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Abstract

Deep convolutional neural networks (CNNs) have achieved impressive performance in many
computer vision tasks. However, their large model sizes require heavy computational
resources, making pruning redundant filters from existing pre-trained CNNs an essential task
in developing efficient models for resource-constrained devices. Whole-network filter pruning
algorithms prune varying fractions of filters from each layer, hence providing greater flexibility.
State-of-the-art whole-network pruning methods are either computationally expensive due to
the need to calculate the loss for each pruned filter using a training dataset, or use various
heuristic / learned criteria for determining the pruning fractions for each layer. Hence there
is a need for a simple and efficient technique for whole network pruning. This paper proposes
a two-level hierarchical approach for whole-network filter pruning which is efficient and uses
the classification loss as the final criterion. The lower-level algorithm (called filter-pruning)
uses a sparse-approximation formulation based on linear approximation of filter weights. We
explore two algorithms: orthogonal matching pursuit-based greedy selection and a greedy
backward pruning approach. The backward pruning algorithm uses a novel closed-form error
criterion for efficiently selecting the optimal filter at each stage, thus making the whole
algorithm much faster. The higher-level algorithm (called layer-selection) greedily selects
the best-pruned layer (pruning using the filter-selection algorithm) using a global pruning
criterion. We propose algorithms for two different global-pruning criteria: (1) layerwise-
relative error (HBGS), and (2) final classification error (HBGTS). Our suite of algorithms
outperforms state-of-the-art pruning methods on ResNet18, ResNet32, ResNet56, VGG16,
and ResNext101. Our method reduces the RAM requirement for ResNext101 from 7.6 GB
to 1.5 GB and achieves a 94% reduction in FLOPS without losing accuracy on CIFAR-10.

1 Introduction

Convolutional neural networks (CNNs) have demonstrated remarkable performance across various applications,
such as image classification (Han et al., 2016), object detection (Redmon et al., 2016), and image segmentation
(Minaee et al., 2021). However, the deployment of CNNs on IoT devices for computer vision tasks often
encounters practical bottlenecks related to the model size and computational complexity of inference (FLOPs)
(Goel et al., 2020). While neural architecture search (Baker et al., 2017; Zoph & Le, 2017) and efficient
model design (Tan & Le, 2019) can sometimes lead to highly efficient architectures, they impose substantial
requirements in terms of data and computational cost, as well as research expertise. However, pruning of
pre-trained models (Lebedev & Lempitsky, 2018; Hoefler et al., 2021; Vadera & Ameen, 2022; He & Xiao,
2023) provides a cheaper alternative where one can avoid re-training complicated models on large datasets.
For CNNs, structured pruning or filter-pruning (FP) (He et al., 2017; Luo et al., 2017; He & Xiao, 2023) has
emerged as a preferred alternative since it causes a reduction in computation (thus leading to power savings)
as well as memory requirements without requiring special hardware or re-implementation of operations.
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Figure 1: Hierarchical approach for non-uniform pruning of filters across the network.

Filter-pruning (FP) techniques can further be classified as (1) layer-wise pruning, which prune filters uniformly
from each layer (e.g. score-propagation (Yu et al., 2018) and error in activation reconstruction (Luo et al.,
2017)), and (2) whole-network pruning (WNP), which prunes filters from the entire network. The WNP
approach can prune different fractions of filters from each layer, hence providing higher flexibility. An
important challenge for WNP is to determine the pruning fractions for each layer. (Kuzmin et al., 2019)
(section 3.4.1) calculates the accuracy by pruning individual layers to a varying fraction and finds an optimal
compromise so that the overall pruning ratio is achieved while minimizing the maximum loss in accuracy
per layer. The main disadvantage of this approach is that the effect of pruning one layer on the pruning of
another layer is not captured. Recent works also include methods based on Taylor-series expansion of the loss
function, which approximates the influence score of pruning a filter on the overall loss function (Wang et al.,
2019; Molchanov et al., 2019; Peng et al., 2019; Nonnenmacher et al., 2021) with good practical performance
(He & Xiao, 2023). However, these methods can be expensive for large networks as they require passing over
the entire training set to calculate each influence score, which can be costly for large datasets. Additionally,
(Dong & Yang, 2019) applied NAS to search for a network with flexible channel and layer sizes, but this
method can also be expensive for larger networks. On the other hand, some recent works use approximate
criteria to prune filters. For instance, (Murti et al., 2023) propose a discriminative pruning technique based on
total variation separation distance (TVS), which is an approximate criterion to prune filters from a network.
Similarly, (He et al., 2020) choose different criteria to prune filters from different layers using Gumbel-softmax.
However, the main drawback of this procedure is that the Gumbel-softmax smoothing only calculates an
approximate output feature map for each layer, thus potentially hurting overall performance. Therefore, there
is a need for an efficient and accurate WNP technique that directly optimizes the training data loss.

In this work, we propose a greedy hierarchical training data loss-based approach for whole-network filter
pruning (see fig. 1). The iterative higher-level algorithm (called layer-selection) evaluates all layers based on
outputs from the lower-level algorithm, and greedily selects a layer to prune filters from in each iteration.
The lower-level algorithm (called filter-pruning) prunes filters optimally for the current network configuration.
We propose two versions of the iterative layer-selection algorithm: (1) hierarchical backward greedy
search (HBGS), which selects layers based on the relative reconstruction error of the layer outputs, and (2)
hierarchical backward greedy tree search (HBGTS) which selects the layers based on the error of the final
classification layer outputs. The key advantage of our greedy layer-selection, compared to a learned criterion
(He et al., 2020), or a threshold-based criterion (Kuzmin et al., 2019) is that we utilize the activations from
the modified network, which arguably leads to better decisions after a few iterations of pruning. However,
since each iteration of the greedy layer-selection makes many calls to the filter-pruning algorithm (typically,
the number of layers many calls, with some possibility of caching old results), an expensive filter-pruning
algorithm would be impractical for large networks.

A key contribution of this paper is to propose an efficient filter-pruning algorithms, which can ensure the
feasibility of the overall hierarchical scheme for large networks. While LRF (Joo et al., 2021) demonstrated
impressive practical performance for pruning filters, it only prunes one filter at-a-time, hence making it
prohibitively expensive for our purpose. We formulate the problem of optimally pruning multiple filters
from a layer using linear replaceability criteria as a sparse approximation problem. We study an orthogonal
matching pursuit (OMP) (Tropp & Gilbert, 2007) based algorithm, FP-OMP (Purohit et al., 2023) for
filter-pruning. Under the assumption of restricted isometry of the matrix composed of filter weights (Tropp
& Gilbert, 2007), FP-OMP selects filters whose linear combinations can represent the pruned filters with
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minimal error. However, since FP-OMP follows a greedy forward selection algorithm, and is called iteratively
to prune a small number of filters, the overall algorithm becomes computationally expensive. To alleviate
this inefficiency, we propose FP-Backward – a backward elimination-based algorithm for solving the sparse
approximation problem. A key facilitating factor towards a fast implementation of FP-Backward is the
calculation of a closed-form expression for the approximation error incurred by pruning a filter. HBGTS along
with FP-Backward (called HBGTS-B) is an efficient algorithm taking only 50% of the running time of HBGTS
and with performance comparable to it.

