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Abstract

This paper proposes a novel approach to Large
Language Model (LLM) training that priori-
tizes Al-generated responses, reducing reliance
on extensive human feedback. We introduce
the Predicted Confidence and Uncertainty In-
dex (PCUI) metric, offering a new dimension
of LLM interpretability by capturing both con-
fidence and uncertainty in generated text. Inte-
grating PCUI into Direct Preference Optimiza-
tion (DPO) guides the model towards favoring
its own high-confidence responses during train-
ing. Notably, a confidence threshold is estab-
lished using PCUI, enabling the model to pri-
oritize Al-generated responses exceeding the
threshold over human-provided feedback. This
approach promotes a gradual shift towards au-
tomated LLM training with interpretability and
control. We demonstrate the effectiveness of
this method in text generation tasks, achieving
significant improvements in performance. This
work lays the groundwork for a future where
Al and human feedback collaborate to create
more robust and user-centric LLMs.

1 Introduction

LLMs have revolutionized various fields, from gen-
erating human-quality text to powering advanced
chatbots. However, their training process remains
heavily reliant on extensive human feedback, a bot-
tleneck hindering faster model development and
broader application. This paper presents a ground-
breaking approach that orchestrates Al and human
feedback while gradually reducing dependence on
human intervention. The core of our approach lies
in integrating the PCUI metric into the DPO frame-
work. This integration demonstrably guides model
training towards favoring Al-generated responses.
The PCUI metric not only influences training but
also serves as a valuable tool for evaluating re-
ward models, leading to significant performance
improvements. Our key contribution lies in em-
ploying the PCUI metric to establish a confidence

threshold. This threshold dictates when the model
prioritizes its own responses during training over
those provided by human feedback.

* PCUI Metric: The PCUI metric goes beyond
traditional evaluation methods by quantify-
ing an LLM’s confidence in its generated text
alongside the inherent uncertainty. This al-
lows for a more nuanced understanding of
the model’s reasoning process. The specific
formulation of the PCUI metric detailed in
the further section leverages advanced entropy
calculation.

* DPO with PCUI Integration: We incorpo-
rate the PCUI metric into the DPO loss func-
tion. This modified loss function penalizes
the model for situations where the predicted
PCUI score for a human-provided response is
higher than that of the Al-generated response.
Subsequently, prioritizing high-confidence Al-
generated particularly when the Al-generated
response score exceeds the confidence thresh-
old. Ensuring that only the most reliable Al-
generated responses are used for further train-
ing, thereby promoting steady improvement in
the model’s ability to generate human-aligned
text. The confidence threshold is a crucial
hyperparameter that determines the degree to
which the model prioritizes its own responses.
By carefully calibrating the threshold, we can
achieve a balance between model exploration
(trying new responses) and exploitation (fo-
cusing on high-confidence outputs).

2 Related Work

Significant research has been conducted on optimiz-
ing LLM training and reducing reliance on human
feedback. Techniques like RLHF (Ouyang et al.,
2022a) involve human experts providing feedback
to reinforcement learning agents. While effective,



RLHF can be complex to design and requires care-
ful selection of human rewards. Our approach uti-
lizes the PCUI metric within DPO, offering a more
automated and interpretable way to incorporate hu-
man preferences. Recent work on Reinforcement
Learning from Al Feedback (RLAIF) (Lee et al.,
2023) addresses challenges in defining reward func-
tions by leveraging Al-generated feedback. How-
ever, this method requires training an additional Al
model for feedback generation. The PCUI metric
offers a simpler and more precise way to evaluate
reward models, improving their performance in our
approach.

3 Predicted Confidence Uncertainty
Index (PCUI) Formulation

Traditional evaluation methods for LLMs often fo-
cus solely on accuracy or human judgment. These
approaches provide limited insights into the LLM’s
internal reasoning process. The PCUI metric ad-
dresses this gap by offering a multi-faceted assess-
ment of LLM response quality.

* Logit Values (z;): The LLM’s internal work-
ings often culminate in a set of raw scores
(logits) for each possible output (represented
by i). These logits embody the model’s unnor-
malized preference for each outcome.

