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Abstract

In predictive modelling for high-stake decision-making, predictors must be not only

accurate but also reliable. Conformal prediction (CP) is a promising approach for

obtaining the coverage of prediction results with fewer theoretical assumptions. To

obtain the prediction set by so-called full-CP, we need to refit the predictor for all

possible values of prediction results, which is only possible for simple predictors. For

complex predictors such as random forests (RFs) or neural networks (NNs), split-CP is

often employed where the data is split into two parts: one part for fitting and another

for computing the prediction set. Unfortunately, because of the reduced sample size,

split-CP is inferior to full-CP both in fitting as well as prediction set computation. In

this paper, we develop a full-CP of sparse high-order interaction model (SHIM), which

is sufficiently flexible as it can take into account high-order interactions among vari-

ables. We resolve the computational challenge for full-CP of SHIM by introducing a

novel approach called homotopy mining. Through numerical experiments, we demon-

strate that SHIM is as accurate as complex predictors such as RF and NN and enjoys

the superior statistical power of full-CP.

1 | INTRODUCTION

The uncertainty in data-driven analysis is a major concern, particularly in risk-sensitive automated decision-making problems (for example, in med-

ical diagnosis and criminal justice). Several strategies exist to quantify the uncertainty of a point estimator. For example, the Bayesian approach

(Clyde et al., 2021) can provide a strong coverage bound, but requires the assumption on prior distribution. The PAC analysis is another approach

that provides bounds on the probability of error (Alquier, 2021; Shawe-Taylor & Williamson, 1997). As another direction, selective inference has

been studied for quantifying the uncertainty of data-driven knowledge (Das et al., 2021; Duy et al., 2020; Fithian et al., 2014; Le Duy &

Takeuchi, 2021; Lee et al., 2016). The conformal prediction (CP) is one such uncertainty quantification method that is very generic, and it is appli-

cable to almost any point estimators (Shafer & Vovk, 2008; Vovk et al., 2005). The CP method has recently gained significant attention (Barber

et al., 2023; Gibbs et al., 2023; Lei & Candès, 2021) as it can provide valid finite sample statistical coverage guarantee at any nominal level as long

as data are independently and identically distributed (i.i.d.). The coverage guarantee provided is valid even when the model is misspecified. In this

paper we are interested in the full-CP where the full data is used to compute the CP set. An alternative to this approach is the split-CP in which

the data is split into two parts: one part is used for fitting and the remaining part is used for computing the CP set. The essential idea of the full-

CP framework can be stated as follows: Given a training set Dn ¼fðx1,y1Þ,…,ðxn,ynÞg,and a test input instance xnþ1 which are both i.i.d., the goal
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of the CP is to construct a 100ð1�αÞ% prediction set that contains the unobserved ynþ1. Here, α� ½0,1� represents the coverage level. In other

words, we are interested in all possible cases of the augmented dataset in the form of Dn[ðxnþ1,τÞ, such that ynþ1 ¼ τ is typical for the known data

fDn,xnþ1g. This typicality is measured by a typicalness function πð�Þ, which is also called the p-value in analogy to the classical hypothesis testing.

In other words, the CP set for xnþ1 is defined as the set of all τ for which the null hypothesis H0 : ynþ1 ¼ τ is not rejected against the alternative

hypothesis H1 : ynþ1 ≠ τ. In the CP, although the coverage property is satisfied even when the model is misspecified, it is better to use sufficiently

complex models for complex data because this enables us to obtain a more compact prediction set (i.e., shorter prediction intervals). Furthermore,

it is important to note that the prediction set obtained by a full-CP is more compact than that obtained by a split-CP because only a part of

instances in the available dataset is used for constructing the prediction set in split-CP. This means that it is valuable to construct a full-CP algo-

rithm for sufficiently complex models. In this paper, we considered the sparse high-order interaction model (SHIM) which can represent complex

nonlinear relationship, and proposed a homotopy-mining method to efficiently compute the full-CP set. We call the resulting machine as SHIM con-

fidence machine. SHIM is formulated as a weighted sum of conjunction rules that are highly interpretable as well as accurate decision sets

(Lakkaraju et al., 2016; Das et al., 2019). SHIM can capture the combinatorial interactions of multiple factors, which can prove to be beneficial for

deciphering complex data. A conjunction rule of a SHIM looks like

Ið�1:5≤ x�,1 ≤2:3Þ^ Iðx�,3 ≥20:0Þ^ Iðx�,5 ≤7:5Þ,

where Ið�Þ refers to the indicator function. An intuitive illustration of a SHIM is shown in Figure 1A.

Related works: Since its inception, there have been several extensions and applications of the CP framework in diverse directions. Examples

include the choice of conformity score and statistical efficiency (Lei & Wasserman, 2014; Lei et al., 2013), high-dimensional regression (Lei et al.,

2018), classification (Lei, 2014; Sadinle et al., 2019), active learning (Ho & Wechsler, 2008), time series (Xu & Xie, 2021), few-shot learning (Fisch

et al., 2021), text and speech completion (Dey et al., 2021), image classification (Angelopoulos et al., 2020), outlier detection (Laxhammar &

Falkman, 2015; Bates et al., 2021). Recently, some approximate computation of the conformal set was proposed for regression in Ndiaye and

Takeuchi (2019); Ndiaye and Takeuchi (2021); Abad et al. (2022) and for classification, significant advancement has been made in Cherubin et al.

(2021) to compute exact full-CP.

Despite its attractive properties, the application of exact, full-CP in many practical problems remains an open problem owing to its high

computational cost. By definition, the full-CP framework requires the refitting of model by augmenting the data for every possible candidate

8τ�ℝ of the unobserved ynþ1. It means that in a regression setting, one needs to refit the model an infinite number of times for all possible candi-

dates on the real line ð8τ�ℝÞ, and check the conformity by computing the p-values πðτÞ.
Hence, an efficient computation of the full-CP set is possible only for a handful of simple models (e.g., ordinary least square regression (OLS),

ridge regression) in which the solution is explicitly represented as a function of τ. This enables us to derive closed-form full-CP sets and avoids an

exhaustive search over the real line (Nouretdinov et al., 2001). Recently, Lei (2019) proposed a homotopy method to efficiently compute the full-

CP set of the LASSO. The homotopy method exploits the piece-wise linearity of the LASSO solutions and avoids the computational burden of all

F IGURE 1 (a) An intuitive illustration of a SHIM solution space, which is a hyper rectangle (i.e., generalization of a rectangle for higher
dimensions that essentially represents a cartesian product of intervals). The decision sets, the predicted response ðŷÞ and the associated
prediction interval for a randomly chosen example of data from the ProPublica 2-year recidivism criminal justice (COMPAS) dataset (Larson et al.,
2016) are shown. (b) A tree of patterns has been constructed by exploiting the hierarchical structure of high-order interaction features (Note: not
all patterns appear due to pruning)
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possible candidates of ynþ1 (see Section 3 for details). Unfortunately, such a structure does not exist for most of the models, and the application

of full-CP is still an open question for complex models that can represent complex nonlinearity such as a random forest (RF), neural network

(NN) etc., for which split-CP has been the only possible choice.