Experimental results on a variety of standard pre-trained CNN models, e.g. ResNet18, ResNet32, ResNet56,
VGG16, ResNext101 on standard image classification datasets, e.g. CIFAR10, CIFAR100, Tiny-Imagenet
show that models pruned with HBGS and HBGTS have higher accuracies compared to recent state-of-the-art
pruning methods for similar compression levels (see Table 1 and Figure 2). At higher parameter reduction
(≥90%), the proposed methods outperform existing methods by ∼ 5% (see Figure 2). We also find the optimal
pruned model to have a highly non-uniform pruning fraction distribution for each layer (see Figure 4), hence
showing the effectiveness of our layer-selection algorithm. To summarize:

1. We propose a novel greedy hierarchical framework for non-uniform pruning of filters with filter-pruning
at the lower level and layer-selection at a higher level.

2. We propose a backward-elimination-based scheme, FP-Backward for filter pruning, which takes
advantage of a novel closed-form expression for approximation error.

3. We propose HBGTS which uses an efficient implementation to directly optimize the classification error
for layer selection.

2 Related Work

Many pruning methods have been proposed in the literature. (Hoefler et al., 2021; Vadera & Ameen, 2022)
provide excellent surveys for pruning techniques. Pruning can be categorised two types: unstructured pruning,
involving the removal of individual weights (Han et al., 2015), and structured pruning or filter-pruning (FP),
in which entire nodes or channels are removed (He et al., 2017; Luo et al., 2017; He & Xiao, 2023). Structured
pruning provides efficiently implementable models on a wide range of accelerator devices e.g. GPUs. (He &
Xiao, 2023) provides a recent survey and website for comparing structured pruning techniques for CNNs.
Pruning can be done on a pre-trained model or from scratch, which is costly and requires large training data.
Therefore we focus on pruning a pre-trained model. We further categorise it into the following groups:
Weight-Based Pruning - Weights of filters are examined to determine which ones are essential for the
model’s performance. These methods do not require input data. (Han et al., 2015) focused on eliminating
small-norm weights. (He et al., 2019) incorporates geometric median (Fletcher et al., 2008) to estimate the
importance of each filter. (Joo et al., 2021) prunes linearly replaceable filters.
Activation-Based Pruning - Rather than relying on filter weights, these methods utilize activation maps or
layer outputs to make pruning decisions. We can utilize information from activation maps at the current layer
or all layers/whole-network. Some of the current layer activation-based pruning methods are: CP (He et al.,
2017) which focuses on minimizing the reconstruction error of sparse activation maps, while HRank (Lin et al.,
2020) calculates the average rank of activation maps. CHIP (Sui et al., 2021) assesses cross-channel correlation
to evaluate channel importance. ThiNet (Luo et al., 2017; El Halabi et al., 2022) approximates activation
maps of layer l+1 using subsets of layer l’s activation maps. Current layer activation-based pruning methods
do not consider the reconstruction error propagation. Some of the all layers/whole-network activation-based
pruning methods are: NISP (Yu et al., 2018) which assesses the Final Response Layer to calculate the neuron
importance, while DCP (Zhuang et al., 2018) aims to retain discriminative channels. Layer-output based
methods are computationally expensive, since they need to compute the outputs using a training dataset.
Regularization - Regularization can aid in learning structured sparse networks by incorporating various
sparsity regularizers. These regularizers can be implemented on Batch Normalization (BN) parameters (Liu
et al., 2017; You et al., 2019; Kang & Han, 2020), with extra parameters (Huang & Wang, 2018; Lin et al.,
2019) and filters (Wen et al., 2016; Chen et al., 2021).
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Taylor Expansion - Taylor Expansion is employed to approximate the change in the loss by pruning filters.
First-order-Taylor uses the first-order information to calculate the loss change caused by pruning weights
(Molchanov et al., 2019; You et al., 2019). Second-order-Taylor exploits the Hessian matrix, containing
second-order information (Peng et al., 2019; Wang et al., 2019; Liu et al., 2021). However, these methods can
be expensive for large networks.
Coreset-Based Pruning - Recently, several methods (Tukan et al., 2022; Liebenwein et al., 2019; Mussay
et al., 2021) have utilized the concept of coresets for pruning DNNs. These approaches focus on providing
bounds on the approximation error incurred at each layer of prediction. However, they do not necessarily
achieve optimal pruning in terms of representation error. Tukan et al. (2022) employs an upper bound on
sensitivity for sampling filters, which can result in overly pessimistic sampling weights. On the other hand,
our method focuses on removing linearly redundant filters, which is done optimally for a given layer.

There is a different line of work in which pruned models are effectively trained from scratch e.g. Frankle
& Carbin (2018); Rachwan et al. (2022). Unlike training-based approaches, our method does not require
training from scratch, which is costly and requires large training data.

3 A Hierarchical Greedy Approach to Filter Pruning

We propose a Hierarchical scheme, HBGS/HBGTS for non-uniform filter pruning from a pre-trained CNN. As
shown in Figure 1, the proposed scheme operates in a two-level hierarchical manner: (1) filter pruning - at the
lower level, this step identifies the most appropriate filters to be pruned from each layer and (2) layer selection -
at a higher level this step selects the best layer to currently prune from. These two steps are applied iteratively
to achieve a non-uniform pruning from the whole network. We first describe our sparse approximation-based
formulation for optimal filter pruning from each layer, and then describe a faster backward elimination-based
algorithm for the same. For layer selection, we describe a layerwise-regression-based backward greedy search
strategy. We also incorporate an overall error-based strategy for layer selection.

3.1 Sparse Approximation for Filter Pruning

A convolutional filter used in deep CNN is denoted by a K ×K matrix. A convolutional layer is defined as
filter weights fi,j ∈ RK2 , where i = 1, ..., m and j = 1, ..., n are the number of input and output channels.
Given the input feature map with m channels X = {X1, ..., Xm}, the output feature map with n-channels
Y = {Y1, ..., Yn}, can be calculated as: Yj =

∑m
i=1 Xi ∗ fi,j := X ∗ f:,j

Here, ∗ denotes the convolution operation, and f:,j ∈ RK2×m denotes all the filter weights for output channel
j. For brevity, we describe the algorithm for output channel pruning throughout the paper. Input channel
pruning can be performed analogously. For channel pruning, we follow the idea of linearly replaceable filters
(LRF) introduced in (Joo et al., 2021), which states that any filter f:,j ∈ RK2m can be pruned if the filter
weights can be expressed as a linear combination of other filter weights of the same layer which are not
pruned. Note that, for linear approximation of a filter with respect to other filters of the same layer, we treat
the filter weights, f:,j , as a flat K2m-dimensional vector. For LRF, we prune the channel j such that ∥ϵj∥ is
minimum, where f:,j =

∑
l ̸=j λj,lf:,l + ϵj . Here, λj,l are the coefficients of lth filter for approximating the

jth filter, which can be computed by solving the minimization problem: minλj,: ||f:,j −
∑

l ̸=j λj,lf:,l||2. LRF
(Joo et al., 2021) works by iteratively pruning one filter using the above technique, and updating the weights
of the retained parameters using one epoch of SGD updates minimizing a combination of training loss and
knowledge distillation loss (Hinton et al., 2015) w.r.t. to unpruned model outputs.

