → R denote the canonical real-
valued Wiener process defined up to time 1, and let X : [0, 1]×X → R be a stochastic process that
is adapted to the filtration generated by W . Then

E
[(∫ t

s

Xt dWt

)2]
= E

[∫ t

s

X2
t dt

]
, (B.7)

and

E
[(∫ t

0

Xt dWt

)(∫ t

0

Yt dWt

)]
= E

[∫ t

0

XtYt dt

]
. (B.8)

This corollary allows us to compute the covariance of two stochastic processes Xt and Yt that are
adapted to the same filtration.

Transition densities of SDEs All Itô processes, that is, solutions to Itô SDEs, are Markov pro-
cesses. This means that all Itô processes are, in a probabilistic sense, completely characterized by
the transition densities (from xs at time s to xt at time t, denoted by pt|s(xt|xs) ≡ p(xs, s;xt, t)).
The transition density is also a solution to the FPK equation with a degenerate (Dirac delta) initial
density concentrated on xs at time s. We refer to Särkkä & Solin [2019, Thm 5.10].

B.3 TRANSITION DENSITIES OF T SDE

T SDE First, we can find the transition matrix of the associated ODE to T SDE.
Lemma B.5. For an ODE dyt = Ht(L)yt dt, the transition matrix is given by

Ψ(t, s) =: Ψts = exp

(∫ t

s

Hτ dτ

)
= I +

∞∑
k=0

1

k!

(∫ t

s

Hτ dτ

)k

(transition matrix)

with yt = Ψtsys. Note that Ψts is symmetric since Ht is a function of the symmetric L.

This is a direct result from Lemmas B.1 and B.2 since HtHτ = HτHt for all t, τ . By the definition
of matrix integral, the computation of Ψts is given by

Ψ(t, τ) = exp(H̃t,τ (L)) = exp

( K∑
k=0

h̃t,τk Lk

)
(B.9)

where h̃t,τk =
∫ t

τ
hk,s ds are the integral of the scalar coefficients in Ht. In the following, we char-

acterize the transition densities of the T SDE, as well as the three concrete examples in Examples 1
to 3. Then, using the formulas in Särkkä & Solin [2019, Eq. 6.7], we can compute the statistics of
the transition kernel.

The following two lemmas compose Lemma 4.
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Lemma B.6. The transition density pt|s(yt|ys) of the T SDE conditioned on Ys = ys is Gaussian

pt|s(yt|ys) ∼ N (yt;mt|s,Kt|s) (B.10)
with the mean and covariance, for t ≥ s, as follows

mt|s = Ψtsys +Ψt

∫ t

s

Ψ−1
τ ατ dτ, Kt|s = Ψt

(∫ t

s

g2τΨ
−2
τ dτ

)
Ψ⊤

t .

Proof. Given the transition matrix, using the transition kernel formula in Särkkä & Solin [2019, Eq.
6.7], we have

mt|s = Ψtsys +

∫ t

s

Ψtτατ dτ = Ψtsys +Ψt

∫ t

s

Ψ−1
τ ατ dτ,

where we use the property Ψtτ = ΨtΨ
−1
τ . Likewise, we have

Kt|s =

∫ t

s

g2τΨtτΨ
⊤
tτ dτ = Ψt

(∫ t

s

g2τΨ
−2
τ dτ

)
Ψ⊤

t .

Lemma B.7. Conditioned on Y0 = y0, the cross covariance K(t1, t2) of T SDE at t1, t2 is given by

Kt1,t2 = Ψt1

(∫ min{t1,t2}

0

g2τΨ
−2
τ dτ

)
Ψ⊤

t2 .

Proof. By applying the cross covariance function in Särkkä & Solin [2019, Sec 6.4], we have

Kt1,t2 = Cov[Yt1 , Yt2 |Y0] = E
[(∫ t1

0

gτ1Ψt1,τ1 dWτ1

)(∫ t2

0

gτ2Ψt2,τ2 dWτ2

)⊤]
=

∫ min{t1,t2}

0

g2τΨt1,τΨ
⊤
t2,τ dτ = Ψt1

(∫ min{t1,t2}

0

g2τΨ
−2
τ dτ

)
Ψ⊤

t2 . (by Lemma B.4)

T SHeatBM Given an initial sample y0 of the random topological signal Y0, consider the SDE:
dYt = −cLYt dt+ g dWt. (T SHeatBM)

Note that when L is singular, we consider a perturbed version L + ϵI with a small constant ϵ > 0.
Its steady-state distribution has zero mean and covariance matrix Σ = g2

2cL
−1. The transition matrix

of the associated ODE dYt = −cLYt dt is given by
Ψts = exp (−c(t− s)L) . (B.11)

Lemma B.8. The transition density pt|s(yt|ys) of the T SHeatBM conditioned on Ys = ys is Gaus-
sian with the mean and covariance, for t ≥ s, as follows

mt|s = Ψtsys, Kt|s =
g2

2c

[
I − exp(−2cL(t− s))

]
L−1.

Moreover, the conditional dynamics Yt|Y0 = y0 has the covariance process at t1, t2 as

Kt1,t2 =
g2

2c

[
exp(−cL|t2 − t1|)− exp(−cL(t1 + t2))

]
L−1. (B.12)

Proof. For the conditional mean, we can obtain it directly from the transition matrix of the associated
ODE. For the conditional covariance, we have

Kt|s =

∫ t

s

Ψ(t, τ)g2Ψ(t, τ)⊤ dτ = Ψt

(∫ t

s

Ψ−2
τ g2 dτ

)
Ψ⊤

t

= g2Ψt

(∫ t

s

exp(2cLτ) dτ

)
Ψ⊤

t (by Ψ−2
τ = exp(2cLτ))

=
g2

2c
Ψt

[
exp(2cLt)− exp(2cLs)

]
L−1Ψ⊤

t (by Lemma B.3)

=
g2

2c

[
I − exp(−2cL(t− s))

]
L−1. (Ψt = exp(−cLt))
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To compute the covariance process of the conditional dynamics Yt|Y0 = y0, by definition, we have,
for t1 ≤ t2

Kt1,t2 = Cov[Yt1 , Yt2 |Y0] = Ψt1

(∫ t1

0

g2Ψ−2
τ dτ

)
Ψ⊤

t2 (by Lemma 4)

= g2Ψt1

[ ∫ t1

0

exp(2cLτ) dτ

]
Ψ⊤

t2 (by Ψ−2
τ = exp(2cLτ))

= g2Ψt1

[
1

2c

[
exp(2cLt1)− I

]]
L−1Ψ⊤

t2 (by Lemma B.3)

=
g2

2c

[
exp(−cL(t2 − t1))− exp(−cL(t1 + t2))

]
L−1.

The case of t1 > t2 can be similarly derived, which completes the proof.

T SHeatVE

Lemma B.9. The Gaussian transition kernel p(t|s) of T SHeatVE has the mean and covariance

mt|s = Ψtsys, Kt|s = σ2
min ln

(
σmax

σmin

)
exp(−2cLt)

[
exp(2At)− exp(2As)

]
A−1 (B.13)

where Ψts is the same as (B.11) and A = ln
(
σmax

σmin

)
I + cL. The cross covariance between Yt and

Ys, conditioned on Y0, is given by

Kt1,t2 = σ2
min ln

(
σmax

σmin

)
exp(−cL(t1 + t2))[exp(2Amin{t1, t2})− I]A−1. (B.14)

Proof. As the associated ODE of T SHeatVE is also a topological heat diffusion, the transition matrix
is the same as Ψts = exp(−cL(t− s)) for T SHeatBM. By substituting σ(t) into gt, we can find that

gt = σmin

(
σmax

σmin

)t
√
2 ln

(
σmax

σmin

)
. (B.15)

For the covariance of the transition density, we have

Kt|s = Ψt

(∫ t

s

g2τΨ
−2
τ dτ

)
Ψ⊤

t

for which, we need to compute the integral∫ t

s

g2τΨ
−2
τ dτ =

∫ t

s

σ2
min

(
σmax

σmin

)2τ

2 ln

(
σmax

σmin

)
exp(2cLτ) dτ

=2σ2
min ln

(
σmax

σmin

)[∫ t

s

(
σmax

σmin

)2τ

exp(2cLτ) dτ

]
(factor out the constant)

=2σ2
min ln

(
σmax

σmin

)∫ t

s

exp

[
2τ ln

(
σmax

σmin

)]
exp(2cLτ) dτ (by the identity exp(lnx) = x)

=2σ2
min ln

(
σmax

σmin

)∫ t

s

exp(2τA) dτ (by A = ln(σmax/σmin)I + cL)

=σ2
min ln

(
σmax

σmin

)
(exp(2At)− exp(2As))A−1. (by Lemma B.3)

Thus, we have

Kt|s = σ2
min ln

(
σmax

σmin

)
exp(−2cLt)

[
exp(2At)− exp(2As)

]
A−1.
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For the cross covariance, assuming t1 ≤ t2, then we can find the covariance kernel as

Kt1,t2 = Cov[Yt1 , Yt2 |Y0] = Ψt1

[ ∫ t1

0

g2τΨ
−2
τ dτ

]
Ψ⊤

t2 (by Lemma 4)

= Ψt1

[ ∫ t1

0

σ2
min

(
σmax

σmin

)2τ

2 ln

(
σmax

σmin

)
exp(2cLτ) dτ

]
Ψ⊤

t2 (since Ψ−2
τ = exp(2cLτ))

= σ2
min ln

(
σmax

σmin

)
Ψt1

[
exp(2At1)− I

]
A−1Ψ⊤

t2 (using the same steps as above)

= σ2
min ln

(
σmax

σmin

)
exp(−cL(t1 + t2))[exp(2At1)− I]A−1.

The similar steps can be followed for t1 > t2, which completes the proof.

