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Abstract

This paper proposes a novel approach to Large001
Language Model (LLM) training that priori-002
tizes AI-generated responses, reducing reliance003
on extensive human feedback. We introduce004
the Predicted Confidence and Uncertainty In-005
dex (PCUI) metric, offering a new dimension006
of LLM interpretability by capturing both con-007
fidence and uncertainty in generated text. Inte-008
grating PCUI into Direct Preference Optimiza-009
tion (DPO) guides the model towards favoring010
its own high-confidence responses during train-011
ing. Notably, a confidence threshold is estab-012
lished using PCUI, enabling the model to pri-013
oritize AI-generated responses exceeding the014
threshold over human-provided feedback. This015
approach promotes a gradual shift towards au-016
tomated LLM training with interpretability and017
control. We demonstrate the effectiveness of018
this method in text generation tasks, achieving019
significant improvements in performance. This020
work lays the groundwork for a future where021
AI and human feedback collaborate to create022
more robust and user-centric LLMs.023

1 Introduction024

LLMs have revolutionized various fields, from gen-025

erating human-quality text to powering advanced026

chatbots. However, their training process remains027

heavily reliant on extensive human feedback, a bot-028

tleneck hindering faster model development and029

broader application. This paper presents a ground-030

breaking approach that orchestrates AI and human031

feedback while gradually reducing dependence on032

human intervention. The core of our approach lies033

in integrating the PCUI metric into the DPO frame-034

work. This integration demonstrably guides model035

training towards favoring AI-generated responses.036

The PCUI metric not only influences training but037

also serves as a valuable tool for evaluating re-038

ward models, leading to significant performance039

improvements. Our key contribution lies in em-040

ploying the PCUI metric to establish a confidence041

threshold. This threshold dictates when the model 042

prioritizes its own responses during training over 043

those provided by human feedback. 044

• PCUI Metric: The PCUI metric goes beyond 045

traditional evaluation methods by quantify- 046

ing an LLM’s confidence in its generated text 047

alongside the inherent uncertainty. This al- 048

lows for a more nuanced understanding of 049

the model’s reasoning process. The specific 050

formulation of the PCUI metric detailed in 051

the further section leverages advanced entropy 052

calculation. 053

• DPO with PCUI Integration: We incorpo- 054

rate the PCUI metric into the DPO loss func- 055

tion. This modified loss function penalizes 056

the model for situations where the predicted 057

PCUI score for a human-provided response is 058

higher than that of the AI-generated response. 059

Subsequently, prioritizing high-confidence AI- 060

generated particularly when the AI-generated 061

response score exceeds the confidence thresh- 062

old. Ensuring that only the most reliable AI- 063

generated responses are used for further train- 064

ing, thereby promoting steady improvement in 065

the model’s ability to generate human-aligned 066

text. The confidence threshold is a crucial 067

hyperparameter that determines the degree to 068

which the model prioritizes its own responses. 069

By carefully calibrating the threshold, we can 070

achieve a balance between model exploration 071

(trying new responses) and exploitation (fo- 072

cusing on high-confidence outputs). 073

2 Related Work 074

Significant research has been conducted on optimiz- 075

ing LLM training and reducing reliance on human 076

feedback. Techniques like RLHF (Ouyang et al., 077

2022a) involve human experts providing feedback 078

to reinforcement learning agents. While effective, 079

1



RLHF can be complex to design and requires care-080