The above method can be generalized by selecting a set of filters, S, in one go. Given the set of selected
filters S, the error for jth output filter, f:,j ̸∈ S is given by ϵj :

f:,j =
∑
l∈S

λj,lf:,l + ϵj ,∀j ̸∈ S (1)

The problem of estimating λj,l, l ∈ S can be posed as a sparse approximation problem:

S∗, λ∗ = argmin|S|≤(1−β)n,λ

∑
j∈{1,2,..,n}

||f:,j −
∑
l∈S

λj,lf:,l||2 (2)
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Algorithm 1 Filter Pruning-OMP (FP-OMP)
1: Input: n: Number of filters,
2: β: Pruning fraction,
3: f:,j ∈ RK2m j = 1, ....n: Filters
4: Initialize:
5: Normalize f:,j such that ||f:,j ||2 = 1
6: Rj = f:,j ∀j ∈ {1, 2, .., n} ▷ Residual error
7: S = ϕ ▷ Set of selected filters
8: while |S| ≤ (1− β) ∗ n do
9: for i in Sc do

10: for j in {1, 2, .., n} do
11: Compute Projij = Rj .f:,i
12: end for
13: Total projection ξi=

∑n
j=1 |Projij |

14: end for
15: ind = max

i
ξi

16: S ←− S ∪ {ind}
17: for j in {1, 2, .., n} do
18: λ⃗j,:=argminλj

||f:,j−
∑

l∈Sλj,lf:,l||2

19: Rj ←− f:,j −
∑

l∈S(λ⃗j,:f:,l)
20: end for
21: end while
22: Output:
23: S, λj,l ∀l ∈ S ∀j ∈ {1, 2, .., n}

Algorithm 2 Layer Selection: HBGS
1: Input: C: Number of layers,
2: Fc c = 1, ..., C: Filters,
3: D: Training dataset,
4: α: Number of filters pruned in one go,
5: β: Total pruning ratio over all layers
6: Initialize: y0

c = F 0
c ∗ y0

c−1 c = 1, ..., C, t← 0
7: while Overall pruning ratio < β do
8: et

c = 0 ∀c = 1, ..., C
9: Gt

c ← FP-OMP(n, α
n , F t

c ) ∀c = 1, ..., C
where n = |F t

c |
10: for i = 1, ..., |D| do
11: for c = 1, ..., C do
12: Calculate output yt

c(i) = F t
c ∗yt

c−1(i)
13: et

c = et
c + ||y0

c (i)−Gt
c∗yt

c−1(i)||2
||y0

c (i)||2

14: end for
15: end for
16: cmin = arg minc ec

17: Revised network params F t+1
cmin = Gt

cmin ;
F t+1

c = F t
c ∀c ̸= cmin

18: t← t + 1
19: Run 1 epoch of finetuning.
20: end while
21: Output: Pruned filters F t

c ∀c = 1, ..., C

where n is the initial number of output channels in the current layer, and pruning ratio β, is the fraction of
channels that are pruned. Algorithm 1 describes an orthogonal matching pursuit (OMP) based approximation
(Tropp & Gilbert, 2007; Cai & Wang, 2011) for estimating the S, λj,l ∀j = 1, ..., n; l ∈ S. Note that, equation
2 denotes a multi-variate regression version of the sparse approximation problem where the predicted variable
is a vector f:,j , j = 1, ..., n with corresponding independent parameters λj,:. Since the total error is the sum
of squared errors of the individual components, it is easy to see that projections used in standard OMP
algorithm can be replaced with the sum of projections for each multivariate regression component (line 13
of Algorithm 1). This approach has two advantages: (1) this approach is much faster than LRF since the
fine-tuning is performed once for each layer, whereas in LRF it is performed after every pruning step (which
is equal to the number of pruned filters in a layer), and (2) this approach provides an optimality guarantee
for the selected filters in terms of reconstruction error, under conditions on the incoherence matrix of the
features (Cai & Wang, 2011). The overall time complexity of algorithm 1 is O(|S|n3). In a normal application
scenario of uniform pruning, the pruning fraction β may be quite high (∼ 98%), resulting in the size of the
selected set |S| being much smaller than n, this algorithm is fast (O(n3)).

LRF also uses a 1 × 1 convolution layer gj,k, j, k = 1, ..., n to compensate for the loss of channel outputs.
The modified output feature map, Zk, k = 1, ..., n is given by Zk =

∑n
j=1 Yj ∗ gj,k :=

∑n
j=1 X ∗ f:,j ∗ gj,k,

when the output filters Yj , j = 1, ..., n are not pruned. However, after pruning, the output feature map
from the original convolutional layer becomes Y ′

j =
∑

l∈S X ∗ f:,l. Weight compensation is a method for
modifying weights for the 1× 1 convolutional layer, g′

l,k, l ∈ S, k = 1, ..., n such that the final predicted output
Z ′

k =
∑

l∈S X ∗ f:,l ∗ g′
l,k matches Zk. The following result provides a formula for calculating g′

l,k.

Result 1. Given Zk, Z ′
k, gj,k, and g′

l,k defined as above, and λj,l, j = 1, ..., n; l ∈ S estimated using
the filter pruning process. Letting g′

l,k = gl,k +
∑

l′∈Sc λl′,l ∗ gl′,k, ∀l ∈ S, k = 1, ..., n, ensures that
Zk − Z ′

k =
∑

l′∈Sc X ∗ ϵl′ ∗ gl′,k, where ϵl′ is the error vector for the estimation of removed filter l′ ∈ Sc, and
Sc denotes the set of all removed filters.
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For brevity, the derivation of the result is provided in the appendix. This result provides us with a formula
for updating the weights of the 1× 1 filters, thus obviating the need to update them using the SGD update.

3.2 Hierarchical Backward Greedy Search (HBGS)

The algorithm outlined in the previous section selects a fixed fraction (1 − β) of filters from each layer.
However, as shown in the results, each layer can have a different fraction of important filters, depending
on the architecture. Hence, determining the fraction of filters βc to be pruned in layer c is an important
problem. Intuitively, βc should not be determined by the filter-weights since comparing them across layers is
not meaningful. For example, the weights in a layer may be scaled by a constant factor, compared to those in
another layer. Hence, we use reconstruction error of filter outputs using input training dataset as the criteria.