T SHeatVP For this stochastic process, a closed-form transition kernel cannot be found. Yet, we
could proceed the following for numerical computations. First, we can find the closed-form transi-
tion matrix of the associated ODE as

Ψts = exp

(∫ t

s

−
(1
2
β(τ)I + cL

)
dτ

)
= exp

(
− cL(t− s)− 1

2

∫ t

s

β(τ) dτ

)
(B.16)

where the integral can be easily obtained as∫ t

s

β(τ) dτ =

[
1

2
τ2(βmax − βmin) + τβmin

]t
s

=: β̃ts. (B.17)

This allows to compute the mean of the transition kernel mt|s given an initial solution ys. For the
covariance kernel, we have

Kt|s = Ψt

(∫ t

s

β(τ)Ψ−2
τ dτ

)
Ψ⊤

t

where the integral can be expressed as∫ t

s

β(τ)Ψ−2
τ dτ =

∫ t

s

(
τ(βmax − βmin) + βmin

)
exp

(
2cLτ + β̃τ0

)
dτ

=

[(
τ(βmax − βmin) + βmin

)
v(τ)

]∣∣∣∣t
s

− (βmax − βmin)

∫ s

0

v(τ) dτ. (integration by parts)

Here, we denote v(τ) =
∫
exp
(
2cLτ + β̃τ0

)
dτ , thus v′(τ) := exp

(
2cLτ + β̃τ0

)
, which does not

have a simple closed-form, we need to compute it numerically. This gives the covariance kernel.
Following the similar procedures, we can compute the cross covariance Kt1,t2 of the conditional
process Yt|Y0 = y0.

B.4 OTHER TOPOLOGICAL DYNAMICS

We may consider fractional Laplacian in T SHeat which allows for a more efficient exploration of
the network [Riascos & Mateos, 2014] due to its non-local nature.

For T SHeat, we can further allow heterogeneous heat diffusion on the edge space as follows

dYt = −(c1Ld + c2Lu)Yt dt+ gt dWt (B.18)

by setting Ht = −(c1Ld + c2Lu), with c1, c2 > 0. Here, the diffusion rates are different for the
different edge-adajcency types encoded in Ld and Lu. This in fact can be generalized to using a
more general topological convolution operator, if L := Ld + Lu consists of the down and up parts,

Ht =

K1∑
k=0

h1k(t)L
k
d +

K2∑
k=0

h2k(t)L
k
u (B.19)

where h1k(t), h
2
k(t) are the coefficients of the topological convolution. We refer to Yang et al. [2022b]

for more details on its expressive power compared to T SDE.
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Beyond T SDE: Instead of first-order dynamics, we can use higher-order dynamics such as wave
equations. Graph wave equations [Chung et al., 2007] have been used for building more expressive
graph neural networks [Poli et al., 2021] and its stochastic variant for modeling graph-time GPs
[Nikitin et al., 2022]. Moreover, we may allow the interactions between node and edge signals in
which the dynamics is defined over the direct sum of the two spaces. While not considered in this
work, we refer to [Alain et al., 2024] for such cases to define topological GPs on SCs.

C TOWARDS THE OPTIMALITY OF TOPOLOGICAL SBP

Proposition C.1 (T -Schrödinger System; [Chen et al., 2016; Jamison, 1975]). The optimal solution
of T SBPstatic has the form P01 =

∫
Rn×Rn φ̂0(x0)p1|0(x1|x0)φ1(x1) dx0 dx1 withφ and φ̂ satisfying

the system

φt(xt) =

∫
Rn

p1|t(x1|xt)φ1(x1) dx1, φ̂t(xt) =

∫
Rn

pt|0(xt|x0)φ̂0(x0) dx0 (C.1)

where pt|s(y|x) = N (y;µt|s,Kt|s) is the Gaussian transition density [cf. Lemma B.6] of T SDE
with drift in (1). Moreover, the time-marginal at t can be factored as Pt(x) = φt(x)φ̂t(x).

Proof. This is a direct result of the Schrödinger system in Theorem A.6 by replacing the Markov
kernel by that [cf. Lemma B.6] of the T SDE.

From this system, we see that the optimal path measure has its marginal Pt factorized into two
time-marginals φt and φ̂t, which are both governed by the T SDE.

C.1 VARIATIONAL FORMULATIONS OF T SBP

By Girsanov’s theorem, the T SBP can be formulated as the minimum energy SOC problem:

min
bt

E
[
1

2

∫ 1

0

∥b(t,Xt)∥2 dt
]
, s.t.

{
dXt = [ft + gtb(t,Xt)] dt+ gt dWt

X0 ∼ ν0, X0 ∼ ν1
(T SBPsoc)

where bt ≡ b(t,Xt) is the control function. The SDE constraint in T SBPsoc is also known as the
controlled SDE, in comparison to the uncontrolled reference T SDE. It further leads to the variational
problem

min
(bt,νt)

1

2

∫ 1

0

∫
Rn

∥bt∥2ν(t, x) dxdt, s.t.
{
∂tνt +∇ · [νt(ft + gtbt)] =

1
2g

2
t∆νt

ν(0, x) = ν0, ν(1, x) = ν1
(T SBPvar)

where νt ≡ ν(t, x) ≡ Pt is the time-marginal of P and follows some PDE constraint, which is the
FPK equation of the SDE constraint in T SBPsoc.
Theorem C.2 (T SBP Optimality; Léonard [2014]; Caluya & Halder [2021]). Let φt ≡ φ(t, x) and
φ̂t ≡ φ̂(t, x) be the solutions to the pair of PDEs{

∂tφt = −∇φ⊤
t ft − 1

2g
2
t∆φt

∂tφ̂t = −∇ · (φ̂tft) +
1
2g

2
t∆φ̂t,

s.t. φ(0, ·)φ̂(0, ·) = ν0, φ(1, ·)φ̂(1, ·) = ν1. (C.2)

Then, the optimal control in T SBPvar is b⋆t = g2t∇ logφt and the optimal path measure is νt =
Pt = φtφ̂t. Moreover, the solution to T SBP can be represented by the path measure of the following
coupled (forward-backward) T SDEs

dXt = [ft + g2t∇ logφ(t,Xt)] dt+ gt dWt, X0 ∼ ν0, (C.3a)

dXt = [ft − g2t∇ log φ̂(t,Xt)] dt+ gt dWt, X1 ∼ ν1, (C.3b)
where∇ logφ(t,Xt) and∇ log φ̂(t,Xt) are the forward and backward optimal drifts, respectively.

Proof. The proof is an adaption of Caluya & Halder [2021] to the topological setting. First, we make
the assumptions1 that g(t) is uniformly lower-bounded and f(t, x;L) satisfies Lipschitz conditions

1The nonexplosive Lipschitz condition on ft rules out the finite-time blow up of the sample paths of the
SDE, and ensures the existance and uniqueness. It, together with the uniformly lower-bounded diffusion gt,
guarantees the transition kernel pt|s is positive and everwhere continuous.
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with at most linear growth in x. From the first oprder optimality conditions for the SOC formulation
T SBPvar, we can obtain a coupled system of nonlinear PDEs for ψt (the potential function of bt, i.e.,
bt = ∇ψt) and νt, which are known as the Hamilton-Jacobi-Bellman (HJB) and FPK equations,
respectively, as well as the optimal control b⋆t = g2t∇ logφt. Via the Hopf-Cole transform, this
system returns (C.2) [Caluya & Halder, 2021, Thm 2]. Then, by substituting the optimal control
into the constraint in T SBPsoc, one can obtain the forward SDE, and the backward SDE can be
derived from the time-reversal of the forward SDE [Anderson, 1982; Nelson, 2020].

Using nonlinear Feynman-Kac formula (or applying Itô’s formula on logφt and log φ̂t), the PDE
system (C.2) admits the SDEs [Chen et al., 2022a]

d logφt =
1

2
∥Zt∥2 dt+ Z⊤

t dWt, (C.4)

d log φ̂t =

(
1

2
∥Ẑt∥2 +∇ · (gtẐt − ft) + Ẑ⊤

t Zt

)
dt+ Ẑ⊤

t dWt (C.5)

where Zt ≡ gt∇ logφt(Xt) and Ẑt ≡ gt∇ log φ̂t(Xt). This results in Proposition 5.

C.2 WASSERSTEIN GRADIENT FLOW INTERPRETATION

The gradient flow of a funcitional over the space of probability measures with Wasserstein metric,
i.e., the Wasserstein gradient flow (WGF), is fundamentally linked to FPK equations [Otto, 2001;
Ambrosio et al., 2008]. In the following, we show that solving the T SBP with T SHeatBM reference
amounts to solving the WGF of some functional on a probability measure ν.

Theorem C.3. Consider the T SBPvar with the reference process T SHeat. The SB optimality [cf.
(C.2)] respects a pair of FPK equations of the form

∂tφ̂t(x) = ∇ · (cLxφ̂t(x)) +
1

2
g2∆φ̂t(x), φ̂0(x) = φ̂0(x), (C.6a)

∂tρt(x) = ∇ · (cLxρt(x)) +
1

2
g2∆ρt(x), ρ0(x) = φ1(x) exp(2cx

⊤Lx/g2). (C.6b)

Therefore, the Wasserstein gradient flow of F(v) recovers the paired PDE in solving T SBPvar

F(ν) = c

∫
Rn

1

2
x⊤Lx · ν(x) dx+

1

2
g2
∫
Rn

ν log ν dx := cEν [D(x)] +
1

2
g2S(ν) (C.7)

where D(x) = 1
2x

⊤Lx is the Dirichlet energy of x and S(ν) is the negative differential entropy.

Proof. First, from Theorem C.2, we have the PDE system in (C.2) which can be rewritten as the
pair of PDEs in (C.6) by applying Caluya & Halder [2021, Thm 3]. Both PDEs are of the following
FPK form with V (x) := 1

2cx
⊤Lx on some density pt

∂tpt(x) = ∇ · (pt(x)∇V (x)) +
1

2
g2∆pt(x), (C.8)

for some initial condition. We can view V (x) as the potential energy of some function ft(x). Here,
we have ft(x) = −cLxt = −∇V (x). Then, from the seminal work Jordan et al. [1998], the flows
generated by the PDEs in (C.6) (both of the FPK form) can be seen as the gradient descent of the
Lyapunov functional F(·) in the following form

F(·) = c

∫
Rn

1

2
x⊤Lx · (·) dx+

1

2
g2
∫
Rn

(·) log(·) dx := cE(·)[D(x)] +
1

2
g2S(·) (C.9)

with respect to the 2-Wasserstein distance in the space P2(Rn) of probability measures on Rn with
finite second moments. Here, (·) can be φ̂t or pt.

We note that it is also possible to obtain the associated functional for the T SBP with more general
reference T SDE based on the similar argument, but it would be more involved and lead to a time-
dependent functional [Ferreira & Valencia-Guevara, 2018].