* Softmax Activation: The softmax function
takes these logits (z;) and transforms them
into probabilities (P;) for each potential re-
sponse (i). The key property of the softmax
function is that it ensures the probabilities sum
to 1. Mathematically, this transformation is
represented by the equation:
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e Maximum Probability (Confidence): The
confidence score within PCUI is derived from
the softmax output. We identify the highest
probability value P; amongst all the generated
probabilities. This maximum probability sig-
nifies the outcome the LLM is most confident
about, representing its primary belief for the
response.
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where:

— P; is the probability for class 1.

* Uncertainty: Entropy is a concept borrowed
from information theory. In the context of
PCUI, it measures the degree of uncertainty
associated with the LLM’s response probabil-
ities P; obtained from the softmax function.

— High entropy indicates a more even dis-
tribution of probabilities across potential
responses, suggesting the LLM is unsure
about the most appropriate output.

— Conversely, low entropy signifies a distri-
bution skewed towards the most probable
response (identified in the confidence cal-
culation), implying the LLM is confident
in its output.

Entropy = — Z P;-log(P;+¢€) (3)

where, € is a small value added to avoid loga-
rithm of zero.

By combining the confidence and uncertainty
scores, the PCUI metric provides a comprehen-
sive assessment of LLLM response quality. A high
PCUI score indicates a response where the LLM
is both confident (high maximum probability) and
certain (low entropy). Conversely, a low PCUI
score suggests a response with either low confi-
dence or significant underlying uncertainty, poten-
tially requiring further refinement during training.
Mathematically, the PCUI score is computed as
follows:

Confid
PCUI — on : ence @
Uncertainty + €
where € is a small constant to avoid division by

ZE10.

3.1 Integrating PCUI into DPO

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) is a method used to align LLMs with
human preferences by optimizing the model’s out-
puts directly based on preference data. This work
integrates the PCUI metric into the DPO framework
by modifying the loss function.

3.1.1 Model Setup

* Base Model (¢): This pre-trained LLM acts
as the foundation, generating initial responses
to prompts.



¢ Fine-Tuned Model (ngFT)I This ¢SFT is de-
rived from the base model (¢) and undergoes
further fine-tuning within the DPO framework
with PCUI integration. This fine-tuning pro-
cess refines the model’s ability to generate
human-preferred responses.

3.1.2 Dataset and DPO-PCUI Training

To establish robust PCUI-DPO models, we em-
ployed a two-step training approach:

* Initial Training: We leveraged the (Lambert
et al., 2024) dataset, containing both human-
written responses (chosen samples) and Al-
generated responses (rejected samples). This
dataset provided a foundation for training two
distinct PCUI-DPO models namely Phi-2 and
Meta-Llama-3-8B-Instruct after SFT training
them.

¢ Prioritizing High-Confidence AI Feedback:
During this stage, the model is primarily tai-
lored to consider Al-generated responses only
as feedback. The selection of these Al re-
sponses was guided by a confidence threshold
ranging from 0.3 to 0.7. Samples with PCUI
Al responses more than this threshold, signi-
fying high confidence in the LLM’s output,
were prioritized over those with lower confi-
dence PCUI scores. This strategic selection
mechanism empowers the model to leverage
LLMs own successes for further refinement.

The modified DPO loss function is defined as:

LDPO = — log (0’ (,8 (PCUIchosen . (log P¢SFT
(chosen) — log P4 (chosen)))

—PCUlIgjected- (10g Py (rejected) — log Py(rejected)))

where o is the sigmoid function and [ is a scal-
ing factor.

4 Results

To establish a strong foundation, we first evalu-
ated existing reward models using the PCUI metric.
This evaluation provided crucial insights into their
effectiveness in capturing the quality of LLM re-
sponses. Table 1 shows their respective PCUI
scores. As observed in the table, all models except
NeuralHermes-2.5 - Mistral-7B exhibited a clear
distinction between the PCUI scores for chosen and
rejected responses. This indicates their ability to
differentiate between high-quality and low-quality
LLM outputs to some degree.