Contribution: Our main contribution in this paper is to develop an efficient algorithm to conduct exact full-CP for SHIM which can capture

complex structures in the data by considering high-order interaction features. The exact full-CP for complex black box models such as RF and NN

are intractable and an efficient computational method does not exist. For such black box models only split-CP has been possible. As of today, an

efficient exact full-CP is possible only for simple regression models such as LASSO, ridge regression, and OLS. The proposed method adds SHIM

to that list. To the best of our knowledge, this is also the first attempt to construct a conformal prediction set in the context of pattern mining

model which is fitted with branch and bound approach. We also extended our framework to the elastic net and provided an algorithm to compute

the exact full-CP set efficiently. The proposed method enables us to obtain a more compact prediction set (more compact than linear and compa-

rable to non-linear models) by the full-CP for sufficiently flexible and complex SHIM. A SHIM uses higher-order interaction features and hence,

the full-CP is computationally challenging; but we overcome this difficulty by introducing a method called homotopy mining which exploits the best

of both homotopy and (pattern) mining methods. The computation of an exact full-CP for SHIM by homotopy mining can be interpreted as an

extension of LASSO's exact full-CP in Lei (2019). The use of flexible but explainable machine learning models in high-stakes decision-making such

as in healthcare, criminal justice, and other domains is highly appreciated in the literature (Angelino et al., 2018; Rudin, 2019). We believe that the

exact full-CP of SHIMs has significant importance in practice where accuracy, statistical reliability, and interpretability are important. When a prac-

titioner chooses SHIM as a predictor, the proposed method provides a computationally efficient solution to quantify the coverage of the predic-

tion results. The source code is available at https://github.com/DipteshDas/CP-SHIM.

Notation: In this paper, for a natural number a, we use a notation ½a� ¼ f1,2,…,ag, the response vector of n instances is represented as y�ℝn,

while yðτÞ�ℝnþ1 is the augmented response vector constructed by augmenting the possible response value τ�ℝ of the ðnþ1Þth instance with y.

Later we define yðτÞ as a function of the variable τ as the vector yðτÞ changes for different possible response value τ. The yi �ℝ,8i� ½nþ1�, repre-
sents the scalar response of the ith instance, X�ℝðnþ1Þ�p is the design matrix of all ðnþ1Þ instances, each having p features, xℓ �ℝnþ1 is the ℓth

column vector of X for ℓ� ½p�,XAτ �ℝðnþ1Þ�jAτ j ⊆X is a smaller design matrix in which the columns are restricted to the elements of some subset

Aτ ⊆ ½p�.

2 | PROBLEM STATEMENT

Consider a regression problem with a response vector y�ℝn and m original covariate vectors z1,…,zm, where zℓ �ℝn and ℓ� ½m�. A high-order

interaction model up to the dth order is then written as follows:

y¼
X

ℓ1 � ½m�
θℓ1 zℓ1 þ

X
ðℓ1,ℓ2Þ � ½m��½m�

ℓ1 ≠ ℓ2

θℓ1,ℓ2zℓ1 zℓ2 þ… þ
X

ðℓ1,…,ℓdÞ � ½m�d
ℓ1 ≠ ::: ≠ ℓd

θℓ1,…,ℓd zℓ1…zℓd
þϵ, ð1Þ

where zℓ1…zℓd is the element-wise product, scalar θ represents the coefficient and ϵ is the noise with EðϵjXÞ¼0. In this study, we mainly consider

each element of the original covariate vector zℓ � f0,1gn. However, our model is equally applicable to covariate vectors defined in the domain

½0,1�n. To simplify the notation, it is convenient to write the high-order interaction model in (1) using the following matrix of concatenated vectors

of all high-order interactions:

X¼ ½z1,…,zm|fflfflfflffl{zfflfflfflffl}
1storder

,…,z1…zd,…,zm�dþ1…zm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dthorder

��ℝn�p,

where p :¼Pd
κ¼1

m

κ

� �
. Similarly, the coefficient vector associated with all possible high-order interaction terms can be written as follows:

β :¼ ½θ1,…,θm|fflfflfflfflffl{zfflfflfflfflffl}
1storder

,…,θ1,…,d,…,θm�dþ1,…,m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dthorder

� > �ℝp:

The high-order interaction model (1) is then simply written as a linear model y¼Xβþϵ: Unfortunately, p can be prohibitively large unless both m

and d are fairly small. In the SHIM, we consider a sparse estimation of a high-order interaction model. An example of a SHIM is as follows:

A CONFIDENCE MACHINE FOR SPARSE HIGH-ORDER INTERACTION MODEL 3 of 13
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y¼ θ3z3þθ5z5þθ2,6z2z6þθ1,2,5,9z1z2z5z9þϵ:

Before delving into our proposed method, we briefly overview the conformal prediction framework.

2.1 | Conformal prediction

A mere point estimation is insufficient for risk-sensitive automated decision-making problems (Angelino et al., 2018; Das et al., 2019;

Rudin, 2019), such as in medical diagnosis and criminal justice. In such high-stake decision-making problems, if the estimators are equipped with

the associated coverage information, the decision maker will be more informed and sufficiently confident to make a prudent decision when the

stakes are high.

Full-CP: Given a labelled dataset Dn and a new observation xnþ1, the goal of the full-CP framework is to construct a set of likely values Cðxnþ1Þ of
an unobserved ynþ1 with a valid statistical coverage guarantee (Shafer & Vovk, 2008; Vovk et al., 2005), that is,

Pðynþ1 � Cðxnþ1ÞÞ≥1�α, ð2Þ

where α� ½0,1� determines the level of coverage. If we define a prediction function μð�Þ that maps the input X to the output y, then the essential

idea of constructing a full-CP set is to fit a model μτð�Þ with the augmented data Dn[ðxnþ1,τÞ for every possible candidate τ�ℝ and compare the

prediction error of each instances. More precisely, let yðτÞ¼ ½y1,…,yn,τ� > �ℝnþ1 be a vector augmented with τ. We define a score function that

measures how well the model can predict each output variables; with the constraint that it should not depend on the order of the data instances

(Lei, 2019). One such conformity score function generally used in linear regression setting is the (coordinate-wise) absolute residual, that is,

SðτÞ¼ jyðτÞ�μτðXÞj,

where we stack the input vectors in the design matrix X¼ ½x1,…,xnþ1� > in ℝðnþ1Þ�p. The conformity function can now be defined as

πðτÞ¼1� 1
nþ1

Xnþ1

i¼1

1SiðτÞ ≤ Snþ1ðτÞ,

which evaluates how the prediction of the candidate τ using the fitted model μτðxnþ1Þ is ranked compared to the prediction of the previously

observed data yi using μτðxiÞ. The conformal set is defined as

Cðxnþ1Þ¼ fτ : πðτÞ≥ αg, ð3Þ

which is merely the collection of candidates whose conformity is large enough. Vovk et al. (2005) showed that the defined conformal set Cðxnþ1Þ
satisfies the coverage guarantee (2) as long as the data are i.i.d.

Split-CP: In split-CP (Papadopoulos et al., 2002), the data set Dn is split into two parts, defined as the training set Dtr ¼fðx1,y1Þ,…,ðxn0 ,yn0 Þg and

the calibration set Dcal ¼fðxn0þ1,yn0þ1Þ,…,ðxn ,ynÞg, with n0 < n. Then the model (μtrð�Þ) is fit with the training set Dtr only once, and the p-values,

denoted as πsplitð�Þ, are determined using the calibration set Dcal as follows.