26



Published as a conference paper at ICLR 2025

D THE CLOSED-FORM OF GAUSSIAN TOPOLOGICAL SCHRÖDINGER
BRIDGES [THEOREMS 6 AND 7] (PROOFS AND OTHERS)

For convenience, we state the Gaussian T SBP

minDKL(P ∥QT ), s.t. P ∈ P(Ω), ν0 = N (µ0,Σ0), ν1 = N (µ1,Σ1) (GT SBP)

and its static problem

minDKL(P01 ∥QT 01), s.t. P01 ∈ P(Rn × Rn),P0· = ν0,P·1 = ν1. (GT SBPstatic)

We also restate the main results of the Gaussian T SBP.
Theorem 6. Denote by P the solution to GT SBP with ν0 = N (µ0,Σ0) and ν1 = N (µ1,Σ1). Then,
P is the path measure of a Markov Gaussian process whose marginal Xt ∼ N (µt,Σt) admits an
expression in terms of the initial and final variables, X0, X1, as follows

Xt = R̄tX0 +RtX1 + ξt −Rtξ1 + ΓtZ (5)

where Z ∼ N (0, I) is standard Gaussian, independent of (X0, X1), and

Rt = Kt1K
−1
11 , R̄t = Ψt −RtΨ1, Γt := Cov[Yt|(Y0, Y1)] = Ktt −Kt1K

−1
11 K1t. (6)

Corollary D.1 (Marginal Statistics). The time marginal variable Xt in (5) of the optimal solution
to GT SBP has the mean and covariance as follows

µt = R̄tµ0 +Rtµ1 + ξt −Rtξ1, (D.1a)

Σt = R̄tΣ0R̄
⊤
t +RtΣ1R

⊤
t + R̄tCR

⊤
t +RtC

⊤R̄⊤
t + Γt, (D.1b)

where C = Ψ−1
1 K

1/2
11 C̃K

1/2
11 with

C̃ =
1

2
(Σ̃

1/2
0 D̃Σ̃

−1/2
0 − I), D̃ = (4Σ̃

1/2
0 Σ̃1Σ̃

1/2
0 + I)1/2,

Σ̃0 = K
−1/2
11 Ψ1Σ0Ψ

⊤
1 K

−1/2
11 , Σ̃1 = K

−1/2
11 Σ1K

−1/2
11 .

(D.2)

Theorem 7 (SDE representation). Under the optimal P, the process X admits the SDE dynamics:

dXt = fT (t,Xt;L) dt+ gt dWt, where fT (t, x;L) = S⊤
t Σ−1

t (x− µt) + µ̇t (7)

with µt,Σt the mean and covariance of Xt [cf. Corollary D.1] and we have

St = Pt −Q⊤
t +HtKtt −Kt1K

−1
11 Υ⊤

t , (8)

with Pt = (RtΣ1 + R̄tC)Ṙ
⊤
t , Qt = − ˙̄Rt(CR

⊤
t + Σ0R̄

⊤
t ),Υt = HtKt1 + g2tΨ

−1
t Ψ⊤

1 , where C is
the covariance of X0, X1 in the optimal P01.

D.1 PRELIMINARIES FOR THE PROOF

We first introduce the following three lemmas and the definition of infinitesimal generators.
Lemma D.2 (Central identity of Quantum Field Theory [Zee, 2010]). For all matrix M ≻ 0 and all
sufficiently regular analytical function v (e.g., polynomials or v ∈ C∞(Rd) with compact support),
we have

(2π)−
d
2 (detM)−

1
2

∫
Rd

v(x) exp

(
−1

2
x⊤Mx

)
dx = exp

(
1

2
∂⊤x M

−1∂x

)
v(x)

∣∣∣∣
x=0

(D.3)

where exp(D) = I +D + 1
2D

2 + · · · , for a differential operator D.

Lemma D.3 (Conditional Gaussians). Let (Y0, Y1) ∼ N
([
µ0

µ1

]
,

[
Σ00 Σ01

Σ10 Σ11

])
. Then, Y0|Y1 = y

is Gaussian with

E[Y0|Y1 = y] = µ0 +Σ01Σ
−1
11 (y − µ1), and Cov(Y0|Y1 = y) = Σ00 − Σ01Σ

−1
11 Σ10. (D.4)
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Definition 4 (Infinitesimal generator of a stochastic process). For a sufficiently regular time-
dependent function ϕ(t, x) ∈ R+ × Rn → R, the infinitesimal generator of a stochastic process
Xt for ϕ(t, x) can be defined as

Atϕ(t, x) = lim
h→0

E[ϕ(t+ h,Xt+h)|Xt = x]− ϕ(t, x)
h

. (D.5)

For an Itô process defined as the solution to the SDE

dXt = f(t,Xt) dt+ g(t,Xt) dWt, (D.6)

with f(t, x), g(t, x) : R+ × Rn → Rn, the generator is given as

Atϕ(t, x) = ∂tϕ(t, x) + f(t, x)⊤∇xϕ(t, x) +
1

2
Tr[g(t, x)g(t, x)⊤∆ϕ(t, x)] (D.7)

where ∆ := ∇2
x is the Euclidean Laplacian operator.

D.2 OUTLINE OF THE PROOF

Our proofs follow the idea from Bunne et al. [2023, Theorem 3].

For Theorem 6. We follow the following two steps:

1. We first solve the associated static GT SBP. Specifically, we formulate the equivalent E-OT
problem, which has the transport cost dependent on the transition kernel of the T SDE. By introduc-
ing new variables, we can convert this involved transport cost to a quadratic cost over new variables,
thus, converting the GT SBPstatic to a classical Gaussian E-OT. Based on the existing results [Janati
et al., 2020; Mallasto et al., 2022], we can then obtain the optimal coupling over the transformed
variables. The coupling over the original variables can be recovered via an inverse transform.

2. From Theorem A.4, we can obtain the solution of GT SBP based on that the optimal P is in the
reciprocal class of QT , specifically, by composing the static solution with the QT -bridge. This is an
optimality condition obtained from the reduction to the static problem. From that, we know that the
solution P is a Markov Gaussian process and shares the same bridge as QT [cf. Proposition A.5].
This further allows us to characterize the mean and covariance of the time-marginal.

For Theorem 7. Let P ∈ P(Ω) be a finite-energy diffusion [Föllmer & Wakolbinger, 1986]; that
is, under P, the canonical process X has a (forward) Itô differential. Furthermore, since P is in the
reciprocal class of QT , it has the SDE representation in the class of (7) from the SOC formulation
where the drift fT (t, x : L) is to be determined. We then proceed the following two steps:

1. For the SDE (7) of the optimal process Xt, we first compute its infinitesimal generator [Protter,
2005] for a test function ϕ(t, x) ∈ R+ × Rn → R by definition using (D.5).

2. Second, we express the generator in terms of its given solution in (D.7) for the SDE (7)

Atϕ(t, x) = ∂tϕ(t, x) + f⊤T ∇xϕ(t, x) +
1

2
g2t∇2

xϕ(t, x). (D.8)

By matching the generators computed in both ways, we then obtain the closed-form of the drift term.

D.3 DETAILED PROOF OF THEOREM 6

D.3.1 STEP 1: SOLVE GT SBPSTATIC

First, recall that Yt|Y0 = y0 is a Gaussian process with mean mt := E(Yt|y0) and covariance Ktt

[cf. cond. mean and cond. cross cov], respectively. Thus, we have the transition probability density

QT 1|0(y1|y0) ∝ exp

(
−1

2
(y1 −Ψ1y0 − ξ1)⊤K−1

11 (y1 −Ψ1y0 − ξ1)
)

∝ exp

(
−1

2
(y1 −m1)

⊤K−1
11 (y1 −m1)

)
.

(D.9)

By introcuding the variables Ỹ0 = K
− 1

2
11 (Ψ1Y0 + ξ1) and Ỹ1 = K

− 1
2

11 Y1, we have

QT 1|0(y1|y0) ∝ exp

(
−1

2
∥ỹ1 − ỹ0∥2

)
. (D.10)
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Furthermore, if the joint distribution P01 has marginals Y0 ∼ ν0 and Y1 ∼ ν1, then after the change
of variables (Y0 → Ỹ0 and Y1 → Ỹ1), it gives rise to a joint distribution P̃01 with marginals Ỹ0 ∼
ν̃0 = N (µ̃0, Σ̃0) and Ỹ1 ∼ ν̃1 = N (µ̃1, Σ̃1), where

µ̃0 = K
− 1

2
11 (Ψ1µ0 + ξ1), Σ̃0 = K

− 1
2

11 Ψ1Σ0Ψ
⊤
1 K

− 1
2

11 ,

µ̃1 = K
− 1

2
11 µ1, Σ̃1 = K

− 1
2

11 Σ1K
− 1

2
11 .

(D.11)

That is, there is an one-to-one correspondence between P01 and P̃01. This allows us to expand the
objective of GT SBPstatic in terms of minimization as follows

DKL(P01∥QT 01) =

∫
Rn×Rn

P01(y0, y1) log

(
P01(y0, y1)

QT 01(y0, y1)

)
dy0 dy1

= −
∫

log(QT 01(y0, y1)) dP01(y0, y1) +

∫
log(P01) dP01

=
1

2

∫
∥ỹ1 − ỹ0∥2 dP01(y0, y1) +

∫
log(P01) dP01 + const. 1 (⋆)

=
1

2

∫
∥ỹ1 − ỹ0∥2 dP̃01(ỹ0, ỹ1) +

∫
log(P̃01) dP̃01 + const. 2

≡ DKL(P̃01∥QT 01)

where the second last step results from
∫
log(P̃01) dP̃01 =

∫
log(P01) dP01 + const.. To obtain (⋆),

we notice that QT 01(y0, y1) = QT 1|0(y1|y0)QT 0(y0), and we have

−
∫

log(QT 01(y0, y1)) dP01(y0, y1)

=−
∫

log(QT 1|0(y1|y0)) dP01(y0, y1)−
∫

log(QT 0(y0)) dP01(y0, y1)

=−
∫

log(QT 1|0(y1|y0)) dP01(y0, y1)−
∫

logQT 0(y0) dP0(y0)

where the last equality holds since we can remove the dependence on y1 in the second term by inte-
grating over y1, thus, appearing as a constant in the optimization over P01. Moreover, the expression
(⋆) is in fact the equivalent E-OT associated to the T SBP

min
P01

1

2

∫
∥y1 −Ψ1y0 − ξ1∥2K−1

11
dP01(y0, y1) +

∫
log(P01) dP01. (T E-OT)

Note that by definition we have DKL(P01∥ν0 ⊗ ν1) =
∫
log(P01) dP01 −

∫
log(ν0 ⊗ ν1) dP01 =∫

log(P01) dP01 −
∫
log ν0 dν0 −

∫
log ν1 dν1 where the last two terms are constants.