ful selection of human rewards. Our approach uti-081

lizes the PCUI metric within DPO, offering a more082

automated and interpretable way to incorporate hu-083

man preferences. Recent work on Reinforcement084

Learning from AI Feedback (RLAIF) (Lee et al.,085

2023) addresses challenges in defining reward func-086

tions by leveraging AI-generated feedback. How-087

ever, this method requires training an additional AI088

model for feedback generation. The PCUI metric089

offers a simpler and more precise way to evaluate090

reward models, improving their performance in our091

approach.092

3 Predicted Confidence Uncertainty093

Index (PCUI) Formulation094

Traditional evaluation methods for LLMs often fo-095

cus solely on accuracy or human judgment. These096

approaches provide limited insights into the LLM’s097

internal reasoning process. The PCUI metric ad-098

dresses this gap by offering a multi-faceted assess-099

ment of LLM response quality.100

• Logit Values (zi): The LLM’s internal work-101

ings often culminate in a set of raw scores102

(logits) for each possible output (represented103

by i). These logits embody the model’s unnor-104

malized preference for each outcome.105

• Softmax Activation: The softmax function106

takes these logits (zi) and transforms them107

into probabilities (Pi) for each potential re-108

sponse (i). The key property of the softmax109

function is that it ensures the probabilities sum110

to 1. Mathematically, this transformation is111

represented by the equation:112

Pi =
ezi∑
j e

zj
(1)113

• Maximum Probability (Confidence): The114

confidence score within PCUI is derived from115

the softmax output. We identify the highest116

probability value Pi amongst all the generated117

probabilities. This maximum probability sig-118

nifies the outcome the LLM is most confident119

about, representing its primary belief for the120

response.121

Confidence = max
i

(Pi) (2)122

where:123

– Pi is the probability for class i. 124

• Uncertainty: Entropy is a concept borrowed 125

from information theory. In the context of 126

PCUI, it measures the degree of uncertainty 127

associated with the LLM’s response probabil- 128

ities Pi obtained from the softmax function. 129

– High entropy indicates a more even dis- 130

tribution of probabilities across potential 131

responses, suggesting the LLM is unsure 132

about the most appropriate output. 133

– Conversely, low entropy signifies a distri- 134

bution skewed towards the most probable 135

response (identified in the confidence cal- 136

culation), implying the LLM is confident 137

in its output. 138

Entropy = −
∑
i

Pi · log(Pi + ϵ) (3) 139

where, ϵ is a small value added to avoid loga- 140

rithm of zero. 141

By combining the confidence and uncertainty 142

scores, the PCUI metric provides a comprehen- 143

sive assessment of LLM response quality. A high 144

PCUI score indicates a response where the LLM 145

is both confident (high maximum probability) and 146

certain (low entropy). Conversely, a low PCUI 147

score suggests a response with either low confi- 148

dence or significant underlying uncertainty, poten- 149

tially requiring further refinement during training. 150

Mathematically, the PCUI score is computed as 151

follows: 152

PCUI =
Confidence

Uncertainty + ϵ
(4) 153

where ϵ is a small constant to avoid division by 154

zero. 155

3.1 Integrating PCUI into DPO 156

Direct Preference Optimization (DPO) (Rafailov 157

et al., 2023) is a method used to align LLMs with 158

human preferences by optimizing the model’s out- 159

puts directly based on preference data. This work 160

integrates the PCUI metric into the DPO framework 161

by modifying the loss function. 162

3.1.1 Model Setup 163

• Base Model (ϕ): This pre-trained LLM acts 164

as the foundation, generating initial responses 165

to prompts. 166
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• Fine-Tuned Model (ϕSFT ): This ϕSFT is de-167