Let D = {(u1, v1), ..., (uN , vN )} be the training dataset, and yc(i) be the output feature map of layer c when the
training datapoint (ui, vi) is input to the CNN. Also, let Uc(i) be the output of the cth layer when the training
datapoint (ui, vi) is input to the unpruned CNN. Moreover, let Fc = {

∑
l′∈Sc

(f c
:,l′ ∗ gc

l′,k),∀k = 1, ..., nc} be
the composite convolutional map of the pruned filters and 1× 1 convolution for layer c obtained from a filter
pruning method (e.g. FP-OMP described in the previous section). The relative reconstruction error ec for
layer c is given by: ec =

∑
(ui,vi)∈D

||Uc(i)−Fc∗yc−1(i)||2
||Uc(i)||2

. We propose a hierarchical backward greedy search
(HBGS) technique in algorithm 2 to both estimate βc for each layer c, as well as select the appropriate filters
from each layer. Given the number of filters α to be pruned in one go, the algorithm proceeds iteratively by
performing two broad steps in each iteration: (1) determine the optimal α filters to be pruned in each layer c,
and (2) calculate the total relative reconstruction error ec as described above. Finally, the model parameters
are updated to prune filters from the layer that leads to the lowest relative reconstruction error. Algorithm
2 line 9 describes the first step, and lines 10 - 15 describe an efficient implementation of the second step,
where errors for all the layers are computed in one forward pass per example. The iterations continue till
an overall pruning criterion, e.g. parameter pruning ratio or percentage FLOP reduction is reached. The
parameter α is chosen to speed up the overall execution and can be chosen as 1 if the running time is not a
concern. The overall time complexity of algorithm 2, when using algorithm 1 as the filter pruning algorithm
is: O(TC(N + n4)), where T is the number of iterations needed to achieve the desired pruning (depends on
α and the pruning criteria), C is the number of layers, N is the training dataset size, and n is the number of
filters in each layer. While HBGS (Algorithm 2) can select a variable number of filters from each layer, the
sequential search over the layers for the best filter renders this algorithm expensive. In the next section, we
develop a faster filter pruning algorithm.

3.3 Backward Elimination Algorithm for Filter Pruning

The time complexity of the HBGS algorithm depends on the training set size N and the average number
of filters per layer n. In many cases, when the time complexity of the filter pruning step (O(TCn4) is
substantially larger than the error computation step O(TCN), the complexity of the filter pruning algorithm
becomes substantially larger than that of the fine-tuning algorithm on the training dataset. The main problem
is the OMP-based filter pruning algorithm (FP-OMP) adds one filter in each step, which is an efficient
strategy if the number of filters to be selected is small, compared to the total number of filters. However,
in the context of HBGS algorithm, FP-OMP is sequentially called many times (Algorithm 2 line-9) with
decreasing number of filters to be selected each time. In this context, a backward elimination (Couvreur &
Bresler, 2000; Ament & Gomes, 2021) based approach which iteratively removes the feature which causes
a minimal increase in approximation error, is intuitively more appropriate. While the original backward
elimination algorithm described in (Couvreur & Bresler, 2000) is O(n4), a faster implementation based on
block-matrix inversion was described in (Reeves, 1999), with time complexity of O(n3). Here, we derive a
similar algorithm for our problem.

For simplicity, we follow the notation in (Reeves, 1999). For a given layer with n output channels, m input
channels, and K ×K filter size, we re-define the input filter matrix as A ∈ RK2m×n, where each column
is a flattened vector of filter weights, A:,j = f:,j , j = 1, ..., n. We also denote the output of the sparse
approximation as B ∈ RK2m×n, which is the same as A in this case. We are interested in the approximation
B ≈ Aλ, λ ∈ Rn×n, where λ:j is the weight vector for the jth output filter. We note that the least square
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Algorithm 3 Filter Pruning-Backward Elimination (FP-Backward)
1: Input: n: Number of filters, β: Pruning fraction,
2: f:,j ∈ RK2m j = 1, ....n: Filters
3: Initialize: S = {1, ..., n} ▷ Set of currently retained filters
4: B:,j = [f:,j ]j=1,...,n ▷ Matrix of predicted filter weights
5: A = B ▷ Matrix of retained filter weights
6: while |S| > (1− β) ∗ n do
7: G = [AT A]−1 ∈ R|S|×|S|

8: for k = 1, ..., |S| do
9: gk = G{−k},k

10: γk = G[k, k]
11: dk = A−kgk + akγk

12: uk =
∑

j=1,...,n
|dT

k B:,j |2

γk

13: end for
14: k∗ = argmink=1,...,|S|uk

15: S ←− S \ {S[k∗]} ▷ remove original index corresponding to k∗

16: A = A:,{−k∗} ▷ remove selected column
17: end while
18: Calculate λ using equation 3
19: Output: Set of selected filters-S, λ

solution for λ:,j is decoupled from λ:,j′ where j ̸= j′. Hence, the least squares solution becomes:

λ∗
:,j = argminλ:,j

∑
j∈{1,2,..,n}

||B:,j −
∑

l=1,...,n

A:,lλl,j ||2 = (AT A)−1AT B:,j , ∀j = 1, ..., n (3)

Hence, the total least square error is given by:

E(A, B) =
∑

j=1,...,n

∥B:,j −A(AT A)−1AT B:,j∥2 =
∑

j=1,...,n

(BT
:,jB:,j −BT

:,jA(AT A)−1AT B:,j) (4)

We are interested in calculating the increase in E(A, B) if 1 column of A and the corresponding row of λ
are removed from the input. Let A = [A−k ak]ΠT

k , where A−k is the sub-matrix of A after removing the kth

column ak, and Πk is the permutation matrix which permutes the columns of A so that kth column is the
last. We also have the following definitions of Gk, gk, γk Dk and dk:[

Gk gk

gT
k γk

]
= ΠT

k (AT A)−1Πk ;
[
DT

k

dT
k

]
=

[
GkAT

−k + gkaT
k

gT
k AT

−k + γkaT
k

]
(5)

We note from equation 4, that only the second term in E(A, B) is dependent on A. Hence, we state the
following result which connects the above equations to compute the increase in the least square error for the
case of Multivariate Linear Regression.
Result 2. Given the definitions of A−k, dk, and γk above, the following relation holds:∑

j BT
:,jA−k(AT

−kA−k)−1AT
−kB:,j =

∑
j BT

:,jA(AT A)−1AT B:,j −
∑

j
1

γk
|dT

k B:,j |2 hence, E(A−k, B) =
E(A, B) +

∑
j=1,...,n

1
γk
|dT

k B:,j |2.

