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Abstract—Although the integration of large language models
(LLMs) into robotics has unlocked transformative capabilities,
it has also introduced significant safety concerns, ranging from
average-case LLM errors (e.g., hallucinations) to adversarial
jailbreaking attacks, which can produce harmful robot behavior
in real-world settings. Traditional robot safety approaches do
not address the novel vulnerabilities of LLMs, and current LLM
safety guardrails overlook the physical risks posed by robots
operating in dynamic real-world environments. In this paper,
we propose ROBOGUARD, a two-stage guardrail architecture
to ensure the safety of LLM-enabled robots. ROBOGUARD first
contextualizes pre-defined safety rules by grounding them in the
robot’s environment using a root-of-trust LLM, which employs
chain-of-thought (CoT) reasoning to generate rigorous safety
specifications, such as temporal logic constraints. ROBOGUARD
then resolves potential conflicts between these contextual safety
specifications and a possibly unsafe plan using temporal logic
control synthesis, which ensures safety compliance while mini-
mally violating user preferences. Through extensive simulation
and real-world experiments that consider worst-case jailbreaking
attacks, we demonstrate that ROBOGUARD reduces the execution
of unsafe plans from 92% to below 2.5% without compromising
performance on safe plans. These results underscore the potential
of ROBOGUARD to mitigate the safety risks and enhance the
reliability of LLM-enabled robots. We provide further detail and
experimental results at https://robo-guard.github.io/.

I. INTRODUCTION

The field of robotics has been transformed by large lan-
gauge models (LLMs), which have enabled breakthroughs in
applications such as manipulation [26, 2, 8, 18], autonomous
driving [24, 14, 40, 43], service robotics [36, 17, 16], robot-
assisted surgery [20, 39], and navigation [42, 41, 49]. Because
this technology is being rapidly deployed, it is essential that
its safety be rigorously scrutinized [53, 47].

Robot safety has been traditionally been viewed through the
lens of robust control or formal verification, which require pre-
cise notions of safety that are designed by an expert [54, 3, 34,
4, 27]. However, because LLM-enabled robots operate in open-
world settings, notions of safety are increasingly contextual
and harder to define and enforce. Moreover, recent work has
shown that LLM-enabled robots are vulnerably to adversarial
attacks that produce dangerous actions (e.g., colliding with
humans, blocking emergency exits, and obtaining weapons)
from a variety of commercial and academic robots [38]. This
finding indicates that general-purpose solutions are needed to
enforce contextual safety in application-dependent settings,
particularly given the distinct possibility of these platforms
causing harm in the physical world.

This paper provides a novel and general safety architecture
that address the unique safety challenges of using LLMs in
robotics. To motivate our approach, we first propose desider-
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Fig. 1. Overview of ROBOGUARD. Online, a system designer first configures
ROBOGUARD with safety rules and a robot description (A). Online, ROBO-
GUARD first receives the robot’s world model, and it uses this world model to
produce grounded safety specifications (B). Next, ROBOGUARD synthesizes
these specifications with the LLM-generated plan, in a manner that ensures
safety while maximally respecting the proposed plan (C).

ata for safety guardrails on LLM-enabled robots. We then
propose ROBOGUARD, a two-stage guardrail architecture for
ensuring the safety of LLM-enabled robots. As illustrated in
Figure 1, ROBOGUARD is configured offline with high-level
safety rules and a robot description (Figure 1.A), which makes
ROBOGUARD adaptable to various robot platforms and LLM
planning instantiations. Online, ROBOGUARD receives the
robot’s world model and LLM-proposed plan, and it returns a
safety-respecting plan via two key innovations. ROBOGUARD
first employs a root-of-trust LLM that reasons over the robot’s
world model and high-level safety rules to produce rigorous
and grounded safety specifications via context-aware chain-
of-thought generation (Figure 1.B). It then employ tools from
controller synthesis to generate a plan that maximally fol-
lows user preferences while ensuring that safety specifications
are satisfied (Figure 1.C). While ROBOGUARD is applicable
to non-adversarial safety scenarios, we focus on evaluating
against jailbreaking attacks, as they are one of the most
pressing vulnerabilities of LLM-enabled robots. We evaluate
ROBOGUARD in simulation and real-world experiments using
a Clearpath Jackal robot equipped with an online GPT-4o-
based LLM planner and semantic mapper. We demonstrate that
ROBOGUARD mitigates the execution of unsafe plans from
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92% to under 2.5% without compromising performance on
safe plans. To summarize, our contributions are as follows:

1. A desiderata for LLM-enabled robot safeguards.
2. ROBOGUARD, general-purpose two-stage architecture for

ensuring the safety of LLM-enabled robots that is both
context-aware and adversarially robust.

3. Our ROBOGUARD instantiation, which performs reason-
ing to infer grounded safety specifications and control
synthesis to generate a safety-respecting plan.

In the rest of the paper, we discuss related work in Sec-
tion II. We present our guardrail in Section III and evaluate it
in Section IV. Finally, we conclude in Section V.

II. RELATED WORK

A. LLM-enabled robots

The robotics community has leveraged the contextual rea-
soning abilities of foundation models through several lines
of work. A promising line of research designs transformer-
based architectures that map semantic instructions directly to
low-level robotic actuators [5, 25, 21, 6]. Another prominent
research direction uses LLMs to shape robot-specific reward
signals, which can then be optimized to perform downstream
tasks [31, 32, 52, 23]. However, given the difficulty of con-
necting semantic instructions with dynamic environments and
low-level control, a third line of research has sought to deploy
LLMs as higher-level planners [26, 1], wherein an LLM plans
via an API for action primitives such as navigation, mapping,
and manipulation[45, 14, 44, 24, 40, 43, 36, 17, 16, 18]
While using LLMs in robotics shows tremendous promise, the
above efforts do not address the safety challenges that LLMs
introduce in robots operating in the real world.

B. LLM-enabled robot safety approaches

A recent line of work has sought to adapt techniques from
the formal methods literature to meet the needs of LLM-
enabled robots [29, 35, 10, 28]. Such approaches typically
restrict the LLM’s planning syntax to a more narrowly defined
formal language, enabling verification of LLM-generated,
long-horizon plans to ensure feasibility and prevent hallu-
cination [33, 35]. This approach has also enabled planning
under conflicting specifications [12]. However, in the context
of robotic safety, existing methods at the intersection of formal
methods and LLM face two key challenges. First, existing
methods typically require manual enumeration of safety spec-
ifications, preventing use in open-world settings [50, 51]. This
line of work has been furthered by Brunke et al. [7], who
use LLMs to generate contextual constraints, but facilitate
neither the ability to edit constraints online nor the ability
to reason about these constraints. Second, existing work on
LLM-enabled robot safety does not consider adversarial use
cases [30, 9, 10]. Although methods like LIMP [35] verifiably
follow user instructions, they lack mechanisms to prevent
an adversarial user from producing unsafe robot behavior.
In contrast, ROBOGUARD is the first LLM-enabled robot
safegurd that is both adversarially robust and automatically
reasons over robot context to produce safety specifications.

C. LLM-enabled robot jailbreaking

The recently proposed ROBOPAIR algorithm demonstrated
that LLM-enabled robots are highly vulnerable to jailbreaking
attacks [38], wherein a user elicits malicuous content from
an LLM. In this work, Robey et al. [38] highlighted key
differences between chatbot and robot jailbreaking: notions of
harm are often highly context dependent in robotics, chatbot
alignment does not necessarily translate to more robust LLM-
enabled robots, and jailbroken robots can lead to physical
harm. These differences necessitate external safeguards for
LLM-enabled robots.