πsplitðτÞ¼1� 1
n�n0

Xn
i¼n0þ1

1Scali ðτÞ ≤ Snþ1ðτÞ,

where Scali ðτÞ¼ jyi�μtrðxiÞj,8i� ½n0 þ1,n�. Therefore, the split-CP can be defined as follows:

Csplitðxnþ1Þ¼ fτ : πsplitðτÞ≥ αg,

When the conformity score is defined as the absolute residual, then the split-CP set can be conveniently written as

Csplitðxnþ1Þ¼ μtrðxnþ1Þ�Qcal
1�α

h i
, where Qcal

1�α is the ð1�αÞ quantile of the calibration scores Scali ,8i� ½n0 þ1,n�.

4 of 13 DAS ET AL.
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Although split-CP enjoys the computational efficiency of single model fitting, it suffers from the poor statistical efficiency owing to the smaller

sample size both in the model fitting and calibration phases.

Aggregate split-CP: To overcome the drawbacks of split-CP, cross-conformal prediction was introduced in Vovk (2015) and Vovk et al. (2018)

where the dataset is partitioned into K folds and one performs a split conformal prediction by sequentially defining the kth fold as the calibration

set and the remaining as the training set for k� ½K�. The main difficulty lies in aggregating the different p-values while maintaining the validity of

the method (see Carlsson et al. (2014); Linusson et al. (2017)).

Other works in this direction are Bonferroni-type aggregation (Lei & Wasserman, 2014; Solari & Djordjilovi�c, 2022), Cauchy-type aggregation

(Wu et al., 2023), out-of-bag ensemble (Gupta et al., 2022) and resampling techniques (Dunn et al., 2022). However, all these methods either

depend on strong stability assumption of the underlying model or overly conservative. In general, it can be shown that the coverage level is

inflated by a factor of 2, that is, theoretical coverage level is 1�2α instead of 1�α, which is not improvable (see Barber et al. (2021)). Neverthe-

less, the practical performance is acceptable both computationally and statistically.

However, in this paper we are only interested in methods that provides a coverage level of 1�α. Hence, in our experiments we mainly com-

pared our proposed methods with traditional split-CP that provides a coverage guarantee of 1�α. However, for the sake of completeness we also

provided additional results in the supporting information (B. Additional Results and Experimental Details) where we compared our method with

aggregate split-CP methods such as jackknife and jackknjife+.

3 | PROPOSED METHOD

We propose a homotopy-mining method to compute the exact full-CP set of a SHIM. The homotopy method refers to an optimization framework

for solving a sequence of parameterized optimization problems. The basic idea of our method is to consider the following optimization problem:

βðτÞ� arg min
β � ℝp

1
2

yðτÞ�Xβk k22þλ βk k1: ð4Þ

By the optimality conditions, at optima, it holds

X > XβðτÞ�yðτÞð ÞþλsðτÞ¼0,

where for any ℓ in ½p�,

sℓðτÞ�
f�1, þ1g ifβℓðτÞ≠0,

½�1,þ1� ifβℓðτÞ¼0:

�

Let us define the active set

Aτ ¼ ℓ� ½p� : x >
ℓ wðτÞ�� ��¼ λ

� �
, ð5Þ

where

wðτÞ¼ yðτÞ�XβðτÞ ð6Þ

is the residual (Efron et al., 2004). Lei (2019) showed that for a fixed λ, the exact solution path of LASSO with a variable response yðτÞ, character-
ized by τ can be shown to be piece-wise linear as stated in Proposition 3.1.

Proposition 3.1. If βðτÞ have the same sign between two points τ1 and τ2, that is, signðβðτ1ÞÞ¼ signðβðτ2ÞÞ¼ signðβðτÞÞ for any

τ� ½τ1,τ2Þ, then Aτ ¼Aτ1 . Furthermore, assuming that X >
Aτ
XAτ is invertible, we have the linear relations

βAτ
ðτ2Þ ¼ βAτ

ðτ1Þþðτ2� τ1Þ�νAτ ðτÞ,
sAc

τ
ðτ2Þ ¼ sAc

τ
ðτ1Þþðτ2� τ1Þ� γAc

τ
ðτÞ=λ,

where the direction vectors are defined as

A CONFIDENCE MACHINE FOR SPARSE HIGH-ORDER INTERACTION MODEL 5 of 13
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νAτ ðτÞ¼ X >
Aτ
XAτ

	 
�1
xnþ1,Aτ ,

γAc
τ
ðτÞ¼ xnþ1,Ac

τ
� X >

Ac
τ
XAτ

	 

νAτ ðτÞ:

For simplicity, we will denote the step size Δ¼ τ2� τ1 > 0.

We call the mapping τ 7!βðτÞ the τ-path and the number of linear pieces of this τ-path is upper bounded by the number of all possible signs

3p. Note that the possible values of signðβÞ are �1, 0 and +1. This τ-path can be computed exactly using homotopy method (Efron et al., 2004;

Mairal & Yu, 2012; Rosset & Zhu, 2007) that sequencially tracks and updates the sign and active set of the optimal solution by exploiting its linear-

ity between each two consecutive transition points of direction (νAτ ðτÞ,γAc
τ
ðτÞ) changes. At every consecutive step, represented by τt and τtþ1,

where t is an index of the transition points (kinks) of the τ-path, either of the following two events occurs:

• a zero variable becomes non-zero, that is,

9ℓ�Ac
τt
s:t: x >

ℓ wðτtþ1Þ
�� ��¼ λor;

• a non-zero variable becomes zero, that is,

9ℓ�Aτt s:t:βℓðτtÞ≠0; butβℓðτtþ1Þ¼0:

Overall, the next change in the active set (or change in direction vectors) occurs at τtþ1 ¼ τtþΔℓ ∗ , such that

Δℓ ∗ ¼ minðΔ1ðℓ ∗
1 Þ,Δ2ðℓ ∗

2 ÞÞ, ð7Þ

where

ℓ ∗
1 ¼ arg min

ℓ �Aτt

Δ1ðℓÞ,

ℓ ∗
2 ¼ arg min

ℓ �Ac
τt

Δ2ðℓÞ, and

Δ1ðℓÞ ¼ �βℓðτtÞ
νℓðτtÞ

	 

þþ

,

Δ2ðℓÞ ¼ λ
signðγℓðτtÞÞ�x >

ℓ
wðτtÞ

γℓðτtÞ
	 


þþ
:

Here, we use the convention that for any a�ℝ,ðaÞþþ ¼ a if a>0 and ∞ otherwise. However, naively (by simply minimizing over all possible

interaction terms) determining the step size of inclusion ðΔ2ðℓ ∗
2 ÞÞ will be intractable for the SHIM type problem. In SHIM, the search space grows

exponentially due to the combinatorial effect of high-order interaction terms. Therefore, both the fitting and constructing the full-CP set of a

SHIM are non-trivial because unless both m and d are very small, a high-order interaction model will have a significantly large number of parame-

ters to be considered. Several algorithms for fitting a sparse high-order interaction model have been proposed in the literature (Nakagawa et al.,

2016; Saigo et al., 2009; Tsuda, 2007). A common approach adopted in these existing works is to exploit the hierarchical structure of high-order

interaction features.

In other words, a tree structure as in Figure 1b is considered and a branch-and-bound strategy is employed in order to avoid handling all the

exponentially increasing number of high-order interaction features. Hence, we need efficient computational methods to make the computation

practically feasible.