This result is a generalization of the result reported in (Reeves, 1999). For conciseness, we provide the
derivation of this result in the appendix. In light of the above result, FP-Backward (algorithm 3) provides the
steps for backward elimination-based filter pruning. Note that line 7 in algorithm 3 is the most expensive step
in the while loop (lines 6 - 17), which can be estimated from G in the previous time-step using block matrix
inversion with the worst-case complexity of O(n2). Also, for most calls to the algorithm, the parameter β
is very low (typically ≤ 0.05), leading to far fewer iterations of the while loop (lines 6 - 17), which can be

7
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Algorithm 4 Layer Selection: HBGTS
1: Input: C: Number of layers, Fc c = 1, ..., C: Filters, D: Training dataset,
2: α: Number of filters pruned in one step, β: Pruning ratio over the network
3: Initialize: y0

c,0 = F 0
c ∗ y0

c−1,0 ∀c = 1, ..., C, t← 0
4: while Overall pruning ratio < β do
5: et

j = 0 ∀j = 0, 1, ..., C ▷ Initialize total error for each layer pruned
6: Gt

c ← FP-OMP(n, α
n , F t

c ) ∀c = 1, ..., C where n = |F t
c |

7: for i = 1, ..., |D| do
8: for c in {1, .., C} do
9: yt

c,0(i) = F t
c ∗ yt

c−1,0(i) ▷ Unpruned propagation of unpruned previous layers
10: yt

c,1(i) = Gt
c ∗ yt

c−1,0(i) ▷ Pruned propagation of unpruned previous layers
11: for j = 1, ..., c− 1 do
12: yt

c,j+1(i) = F t
c ∗ yt

c−1,j(i) ▷ Unpruned propagation of previous jth pruned layer
13: end for
14: end for
15: for j = 1, ..., C do
16: et

j = et
j + ||yt

C,0(i)−yt
C,C−j+1(i)||2

||yt
C,0(i)||2

▷ Error in final layer output when jth-layer is pruned
17: end for
18: end for
19: cmin = argminj=1,...,C(et

j)
20: Revised network params: F t+1

cmin = Gt
cmin ; F t+1

c = F t
c ∀c ̸= cmin

21: t← t + 1
22: Run 1 epoch of finetuning for network parameters.
23: end while
24: Output: Pruned filters F t

c , ∀c = 1, ..., C

assumed to be constant. Moreover, this cost goes down with iterations as the size of the G matrix reduces
significantly with the iterations, reaching only a small fraction for n. Hence, assuming a constant number
of loop executions (lines 6 - 17), the overall complexity of Algorithm 3 is O(n2), which is two orders of
magnitude improvement over using algorithm 1.

3.4 Hierarchical Backward Greedy Tree Search (HBGTS)

A key idea behind the hierarchical backward greedy search (HBGS) algorithm is to select the layer which
results in a minimal relative error when pruned from. However, the prediction error of a layer’s output is
not always indicative of the ultimate predictive performance of the overall network. On the other hand,
computing the error of the final network output involves the re-computation of changes through all the
downstream layers, starting with the pruned layer. A naive implementation of this can lead to significant
compute overhead since it requires O(CN) forward inferences through the network for each pruning step,
where C is the number of layers and N is the number of data points in the training set.

Algorithm 4 presents hierarchical backward greedy tree search (HBGTS), an efficient implementation for
determining the best layer to prune from at every stage. A key idea here is to calculate the error in final layer
output et

j , when layer j ∈ {1, ..., C} is pruned, for each input training example. Hence, we need to perform
only one forward pass per pruning step for each example i ∈ {1, ..., N}. To implement this algorithm, we
utilize a data structure yt

c,j which stores the output of cth layer c = 1, ..., C, when the (n− j + 1)th layer is
pruned j = 1, ..., C, in the tth pruning step. Here, yt

c,0 represents the output of the cth layer when no filter
has been pruned. There are 3 cases while calculating yt

c,: from yt
c−1,: (lines 9, 10, and 12 in algorithm 4): (1)

calculation of next unpruned output yt
c,0 (unpruned propagation of unpruned previous layers), (2) calculation

of output corresponding to the current pruned layer yt
c,1 (pruned propagation of unpruned previous layers),

and (3) unpruned propagation of the pruned outputs corresponding to all the previous layers. Here, we
only need to store yt

c,j for the current timestamp t. Hence the space complexity of the modified algorithm
increases only by O(nd) where d is the output size for each layer. The overall time complexity of the layer
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selection algorithm for T pruning steps becomes O(TC2N). Hence, using the backward elimination strategy,
the overall time complexity for the proposed algorithm HBGTS-B is O(TC2N + TCn2). Comparatively, the
vanilla backward search version of the algorithm, HBGS-B using backward elimination for filter pruning takes
O(TC2N + TCn2) time. However, as shown in the next section, HBGTS-B marginally outperforms HBGS-B in
terms of the accuracy of the pruned models for a given pruning ratio.

4 Experimental Results

In this section, we describe the experimental setup and the datasets used. We compare the performance of
the proposed pruning methods against state-of-the-art methods. Furthermore, a comprehensive examination
of the working of the proposed Backward Greedy Search methods is conducted.

4.1 Experimental setting

Dataset Description: For the image classification task, we utilize three datasets: CIFAR10, CIFAR100,
and Tiny-Imagenet. CIFAR10 consists of 10 classes, with a training set of 50k images and a test set of 10k
images, all with a resolution of 32× 32. Each class contains 5k training images and 1k test images. Similarly,
CIFAR100 comprises 100 classes, with 500 training images and 100 test images per class. Tiny-Imagenet
contains 200 classes and includes a total of 0.1 M images. For our experimentation purpose, we resize the
original 64× 64 images of Tiny-Imagenet to 224× 224.

Training Details: Our experiments involve ResNet18, ResNet32, ResNet56, VGG16, and ResNext models,
with various percentages of parameter reduction. We prune a pre-trained model and adopt the training
settings from LRF (Joo et al., 2021). In contrast to LRF, where the model is fine-tuned for a single epoch
after each filter removal, we fine-tune the model after pruning the entire β fraction of filters from each layer.
After the completion of pruning for the entire model, we fine-tune the pruned model for 300 epochs. For
fine-tuning, we set the initial learning rate to 1e−2 with a decay rate of 1e−4. We use a step scheduler that
reduces the learning rate by a factor of 10 at epoch 150. Baselines were implemented using code provided by
the authors and the recommended hyperparameters were used. We also performed hyperparameter search for
the number of epochs, pruning ratios, and learning rates and reproduced the best results.

Performance Metric: We report the test accuracy for various pruning methods. The dense model’s test
accuracy corresponds to the pre-trained model’s accuracy. Additionally, we report an accuracy drop (Acc ↓)
from the dense model. We also report the drop in parameters (param ↓) and FLOPs (FLOPs ↓) as metrics
to assess the level of pruning and model efficiency. The reduction in parameters refers to the decrease in the
number of parameters/weights across all retained filters. FLOPs, on the other hand, refer to the number of
operations (convolutions), within the retained filters.

4.2 Performance Comparison: Accuracy and Efficiency

We compare our proposed pruning methods with the state-of-the-art methods in Table 1. We observe that
our proposed methods (HBGS, HBGTS, FP-Backward, HBGS-B, and HBGTS-B) exhibit higher pruned accuracy
compared to state-of-the-art methods for a comparable drop in the number of parameters. We also observe
that our proposed methods consistently report a higher drop in FLOPs compared to state-of-the-art methods.