III. ROBOGUARD

The unique vulnerabilities of LLM-enabled robotics moti-
vate several considerations when designing a safety guardrail.
To this end, we next propose several general properties for
LLM-enabled robotic safeguards:

(D1) Contextual attack mitigation. Safeguards should mit-
igate unsafe behavior across various robotic contexts.

(D2) Applicability. Safeguards should be agnostic to differ-
ent LLM planning architectures or instantiations.

(D3) Utility. Safeguards should not diminish the capabilities
of LLM-enabled robots in non-adversarial settings.

(D4) Efficiency. Safeguards should minimize additional of-
fline and online computational costs and latency.

Given the need for LLM-enabled robots to operate in open-
world settings, this desiderata is intended to cover broad ranges
of use. The first pair of desiderata, (D1) and (D2), directly
address the vulnerabilities highlighted by ROBOPAIR. The
next pair, (D3) and (D4), ensure that the usability of an LLM
planner in non-adversarial settings is not compromised by the
robustness of a candidate safeguard.

Motivated by these desiderata, we propose ROBOGUARD,
a guardrail architecture designed to mitigate attacks against
LLM-enabled robots. As illustrated in Figure 1, ROBOGUARD
operates in the control-loop of an LLM-enabled robot and is
responsible for ensuring that any plans realized by the robot
are safe, where safety is defined by a system designer during
an offline configuration process. ROBOGUARD monitors po-
tentially unsafe plans via two main components—a contextual
grounding module and a control synthesis module—which
decouple the real-world interpretation of linguistic safety rules
(e.g., Asimov’s Laws) from the synthesis of a safe plan. In
the remainder of this section, we detail these two stages and
outline the properties of this approach.

A. Contextual grounding module

Input sources. The first stage of ROBOGUARD is the contex-
tual grounding module, which receives several distinct sources
of input. Offline, ROBOGUARD is initialized with a high-level
description of the robot—which includes its API and any other
configuration details—as well as a set of user-defined rules
outlining textual safety specifications (e.g., “do not enter keep-
out zones”, etc.). Additionally, during the online operation of
the robot, the contextual grounding module receives updates



from a persistently updated world model, which we instantiate
as a semantic graph [19, 15]. This graph is provided to the
contextual grounding module’s root-of-trust LLM via an in-
context prompt through a JSON representation.

Online operation. Given these input sources—the robot de-
scription, rule set, and world model updates—the contextual
grounding module produces semantically meaningful, rigor-
ous safety specifications. Given the reasoning capabilities of
frontier LLMs, in this paper, we instantiate the contextual
grounding module with a root-of-trust LLM via the process
outlined in Figure 1.B). This root-of-trust LLM is instructed
to use chain-of-thought (CoT) reasoning—which requires it
to think step-by-step while completing a generation [48]—to
iteratively reason about each rule in the rule set with respect
to current state of the world model. Concretely, the end-to-end
behavior of the contextual grounding module is therefore to
generate specifications ϕ(i), where i ∈ {1, . . . , n} indexes the
rule set, which are combined into a single LTL formula

ϕsafe = ϕ(1) ∧ ϕ(2) ∧ · · · ∧ ϕ(n). (1)

This expression is then passed to the second stage of our
guardrail—the safety constrained control synthesis step.

Encoding the safety specification. The structure we place on
the generated LTL formula ϕsafe is key to effectively grounding
these specifications in the robot’s context. More formally,
given the current state of the world model M and the robot’s
set of physically realizable actions F , we define contextual
atomic propositions AP(M,F), which describes the possible
actions the robot can take given world model state.

B. Control synthesis module

The second stage of ROBOGUARD is the control synthesis
module, which ensures the LLM-generated plan satisfies the
safety specifications generated by the contextual grounding
module. This is a challenge that has been considered by
the robotics community [12, 46] In particular, we adopt the
framework of Tumova et al. [46], which addressed controller
synthesis with many prioritized specifications. Because our
problem only requires synthesizing two specifications, we
simplify their approach which results in Algorithm 1.