Thus, solving GT SBPstatic is equivalent to solving the following problem

min
P̃01∈P(Rn×Rn)

DKL(P̃01∥QT 01) ≡
∫

1

2
∥ỹ1 − ỹ0∥2 dP̃01(ỹ0, ỹ1) +

∫
log(P̃01) dP̃01 (D.12)

with P̃0 = ν̃0 and P̃1 = ν̃1. This is a classical static Gaussian E-OT between ν̃0 and ν̃1 with σ = 1.
The closed-form solution is given by the joint Gaussian [cf. Theorem A.1]

P̃⋆
01 = N

([
µ̃0

µ̃1

]
,

[
Σ̃0 C̃

C̃⊤ Σ̃1

])
(D.13)

where
C̃ =

1

2
(Σ̃

1/2
0 D̃Σ̃

−1/2
0 − I), D̃ = (4Σ̃

1/2
0 Σ̃1Σ̃

1/2
0 + I)1/2. (D.14)

Finally, via the inverse transforms Y0 = Ψ−1
1 (K

1
2
11ỹ0 − ξ1) and Y1 = K

1
2
11ỹ1, we can obtain the

solution to the original problem GT SBPstatic as

P⋆
01 ∼ N

([
µ0

µ1

]
,

[
Σ0 C
C⊤ Σ1

])
(GT SBstatic)

where C = Ψ−1
1 K

1
2
11C̃K

1
2
11.
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D.3.2 STEP 2: FROM STATIC TO DYNAMIC VIA DISINTEGRATION FORMULA

From Theorem A.4, we know that the solution P to GT SBP shares its bridges with the reference
QT . We denote by Qy0y1

T the process Y conditioning on Y0 = y0 and Y1 = y1 under QT , i.e.,
Y |y0, y1 ∼ Qy0y1

T = QT [Y0 = y0, Y1 = y1]. It is the bridge of QT , following

QT (·) =
∫
Rn×Rn

Qy0y1

T (·)QT 01(dy0 dy1). (D.15)

In the classical case of Brownian motion Y =W ∼ QW , Qy0y1

W is often referred to as the Brownian
bridge. Here, we aim to first find the Qy0y1

T -bridge, and then construct the optimal solution P⋆ by
composing the static solution P⋆

01 with the Qy0y1

T -bridge [cf. (A.4) in Theorem A.4].

From the transition kernel in Lemma 4, we have the conditional distributions Yt|y0 ∼ N (mt,Ktt)
and Y1|y0 ∼ N (m1,K11). Thus, the joint distribution of Yt and Y1 given y0 follows

Yt, Y1|y0 ∼ N
([

mt

m1

]
,

[
Ktt Kt1

K1t K11

])
. (D.16)

Applying Lemma D.3, we know that Yt|y0, Y1 = y1 is Gaussian with mean

E(Yt|y0, Y1 = y1) = mt +Kt1K
−1
11 (y1 −m1)

= Ψty0 + ξt +Kt1K
−1
11 (y1 −Ψ1y0 − ξ1)

= (Ψt −Kt1K
−1
11 Ψ1)y0 +Kt1K

−1
11 y1 + ξt −Kt1K

−1
11 ξ1

≜ R̄ty0 +Rty1 + ξt −Rtξ1

(D.17)

where we recall the definitions of Rt and R̄t in (8), and covariance
Γt := Cov(Yt|Y0 = y0, Y1 = y1) = Ktt −Kt1K

−1
11 K1t. (D.18)

Since a Gaussian process is completely determined by its mean and covariance, we have

Yt|Y0, Y1
law
= R̄tY0 +RtY1 + ξt −Rtξ1 + ΓtZ ∼ Qy0y1

T t (D.19)

where Z ∼ N (0, I) is independent of Yt. Now, the Disintegration of Measures and Theorem A.4
allow us to construct the solution to GT SBP by first generating (X0, X1) ∼ P⋆

01 in GT SBstatic, then
connecting X0 and X1 using the Qy0y1

T -bridge. This is equivalent to, for X0 ∼ ν0, X1 ∼ ν1 and
Z ∼ N (0, I), Z ⊥ (X0, X1), building a process as

Xt
law
= R̄tX0 +RtX1 + ξt −Rtξ1 + ΓtZ ∼ P⋆

t , (D.20)
which in fact is a stochastic interpolant for stochastic processes over topological domains, gen-
eralizing the same notion in Euclidean domains in Albergo et al. [2024, Definition 1]. Note that
since QT is a stochastic process following an Itô SDE, which is a Markov process, the solution P
is also a Markov process [cf. Proposition A.5]. Finally, we obtain the mean and covariance of the
time-marginal Xt as

µt = R̄tµ0 +Rtµ1 + ξt −Rtξ1,

Σt = R̄tΣ0R̄
⊤
t +RtΣ1R

⊤
t + R̄tCR

⊤
t +RtC

⊤R̄⊤
t +Ktt −Kt1K

−1
11 K1t.

(D.21)

This concludes the proofs of Theorem 6 and Corollary D.1.

D.4 DETAILED PROOF OF THEOREM 7

D.4.1 STEP 1: COMPUTE THE INFINITESIMAL GENERATOR OF Xt BY DEFINITION

For some time-varying function ϕ(t, x), by definition, the infinitesimal generator of Xt is given
by (D.5). Since Xt is a Gaussian process, we could express the conditional expectation using
Lemma D.3. As we are only interested in the terms that are of order O(h), we then ignore the
higher-order terms. First, we compute the first-order approximation of Σt in (D.1)

Σ̇t =
˙̄RtΣ0R̄

⊤
t + R̄tΣ0

˙̄R⊤
t + ṘtΣ1R

⊤
t +RtΣ1Ṙ

⊤
t

+ ˙̄RtCR
⊤
t + R̄tCṘ

⊤
t + ṘtC

⊤R̄⊤
t +RtC

⊤ ˙̄R⊤
t

+ ∂tKtt − (∂tKt1)K
−1
11 K1t − (Kt1K

−1
11 )∂tK1t

≜ (P⊤
t + Pt)− (Qt +Q⊤

t ) + ∂tKtt − (∂tKt1)K
−1
11 K1t − (Kt1K

−1
11 )∂tK1t

(D.22)
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where at the last equality we recall the definitions of Pt and Qt in (8). Next, denote by Σt,t+h the
covariance process of Xt evaluated at t and t + h. We can estimate Σt,t+h up to the first order of
o(h) as

Σt,t+h :=E[(Xt − µt)(Xt+h − µt+h)
⊤]

= R̄tΣ0R̄
⊤
t+h +RtΣ1R

⊤
t+h + R̄tCR

⊤
t+h +RtC

⊤R̄⊤
t+h +Kt,t+h −Kt1K

−1
11 K1,t+h

=Σt + R̄tΣ0(R̄t+h − R̄t)
⊤ +RtΣ1(Rt+h −Rt)

⊤ + R̄tC(Rt+h −Rt)
⊤

+RtC
⊤(R̄t+h − R̄t)

⊤ + (Kt,t+h −Ktt)−Kt1K
−1
11 (K1,t+h −K1t)

(a)
= Σt + h(R̄tΣ0

˙̄R⊤
t +RtΣ1Ṙ

⊤
t + R̄tCṘ

⊤
t +RtC

⊤ ˙̄R⊤
t ) + o(h)

+ (Kt,t+h −Ktt)−Kt1K
−1
11 (K1,t+h −K1t)

(b)
= Σt + h(Pt −Q⊤

t + ∂t2Kt1,t2 |t1=t,t2=t −Kt1K
−1
11 ∂t2Kt1,t2 |t1=1,t2=t) + o(h)

(D.23)
where we obtain (a) by plugging in limh→0

1
h (Rt+h − Rt) = Ṙt and limh→0

1
h (R̄t+h − R̄t); and

likewise, we obtain (b) by recognizing the definitions of Pt and Q⊤
t in (8) and using the partial

derivatives
lim
h→0

1

h
(Kt,t+h −Kt,t) = ∂t2Kt1,t2 |t1=t,t2=t, t1 ≤ t2

lim
h→0

1

h
(K1,t+h −K1,t) = ∂t2Kt1,t2 |t1=1,t2=t = ∂tK1t, t1 > t2.

(D.24)

Following the similar procedure, we can obtain a first-order approximation of Σt+h,t as

Σt+h,t :=E[(Xt+h − µt+h)(Xt − µt)
⊤]

=Σt + h( ˙̄RtΣ0R̄
⊤
t + ṘtΣ1R

⊤
t + ˙̄RtCR

⊤
t + ṘtCR̄

⊤
t ) + o(h)

+ (Kt+h,t −Ktt)− (Kt+h,1 −Kt1)K
−1
11 K1t

=Σt + h(P⊤
t −Qt + ∂t1Kt1,t2 |t1=t,t2=t − ∂t1Kt1,t2 |t1=t,t2=1K

−1
11 K1t) + o(h),

(D.25)
where the partial derivatives should be understood as

lim
h→0

1

h
(Kt+h,t −Kt,t) = ∂t1Kt1,t2 |t1=t,t2=t, t1 > t2

lim
h→0

1

h
(Kt+h,1 −Kt,1) = ∂t1Kt1,t2 |t1=t,t2=1 = ∂tKt1, t1 ≤ t2.