ResNet and VGG on CIFAR-100 and Tiny-Imagenet: Figure 2 and Table 1 provide further insights
into the consistently superior performance of our proposed methods. We observe that the test accuracy of
the proposed methods is consistently and significantly better than the test accuracy of the baseline methods.
The fact that this difference is more pronounced in a difficult dataset (CIFAR100 and Tiny-Imagenet) further
demonstrates the superiority of the proposed methods. From Figure 2, we notice that, as the percentage of
parameter reduction increases, the difference in test accuracy between our proposed methods and state-of-the-
art methods also grows. At higher parameter reduction (≥90%), the proposed methods outperform
existing methods by ∼ 3− 8% (see Figure 2). Maintaining or even improving accuracy at such high parameter
reduction (>95%) is very valuable, further highlighting the effectiveness of the proposed methods.
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Table 1: Performance comparison between different pruning methods on VGG16/CIFAR100 at 98%
parameter reduction, ResNet18/CIFAR10 at 95% parameter reduction, ResNet56/CIFAR10 and
ResNet32/CIFAR10 at 63% parameter reduction, averaged over three runs. ± represents standard
deviation, ↓ indicate a drop, and bold/underline denotes the first/second-best result.

VGG16/CIFAR10 @ 98% ResNet18/CIFAR10 @ 95%

Method Test Acc
(%)

Acc ↓
(%)

Param ↓
(%)

FLOPs ↓
(%)

Test Acc
(%)

Acc ↓
(%)

Param ↓
(%)

FLOPs ↓
(%)

Dense 93.2± 0.01 0± 0 - - 94.5± 0.02 0± 0 - -
Random 86.3± 0.18 6.9± 0.18 98.0 89.0 86.3± 0.06 8.2± 0.06 93.7 85.0
EarlyCroP-S (Rachwan et al., 2022) 90.0± 0.47 3.2± 0.47 98.0 91.0 91.0± 0.52 3.5± 0.52 95.1 85.8
DLRFC (He et al., 2022) 90.1± 0.07 3.1± 0.07 97.3 76.9 - - - -
SAP (Diao et al., 2023) - - - - 92.4± 0.03 3.1± 0.03 94.9 84.9
PL (Chen et al., 2023) 90.2± 0.02 3.0± 0.02 97.6 92.0 - - - -
LRF (Joo et al., 2021) 90.3± 0.27 2.9± 0.27 97.8 93.0 91.5± 0.37 3.0± 0.37 95.1 85.8
FP-Backward 91.5± 0.08 1.7± 0.08 97.8 93.0 92.8± 0.15 1.7± 0.15 95.1 85.8
HBGS 92.7± 0.21 0.5± 0.21 98.2 94.5 93.9± 0.24 0.6± 0.24 95.3 86.2
HBGS-B 92.6± 0.19 0.6± 0.19 98.1 94.3 93.7± 0.22 0.8± 0.22 95.2 86.0
HBGTS 93.5± 0.25 -0.3± 0.25 98.6 94.8 94.7± 0.28 -0.2± 0.28 95.6 86.7
HBGTS-B 93.4± 0.22 −0.2± 0.22 98.5 94.6 94.6± 0.24 −0.1± 0.24 95.4 86.5

VGG16/CIFAR100 @ 98% ResNet18/CIFAR100 @ 95%

Method Test Acc
(%)

Acc ↓
(%)

Param ↓
(%)

FLOPs ↓
(%)

Test Acc
(%)

Acc ↓
(%)

Param ↓
(%)

FLOPs ↓
(%)

Dense 67.1± 0.01 0± 0 - - 68.8± 0.02 0± 0 - -
Random 55.5± 0.16 11.6± 0.16 98.0 86.0 54.9± 0.13 13.9± 0.13 93.1 84.2
EarlyCroP-S (Rachwan et al., 2022) 62.8± 0.52 4.3± 0.52 97.9 88.0 64.1± 0.45 4.7± 0.45 94.3 86.5
DLRFC (He et al., 2022) 63.5± 0.09 3.56± 0.09 97.1 53.7 - - - -
PL (Chen et al., 2023) 63.5± 0.03 3.6± 0.03 97.3 87.9 - - - -
LRF (Joo et al., 2021) 64.0± 0.31 3.1± 0.31 97.9 88.0 65.5± 0.29 3.3± 0.29 94.6 87.3
FP-Backward 66.2± 0.11 0.9± 0.11 97.9 88.0 67.9± 0.14 0.9± 0.14 94.6 87.3
HBGS 67.3± 0.17 −0.2± 0.17 98.3 89.6 69.1± 0.19 −0.3± 0.19 95.2 88.5
HBGS-B 67.2± 0.15 −0.1± 0.15 98.1 89.4 68.9± 0.16 −0.1± 0.16 95.1 88.3
HBGTS 67.8± 0.23 -0.7± 0.23 98.5 89.8 69.7± 0.26 -0.9± 0.26 95.4 88.6
HBGTS-B 67.6± 0.21 −0.5± 0.21 98.4 89.7 69.5± 0.23 −0.7± 0.23 95.3 88.5

ResNet56/CIFAR10 @ 63% ResNet32/CIFAR10 @ 63%

Method Test Acc
(%)

Acc ↓
(%)

Param ↓
(%)

FLOPs ↓
(%)

Test Acc
(%)

Acc ↓
(%)

Param ↓
(%)

FLOPs ↓
(%)

Dense 93.45± 0.02 0± 0 - - 92.49± 0.01 0± 0 - -
SFP (He et al., 2018) 92.91± 0.47 0.54± 0.47 63.19 52.60 91.94± 0.12 0.55± 0.12 63.02 41.50
FPGM (He et al., 2019) 93.14± 0.21 0.31± 0.21 63.21 52.60 91.79± 0.94 0.70± 0.94 63.14 53.20
HRank (Lin et al., 2020) 92.56± 0.05 0.89± 0.05 63.04 62.43 - - - -
LFPC (He et al., 2020) 92.89± 0.17 0.56± 0.17 63.25 52.90 91.98± 0.06 0.51± 0.06 63.05 52.60
CHIP (Sui et al., 2021) 92.88± 0.18 0.57± 0.18 63.12 62.08 - - - -
ASyminchange (El Halabi et al., 2022) 93.27± 0.11 0.18± 0.11 63.28 62.34 - - - -
LRF (Joo et al., 2021) 93.49± 0.13 −0.04± 0.13 63.35 62.56 92.52± 0.16 −0.03± 0.16 63.34 62.55
FP-Backward 93.88± 0.06 −0.43± 0.06 63.35 62.56 92.85± 0.04 −0.36± 0.04 63.34 62.55
HBGS 94.15± 0.09 −0.70± 0.09 63.87 64.91 93.06± 0.07 −0.57± 0.07 63.65 64.88
HBGS-B 94.12± 0.08 −0.67± 0.08 63.72 64.80 93.03± 0.05 −0.54± 0.05 63.63 64.78
HBGTS 94.38± 0.13 -0.93± 0.13 63.93 64.95 93.28± 0.12 -0.79± 0.12 63.76 64.92
HBGTS-B 94.35± 0.11 −0.90± 0.11 63.89 64.93 93.26± 0.09 −0.77± 0.09 63.75 64.90

ResNet56/CIFAR100 @ 98% ResNet32/CIFAR100 @ 98%

Method Test Acc
(%)

Acc ↓
(%)

Param ↓
(%)

FLOPs ↓
(%)

Test Acc
(%)

Acc ↓
(%)

Param ↓
(%)

FLOPs ↓
(%)