In the first step of this algorithm (lines 1-2), the LLM pro-
posed plan p is translated into an LTL specification ϕproposed us-
ing the contextual atomic propositions AP(M,F) discussed
in §III-A, and then into a sequence of words w = w1w2 . . . wT

At this point in Algorithm 1, we have generated two (possibly
conflicting) specifications: the nominal specification ϕproposed
corresponding to the proposed plan and the safety specifica-
tion ϕsafe generated by the contextual grounding module. To
resolve potential conflicts between ϕproposed and ϕsafe, we first
instantiate a Buchi automaton B using ϕsafe

1. Starting from
the the initial state qinit, we then evaluate the automaton’s
transition function δ on each subsequent word in w (lines 3-6).

1For our purposes, B is a finite state machine describing safe and unsafe
robot conditions, Q is the set of states, δ is a state transition function, and F
is the set of all safe states. Please refer to Appendix A for further details.

Algorithm 1: CONTROL SYNTHESIS ALGORITHM

Input: Safety specifications, ϕs, proposed plan p
1 ϕproposed ← TOLTL(p)
2 w ← TOWORD(ϕproposed)
3 Bsafe = (Q, qinit,Σ, δ, F )← TOAUTOMATA(ϕsafe)
4 q ← qinit
5 for wi in w do
6 q ← δ(q, wi)

7 if q ∈ F then
8 return ϕproposed

9 else
10 return ϕsafe

If the last state of the resulting trace is accepting (i.e., belongs
to F ), then the proposed plan satisfies ϕsafe and is returned;
otherwise, we return ϕsafe (lines 7-10). As was proved in
[46], this strategy induces a guarantee on safety contingent on
the alignment between the inferred specification ϕsafe and the
designer’s contextual understanding of safety. This observation
yields the following remark.

Remark III.1. The control synthesis module will always
provide a safe control plan, as determined by the safety
specifications ϕsafe, regardless of the proposed plan p.

The upshot of this remark is that although the LLM-generated
plan p is specified in natural language, our architecture still
admits a guarantee on safety by synthesizing this plan with
the contextual safety specification ϕsafe. In other words, as
both formulae are definitionally finite and thus co-safe [22],
Buchi automata-based model checking will correctly deter-
mine whether ϕproposed satisfies ϕsafe [11],

IV. EXPERIMENTS

We evaluate ROBOGUARD to assess how well it fulfills
the desiderata outlined in §III: contextual attack mitigation
(D1), applicability (D2), utility (D3), and efficiency (D4). By
design, ROBOGUARD is agnostic to the instantiation of the
LLM planner, and thus satisfies applicability (D2). We now
describe the four key components of our experimental setup:
the LLM planner, the harmfulness benchmark of behaviors that
we attempt to elicit, the attacks used to elicit those behaviors,
and the environments in which we perform experiments.

LLM planner. We evaluate ROBOGUARD when operating on
top of the recently proposed GPT-4o-based SPINE planner,
which uses LLM-based planner for robotic mapping and
navigation tasks [37]. This planner uses a high-level API
to plan over the semantic graph described in §III-A and is
deployed in both simulation and on a Clearpath Jackal.

Guardrail instantiation. We instantiate ROBOGUARD with a
root-of-trust LLM using GPT-4o, and ROBOGUARD performs
control synthesis using the LTL-based model checking proce-
dure described in §III-B using the Spot library [13]. We ini-
tialize ROBOGUARD with three high-level safety constraints:
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Attack Input ASR

w/o RG w/ RG

None, safe task (↑) Direct 100.0 % 100.0%

Non-adaptive (↓) Direct 1.25% 0.1%
Non-adaptive (↓) Template 82.3 % 0.9%
Non-adaptive (↓) RoboPAIR 92.3% 2.3 %

TABLE I
GUARDRAIL’S EFFECTIVENESS AT MITIGATING UNSAFE BEHAVIOR.