In the following section, we present an efficient tree pruning strategy that considers the tree structure of the interaction terms (or patterns).

Here, each node of the tree represents an interaction term. The basic idea of tree pruning is that we construct a tree of interaction terms in a ‘pro-
gressive manner’. That is, we keep track of the current minimum step size of inclusion up to the construction of ℓth pattern as we construct the

tree progressively, and prune a large part of the tree if some bound condition fails (Lemma 3.2).

6 of 13 DAS ET AL.
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3.1 | Tree pruning (τ-path)

Definition of tree: A tree is constructed in such a way that for any pair of nodes (ℓ,ℓ0Þ, where ℓ is the ancestor of ℓ0, that is, ℓ�ℓ0 , the following

conditions are satisfied 8i� ½nþ1�:

xiℓ0 ¼1 ) xiℓ ¼1, andxiℓ ¼0 ) xiℓ0 ¼0:

The basic idea of our tree pruning condition is stated below. The equicorrelation condition for any active feature k�Aτ at a fixed λ can be written

as x >
k wðτÞ�� ��¼ λ (see (5)). Therefore, at τ¼ τtþ1 such that τtþ1 ¼ τtþΔ2ðℓÞ, any non-active feature ℓ�Ac

τt
becomes active if

x >
ℓ wðτtþ1Þ

�� ��¼ x >
k wðτtþ1Þ

�� ��: ð8Þ

Now, using the triangular inequality, one can show that (8) will not have any solution if

jρℓðτtÞjþΔ2ðℓÞðjηℓðτtÞjþxnþ1,ℓÞ< jρkðτtÞj�Δ2ðℓÞðjηkðτtÞjþxnþ1,kÞ, ð9Þ

where

ρℓ ¼ x >
ℓ wðτtÞandηℓ ¼ x >

ℓ vðτtÞ 8ℓ�Ac
τt
,

ρk ¼ x >
k wðτtÞandηk ¼ x >

k vðτtÞ 8k�Aτt ,

vðτtÞ ¼XAτt
νAτt

ðτtÞ:

Therefore, (9) can be used to derive the pruning condition of the τ-path which is formally stated in Lemma 3.2.

Similar idea has been used in the context of graph mining Tsuda (2007) and selective inference of SHIM Das et al. (2021). Note that Tsuda

(2007) provided a pruning condition for the exact regularization of graph data (λ-path) and Das et al. (2021) provided a pruning condition in the

context of selective inference to characterize the conditional distribution of the test statistics. However, in our case, we adapted the similar idea

to compute the exact full-CP set of SHIM.

Lemma 3.2. For any given node ℓ, if Δ2ðℓ†
2Þ is the current minimum step size, that is,

ℓ
†
2 ¼ arg min

j � f1,2,…,ℓg \Ac
τ

Δ2ðjÞ,

then 8ℓ0 �ℓ,Δ2ðℓ0Þ≥Δ2ðℓ†
2Þ if

bℓðwðτtÞÞþΔ2ðℓ†
2ÞðbℓðvðτtÞÞþxnþ1,ℓÞ< jρkðτtÞj�Δ2ðℓ†

2ÞðjηkðτtÞjþxnþ1,kÞ, ð10Þ

where we defined for a vector a�ℝnþ1

bℓðaÞ :¼ max
X
ai >0

jaijxiℓ,
X
ai <0

jaijxiℓ
( )

:

The Lemma 3.2 essentially states that if the condition in (10) is satisfied, then one can safely ignore the subtree with ℓ as the root node, thereby

dramatically improving the computational efficiency.

We extended our method to elastic net and call it ENet-SHIM. The details of ENet-SHIM, proof of Lemma 3.2, and the algorithms to compute

the exact full-CP of SHIM are provided in the supporting information (A. Additional Technical Details).

4 | RESULTS AND DISCUSSIONS

We evaluated our proposed method using both synthetic and real-world data. For all experiments, we considered a coverage guarantee of 90%,

that is, α¼0:1. We compared the statistical efficiency of our proposed method (SHIM) with those of other simple (LASSO) and complex models

A CONFIDENCE MACHINE FOR SPARSE HIGH-ORDER INTERACTION MODEL 7 of 13
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(NN, RF). For the complex models, we reported the split-CP because it is the only available method for computing the CP for complex models.

We also demonstrated the statistical efficiency of full-CP in comparison to that of split-CP both for LASSO and SHIM. We used shorthand nota-

tions _s and _f to represent split-CP and full-CP respectively and the number before s=f represents the maximum order of interactions considered.

For example in Table 1, shim_2s and shim_2f respectively represent split-CP and full-CP of a 2nd-order SHIM. We used a multi-layer perceptron

(MLP) as a neural network architecture in our experiments.

4.1 | Comparison of statistical efficiencies

4.1.1 | Synthetic data experiments

We generated random i.i.d. samples ðZi,yiÞ� f0,1gm�ℝ, i� ½n� in such a way that 100mð1�ζÞ% features of Zi �ℝm contain a value of 1 on aver-

age. Here, ζ� ½0,1� is a parameter that controls the sparsity of the design matrix, whereas the sparsity in the model coefficients are controlled by

the regularizer λ. The effectiveness of the pruning (Figure 5 and Table 3) depends on the sparsity of the design matrix as it exploits the tree's anti-

monotonicity property. High dimensional real-world data is generally very sparse and the choice of ζ in our experiments is just for the demonstra-

tion purpose.

The response yi �ℝ is randomly generated from a normal distribution Nð2μðZiÞ,σ2Þ. For demonstration purposes, we considered a true model

of up to fifth-order interactions, which is defined as μðZiÞ¼ zi1þ zi1zi2þ zi1zi2zi3þ zi1zi3zi4zi5þ zi1zi2zi3zi4zi5, and set σ¼1. The choice of this

model is merely for the demonstration purposes, and the proposed method is equally applicable to any chosen model. We used the same true

model μðZiÞ in both low and high dimensional settings (Tables 1 and 2 and Figure 2).

In the low-dimensional setting, we considered a training dataset of 150 instances and m¼10 original covariates, whereas for the high-

dimensional setting, we considered a training dataset of 150 instances and m¼100. We kept the sparsity of the design matrix fixed at ζ¼0:4 in

the both settings. We varied the order of interactions d¼2,3,…; however, in almost all the experiments, we found that the model get saturated

after 3rd order interactions (i.e., the performance of SHIM did not change much for d≥3). Hence, we reported the results of up to 3rd order inter-

actions. Note that the maximum order of interactions d is not needed to be specified beforehand. Our pruning condition takes care of the case

even when d is not specified that is when the whole search space is considered (Figure 5 and Table 3). Later, we provided results (Figures 3

and 4) where we did not impose any constraints on the maximum pattern (max-pat) size d. For the both settings (low and high), we generated a

test dataset of 50 instances. We generated 5 such independent random datasets and repeated the experiments 3 times. Hence, in total we

reported the average results of 15 independent datasets, that is, 3�5�50¼750 test instances were considered. The details of the hyper param-

eter selection are given in the supporting information (B. Additional Results and Experimental Details).