Dense 69.18± 0.01 0± 0 - - 68.48± 0.02 0± 0 - -
Random 52.64± 0.18 16.54± 0.18 97.90 87.32 58.61± 0.16 9.87± 0.16 97.45 86.90
LFPC (He et al., 2020) 62.83± 0.14 6.35± 0.14 97.25 88.18 61.78± 0.13 6.70± 0.13 97.13 87.67
DAIS (Guan et al., 2022) 61.23± 0.16 7.95± 0.16 97.49 88.36 60.34± 0.15 8.14± 0.15 97.25 88.12
GCNP (Jiang et al., 2022) 62.71± 0.15 6.47± 0.15 97.37 88.42 - - - -
DLRFC (He et al., 2022) 62.13± 0.19 7.05± 0.19 97.51 88.73 - - - -
LRF (Joo et al., 2021) 63.73± 0.25 5.45± 0.25 97.84 88.98 63.17± 0.21 5.31± 0.21 97.43 88.56
FP-Backward 67.66± 0.10 1.52± 0.10 98.12 89.24 66.92± 0.07 1.56± 0.07 97.87 89.13
HBGS 68.99± 0.15 0.19± 0.15 98.34 89.41 68.25± 0.14 0.23± 0.14 98.28 89.35
HBGS-B 68.82± 0.13 0.36± 0.13 98.27 89.32 68.13± 0.11 0.35± 0.11 98.23 89.31
HBGTS 69.52± 0.24 -0.34± 0.24 98.61 89.74 68.65± 0.19 -0.17± 0.19 98.46 89.71
HBGTS-B 69.39± 0.22 −0.21± 0.22 98.57 89.68 68.59± 0.16 −0.11± 0.16 98.38 89.63
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Figure 2: Test accuracy for (a) ResNet56/CIFAR100 (b) VGG16/CIFAR100 and (c) ResNet18/Tiny-
Imagenet with increasing parameter reduction.

To prune a Large Model: Our backward greedy search methods can be used for effectively pruning
large models that exceed the capacity of commodity GPUs. We use ResNext101 32x16d as our large model,
consisting of 193 M parameters and requires 7.62 GB of GPU memory for loading. Additionally, we use
ResNext101 32x8d as our smaller dense model, which has 88 M parameters and requires 3.91 GB for GPU
memory. Table 2 shows that when ResNext101 32x16d pruned to 98% parameter reduction using HBGTS-B,
achieves a test accuracy that matches its dense counterpart. Hence, we can efficiently deploy the pruned
model on edge devices with GPU memory less than 2GB. Furthermore, the pruned model takes 5.04 times
less GPU memory than the larger dense model. Notably, the pruned model even outperforms the smaller
dense model, ResNext101 32x8d.

Table 2: Comparison of pruning methods for ResNext101 32x16d (RN16) and a similar sized dense
ResNext101 32x8d (RN8) on CIFAR10 at 98% parameter reduction.

Method Test Acc
(%)

Acc ↓
(%)

Param ↓
(%)

FLOPs ↓
(%)

VRAM
(GB)

Dense RN16 92.1 0 - - 7.62
Dense RN8 91.8 0 - - 3.91
FP-Backward 92.9 -0.8 98.5 89.9 1.59
HBGS-B 93.0 -0.9 98.7 92.1 1.55
HBGTS-B 93.2 -1.1 98.8 94.3 1.51

Time Comparison: Figure 3(a) provides a comparison of uniform pruning methods in terms of pruning
times. We can see that our proposed method FP-Backward is faster than the best baseline FP-OMP by a
factor of 2 for a constant pruning ratio in each layer. This is also a fair comparison since the baseline methods
also prune a constant fraction of filters from each layer.

Figure 3(b) compares the pruning times of various non-uniform pruning methods. Our proposed methods
(HBGS, HBGS-B, HBGTS, and HBGTS-B) demonstrate superior computational efficiency compared to the baseline
EarlyCroP-S, a non-uniform pruning method. Notably, HBGS and HBGTS exhibit higher pruning times relative
to HBGS-B and HBGTS-B. Specifically, HBGS-B achieves a 54.40% and 56.16% reduction in pruning time
compared to HBGS for ResNet32 and ResNet56, respectively. Likewise, HBGTS-B shows a 55.03% and 57.58%
reduction in pruning time compared to HBGTS for ResNet32 and ResNet56, underscoring the effectiveness of
the backward elimination strategy. Further, as expected HBGTS is computationally more expensive compared
to HBGS with approximately double the time. The most efficient hierarchical pruning method (HBGS-B) takes
5 hours for ResNet32 (see Figure 3(b)) (for α = 5, number of filters removed in each round) compared to 1
hour taken by FP-OMP. The increase in time can be further reduced by pruning a higher number of filters
(α) in each round.
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Figure 3: Time comparison on ResNet/CIFAR10 at 63% parameter reduction.

4.3 Analysis of Backward Greedy Search Algorithms

We analyze the working of the proposed greedy search methods in terms of their pruning quality. Figure
4 illustrates a heat map showcasing the relative reconstruction error and the percentage of removed filters
for each layer across the pruning rounds, using HBGTS-B method for ResNet32 on the CIFAR-100 dataset
at 63% parameter reduction. The relative reconstruction error is calculated as ||yt

C,0−yt
C,c||2

||yt
C,0||2

where, yt
C,0 is

the output from the final classification layer when no pruning was done in any of the layers of the network
and yt

C,c is the output from the final classification layer when pruning was done at layer c. Both the relative
reconstruction error and the pruning percentage are depicted after every 7th round, each pruning 5 filters.
Examining Figure 4, we observe that the pruning percentage increases with each round, but not uniformly.
For example, layers 14 - 18 have higher pruning compared to layers 1-3. Relative reconstruction error also
decreases with pruning rounds but is not uniform across layers. From the heat maps, it is evident that our
method selects the layer with the least relative reconstruction error for pruning. For example, layers 14 -
18 have moderate relative reconstruction errors in the initial pruning rounds, so the pruning percentage is
also not so high for the same. As the pruning rounds increase, the relative reconstruction error decreases for
layers 14 - 18 and hence more pruning is done from those layers as visible in the latter rounds in Figure 4.
This is in contrast to uniform pruning approaches, where pruning is uniformly applied across each layer.

To understand the intuition behind the filter choices for pruning using HBGTS-B, we present a visualization
diagram of feature maps for two layers: Layer 2 (pruned by 31.25%) and Layer 10 (pruned by 93.75%). By
examining feature maps in Figure 5 (top row), we can observe that, Layer 2 exhibits a diverse range of
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Figure 4: Heat map for relative reconstruction error and pruning percentage while pruning ResNet32 on
CIFAR100 at 63% parameter reduction.
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Figure 5: Visualisation of output feature map of ResNet32 2nd layer (top row) and
10th layer (bottom row) on CIFAR100

31.25% pruned

93.75% pruned

filter outputs, indicating their effectiveness in capturing various input features. Consequently, our proposed
method prunes only 31.25% of the filters in Layer 2 (as shown in the last column of pruning percentages in
Figure 4). Similarly, Figure 5 (bottom row) displays feature map outputs from Layer 10, which appear very
similar, indicating redundancy in filter outputs. This observation aligns with the pruning percentages shown
in the last column of Figure 4, where Layer 10 has 93.75% of its filters removed. Thus, we can conclude that
pruning percentages yielded by HBGTS-B are indicative of the amount of information carried by each filter in
each layer. Filters with more diverse outputs are retained, while those with redundant outputs are pruned.