(D.26)

Since Eqs. (D.22), (D.23) and (D.25) are all involved with the partial derivatives of Kt1,t2 , we can
compute them by the closed-form of the transition matrix as

∂t1Kt1,t2 = ∂t1

{
Ψt1

[ ∫ t1

0

g2sΨ
−2
s ds

]
Ψ⊤

t2

}
, for t1 ≤ t2

(a)
= Ψt1Ht1

[ ∫ t1

0

g2sΨ
−2
s ds

]
Ψ⊤

t2 + g2t1Ψ
−1
t1 Ψ⊤

t2

(b)
= Ht1Kt1,t2 + g2t1Ψ

−1
t1 Ψ⊤

t2 , for t1 ≤ t2,

(D.27)

where we use the symmetry of Ψt. At (a) we use

∂tΨt = ∂t exp
(∫ t

0

Hs ds
)
= exp

(∫ t

0

Hs ds
)
Ht = ΨtHt, (D.28)

and at (b) we use the commutativity of Ht and Ψt [cf. Lemmas B.1 and B.5]. Similarly, we have

∂t2Kt1,t2 = ∂t2

{
Ψt1

[ ∫ t1

0

g2sΨ
−2
s ds

]
Ψ⊤

t2

}
= Kt1,t2H

⊤
t2 , for t1 ≤ t2

∂t1Kt1,t2 = ∂t1

{
Ψt1

[ ∫ t2

0

g2sΨ
−2
s ds

]
Ψ⊤

t2

}
= Ht1Kt1,t2 , for t1 > t2

∂t2Kt1,t2 = ∂t2

{
Ψt1

[ ∫ t2

0

g2sΨ
−2
s ds

]
Ψ⊤

t2

}
= g2t2Ψt1Ψ

−1
t2 +Kt1,t2H

⊤
t2 , for t1 > t2.

(D.29)
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We notice that (∂tK1t)
⊤ = ∂tKt1 = g2tΨ

−1
t Ψ⊤

1 +HtKt1K
−1
11 K1t. Now, by introducing in (D.23)

the variable

S ≜ Pt −Q⊤
t + ∂t2Kt1,t2 |t1=t,t2=t −Kt1K

−1
11 ∂t2Kt1,t2 |t1=1,t2=t

= Pt −Q⊤
t +KttH

⊤
t −Kt1K

−1
11 (g2tΨ1Ψ

−1
t +K1tH

⊤
t )

= Pt −Q⊤
t +KttH

⊤
t −Kt1K

−1
11 (∂tK1t),

(D.30)

we can then express the covariance process as

Σt,t+h = Σt + hSt + o(h), (D.31)

and

Σt+h,t = Σt + h(P⊤
t −Qt +H⊤

t Ktt − (g2tΨ
−1
t Ψ⊤

1 +HtKt1)K
−1
11 K1t) + o(h)

= Σt + h(P⊤
t −Qt +H⊤

t Ktt − (∂tKt1)K
−1
11 K1t) + o(h)

= Σt + hS⊤
t + o(h).

(D.32)

Lastly, using Lemma D.3, we see tha variable Xt+h|Xt = x is a Gaussian process with mean

µ̌t+h := = µt+h +Σt+h,tΣ
−1
t (x− µt)

(a)
= µt + hµ̇t + (Σt + hS⊤

t )Σ−1(x− µt) + o(h)

= µt + hµ̇t + (I + hS⊤
t Σ−1

t )(x− µt) + o(h)

= x+ h(µ̇t + S⊤
t Σ−1

t (x− µt)) + o(h)

(D.33)

where in (a) we used Σt = Σ⊤
t , and covariance

Σ̌t+h = Σt+h − Σt+h,tΣ
−1
t Σt,t+h

= Σt + hΣ̇t − (Σt + hS⊤
t )Σ−1

t (Σt + hSt) + o(h)

= Σt + hΣ̇t − (Σt + hS⊤
t + hSt) + o(h)

(b)
= h(Σ̇t − St − S⊤

t ) + o(h).

(D.34)

By seeing Ktt as a matrix function of t, we have

∂tKtt = ∂t

{
Ψt

[ ∫ t

0

g2sΨ
−2
s ds

]
Ψ⊤

t

}
= HtKtt + g2t I +KttH

⊤
t . (D.35)

This reduces (D.22) to

Σ̇t = (P⊤
t + Pt)− (Qt +Q⊤

t ) + ∂tKtt − (∂tKt1)K
−1
11 K1t − (Kt1K

−1
11 )∂tK1t (D.36)

where the last two items appear in S⊤
t and St, respectively. Thus, we obtain

Σ̌t+h =h(Σ̇t − St − S⊤
t ) + o(h)

=h
{[

(P⊤
t + Pt)− (Qt +Q⊤

t ) + ∂tKtt − (∂tKt1)K
−1
11 K1t − (Kt1K

−1
11 )∂tK1t

]
−
[
Pt −Q⊤

t +KttH
⊤
t −Kt1K

−1
11 (∂tK1t)

]
−
[
P⊤
t −Qt +H⊤

t Ktt − (∂tKt1)K
−1
11 K1t

]}
+ o(h)

=hg2t I + o(h).

(D.37)

We can now compute E[ϕ(t+ h,Xt+h)|Xt = x] as follows

E[ϕ(t+ h,Xt+h)|Xt = x]

= (2π)
d
2 (det Σ̌t+h)

− 1
2

∫
Rn

ϕ(t+ h, x′) · exp
(
−1

2
(x′ − µ̌t+h)

⊤Σ̌−1
t+h(x

′ − µ̌t+h)
)
dx′

(a)
= (2π)

d
2 (det Σ̌t+h)

− 1
2

∫
Rn

ϕ(t+ h, x̃+ µ̌t+h) · exp
(
−1

2
x̃⊤Σ̌−1

t+hx̃
)
dx̃

(D.38)
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where in (a) we apply a change-of-variable x̃ := x′ − µ̌t+h. We further apply Lemma D.2 and
arrive at

E[ϕ(t+ h,Xt+h)|Xt = x] = exp
(1
2
∂⊤x̃ Σ̌t+h∂x̃

)
ϕ(t+ h, x̃+ µ̌t+h)

∣∣∣
x̃=0

(a)
=
(
I +

1

2
∂⊤x̃ Σ̌t+h∂x̃ + o(h.o.t.)

)
ϕ(t+ h, x̃+ µ̌t+h)|x̃=0

(b)
= ϕ(t+ h, µ̌t+h) +

1

2
hg2t∆ϕ(t+ h, µ̌t+h) + o(h),

(D.39)

where we expand the power series of exp( 12∂
⊤
x̃ Σ̌t+h∂x̃) and ignore the higher-order-terms in (a),

and plug in (D.37) in (b). Recalling µ̌t+h in (D.33), we can expand the Taylor series of ϕ(t+h, µ̌t+h)
in the second variabel at x as

ϕ(t+ h, µ̌t+h) =ϕ
(
t+ h, x+ h(µ̇t + S⊤

t Σ−1
t (x− µt))

)
=ϕ(t+ h, x) + h⟨∇ϕ(t+ h, x), µ̇t + S⊤Σ−1

t (x− µt)⟩+ o(h).
(D.40)

Therefore, we have

E[ϕ(t+ h,Xt+h)|Xt = x] =

ϕ(t+ h, x) + h⟨∇ϕ(t+ h, x), µ̇t + S⊤Σ−1
t (x− µt)⟩+

1

2
hg2t∆ϕ(t+ h, x) + o(h).

(D.41)

Now we can express the infinitesimal generator of Xt as

lim
h→0

E[ϕ(t+ h,Xt+h)|Xt = x]− ϕ(t, x)
h

= lim
h→0

u(t+ h, x)− u(t, x)
h

+ ⟨∇ϕ(t, x), µ̇t + S⊤Σ−1
t (x− µt)⟩+

1

2
g2t∆ϕ(t, x)

=∂tu(t, x) + ⟨∇ϕ(t, x), µ̇t + S⊤Σ−1
t (x− µt)⟩+

1

2
g2t∆ϕ(t, x).

(D.42)

D.4.2 STEP 2: MATCH THE SOLUTION OF GENERATOR FOR AN ITÔ SDE

From Léonard [2014]; Caluya & Halder [2021], we search for the optimal solution to T SBP within
the class of stochastic processes following an SDE:

dXt = fT (t,Xt) dt+ gt dWt. (D.43)

Recalling the solution of an infinitesimal generator in (D.7) for this SDE

Atϕ(t, x) = ∂tϕ(t, x) + fT (t, x)
⊤∇xϕ(t, x) +

1

2
g2t∆ϕ(t, x), (D.44)

we then match it with the generator obtained by definition in (D.42). We observe that the two are
equivalent if we set

fT (t, x) = µ̇t + S⊤Σ−1
t (x− µt). (D.45)

This concludes the proof of Theorem 7.

D.5 CONDITIONAL DISTRIBUTION OF Xt|X0

Corollary D.5 (Conditional distribution of Xt|X0). Let Xt be the stochastic process associated to
the solution P to GT SBP. Given an initial sample x0 ∼ ν0, the conditional distribution ν(Xt|X0 =
x0) ∼ N (µt|0,Σt|0) is Gaussian with

µt|0 = R̄tx0 +Rtµ1 +RtC
⊤Σ−1

0 (x0 − µ0) + ξt −Rtξ1,

Σt|0 = RtΣ1R
⊤
t −RtC

⊤Σ−1
0 CR⊤

t +Ktt −Kt1K
−1
11 K1t.

(D.46)

Similarly, given a final sample x1, the conditional distribution ν(Xt|X1 = x1) ∼ N (µt|1,Σt|1) is
Gaussian with

µt|1 = Rtx1 + R̄tµ0 + R̄tCΣ
−1
1 (x1 − µ1) + ξt −Rtξ1,

Σt|1 = R̄tΣ0R̄
⊤
t − R̄tCΣ

−1
1 C⊤R̄⊤

t +Ktt −Kt1K
−1
11 K1t.

(D.47)
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Proof. First, recall the stochastic interpolant expression in (5) of the solution to GT SBP and its
mean µt and covariance Σt in (D.1). Due to the Gaussian nature of the process, we can write the
joint distribution of Xt and X0 as[

Xt

X0

]
∼ N

([
µt

µ0

]
,

[
Σt Σt,0

Σ0,t Σ0

])
(D.48)

where we work out the covariance between Xt and X0 below

Σt,0 = E[(Xt − µt)(X0 − µ0)
⊤]

= R̄tΣ0 +RtCov(X1, X0) + Cov(ξt, X0)−RtCov(ξ1, X0) + Cov(ζt, X0)

= R̄tΣ0 +RtCov(X1, X0) (since ξt is deterministic, ζt ⊥ X0)

= R̄tΣ0 +RtC
⊤. (by P∗

01 in GT SBstatic)

Based on Lemma D.3, we know that Xt|X0 = x0 is Gaussian with mean µt|0 and covariance Σt|0
given by

µt|0 = µt +Σt,0Σ
−1
0 (x0 − µ0)

Σt|0 = Σt − Σt,0Σ
−1
0 Σ0,t.