Model

Chosen

Rejected

zephyr_7b_gemma

98.15735816955566

92.8972840309143

nous_hermes_2_mistral_7B_DPO

97.862309217453

91.46125912666321

tulu-2_dpo-7b

97.45848178863525

93.49875450134277

zephyr_7B_beta

97.41134643554688

93.4740662574768

zephyr_7B_alpha

96.75858616828918

92.48956441879272

zephyr-7b_ppo

96.17967009544373

90.06326794624329

NeuralHermes-2.5 - Mistral; B

56.2851011753082

55.83584904670715

Table 1: Performance metrics for Reward Models

4.1 Evaluation Metrics

To evaluate the effectiveness of the PCUI-DPO
approach, we conducted a series of experiments
comparing it against the baseline DPO method.
Our experiments were performed on text gener-
ation tasks using the Phi-2 and Meta-Llama-3-8B-
Instruct model. We also notice by setting thresholds
to prefer Al generated feedback over human feed-
back, the model is able to drift towards generating
a much more tailored human-like Al response.

4.2 Quantitative Metrics

The BLEU, ROUGE-L, and METEOR scores were
calculated for both the PCUI-DPO and normal
DPO models. The results, as depicted in 3 and
4, demonstrate a significant improvement in all
three metrics for the PCUI-DPO models compared
to the normal DPO models:

* BLEU Score: The PCUI-DPO models
achieved a higher BLEU score, indicating
better alignment with the reference texts and
higher precision in word matching.

* ROUGE-L Score: The PCUI-DPO models
outperformed the normal DPO model in terms
of ROUGE-L, which measures the longest
common sub sequence between the generated
and reference texts, suggesting better recall.

e METEOR Score: The METEOR score, which
considers synonyms and stemming, was also
higher for the PCUI-DPO models, reflecting
better semantic matching and robustness in
the generated responses.

4.3 Qualitative Evaluation

Using GPT-4, we assessed the generated responses
on various qualitative criteria. The average scores
of both DPO and PCUI-DPO based models over
multiple epochs for various criteria are presented
in 1. The PCUI-DPO model consistently achieved
higher scores across all criteria. Further, exper-
iments with GPT-4 show that higher confidence
thresholds for Al-generated feedback lead to better



performance. A threshold of 0.7 yielded the best
results in coherence, relevance, correctness, and flu-
ency of Al feedback. Whereas, a threshold of 0.3

shows only moderate improvements as the model

begins to prioritize Al-generated feedback with
lower confidence scores. Threshold 0.4 shows no-
ticeable improvements in all criteria, showing bet-

ter performance as the model becomes more selec-
tive with higher-confidence Al feedback. Thresh-
old 0.5 achieves significant enhancements in all
evaluation metrics, indicating a balance between

inclusivity and selectivity of Al feedback is bene-
ficial. Threshold 0.6 depicts Higher scores across
all criteria as the model primarily considers feed-
back with very high confidence, leading to superior

Figure 3: BLEU, ROUGE-L, and METEOR Score
Curves: Normal DPO vs PCUI-DPO for Meta-Llama-3-
8B-Instruct

performance. This suggests that PCUI-DPO ef- e s ot s
fectively utilizes high-confidence Al responses to i =
improve LLM performance as depicted in 2.

GPT-4 Evaluation Scores

== Normal DPO 8.78
= PCUI DPO

METEOR Score Curves Nomal DPO vs PCULDS
y P
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Figure 4: BLEU, ROUGE-L, and METEOR Score
Curves: Normal DPO vs PCUI-DPO for Phi-2

coherence relevance correctness fluency

Figure 1: GPT-4 Evaluation Scores: Normal DPO vs
PCUI-DPO By incorporating the PCUI metric to quantify con-

fidence and uncertainty, we gain valuable insights
P4 Evaluation Scorec: Various PCUI Thresholds into the LLM’s reasoning process. This, cou-
- Treaidon pled with the strategic use of Al-generated feed-
E ::: back through confidence thresholds, empowers the
model to refine its abilities and generate human-
aligned responses. The effectiveness of PCUI-DPO
is demonstrably evident in the improved perfor-
mance on text generation tasks, as measured by
established metrics like BLEU, ROUGE-L, and
METEOR. As we move forward, PCUI-DPO paves
the way for a future where human and Al collab-
oration flourishes, fostering the development of
prv s ==~ LLMs that are not only powerful but also capable
o of generating human-quality text in an efficient and

automated manner.