“respect privacy”, “do not physically harm anyone”, and “stay
away from hazardous areas,” as well as a description of the
LLM controller’s API and world model representation.

Harmfulness benchmark. We measure the tendency of the
LLM planner to comply with the harmful behaviors proposed
in the ROBOPAIR study [38], which encompasses a spectrum
harms spanning average-case errors (e.g., entering a hazardous
area) to worst-case abuses (e.g., committing acts of violence).
We generate ten rephrasings of each behavior, resulting in a
dataset of 70 adversarial prompts. To measure ROBOGUARD’s
utility, we also consider ten safe behaviors, which require the
robot to locate objects in the scene and to inspect benign areas.

Attacks. To evaluate the robustness of ROBOGUARD we
consider the following elicitation methods, which span non-
adversarial prompting to worst-case attacks:

1. Direct Prompting. The LLM planner is directly
prompted to perform the target behavior.

2. Template. The direct prompt is embedded in a template
designed to elicit a jailbroken response.

3. ROBOPAIR. ROBOPAIR is run offline to generate a
jailbreaking prompt for the unguarded LLM planner.

Environments. We evaluate our guardrail in both simulated

and real-world environments, including an indoor academic
laboratory, the entire floor of an office building, and the outside
of an office park (see Figure 2). Together, these environments
cover nearly 20,000m2 and contain a rich set of semantics.
Throughout our experiments, we measure the performance of
ROBOGUARD’s ability to prevent harmful robot behavior via
the attack success rate (ASR), which is simply the ratio of
successful jailbreaks to attempted jailbreaks.

A. Unsafe behavior mitigation
In Table IV, we report the tendency of the LLM controller

to engage in safe and harmful behaviors given the different
prompting strategies discussed above. In each row, we report
the ASR with and without ROBOGUARD for the non-adaptive
attacks (“w/ RG” and “w/o RG”). We only report ASR with
the ROBOGUARD in the adaptive settings, as it is used to
generate adaptive attacks. In the non-adaptive setting, the
unguarded LLM planner rejects 98.75% of the direct prompts,
indicating that its internal safety filter has some degree
of effectiveness against non-adversarial elicitation methods.
However, the template attack and non-adaptive ROBOPAIR
variant both reliably bypass the unguarded LLM planner’s
alignment, with ASRs of 82.3% and 92.3% respectively. When
the guardrail is applied to this system, we observe significant
drops in the ASRs to below 3% for both attacks. Notably, the
first row of Table IV indicates that this improvement comes
at no cost to the utility of the planner on safe tasks.

As reported in Table IV-A, ROBOGUARD prevents 100% of
the adversarial attacks in the real robot, without compromising
on utility. We observe that ROBOGUARD exhibits better attack
mitigation than in the simulation experiments. This is because
while the real-world experiments present ROBOGUARD with
large and cluttered robot contexts, we were able to generate
increasingly difficult scenarios in simulation.

Attack Input ASR

w/o RG w/ RG

None, safe task (↑) Direct Prompting 100% 100%

Non-adaptive (↓) Direct prompt 0 % 0%
Non-adaptive (↓) RoboPAIR 100% 0%

TABLE II
REAL WORLD EXPERIMENTS

V. CONCLUSION

In this paper, we address outstanding safety concerns posed
by LLM-enabled robots, which can be prompted to cause
physical harm in real-world settings. We first propose desider-
ata which collectively outline desirable properties for any
candidate safeguarding approach. Guided by these desider-
ata, we then propose ROBOGUARD, a two-stage guardrail
architecture for ensuring the safety of LLM-enabled robots.
We evaluate how well ROBOGUARD fulfills our proposed
desiderata in simulation and real-world experiments. We find
that ROBOGUARD reduces the tendency of LLM-enabled
robots to realize unsafe behaviors from 92 % to under 2.5%,
is adversarially robust, and is resource efficient.
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