From Tables 1 and 2 it can be observed that both in low- and high-dimensional settings, all the methods produced perfect (or nearly perfect)

coverage¼0:90. The statistical efficiency of individual methods are compared using the length of prediction interval. A statistically efficient model

is expected to produce a shorter prediction interval length. Comparing the length of prediction intervals, one can observe that the statistical effi-

ciency of SHIM increases as we increase the order of interactions. A 3rd order SHIM produced the shortest average prediction interval lengths

both in low- and high-dimensional settings.

To compare the fitting power of individual methods we reported the R-squared (r2) scores. It can be observed that the r2 scores of a 3rd

order SHIM are comparable to the best performing complex model (RF) both in low- and high-dimensional settings. We also demonstrated the

comparison of the prediction interval lengths (CI length) and R-squared (r2) scores of the proposed method (SHIM) with other simple (LASSO) and

complex models (MLP, RF) for three different sample sizes, n� f100,150,200g,m¼10 (Figure 2). It can be observed that the full-CP of 3rd order

SHIM (shim3_f) produced the best results (shortest avg. length, highest avg. r2 score) in all the cases. It can also be observed that the performance

of data splitting (in mlp, rf, lasso_s, shim3_s) is worse than that of full-CP. The split-CP tends to produce a longer prediction interval and smaller r2

score, and suffer from high variance due to the smaller data size as well as the additional randomness considered in data splitting. Additional

results using highly sparse synthetic data generated from models with weak and strong signals are provided in the supporting information

(B. Additional Results and Experimental Details).

TABLE 1 Comparison of the statistical power using low dimensional synthetic data (m¼10,n¼150).

mlp rf lasso_s lasso_f shim_2s shim_2f shim_3s shim_3f

length 1.94 (0.27) 1.84 (0.23) 2.32 (0.23) 2.18 (0.10) 2.00 (0.23) 1.82 (0.17) 1.96 (0.24) 1.76 (0.25)

cov 0.90 (0.05) 0.89 (0.06) 0.91 (0.04) 0.90 (0.05) 0.91 (0.04) 0.89 (0.05) 0.90 (0.04) 0.88 (0.04)

r2 0.61 (0.18) 0.66 (0.09) 0.51 (0.12) 0.54 (0.11) 0.63 (0.10) 0.67 (0.10) 0.63 (0.09) 0.67 (0.09)

Note: The bracketed values represent the standard deviations.

8 of 13 DAS ET AL.
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4.1.2 | Real-world data experiments

HIV Data. We applied our method on real world HIV drug resistance dataset. The HIV-1 sequence data was obtained from the Stanford HIV Drug

Resistance Database (Rhee et al., (2003), (2006)). We applied our method on two NRTI drugs, Lamivudine (3TC) and Abacavir (ABC). The results

are shown in Figure 3. Here, we considered top ten mutations. In the HIV data set most of the columns contain zeros, hence, we sorted them

based on the number of 1s present in each column and selected the top ten columns. We subsampled the data to generate independent training

sets for three different training set sizes, n� f20,50,150g, each accompanied with a separate test set of 10 instances. We repeated the experi-

ment three times and in total we reported the results of 3�10¼30 test instances.

TABLE 2 Comparison of the statistical power using high dimensional synthetic data (m¼100,n¼150).

mlp rf lasso_s lasso_f shim_2s shim_2f shim_3s shim_3f

length 3.39 (0.51) 1.93 (0.32) 2.45 (0.40) 2.26 (0.19) 2.20 (0.36) 1.92 (0.26) 2.27 (0.38) 1.89 (0.30)

cov 0.91 (0.05) 0.90 (0.06) 0.90 (0.06) 0.92 (0.05) 0.90 (0.05) 0.91 (0.04) 0.90 (0.06) 0.90 (0.04)

r2 -0.01 (0.16) 0.66 (0.11) 0.45 (0.09) 0.53 (0.07) 0.54 (0.13) 0.65 (0.09) 0.52 (0.12) 0.66 (0.08)

Note: The bracketed values represent the standard deviations.

F IGURE 2 Comparison of the prediction interval lengths (CI length) and r2 scores of the proposed method (shim) with other simple (lasso)
and complex models (mlp, rf) using synthetic data for different sample sizes.

F IGURE 3 Comparison of the prediction interval lengths (CI length) using two hiv drug resistance data (‘3tc’ and ‘abc’) for different sample
sizes. The comparison of r2-scores are provided in the supporting information (B. Additional Results and Experimental Details)

A CONFIDENCE MACHINE FOR SPARSE HIGH-ORDER INTERACTION MODEL 9 of 13
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4.1.3 | Experiments with continuous data

To demonstrate the efficacy of our method using continuous data we considered both synthetic and real world continuous data. As a synthetic

dataset, we considered the standard Friedman2 dataset generated by the scikit-learn package. These data contain four independent features ran-

domly distributed on specific intervals (for details, please see scikit-learn package). As a real dataset, we considered the bodyfat dataset obtained

from the LIBSVM repository for regression data analysis. This dataset consists of 252 instances and 14 numerical features (for details please see

LIBSVM repository). For both synthetic and real world datasets, we rescaled all the features values in the range of 0 and 1 and conducted all the

experiments with rescaled features values. As before, we subsampled the data to generate independent training sets for three different training

sizes, n� f50,100,200g, each accompanied with a separate test set of 10 instances. We repeated the experiment three times and in total we

reported the results of 3�10¼30 test instances. The results are shown in Figure 4.

4.2 | Comparison of computational efficiencies

To demonstrate the computational efficiency of the proposed pruning strategy for the τ-path, we generated a synthetic dataset of n¼100 and

m¼30 for three different sparsity levels of the design matrix (ζ¼0:4,0:7,0:9) using the same 5th order model as used to demonstrate the statisti-

cal efficiency in Tables 1 and 2 and Figure 2. We compared both the fraction of nodes traversed (Figure 5) and the time taken (Table 3) against a

different maximum interaction order d for three different sparsity levels (ζ¼0:4,0:7,0:9) using two different λ values (λ¼1,10). It can be observed

that the pruning is more effective at the deeper nodes of the tree and saturates after a certain depth of the tree. This is evident as the sparsity of

the data increases at the deeper nodes, and the pruning exploits the anti-monotonicity of high-order interaction terms constructed as tree of pat-

terns. In the case of the homotopy method without pruning, we stopped the execution of the program if the τ-path was not finished in one day.

From Table 3, it can be observed that without the tree pruning, the construction of the τ-path is not practical as we progress to the deeper nodes

of the tree because of the generation of an exponential number of high-order interaction terms. The maximum time taken by the τ-path with

pruning was approximately 130s, for a ‘max-pat’(d) size of 25, that is, for 1,073,709,892 nodes at λ¼1,ζ¼0:4. Figure 5 shows the variation of

node counts (‘fraction of node counts’) for different max_pat (d) size during the construction of τ-path. One can observe that our pruning condi-

tion is more effective at the deeper nodes of the tree as it exploits the tree's anti-monotonicity property. Although the worst-case complexity of

the τ-path is exponential (considering all possible sign values of model coefficients, see discussion in Section 3 for details), it has been well-

recognized that this worst-case rarely happens in practice (Li & Singer, 2018; Le Duy & Takeuchi, 2021). This is also evident from our experimental

results in Table 4 of the supporting information (B. Additional Results and Experimental Details).