rived from the base model (ϕ) and undergoes168

further fine-tuning within the DPO framework169

with PCUI integration. This fine-tuning pro-170

cess refines the model’s ability to generate171

human-preferred responses.172

3.1.2 Dataset and DPO-PCUI Training173

To establish robust PCUI-DPO models, we em-174

ployed a two-step training approach:175

• Initial Training: We leveraged the (Lambert176

et al., 2024) dataset, containing both human-177

written responses (chosen samples) and AI-178

generated responses (rejected samples). This179

dataset provided a foundation for training two180

distinct PCUI-DPO models namely Phi-2 and181

Meta-Llama-3-8B-Instruct after SFT training182

them.183

• Prioritizing High-Confidence AI Feedback:184

During this stage, the model is primarily tai-185

lored to consider AI-generated responses only186

as feedback. The selection of these AI re-187

sponses was guided by a confidence threshold188

ranging from 0.3 to 0.7. Samples with PCUI189

AI responses more than this threshold, signi-190

fying high confidence in the LLM’s output,191

were prioritized over those with lower confi-192

dence PCUI scores. This strategic selection193

mechanism empowers the model to leverage194

LLMs own successes for further refinement.195

The modified DPO loss function is defined as:196

LDPO = − log (σ (β (PCUIchosen · (logPϕSFT197

(chosen)− logPϕ(chosen)))198

−PCUIrejected·(logPϕSFT(rejected)− logPϕ(rejected)))199

where σ is the sigmoid function and β is a scal-200

ing factor.201

4 Results202

To establish a strong foundation, we first evalu-203

ated existing reward models using the PCUI metric.204

This evaluation provided crucial insights into their205

effectiveness in capturing the quality of LLM re-206

sponses. Table 1 shows their respective PCUI207

scores. As observed in the table, all models except208

NeuralHermes-2.5 - Mistral-7B exhibited a clear209

distinction between the PCUI scores for chosen and210

rejected responses. This indicates their ability to211

differentiate between high-quality and low-quality212

LLM outputs to some degree.213

Model Chosen Rejected
zephyr_7b_gemma 98.15735816955566 92.8972840309143
nous_hermes_2_mistral_7B_DPO 97.862309217453 91.46125912666321
tulu-2_dpo-7b 97.45848178863525 93.49875450134277
zephyr_7B_beta 97.41134643554688 93.4740662574768
zephyr_7B_alpha 96.75858616828918 92.48956441879272
zephyr-7b_ppo 96.17967009544373 90.06326794624329
NeuralHermes-2.5 - Mistral7B 56.2851011753082 55.83584904670715

Table 1: Performance metrics for Reward Models

4.1 Evaluation Metrics 214

To evaluate the effectiveness of the PCUI-DPO 215

approach, we conducted a series of experiments 216

comparing it against the baseline DPO method. 217

Our experiments were performed on text gener- 218

ation tasks using the Phi-2 and Meta-Llama-3-8B- 219

Instruct model. We also notice by setting thresholds 220

to prefer AI generated feedback over human feed- 221

back, the model is able to drift towards generating 222

a much more tailored human-like AI response. 223

4.2 Quantitative Metrics 224

The BLEU, ROUGE-L, and METEOR scores were 225

calculated for both the PCUI-DPO and normal 226

DPO models. The results, as depicted in 3 and 227

4, demonstrate a significant improvement in all 228

three metrics for the PCUI-DPO models compared 229

to the normal DPO models: 230

• BLEU Score: The PCUI-DPO models 231

achieved a higher BLEU score, indicating 232

better alignment with the reference texts and 233

higher precision in word matching. 234

• ROUGE-L Score: The PCUI-DPO models 235

outperformed the normal DPO model in terms 236

of ROUGE-L, which measures the longest 237

common sub sequence between the generated 238

and reference texts, suggesting better recall. 239

• METEOR Score: The METEOR score, which 240

considers synonyms and stemming, was also 241

higher for the PCUI-DPO models, reflecting 242

better semantic matching and robustness in 243

the generated responses. 244

4.3 Qualitative Evaluation 245

Using GPT-4, we assessed the generated responses 246

on various qualitative criteria. The average scores 247

of both DPO and PCUI-DPO based models over 248

multiple epochs for various criteria are presented 249

in 1. The PCUI-DPO model consistently achieved 250

higher scores across all criteria. Further, exper- 251

iments with GPT-4 show that higher confidence 252

thresholds for AI-generated feedback lead to better 253
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performance. A threshold of 0.7 yielded the best254

results in coherence, relevance, correctness, and flu-255

ency of AI feedback. Whereas, a threshold of 0.3256

shows only moderate improvements as the model257

begins to prioritize AI-generated feedback with258

lower confidence scores. Threshold 0.4 shows no-259

ticeable improvements in all criteria, showing bet-260

ter performance as the model becomes more selec-261

tive with higher-confidence AI feedback. Thresh-262

old 0.5 achieves significant enhancements in all263

evaluation metrics, indicating a balance between264

inclusivity and selectivity of AI feedback is bene-265

ficial. Threshold 0.6 depicts Higher scores across266

all criteria as the model primarily considers feed-267

back with very high confidence, leading to superior268

performance. This suggests that PCUI-DPO ef-269

fectively utilizes high-confidence AI responses to270

improve LLM performance as depicted in 2.271

Figure 1: GPT-4 Evaluation Scores: Normal DPO vs
PCUI-DPO

Figure 2: GPT-4 Evaluation Scores: GPT-4 Evaluation
Scores: Various PCUI Thresholds

5 Conclusion272

In conclusion, the PCUI-DPO approach presents273

a promising avenue for advancing LLM training.274

Figure 3: BLEU, ROUGE-L, and METEOR Score
Curves: Normal DPO vs PCUI-DPO for Meta-Llama-3-
8B-Instruct

Figure 4: BLEU, ROUGE-L, and METEOR Score
Curves: Normal DPO vs PCUI-DPO for Phi-2