(D.49)

By substituting the expressions of µt and Σt from (D.1) and canceling out terms, we complete the
proof for Xt|X0 = x0. The proof for Xt|X1 = x1 follows similarly.

E TOPOLOGICAL SB GENERATIVE MODELS

Here, we provide more details on the T SB-based models. First, we give the likelihood of the model
which allows for the training objective in (9), and the probability flow ODEs corresponding to the
FB-T SDEs in (3). Then, we discuss the variants of score-based and diffusion bridges models for
topological signals, as well as their training objectives, with the goal of illustrating how T SB-based
models connect to these models.

E.1 LIKELIHOOD TRAINING FOR TOPOLOGICAL SBP

The likelihood for the Euclidean SBP by Chen et al. [2022a] extends to the topological case.
Corollary E.1 (Likelihood for T SB models; Chen et al. [2022a]). Given the optimal solution of
T SBP satisfying the FB-T SDE system in (3), the log-likelihood of the T SB model at an initial
signal sample x0 can be expressed as

LT SB(x0) = E[log ν1(X1)]−
∫ 1

0

E
[
1

2
∥Zt∥2 +

1

2
∥Ẑt∥2 +∇ · (gtẐt − ft) + Ẑ⊤

t Zt

]
dt (E.1)

where the expectation is taken over the forward SDE in (3) with the initial condition X0 = x0.
Corollary E.2 (Probability flow ODE for T SB). The following ODE characterizes the probability
flow of the optimal processes of T SB in (3)

dXt =
[
ft + gtZt −

1

2
gt(Zt + Ẑt)

]
dt (E.2)

and we have that for all t, Pt = p
(E.2)
t , i.e., the time marginal of the path measure P is equal to the

probability flow pt of this ODE.

This is a direct result from the probability flow for general SB [Chen et al., 2022a], which extends the
probability flow for score-based models [Song et al., 2020b], and relates to the flow-based training.

E.2 SCORE MATCHING FOR TOPOLOGICAL SIGNALS

As discussed in Section 5 and by Chen et al. [2022a], SB-based models generalize the score-based
models [Song et al., 2020b]. Here, we provide a detailed derivation on how a score-based model can
be built for topological signals, specifically, on the score matching objective, since there is no direct
literature on this. First, we show in detail that the likelihood training based on (9b) returns a score
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matching objective for topological signals when Zt = 0 and the final ν1 is a simple Gaussian. The
backward training objective in this case becomes

l(x0; θ̂) =

∫ 1

0

EXt∼(3a)

[
1

2
∥Ẑ θ̂

t ∥2 + gt∇ · Ẑ θ̂
t

∣∣∣X0 = x0

]
dt

=

∫ 1

0

EXt∼(3a)

[
1

2
g2t ∥st(θ̂)∥2 + g2t∇ · st(θ̂)

∣∣∣X0 = x0

]
dt

where we introduce a score function st(θ̂) to approximate∇ log pt|0(Xt|X0 = x0), following Ẑ θ̂
t =

gtst(θ̂). Here, pt|0 is the transition kernel of the T SDE [cf. Lemma 4]. By using the trace estimator
Hutchinson [1989] to compute the divergence, i.e.,

∇ · st(θ̂) = Eu∼N (0,I)[u
⊤st(θ̂)u], (E.3)

and setting the weighting function λ(t) := g2t , we then obtain the sliced score matching objective
[Song et al., 2020a;b, Eq. 19] for topological signals based on T SDE, which has the form

θ̂ = argminEt∼U(0,1)

{
λ(t)Ex0

Ext
Eu∼N (0,I)

[
1

2
∥st(θ̂)∥2 + u⊤st(θ̂)u

]}
, (E.4)

and is equivalent to l(x0; θ̂). This does not require a closed-form solution for the true score function
∇ log pt|0. The associated FB-T SDEs now become the forward-backward processes for the score-
based models

dXt = ft dt+ gt dWt, (E.5)

dXt = (ft − g2t st(θ̂)) dt+ gt dWt. (E.6)

Closed-form score matching For T SHeatBM and T SHeatVE, since we have their closed-form
transition kernels in (2), we can use the direct score matching objective [Song et al., 2020b, Eq. 7]
to train a score-based model for topological signals

θ̂ = argminEt∼U(0,1)

{
λ(t)Ex0Ext|x0

[
∥st(θ̂)−∇ log pt|0(xt|x0)∥2

]}
(E.7)

where∇ log pt|0 can be readily obtained based on (2).

E.3 DIFFUSION BRIDGES FOR TOPOLOGICAL SIGNALS

As discussed earlier, SB models are closely related to stochastic interpolants, flow- and score-based
models. We further remark that from the T SDE, we can build the topological diffusion bridge to
directly construct transport models between any topological distributions via Doob’s h-transform
[Särkkä & Solin, 2019]. This has been evidenced in Euclidean domains by converting existing
diffusion processes (BM, VE, VP) to diffusion bridges so to arrive at arbitrary distributions, and
training upon score matching [Heng et al., 2021; Liu et al., 2022; Delbracio & Milanfar, 2023; Li
et al., 2023; Zhou et al., 2024].

Specifically, consider the T SDE. To let it arrive at a final sample x1, the Doob’s h-transform gives

dXt =
[
ft + g2t∇ log p1|t(x1|Xt)

]
dt+ gt dWt, X1 = x1, x0 ∼ ν0 (E.8)

where p1|t(x1|xt) is the transition kernel of the T SDE satisfying the associated backward FPK,
given by Lemma B.6 (cf. Lemma 4). We can further find the time-reversal process for (E.8) [Zhou
et al., 2024, Theorem 1]

dXt =
[
ft − g2t (∇ log qt|1(xt|x1)−∇ log p1|t(x1|xt))

]
dt+ gt dWt, X1 = x1 (E.9)

where qt|1(xt|x1) is the transition kernel of the new SDE in (E.8) (instead of T SDE) conditioned
on Y1 = x1. The goal is to learn this new score function ∇ log qt|1(xt|x1), which can be achieved
by applying the score matching [Song et al., 2020b].

Given paired training samples (x0, x1) ∼ q01, Zhou et al. [2024, Theorem 2] considered a score
matching objective to learn the new score function

θ̂ = argminExt,x0,x1,t

[
λ(t)∥s̃t(θ̂)−∇ log qt|1(xt|x1)∥2

]
. (E.10)
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However, we cannot directly find closed-form qt|1 in the topological case, we need to use sliced
score matching for this case.

Note that we can view that the underlying topological process X now follows the new SDE pair
(E.8) and (E.9) as the forward and backward processes, respectively. In this sense, the topological
diffusion bridge is a special case of the T SB when setting the policies as Zt = gt∇ log p1|t(x1|xt)
and Ẑt = gt∇[log qt|1(xt|x1) − ∇ log p1|t(x1|xt)]. When performing learning on these policies,
since Zt is fixed once T SDE is given, the learning boils down to training the parameterized Ẑ θ̂

t .

F ADDITIONAL EXPERIMENTS AND DETAILS

We first describe the synthetic experiment on matching Gaussian topological signal distributions
based on the closed-form GT SB. Then, we detail the generative modeling experiments conducted
on real-world datasets based on T SB-models.

F.1 CLOSED-FORM GT SB CORROBORATION

Graph GP matching: We build a synthetic graph with 30 nodes and 67 edges, as shown in
Fig. 1 (Left). From its graph Laplacian L, we construct the initial distribution of node signals as
a Matérn GP with zero mean and the kernel Σ0 = (I + L)−1.5, and the final distribution as a diffu-
sion GP with zero mean and the kernel Σ1 = exp(−20L). We consider GT SB closed forms Xt in
(5) driven by both T SHeatBM and T SHeatVE. For the former, we set c = 0.5 and g = 0.01, labeled
as GTSB-BM. For the latter, we consider σmin = 0.01 and σmax = 1 with c = 0.01 and c = 10,
labeled as GTSB-VE1 and GTSB-VE2, respectively.

We then compute the covariances Σt of the time marginals, which has a closed-form given by
Corollary D.1, and obtain the samples based on the closed-form conditional distribution [cf. Corol-
lary D.5] given an initial sample, illustrated in Fig. F.1. We also measure the Bures-Wasserstein
(BW) distance [Bures, 1969] of Σt and Σ1 to evaluate the bridge quality, shown in Section 6.

Edge GP matching: We also consider matching two edge GPs which are able to model the dis-
cretized edge flows in a SC2 of the vector fields defined on a 2D plane [Chen et al., 2021b]. The
initial edge GP has a zero mean and a divergence-free diffusion kernel with κC = 10, while the final
edge GP has a zero mean and a curl-free diffusion kernel with κG = 10 [cf. Appendix B.1]. We con-
struct the closed-form GT SB Xt with the T SHeatBM as the reference dynamics, where c = 1 and
g = 0.01. We obtain the samples from the closed-form SDE representation (7), shown in Fig. F.2.
We can see that the forward samples are able to reach the final state, and the backward samples are
able to reach the initial state, despite some noise due to numerical simulation.

F.2 T SB-BASED GENERATIVE MODELING AND MATCHING

F.2.1 DATA

Heat flows: We use the heatflow dataset from Southeastern Australia from Mather et al. [2018],
which collects the heatflow measurements with coordinates in total 294 from 1982 to 2016. Here
we split the data into two parts, before and after 2010 (there is a significant change in the heat flow
pattern), to understand the evolution of the heat flow by modeling them as initial and terminal data.
That is, for this dataset, we consider the signal matching task.

Seismic magnitudes: We use the seismic event catalogue for M5.5+ (from 1990 to 2018) from IRIS
which consists of 12,940 recorded earthquake events with magnitudes greater than 5.5. To process
these events, we use the stripy toolbox to obtain the icosahedral triangulated mesh of the Earth
surface [Moresi & Mather, 2019]. Using the refinement of level three, this spherical mesh has 1,922
vertices. We refer to Fig. F.3 for a visualization of such a mesh of level one for better clarity.