5 Conclusion

In this paper, we propose HBGS and HBGTS as pruning methods that optimize deep neural networks by
reducing the number of parameters while maintaining or even improving their accuracy. The proposed
pruning methods are based on sparse approximation for non-uniform pruning, enabling the removal of
redundant filters regardless of the layer they are present in. We demonstrate our method’s consistent
performance across various architectures, kernel sizes, and block types through extensive experiments on
various datasets. We also propose HBGS-B, and HBGTS-B as efficient filter pruning methods, which offer
significant advantages in terms of time efficiency compared to HBGS, and HBGTS. The proposed method can
in principle be applied to any linear approximation-based pruning technique, one way of applying it to
transformer-based models is pruning the filters in the feed-forward network (FFN).
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A Proofs of Results

A.1 Weight compensation for multiple channel pruning

Result 1: Given Zk, Z ′
k, gj,k, g′

l,k, and λj,l, j = 1, ..., n; l ∈ S estimated using the filter pruning process.
Letting g′

l,k = gl,k +
∑

l′∈Sc λl′,l ∗ gl′,k, ∀l ∈ S, k = 1, ..., n, ensures that Zk − Z ′
k =

∑
l′∈Sc X ∗ ϵl′ ∗ gl′,k,

where ϵl′ is the error vector for the estimation of removed filter l′ ∈ Sc, and Sc denotes the set of all removed
filters.

Proof. Consider the input and output of any K × K convolution layer to be X = {X1, ..., Xm} and
Y = {Y1, ..., Yn}. Y goes as an input to the 1 × 1 convolution. Let the output of the 1 × 1 convolution
layer be Z = {Z1, ..., Zn}, followed by f ∈ Rm×n and g ∈ Rn×n being the filter weights of K ×K and 1× 1
convolution layer respectively. We can formulate the above setup as:

Yj =
m∑

i=1
Xi ∗ fi,j := X ∗ f:,j (6)

Zk =
n∑

j=1
Yj ∗ gj,k :=

n∑
j=1

X ∗ f:,j ∗ gj,k (7)

Now, let f:,l : l ∈ S be the selected filter weights and similarly, let f:,l′ : l′ ∈ S′ be the pruned filter weights.
Dividing Equation 7 into the two sets of filter weights, we get:

Zk =
∑
l∈S

X ∗ f:,l ∗ gl,k +
∑

l′∈S′

X ∗ f:,l′ ∗ gl′,k (8)

Following the above terminology, we can write it as:

f:,l′ =
∑
l∈S

λl′,lf:,l + ϵl′ ;∀l′ ∈ S′ (9)

Substituting Equation 9 in Equation 8, we rewrite Zk as Z ′
k in terms of retained filter weights f:,l:

Z ′
k =

∑
l∈S

X ∗ f:,l ∗ gl,k +
∑

l′∈S′

X ∗ (
∑
l∈S

λl′,lf:,l + ϵl′) ∗ gl′,k (10)

The above can also be re-structured as:

Z ′
k=

∑
l∈S

[X ∗ f:,l ∗ (gl,k +
∑

l′∈S′

λl′,l ∗ gl′,k)] +
∑

l′∈S′

X ∗ ϵl′ ∗ gl′,k (11)

Once the pruning is performed, Equation 8 reduces to∑
l∈S

X ∗ f:,l ∗ gl,k (12)

and Equation 11 reduces to ∑
l∈S

[X ∗ f:,l ∗ (gl,k +
∑

l′∈S′

λl′,l ∗ gl′,k)] (13)

Thus, the weight difference after pruning, for Zk and Z ′
k, are

∥
∑

l′∈S′ X ∗ f:,l′ ∗ gl′,k∥ and ∥
∑

l′∈S′ X ∗ ϵl′ ∗ gl′,k∥ respectively. Because ϵl′ < f:,l′ , the weight difference in
using Z ′

k is lesser than that of Zk. Also, the lower the difference in weights, the better the approximation.
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Hence, we use Equation 13 for the weight compensation step to have a lesser weight difference and define the
following step:

g′
l,k = gl,k +

∑
l′∈S′

λl′,l ∗ gl′,k ;∀k ∈ [1, n], ∀l ∈ S (14)

For output channel pruning, Equation 14 is re-defined as

g′
l,: = gl,: +

∑
j∈Sc

λj,l ∗ gj,: ,∀l ∈ S (15)

while input channel pruning is re-defined as

g′
:,l = g:,l +

∑
j∈Sc

λj,l ∗ g:,j ,∀l ∈ S (16)

A.2 Backward Elimination Algorithm for Filter Pruning

Result 2: Given the definitions of A−k, dk, and γk, the following relation holds:∑
j BT

:,jA−k(AT
−kA−k)−1AT

−kB:,j =
∑

j BT
:,jA(AT A)−1AT B:,j −

∑
j

1
γk
|dT

k B:,j |2 hence, E(A−k, B) =
E(A, B) +

∑
j=1,...,n

1
γk
|dT

k B:,j |2.

Proof. Given a matrix A ∈ Rm×n, m ≥ n, with column rank n, and an observation matrix B ∈ Rm×j . The
best least-squares solution to Aλ = B with at most r nonzero components is defined as the solution that
minimizes the least-squares criterion.

Err(λ) =
∑

j

||B:,j −Aλ:,j ||22 (17)

Unconstrained least-squares solution of Aλ = B is λ:,j = (AT A)−1AT B:,j . Substituting in Equation 17, we
obtain

Err(λ) =
∑

j

||B:,j −A(AT A)−1AT B:,j ||2

=
∑

j

(BT
:,jB:,j −BT

:,jA(AT A)−1AT B:,j)
(18)

Note that only the second term is a function of A; therefore, maximizing BT
:,jA(AT A)−1AT B:,j with respect

to combinations of columns comprising A is equivalent to minimizing Equation 17 with respect to the
combination of nonzero components in the solution.

Let A−k is A with the kth column deleted. Errk can be written as

Errk =
∑

j

(BT
:,jB:,j −BT

:,jA−k(AT
−kA−k)−1AT

−kB:,j) (19)

A simple update formula for the second term of Equation 18 can be obtained from (Reeves, 1999).∑
j

BT
:,jA−k(AT

−kA−k)−1AT
−kB:,j

=
∑

j

(BT
:,jA(AT A)−1AT B:,j −

1
γk
|dT

k B:,j |2)
(20)

From this result, it is clear that we only need to compare
∑

j
|dT

k B:,j |2

γk
for all k and eliminate the column

whose corresponding value is smallest. Note that γk is the kth diagonal element of (AT A)−1, and dT
k B:,j is

the kth element of the solution vector (AT A)−1AT B:,j . Hence we can say,
k∗ = mink(Errk) (21)

k∗ = mink

∑
j

|dT
k B:,j |2

γk
(22)
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