F IGURE 4 Comparison of the prediction interval lengths (CI length) using continuous synthetic (friedman2) and real world (bodyfat) data. The
comparison of r2-scores and additional results using large n¼500 for friedman2 data are provided in the supporting information (B. Additional
Results and Experimental Details)
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5 | CONCLUSION

In this paper we proposed an algorithm to efficiently compute the full-CP set of SHIM. Through numerical experiments, we demonstrated that SHIM

is statistically superior than the vanilla lasso and comparable to other complex models (NN, RF). The prediction interval along with a point estimation

is better than a point estimation alone. The computation of a full-CP set for other complex models (NN, RF) remains an open question. SHIM is inter-

pretable and it generates the decision function as a weighted combination of decision sets (if-then rules). The homotopy-mining based exact full-CP of

SHIM is better than the split-CP of SHIM. The efficient pruning strategy makes the computation of exact full-CP set tractable for SHIM.
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TABLE 3 Computation time (in sec) with and without pruning using two different λ values for three different sparsity levels (ζ).

d
Search space
(# nodes)

λ¼1 λ¼10

With pruning Without pruning With pruning Without pruning

ζ¼0:4 ζ¼ 0:7 ζ¼0:9 ζ¼0:4 ζ¼0:7 ζ¼ 0:9 ζ¼0:4 ζ¼0:7 ζ¼0:9 ζ¼0:4 ζ¼0:7 ζ¼0:9

2 465 0.09 0.10 0.03 0.10 0.08 0.07 0.08 0.08 0.03 0.07 0.07 0.12

3 4525 0.84 0.67 0.03 0.82 0.79 0.64 0.56 0.36 0.03 0.63 0.65 0.85

4 31930 4.49 1.51 0.03 5.91 5.32 4.73 2.14 0.90 0.03 4.12 4.42 3.87

5 174436 12.34 2.74 0.03 30.19 28.76 23.31 5.11 1.38 0.03 26.74 22.70 25.42

10 53009101 112.17 3.83 0.03 > 1

day

> 1

day

> 1

day

49.88 2.13 0.03 > 1

day

6891.44 6861.16

15 614429671 126.04 3.39 0.03 > 1

day

> 1

day

> 1

day

56.22 2.00 0.03 > 1

day

> 1 day > 1 day

20 1050777736 126.86 3.51 0.03 > 1

day

> 1

day

> 1

day

55.33 2.13 0.03 > 1

day

> 1 day > 1 day

25 1073709892 130.28 3.62 0.03 > 1

day

> 1

day

> 1

day

55.21 2.02 0.03 > 1

day

> 1 day > 1 day

Note: All computation times were measured on an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz.

F IGURE 5 Variation of node counts (‘fraction of node counts’) for different max_pat (d) sizes. Here, the fraction of nodes for a specific d,
represents the number of nodes traversed divided by the total number of possible combinations of interaction terms using the ‘max-pat’ size of d.
The results are shown for two λ values (λ¼1,10) and for three different sparsity levels (0.4, 0.7, 0.9). The pruning is more effective as the data is
more sparse.
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A. Additional Technical Details
A.1. Proof of Lemma 3.2

Before proving the Lemma 3.2, we introduce the following two propositions:
Proposition A.1. Let’s define for a vector a 2 Rn+1

b`(a) = max

(
X

ai<0

|ai|xi`,
X

ai>0

|ai|xi`

)
,

then if we expand ⇢`(⌧t) and ⌘`(⌧t) separately for positive and negative values of wi(⌧t) and vi(⌧t), 8i 2 [n+1] respectively,

we can write

|⇢`(⌧t)|  b`(w(⌧t)),

|⌘`(⌧t)|  b`(v(⌧t)),

Proof of Proposition A.1. We have

|x>
` a| =

�����

n+1X

i=1

aixi`

�����

=

�����
X

ai>0

|ai|xi` �
X

ai<0

|ai|xi`

�����

 max

(
X

ai>0

|ai|xi`,
X

ai<0

|ai|xi`

)

=: b`(a).

Note that ⇢` = x>
` w(⌧t) and ⌘` = x>

` v(⌧t), and here we used a generic vector a in place of w(⌧t) and v(⌧t) to keep the
proof simple.
Proposition A.2. By using the tree anti-monotonicity property i.e., xi` � xi`0 , 8`0 � `, 8i 2 [n + 1] as defined in the

definition of tree (section 3.1), we have

b`(a) � b`0(a),

Proof of Proposition A.2. From the definition of tree we have xi` � xi`0 , 8`0 � `, 8i 2 [n+ 1]. Hence, we can write

b`(a) = max

(
X

ai<0

|ai|xi`,
X

ai>0

|ai|xi`

)

� max

(
X

ai<0

|ai|xi`0 ,
X

ai>0

|ai|xi`0

)

=: b`0(a).

Now, for any node `0 such that `0 � `, we can write (8) as follows.
��⇢`0(⌧t)��2(`

0
)(⌘`0(⌧t)� xn+1,`0)|

=
��⇢k(⌧t)��2(`

0
)(⌘k(⌧t)� xn+1,k)

�� (11)
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Here, we used the fact that
�A⌧t

(⌧t+1) = �A⌧t
(⌧t) +�2(`

0
)⌫A⌧t

(⌧t).

The right hand side (r.h.s.) of (11) has a lower bound i.e.

|⇢k(⌧t)��2(`
0
)(⌘k(⌧t)� xn+1,k)|

� |⇢k(⌧t)|��2(`
0
)(|⌘k(⌧t)|+ |xn+1,k|),

and the left hand side (l.h.s.) of (11) has an upper bound i.e.

|⇢`0(⌧t)��2(`
0
)(⌘`0(⌧t)� xn+1,`0)|

 |⇢`0(⌧t)|+�2(`
0
)(|⌘`0(⌧t)|+ |xn+1,`0 |).

The above two bounds are derived by considering the fact that for any a 2 R, b 2 R, c 2 R and d 2 R > 0 we can write the
following:

|a� d(b� c)|  |a|+ d(|b|+ |c|) and
|a� d(b� c)| � |a|� d(|b|+ |c|).

Therefore, for (11) to have a solution the following condition needs to be satisfied.

|⇢`0(⌧t)|+�2(`
0
)(|⌘`0(⌧t)|+ |xn+1,`0 |)

� |⇢k(⌧t)|��2(`
0
)(|⌘k(⌧t)|+ |xn+1,k|). (12)

Hence, (11) will not have any solution if the following condition (13) is satisfied.

|⇢`0(⌧t)|+�2(`
0
)(|⌘`0(⌧t)|+xn+1,`0)

< |⇢k(⌧t)|��2(`
0
)(|⌘k(⌧t)|+xn+1,k). (13)

Now, using Proposition A.1 we can further write (14) which implies (13).

b`0(w(⌧t))+�2(`
0
)(b`0(v(⌧t)) + xn+1,`0)

< |⇢k(⌧t)|��2(`
0
)(|⌘k(⌧t)|+ xn+1,k). (14)

Proof of Lemma 3.2. We now prove Lemma 3.2 by contradiction, that is we assume that at any node `, the condition (10)
stated in Lemma 3.2 holds, and there exists one `0 � ` : �2(`0) < �2(`

†
2); then show that this is a contradiction.