Upon this mesh, we first associate each earthquake event to the nearest mesh vertex based on its
longitude and latitude. All events are located on 576 unique vertices of the mesh. Using these
unique vertices, we then construct a 10-nearest neighbour graph based on the geodesic distance
between the vertices, and we use the symmetric normalized graph Laplacian. Lastly, on top of this
graph, we associate the yearly earthquake events to its vertices and take the magnitudes as node
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t=0.0 t=0.2 t=0.4 t=0.6 t=0.8 t=1.0

t=0.0 t=0.2 t=0.4 t=0.6 t=0.8 t=1.0

Figure F.1: Covariances of the time marginals of the GT SB driven by T SHeatBM (Top) and
T SHeatVE (Center), as well as the samples conditioned on the inisital signal (Bottom).

t=0.00 t=0.20 t=0.40 t=0.60 t=0.80 t=1.00

Figure F.2: Forward and backward samples based on the closed-form SDE in (7) with respect to
T SHeatBM.

5

0

5

Figure F.3: Earth mesh (Left) and a node signal sample of the earthquake magnitudes (Right).

signals, resulting in 29 such signals. Followed by this, we preprocess the magnitudes by removing
the mean over the years. For this dataset, we consider the signal generation task.

Traffic flows: We consider the PeMSD4 dataset which contains traffic flow in California from 01-
01-2018 to 28-02-2018 over 307 sensors. We convert the node data into edge flows over a SC2 with
307 nodes, 340 edges and 29 triangles, following Chen et al. [2022b], and use the normalized Hodge
Laplacian. For this dataset, we consider the signal generation task.

Ocean currents: We consider the Global Lagrangian Drifter Data, which was collected by NOAA
Atlantic Oceanographic and Meteorological Laboratory. The dataset itself is a 3D point cloud after
converting the locations of buoys to the earth-centered, earth-fixed (ECEF) coordinate system. We
follow the procedure in Chen & Meila [2021]; Chen et al. [2021b] to first sample 1,500 buoys fur-
thest from each other, then construct a weighted SC2 as a Vietoris-Rips (VR) complex with around
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20k edges and around 90k triangles. For this dataset, we consider the signal matching task Upon the
weighted Hodge Laplacian, we use edge GP learned by Yang et al. [2024] from the drifter collected
data as the initial distribution and synthetize a curl-free edge GP as the final distribution. These two
GPs have rather different behaviors, able to model ocean currents with different behaviors and make
the matching task challenging. From these GPs, we can generate the samples for training and testing
in an efficient way based on eigenpairs associated to the 500 largest eigenvalues, analogous to using
Karhunen-Loéve type-decomposition for continuous GPs.

Brain fMRI signals: We consider the Human Connectome Project (HCP) [Van Essen et al., 2013]
Young Adult dataset where we model the human brain network as a graph and perform the matching
task on the measured fMRI signals recorded when the subject performed different tasks. We use
the HCP recommended brain atlas [Glasser et al., 2016] where each hemisphere is divided into 180
cortical parcels. This results in a total of 360 brain regions. We then build a graph based on the
physical conenction patterns between these regions where the edge weights measure the strength of
the axonal connections between two regions, i.e., proportional to the inverse of the square distance
[Perinelli et al., 2019]. We use the symmetric normalized graph Laplacian. In our experiments, the
two sets of the fMRI signals, respectively, correspond to the liberal and aligned brain activities. The
former is associated with brain regions involved in high-level cognition, like decision making and
memory, whereas the latter is associated with the sensory regions, like visual and auditory, meaning
that functional signals are aligned with anatomical brain structure, as shown in Fig. F.4.

Figure F.4: The energies of the initial (liberal)
(Left) and final (aligned) brain signals (Right).

Figure F.5: Two-dim phate embedding of
the single-cell data [Moon et al., 2019].

Single-cell data: We consider the single-cell embryoid body data from [Moon et al., 2019], which
describes the differentiation of human embryonic stem cells grown as embryoid bodies into diverse
cell lineages over a period of 27 days. These cell data,X1, X2, . . . , X5, are collected at 5 timepoints
(day 0–3, day 6–9, day 12–15, day 18–21, day 24–27, indexed by t ∈ {1, 2, 3, 4, 5}), resulting in
total 18,203 observations. We followed the preprocessing steps provided by TorchCFM [Tong et al.,
2024a;b]. Please refer to this link for the direct use of preprocessed data [Tong, 2023]. Followed by
this, we consider the two-dimensional phate embedding for the data [Moon et al., 2019], resulting
in the data coordinates of dimension 18, 203× 2, as illustrated in Fig. F.5. From the preprocessing,
we can build a sparse k-nearest neighbouring graph over the entire set of data observations. That is,
we have an adjacency matrix of dimension 18, 203× 18, 203.

In our experiment, we aim to transport the observed data from day 0–3 to day 24–27, i.e., from t = 1
to t = 5. Thus, we build the two boundary distributions based on the normalized indicator functions,
which indicate the associated nodes of the data points observed at these two timepoints. That is,

ν0 := 1X1
/
∑

j∈X1
1X1

(j) (F.1)

where the sum is over the nodes associated to the first-timepoint observations in X1, as the initial
distribution, and similarly, ν1 := 1X5

/
∑

j∈X5
1X5

(j) as the final one. After training the models,
using the final sample X̂t=5 obtained from the learned T SB given the initial observations, we can
obtain the predictions at the five timepoints based on the sorting (from large to small) of X̂t=5.
Specifically, given the indices after sorting, idx = arg sort(X̂t=5), we partition them into the dis-
joint sets, idx = S1 ∪ S2 ∪ · · · ∪ S5 with |St| = nt the number of observations at timepoint t for
t = 1, . . . , 5. We then have the prediction labels given by St that indicate the nodes supporting the
data points predicted at timepoint t. The disjointed indices in St essentially provide a labeling of the
whole predictions for the five timepoints. We found that using adjacency matrix as the convolution
operator in the reference dynamics performs better in practice.
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F.2.2 MODEL

Models. We consider the following two sets of methods:

• Euclidean SB-based models with BM, VE and VP reference processes [Chen et al., 2022a],
which we refer to as SB-BM, SB-VE and SB-VP, respectively.

• Topological SB-based model with T SHeatBM, T SHeatVE and T SHeatVP as the reference pro-
cesses, which we refer to as TSB-BM, TSB-VE and TSB-VP, respectively.

For some datasets, we also apply the Gaussian SB SDE solution as the reference dynamics: Eu-
clidean SB-based models with the closed-form GSB SDEs (under BM and VE reference processes)
as the reference [Bunne et al., 2023], which we refer to as GSB-BM and GSB-VE, respectively;
and, topological SB-based model with the closed-form GT SB SDEs (7) (under T SHeatBM and
T SHeatVE) as the reference, which we refer to as GTSB-BM and GTSB-VE, respectively.

Improving reference dynamics. Our proposed three types of reference dynamics have fixed diffu-
sion rates c. This may limit the model flexibility in capturing the dynamics of the data, which we
found especially in matching ocean current data. Thus, for this task, we allow the time-varying dif-
fusion rate ct. Specifically, we set it to be linearly increasing as ct = cmin+ t(cmax−cmin) for some
cmin, cmax. Moreover, due to the nonlinearity of the underlying process (from a non-curl-free GP to
a curl-free GP), we also consider the heterogeneous heat diffusion, as dicussed in (B.18) where the
down and up diffusion rates are different.

Policy models. For the parameterization of the optimal policies (Zθ
t , Ẑ

θ̂
t ), we first obtain the time

and signal embeddings individually. To obtain the signal embedding from the input, we consider the
following two sets of models as the signal module:

• ResBlock model: one multi-layer perceptron (MLP) followed by a number of residual block
modules where each block has three MLPs with sigmoid linear unit (SiLU) activations.

• Topological neural network (TNN) model: For node signals, we consider two-layer GCNs [Kipf
& Welling, 2017] followed by one MLP; For edge flows in a SC2, we consider two-layer SNNs
[Roddenberry et al., 2021; Yang et al., 2022a] followed by one MLP, where each SNN layer has the
linear convolution X ← LuXW2 +XW1 + LdXW0 with the down and up Laplacians Ld, Lu and
the learnable weights W0,W1,W2.

To obtain the time embedding, we pass the sinusoidal positional encoding of the discretized time-
point through a two-layer MLP module with SiLU activations. We then sum the two embeddings
and pass it through a two-layer MLP output module with SiLU to obtain the final parameterization.

F.2.3 IMPLEMENTATION DETAILS

Our implementation is built upon the SB-framework by Chen et al. [2022a]. We use AdamW opti-
mizer with a learning rate of 10−4 and Exponential Moving Average (EMA) with the decay rate of
0.99. For the reference processes with BM involved, we treat the noise scale g as a hyperparameter
and optimize it by grid search. For the reference processes with VE and VP involved, we grid search
the noise scales σmin, σmax and βmin, βmax. For T SB-based models, we grid search the optimal
diffusion rate c and the noise scales involved in the T SHeat.

In computing the likelihood in (9) during training, we use the trace estimator following [Hutchinson,
1989] to compute the divergence. In generative procedures, we apply the predictor-corrector sam-
pling [Song et al., 2020b] to improve performance. To evaluate the models, we compute the negative
log-likelihoods (NLLs) in (E.1) for generation tasks. For both generation and matching tasks, we
assess the 1- and (square rooted) 2-Wasserstein distances between the predicted and true signals.

F.2.4 RESULTS

Heat flows: For matching the two types of heat flows, we observe from Table F.1 that: (i) T SB-
based models are consistently better than SB-based models; and (ii) using GCNs for policy models
increases the performance by a large margin for both sets of models.

Seismic magnitudes: In generative modeling for seismic magnitudes, while we have the similar
observations as for the previous datasets, from Table F.3, we also observe that the GT SB-based
models are able to achieve the best performance, and likewise GSB-based models also increase the
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Figure F.6: Backward sampled ocean currents using TSB-BM (Top), SB-BM (Center) and GTSB-BM
(Bottom).

Table F.1: Heat flow matching results.