By incorporating the PCUI metric to quantify con- 275

fidence and uncertainty, we gain valuable insights 276

into the LLM’s reasoning process. This, cou- 277

pled with the strategic use of AI-generated feed- 278

back through confidence thresholds, empowers the 279

model to refine its abilities and generate human- 280

aligned responses. The effectiveness of PCUI-DPO 281

is demonstrably evident in the improved perfor- 282

mance on text generation tasks, as measured by 283

established metrics like BLEU, ROUGE-L, and 284

METEOR. As we move forward, PCUI-DPO paves 285

the way for a future where human and AI collab- 286

oration flourishes, fostering the development of 287

LLMs that are not only powerful but also capable 288

of generating human-quality text in an efficient and 289

automated manner. 290
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6 Appendix291

6.1 Related Work292

(Shen et al., 2023) surveys the technologies for293

aligning large language models with human values294

to leverage their vast potential while minimizing295

risks.296

(Bakker et al., 2022) investigates using LLMs297

to aid humans in collectively finding agreement298

by fine-tuning to align outputs with diverse human299

preferences. (Wang et al., 2023) provide a com-300

prehensive overview of alignment technologies for301

large language models, summarizing various meth-302

ods and their effectiveness.303

(Song et al., 2024) explores fine-tuning large lan-304

guage models with diverse data to enhance human305

alignment, mitigating the risk of generating toxic306

or offensive content. You can find the paper307

(Yuan et al., 2023) proposes a new learning308

paradigm named RRHF for LLMs to align with309

human preferences using rank responses, enhanc-310

ing model alignment with human feedback.311

(Han et al., 2024) discusses the challenges and312

methods for aligning LLMs in the medical field to313

ensure their safety and effectiveness, addressing314

specific weaknesses in general-knowledge LLMs.315

(Ouyang et al., 2022b) explores fine-tuning316

LLMs with human feedback to align with user in-317

tent across a wide range of tasks.318

(Sun et al., 2023) discusses a method for self-319

aligning language models from scratch, reducing320

dependency on intensive human supervision.321

These papers provide a comprehensive overview322

and various methods for aligning large language323

models with human values, preferences, and safety324

standards. Our work builds upon these existing325

techniques by introducing the novel PCUI metric326

and its integration with DPO. This allows for:327

• Gradual Automation: We propose a progres-328

sive shift towards automated LLM training,329

starting with high-confidence responses (iden-330

tified through PCUI) and gradually reducing331

reliance on human feedback. This builds upon332

existing approaches by offering a path towards333

eventual automation.334

• Interpretability and Control: The PCUI metric335

offers a unique window into the LLM’s rea-336

soning process, enabling better model control337

and interpretability compared to solely rely-338

ing on reward functions or human annotations,339

which often lack transparency.340

• Threshold-Based Prioritization with Inter- 341

pretability: The confidence threshold allows 342

for fine-grained control over how much the 343

model prioritizes its own high-confidence re- 344

sponses during training, addressing the chal- 345

lenge of defining appropriate reward functions 346

in reward learning by leveraging the model’s 347

own confidence estimation in a more inter- 348

pretable way. 349

By combining these elements, our research pro- 350

poses a novel and impactful approach for LLM 351

training, paving the way for a future where AI and 352

human feedback collaborate for more efficient and 353

robust model development 354

6.2 Limitations 355

• Data Bias: The effectiveness of PCUI-DPO 356

hinges on the quality of training data used 357

to establish the initial PCUI model. If the 358

data is biased, the LLM may inherit those 359

biases and prioritize AI-generated responses 360

that reflect those biases, even if they are not 361

human-aligned. 362

• Limited Scope: The current evaluation fo- 363

cuses on text generation tasks. Further re- 364

search is needed to determine how PCUI-DPO 365

generalizes to other LLM functionalities, such 366

as question answering or summarization. 367

• Confidence Threshold Calibration: Finding 368

the optimal confidence threshold can be chal- 369

lenging. While a higher threshold generally 370

leads to better results in our study, it might 371

not be universally applicable across all tasks 372

and LLM architectures. Further research is 373

required to develop more robust methods for 374

calibrating the threshold effectively. 375

• Explainability of AI Feedback: While PCUI- 376

DPO leverages AI-generated feedback, under- 377

standing the rationale behind these responses 378

remains a challenge. Future work could ex- 379

plore techniques to make AI feedback more 380

interpretable, allowing for more targeted im- 381

provements in the LLM. 382
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