) |⇢k(⌧t)|��2(`
0
)(|⌘k(⌧t)|+ xn+1,k)

> |⇢k(⌧t)|��2(`
†
2)(|⌘k(⌧t)|+ xn+1,k),

* �2(`
0
) < �2(`

†
2)

> b`(w(⌧t)) +�2(`
†
2)(b`(v(⌧t)) + xn+1,`),

using (10)

> b`0(w(⌧t)) +�2(`
†
2)(b`0(v(⌧t)) + xn+1,`0),

(Proposition A.2),
> b`0(w(⌧t)) +�2(`

0
)(b`0(v(⌧t)) + xn+1,`0),

* �2(`
0
) < �2(`

†
2).

Therefore, we got

|⇢k(⌧t)|��2(`
0
)(|⌘k(⌧t)|+ xn+1,k)

> b`0(w(⌧t)) +�2(`
0
)(b`0(v(⌧t)) + xn+1,`0)

=) `0 is infeasible,
(using (14))

=) �2(`
0
) � �2(`

†
2).
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This completes the proof of Lemma 3.2. Hence, if the pruning condition in Lemma 3.2 holds, then we do not need to search
the sub-tree with ` as the root node, and hence increasing the efficiency of the search procedure.

A.2. Algorithms

The algorithms to compute the ⌧ -path and the full-CP set of SHIM are given in Algorithm 1 and Algorithm 2 respectively.
The Algorithm 1 returns the transition points (T), the LASSO solutions (B) and the active sets (A) at those transition points
which are subsequently provided to Algorithm 2. In Algorithm 2, for each linear piece of the ⌧ -path, i.e. 8⌧ 2 (⌧t, ⌧t+1) for
any two consecutive kinks ⌧t and ⌧t+1, we need to first identify the points at which |wn+1(⌧)| = |wi(⌧)|, 8i 2 [n] (Line 4).
Let us denote those points as {⌧t = u1, u2, u3, . . . , ur = ⌧t+1} (for simplicity we slightly abused the notation here). Then
we need to check that at which of those points the condition stated in (3) is satisfied (Line 5, 6, 7) to determine the full-CP
set of SHIM. We used the following search range [ymin, ymax] to construct the ⌧ -path in Algorithm 1.

[ymin, ymax] = [y(0) � 0.5(y(n) � y(0)), y(n) + 0.5(y(n) � y(0))],

where y(0)  y(1)  . . .  y(n) are the order statistics of the response vector y (see Remark 5 in (Lei, 2019) for details).

Algorithm 1 Compute ⌧ -path

1: Input: Z 2 R(n+1)⇥m, y 2 Rn, [ymin, ymax],�
2: Initialization:
3: t = 1, ⌧1 = ymin, A⌧1 = {` 2 [p] : �`(⌧1) 6= 0},
4: T = {⌧1},B = {�A⌧1

(⌧1)},A = {A⌧1}

5: while (⌧t < ymax) do
6: Compute �`⇤ using (7) and Lemma 3.2
7: if �`⇤ = �1(`

⇤

1) then
8:
9: A⌧t+1  A⌧t \ {`

⇤

1} ! remove `⇤1 from A⌧t

10: end if
11: if �`⇤ = �2(`

⇤

2) then
12:
13: A⌧t+1  A⌧t [ {`⇤2} ! add `⇤2 into A⌧t

14: end if
15: Update:
16: ⌧t+1  ⌧t +�`⇤

17: �A⌧t
(⌧t+1) �A⌧t

(⌧t) +�`⇤⌫A⌧t
(⌧t)

18: T = T [ {⌧t+1}

19: B = B [ {�A⌧t
(⌧t+1)}

20: A = A [ {A⌧t+1}

21: t = t +1
22: end while
23: Output: T,B,A

Algorithm 2 Compute full-CP

1: Input: Z 2 R(n+1)⇥m, y 2 Rn,↵ 2 [0, 1],T,B,A
2: Initialization: t = 0, tmax = |T|, C = {;}

3: while (t < tmax) do
4: {u2, . . . , ur�1} = {u 2 (⌧t, ⌧t+1) such that |wi(u)| = |wn+1(u)|8i 2 [n]}
5: Tt = {⌧t} [ {u2, u3, . . . , ur�1} [ {⌧t+1}

6: Ht = {h 2 {1, . . . , |Tt|} : ⇡(Tt(h)) � ↵} using B and A
7: C = C [h2Ht [Tt(h), Tt(h+ 1))
8: t = t +1
9: end while

10: Output: C
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A.3. Extension for Elastic Net (ENet-SHIM)

A common problem of the LASSO is that if the data has correlated features, then the LASSO picks only one of them and
ignores the rest, which leads to instability. To solve this problem (Zou & Hastie, 2005) proposed the Elastic Net. This
feature correlation problem is very much evident in the SHIM-type problem, and hence we extended our framework for the
Elastic Net. We solve the following optimization problem to extend our framework for the Elastic Net:

�(⌧) 2 argmin
�2Rp

1

2
ky(⌧)�X�k22 +

1

2
↵ k�k22 + � k�k1 . (15)

The elastic net optimization problem can actually be formulated as a LASSO optimization problem using augmented

data. If we consider an augmented data defined as X̃ =

✓
Xp
↵Ip

◆
2 R(n+1+p)⇥p and ỹ(⌧) =

✓
y(⌧)
0

◆
2 Rn+1+p, where

Ip 2 Rp⇥p is an identity matrix and 0 2 Rp is a zero vector, then solving the elastic net optimization problem (15) for a
fixed �, is equivalent to solving the following problem.

�(⌧) 2 argmin
�2Rp

1

2

���ỹ(⌧)� X̃�
���
2

2
+ � k�k1 .

Step size (⌧ -path): If we consider two real values ⌧t and ⌧t+1 ( ⌧t+1 > ⌧t) at which the active set does not change, and their
signs also remain the same, then we can write

�A⌧t
(⌧t+1)� �A⌧t

(⌧t) = ⌫A⌧t
(⌧t)(⌧t+1 � ⌧t),

where
⌫A⌧t

(⌧t) = (X>
A⌧t

XA⌧t
+ ↵I|A⌧t |)

�1xn+1;A⌧t
.

Note that here the only change compared to the vanilla SHIM is the addition of an ↵I|A⌧t | term to the expression of ⌫A⌧t
(⌧t).

Now, one can also derive a similar expression of the step size of inclusion and deletion as done for the vanilla SHIM ⌧ -path
(7), considering the updated expression of ⌫A⌧t

(⌧t).

A.3.1. TREE PRUNING (⌧ -PATH)

The no solution condition (13) with the augmented data (X̃, ỹ) can be written as follows:

|⇢̃`0(⌧t)|+�2(`
0
)(|⌘̃`0(⌧t)|+xn+1,`0)

< |⇢̃k(⌧t)|��2(`
0
)(|⌘̃k(⌧t)|+xn+1,k), (16)

where

⇢̃`0(⌧t) = x̃>
`0 w̃(⌧t) and

⌘̃`0(⌧t) = x̃>
`0 ṽ(⌧t), 8`0 2 Ac

⌧t ,

⇢̃k(⌧t) = x̃>
k w̃(⌧t) and

⌘̃k(⌧t) = x̃>
k ṽ(⌧t), 8k 2 A⌧t ,

w̃(⌧t) = ỹ(⌧t)� X̃A⌧t
�A⌧t

(⌧t) 2 Rn+1+p,

ṽ(⌧t) = X̃⌫⌧t 2 Rn+1+p.