Method ResBlock GCN

Forward Backward Forward Backward

SB-BM -0.10 ± 0.02 -0.08 ± 0.03 -0.74 ± 0.05 -0.72 ± 0.05
SB-VE -0.12 ± 0.02 -0.10 ± 0.01 -1.20 ± 0.07 -0.95 ± 0.07
SB-VP -0.09 ± 0.02 -0.08 ± 0.02 -0.83 ± 0.04 -0.66 ± 0.11

TSB-BM -0.29 ± 0.02 -0.27 ± 0.02 -0.83 ± 0.05 -0.81 ± 0.05
TSB-VE -0.31 ± 0.02 -0.29 ± 0.01 -1.26 ± 0.05 -0.97 ± 0.08
TSB-VP -0.57 ± 0.02 -0.55 ± 0.02 -1.01 ± 0.03 -0.92 ± 0.03

Table F.2: Traffic flow results.

Method ResBlock SNN

SB-BM 0.82 ± 0.00 0.18 ± 0.02
SB-VE 0.77 ± 0.00 -0.42 ± 0.01
SB-VP 0.79 ± 0.00 -0.09 ± 0.01

TSB-BM 0.40 ± 0.00 0.02 ± 0.03
TSB-VE 0.01 ± 0.00 -0.89 ± 0.02
TSB-VP 0.02 ± 0.00 -0.32 ± 0.01

Table F.3: Seismic magnitudes results.

Method ResBlock GCN

SB-BM 2.78 ± 0.01 2.71 ± 0.03
SB-VE 2.97 ± 0.03 2.73 ± 0.05
SB-VP 2.28 ± 0.02 2.01 ± 0.03

GSB-BM 1.86 ± 0.02 1.83 ± 0.05
GSB-VE 1.68 ± 0.03 1.46 ± 0.07

TSB-BM 2.13 ± 0.01 1.82 ± 0.02
TSB-VE 2.22 ± 0.02 1.53 ± 0.03
TSB-VP 2.00 ± 0.02 1.51 ± 0.02

GTSB-BM 1.58 ± 0.01 1.43 ± 0.04
GTSB-VE 1.49 ± 0.02 1.06 ± 0.04

Table F.4: Ocean current matching results.

Method Foward Backward

SB-BM 7.21 ± 0.00 7.21 ± 0.00
SB-VE 7.17 ± 0.02 7.17 ± 0.02

GSB-BM 1.09 ± 0.01 0.97 ± 0.00
GSB-VE 0.83 ± 0.01 0.49 ± 0.00

TSB-BM 6.94 ± 0.01 3.70 ± 0.00
TSB-VE 6.89 ± 0.00 3.60 ± 0.00

GTSB-BM 1.09 ± 0.01 0.97 ± 0.00
GTSB-VE 0.53 ± 0.00 0.47 ± 0.00

performance of SB-models. In Table F.5, we report the 1- and 2-Wasserstein distances between the
generated samples and the true ones.

Traffic flows: In geneartive modeling of traffic flows, we observe from Table F.2 that: T SB-based
models achieve smaller NLLs and using SNNs for both models improves the performance. This
observation is consistent with the Wasserstein metrics reported in Table F.5.

Ocean currents: In matching ocean currents with two types of different-behaving edge GPs, note
that the initial sample in the forward process in Fig. 4 and the final sample in the backward process
in Fig. F.6 are the true samples. From these two figures, we first observe that SB-based models fail
to learn the dynamics to reach the expected end states, as shown in Figs. 4 and F.6. On the other
hand, T SB-based models are able to reach an end state with small curl component in the forward
process, yet with some discrepancy from the true one. Moreover, the learned backward dynamics
remains noisy and does not completely return to the initial state. This implies that the underlying
dynamics cannot be fully captured by the T SHeat-type reference processes. This can be largely
alleviated by using GT SB-based models, where both the forward and backward processes reach the
expected states with high fidelity. This is however because we have the initial and final distributions
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Table F.5: Overall 1- and (square rooted) 2-Wasserstein distances for generating and matching.

Method Seismic magnitudes Traffic flows Brain signals Single-cell data

W1 W2 W1 W2 W1 W2 W1 W2

SB-BM 11.73±0.05 8.29±0.04 18.69±0.02 13.36±0.01 12.08±0.08 8.58±0.05 0.33±0.01 0.40±0.01
SB-VE 11.49±0.04 8.13±0.03 19.04±0.02 13.61±0.02 17.46±0.14 12.42±0.09 0.33±0.01 0.39±0.01
SB-VP 12.61±0.06 8.92±0.04 18.22±0.03 13.02±0.02 13.41±0.05 9.54±0.04 0.33±0.01 0.40±0.00

TSB-BM 9.01±0.03 6.37±0.03 10.57±0.02 7.62±0.01 7.51±0.08 5.51±0.06 0.14±0.03 0.28±0.05
TSB-VE 7.69±0.04 5.44±0.03 10.51±0.02 7.58±0.01 7.59±0.05 5.55±0.04 0.14±0.02 0.27±0.04
TSB-VP 8.40±0.04 5.95±0.03 9.92±0.02 7.16±0.01 7.67±0.11 5.64±0.09 0.14±0.01 0.22±0.03

Figure F.7: Intermediate samples of brain signals learned using SB-VE (Top) and TSB-VE (Bottom).

modeled by GPs, allowing for GT SB to capture the underlying dynamics better. These observations
are reflected in the square-rooted 2-Wasserstein distance results in Table F.4 between the samples
given by the learned forward process and the true ones, as well as for the backward ones.

Brain fMRI signals: In matching the two brain fMRI signals, we observe from Fig. F.7 that TSB-VE-
based model reaches the final state where the signals have lower energy over the brain, indicating
aligned activities, whereas SB-VE fails to do so. This is quantatively reflected in terms of the
Wasserstein metrics between the generated final samples and the groundtruth ones in Table F.5.

Table F.6: Ablation study results on graph nor-
malizations for brain signal matching.

Method TSB-BM TSB-VE TSB-VP

W1, L
sym
norm 7.51 ± 0.08 7.59 ± 0.05 7.67 ± 0.11

W2, L
sym
norm 5.51 ± 0.06 5.55 ± 0.04 5.64 ± 0.09

W1, LRW 7.51 ± 0.08 7.62 ± 0.09 7.65 ± 0.09
W2, LRW 5.52 ± 0.06 5.58 ± 0.07 5.62 ± 0.06

W1, Lcomb 8.06 ± 0.05 9.21 ± 0.06 9.29 ± 0.05
W2, Lcomb 5.80 ± 0.04 6.62 ± 0.05 6.73 ± 0.03

Ablation study on graph normalizations. Here,
we compare the performance of the TSB-based
models using different ways of graph Laplacian
normalizations. Specifically, we consider the ran-
dom walk LRW and the combinatorial Lcomb

graph Laplacians. For the latter, we normal-
ize it by dividing the maximal eigenvalue of the
Laplacian for stability. From Table F.6, we no-
tice that using the random walk has comparable
performance with using the symmetric normal-
ized Laplacian Lsym

norm, and using the combinato-
rial one is worse than the other two. This is not surprising since the combinatorial one does not
encode the connection strength between brain regions.

Single-cell data: We first measure the Wasserstein distances between the predicted single-cells and
the groundtruth ones at the final timepoint, as reported in Table F.5. We here provide the predictions
in the two-dim phate embedding space for the SB-BM and TSB-BM models in Fig. F.8 and the
latter has a much better prediction. Moreover, from the final sample, we evaluate the predictions at
the intermediate timepoints (see Appendix F.2.1) in Table F.7 where the performance of TSB-BM is
consistently better than SB-BM. Since our method relies on a graph constructed from the entire data
points, we also provide the leave-one-out accuracy for SB-BM by training on the entire data points
leaving out the to-be-predicted timepoint. We see that while the accuracy for the final timepoint
is perfect, the intermediate predictions remain poor. In contrast, TSB-BM, by making use of the
topology, captures the underlying dynamics and predicts the intermediate states better.
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Figure F.8: Single-cell two-dim phate embeddings of the observations (Left) and the predictions
using TSB-BM (Center) and SB-BM (Right).

Table F.7: Intermediate prediction performance on single-cell data using TSB-BM and SB-BM.

Timepoint TSB-BM SB-BM

W1 W2 accuracy W1 W2 accuracy leave-one-out

2 0.03±0.00 0.09±0.00 0.80 0.52±0.01 0.59±0.01 0.28 0.24
3 0.09±0.00 0.22±0.01 0.42 0.12±0.00 0.21±0.00 0.23 0.20
4 0.08±0.00 0.16±0.01 0.45 0.19±0.00 0.34±0.00 0.26 0.26
5 0.14±0.03 0.28±0.05 0.70 0.33±0.01 0.40±0.01 0.24 1

F.2.5 COMPUTATIONAL COMPLEXITY

Compared to SB-based models, the T SB-based models introduce an additional topological convo-
lution [cf. (1)] overhead, which however admits an efficient computation, as discussed in Section 5.
We here provide a quantative comparison of the compelxity in terms of the training time and memory
consumption. We measure them using SB-VE and TSB-VE models on different-sized 10-nearest
neighbour graphs built from Swiss roll point clouds. This comparison is done in a single training
stage with 2,000 iterations, running on a single NVIDIA RTX 3080 GPU. As shown in Fig. F.9, we
observe that in the moderate scale (≤ 10, 000) region, the training time and memory consumption
of TSB-VE are only slightly higher than SB-VE, with negligible difference. While this overhead
becomes more significant as the scale further increases, both training time and memory can be re-
duced by exploiting the sparse structure (here implemented using torch.tensor.to sparse)
in the graph topology such that the computational overheads for for SB and TSB models remain
comparable. Under the same settings, Table F.8 compares SB-BM and TSB-BM models across all
datasets. The additional memory and training time introduced by TSB-BM remain below 4%.
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Figure F.9: Training time and memory comparison when train-
ing SB-VE and TSB-VE w.r.t. different-sized graphs.

Dataset TSB-BM SB-BM

Seismic 516 512
50.17 51.48

Traffic 510 504
52.25 50.62

Ocean 5976 5892
106.68 102.67

Brain 486 468
49.62 48.97

Single-cell 4446 4294
94.30 92.54

Table F.8: Complexity (first
row: memory (in MiB), and
second row: training time (in
seconds)).
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