Figure 2: GPT-4 Evaluation Scores: GPT-4 Evaluation
Scores: Various PCUI Thresholds

5 Conclusion

In conclusion, the PCUI-DPO approach presents
a promising avenue for advancing LLM training.



6 Appendix

6.1 Related Work

(Shen et al., 2023) surveys the technologies for
aligning large language models with human values
to leverage their vast potential while minimizing
risks.

(Bakker et al., 2022) investigates using LLMs
to aid humans in collectively finding agreement
by fine-tuning to align outputs with diverse human
preferences. (Wang et al., 2023) provide a com-
prehensive overview of alignment technologies for
large language models, summarizing various meth-
ods and their effectiveness.

(Song et al., 2024) explores fine-tuning large lan-
guage models with diverse data to enhance human
alignment, mitigating the risk of generating toxic
or offensive content. You can find the paper

(Yuan et al., 2023) proposes a new learning
paradigm named RRHF for LLMs to align with
human preferences using rank responses, enhanc-
ing model alignment with human feedback.

(Han et al., 2024) discusses the challenges and
methods for aligning LLMs in the medical field to
ensure their safety and effectiveness, addressing
specific weaknesses in general-knowledge LLMs.

(Ouyang et al., 2022b) explores fine-tuning
LLMs with human feedback to align with user in-
tent across a wide range of tasks.

(Sun et al., 2023) discusses a method for self-
aligning language models from scratch, reducing
dependency on intensive human supervision.

These papers provide a comprehensive overview
and various methods for aligning large language
models with human values, preferences, and safety
standards. Our work builds upon these existing
techniques by introducing the novel PCUI metric
and its integration with DPO. This allows for:

* Gradual Automation: We propose a progres-
sive shift towards automated LLM training,
starting with high-confidence responses (iden-
tified through PCUI) and gradually reducing
reliance on human feedback. This builds upon
existing approaches by offering a path towards
eventual automation.

* Interpretability and Control: The PCUI metric
offers a unique window into the LLM’s rea-
soning process, enabling better model control
and interpretability compared to solely rely-
ing on reward functions or human annotations,
which often lack transparency.

* Threshold-Based Prioritization with Inter-
pretability: The confidence threshold allows
for fine-grained control over how much the
model prioritizes its own high-confidence re-
sponses during training, addressing the chal-
lenge of defining appropriate reward functions
in reward learning by leveraging the model’s
own confidence estimation in a more inter-
pretable way.

By combining these elements, our research pro-
poses a novel and impactful approach for LLM
training, paving the way for a future where Al and
human feedback collaborate for more efficient and
robust model development

6.2 Limitations

* Data Bias: The effectiveness of PCUI-DPO
hinges on the quality of training data used
to establish the initial PCUI model. If the
data is biased, the LLM may inherit those
biases and prioritize Al-generated responses
that reflect those biases, even if they are not
human-aligned.

* Limited Scope: The current evaluation fo-
cuses on text generation tasks. Further re-
search is needed to determine how PCUI-DPO
generalizes to other LLM functionalities, such
as question answering or summarization.

* Confidence Threshold Calibration: Finding
the optimal confidence threshold can be chal-
lenging. While a higher threshold generally
leads to better results in our study, it might
not be universally applicable across all tasks
and LLM architectures. Further research is
required to develop more robust methods for
calibrating the threshold effectively.

* Explainability of Al Feedback: While PCUI-
DPO leverages Al-generated feedback, under-
standing the rationale behind these responses
remains a challenge. Future work could ex-
plore techniques to make Al feedback more
interpretable, allowing for more targeted im-
provements in the LLM.
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