Now one can show that the tree pruning condition for the ⌧ -path of ENet-SHIM can be defined as stated in Lemma A.3.
Lemma A.3. For any given node `, if �2(`

†
2) is the current minimum step size, that is,

`†2 = argmin

j2{1,2,...,`}\Ac
⌧t

�2(j),

then 8`0 � `,�2(`0) � �2(`
†
2) if

b`(w(⌧t))+�2(`
†
2)(b`(v(⌧t)) + xn+1,`)

< |⇢̄k(⌧t)|��2(`
†
2)(|⌘̄k(⌧t)|+ xn+1,k), (17)
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where

⇢̄k(⌧t) =
nX

i=1

wi(⌧t)xik � ↵�k,

⌘̄k(⌧t) =
nX

i=1

vi(⌧t)xik + ↵⌫k.

Although, theoretically the standard elastic net can be solved as a LASSO optimization problem by considering an augmented
dataset as explained in section A.3, this data augmentation can be prohibitively expensive in case of ENet-SHIM due to
the combinatorial effects of interaction terms. Actually, by expanding the expression of ⇢̃`0(⌧t), ⇢̃k(⌧t), ⌘̃`0(⌧t) and ⌘̃k(⌧t)
separately for the original data and the augmented part of the augmented data, one can show that most of the terms will
disappear, and one just need to consider additional terms �↵�k(⌧t) and ↵⌫k(⌧t) while evaluating the expression of ⇢̃k(⌧t)
and ⌘̃k(⌧t) respectively. However, ⇢̃`0(⌧t) and ⌘̃`0(⌧t) will remain the same as in the original data, i.e., ⇢̃`0(⌧t)=⇢`0(⌧t) and
⌘̃`0(⌧t)=⌘`0(⌧t). The formal proof of Lemma A.3 is given below.

Proof of Lemma A.3. Let’s consider

w̃(⌧t) = ỹ(⌧t)� X̃A⌧t
�A⌧t

(⌧t) 2 Rn+1+p

and
w(⌧t) = y(⌧t)� X̄A⌧t

�A⌧t
(⌧t) 2 Rn+1,

where p = |A⌧t |+ |Ac
⌧t |, then we can write

w̃i(⌧t) =

8
>>><

>>>:

wi(⌧t) if i  n+ 1,

�
p
↵�`0(⌧t) if n+ 1 < i  n+ 1 + |A⌧t |,

8`0 2 A⌧t ,

0 if n+ 1 + |A⌧t | < i  n+ 1 + p.

(18)

Similarly considering ṽ(⌧t) = X̃⌫(⌧t) 2 Rn+1+p and v(⌧t) = X̄⌫(⌧t) 2 Rn+1, we can write

ṽi(⌧t) =

8
>>><

>>>:

vi(⌧t) if i  n+ 1,
p
↵⌫`0(⌧t) if n+ 1 < i  n+ 1 + |A⌧t |,

8`0 2 A⌧t ,

0 if n+ 1 + |A⌧t | < i  n+ 1 + p,

(19)

and, considering X̃ 2 R(n+1+p)⇥p and X 2 R(n+1)⇥p we can write

x̃i`0 =

8
><

>:

xi`0 if i  n+ 1,
p
↵ if i > n+ 1 and (i� n� 1) = `0,

0 otherwise.
(20)

Therefore, 8`0 2 Rp we can write

⇢̃`0(⌧t) = x̃>
`0 w̃(⌧t)

=

n+1+pX

i=1

w̃i(⌧t)x̃i`0

=

n+1X

i=1

w̃i(⌧t)x̃i`0 +

n+1+|A⌧t |X

i=n+2

w̃i(⌧t)x̃i`0

+

n+pX

i=n+2+|A⌧t |

w̃i(⌧t)x̃i`0 .



A Confidence Machine for Sparse High-Order Interaction Model

Now, using (18) and (20) the second and the third quantity in the above expression can be written as follows:

n+1+|A⌧t |X

i=n+2

w̃i(⌧t)x̃i`0 =

8
><

>:

(�
p
↵�`0(⌧t))(

p
↵),

if (i� n� 1) = `0,

0 otherwise,

and,
n+pX

i=n+2+|A⌧t |

w̃i(⌧t)x̃i`0 = 0.

Therefore,

⇢̃`0(⌧t) = x̃>
`0 w̃(⌧t)

=

n+1X

i=1

wi(⌧t)xi`0

= ⇢`0(⌧t), 8`0 2 Ac
⌧t and,

⇢̃k(⌧t) = x̃>
k w̃(⌧t)

=

n+1X

i=1

wi(⌧t)xik � ↵�k(⌧t)

= ⇢k(⌧t)� ↵�k(⌧t), 8k 2 A⌧t

=: ⇢̄k(⌧t).

Similarly, using (19) and (20) we can write

⌘̃`0(⌧t) = x̃>
`0 ṽ(⌧t)

=

n+1X

i=1

vi(⌧t)xi`0

= ⌘`0(⌧t), 8`0 2 Ac
⌧t , and,

⌘̃k(⌧t) = x̃>
k ṽ(⌧t)

=

n+1X

i=1

vi(⌧t)xik + ↵⌫k(⌧t)

= ⌘k(⌧t) + ↵⌫k(⌧t), 8k 2 A⌧t

= ⌘̄k(⌧t).

Therefore, we can write (16) as follows.

|⇢`0(⌧t)|+�2(`
0
)(|⌘`0(⌧t)|+xn+1,`0)

< |⇢̄k(⌧t)|��2(`
0
)(|⌘̄k(⌧t)|+xn+1,k), (21)

Now, using PropositionA.1, we can simplify (21) as follows.

b`0,w(⌧t)+�2(`
0
)(b`0,v(⌧t) + xn+1,`0)

< |⇢̄k(⌧t)|��2(`
0
)(|⌘̄k(⌧t)|+ xn+1,k), (22)

Now similar to the Lemma 3.2 one can formally prove the Lemma A.3 using (22) and Proposition A.2.



A Confidence Machine for Sparse High-Order Interaction Model

Figure 6: Comparison of the confidence interval lengths (CI length) of the proposed method (shim) with other simple (lasso)
and complex models (mlp, rf) using synthetic data for different sample sizes. Left figure shows the results using model-1
(weak signal) and the right figure shows the results using model-2 (strong signal). Here, we did not mention any max order
of interaction and the entire search space is used to choose the best SHIM model by the algorithm automatically.

B. Additional Results and Experimental Details
B.1. Hyper parameter selection

The hyper parameter selection for all the methods (e.g. � in LASSO, SHIM; hidden layer’s sizes in MLP, etc.) is done
based on 5-fold cross-validation using a separate set of 15 independent data sets. These 15 data sets which are used for
model selection are different from the 15 independent data sets (3X5=15 data sets) that are used to report the statistical
performances. For example, in the case of synthetic data experiments, we considered different training sizes (n=100, 150,
200) for each data set. For each setting (e.g., n=100), we found the hyper parameters by averaging over this separate set of
15 independent data sets (e.g., of n=100). Once, we found the best hyper parameter, then we used that to report statistical
performance using a different set of 15 independent data sets (e.g., 3X5=15 data sets of n=100). For MLP, the activations
are chosen from {identity, relu, logistic, tanh} and the hidden layer’s sizes are chosen from all possible combinations of
{50, 100, 150} nodes, considering both 2-hidden layers and 3-hidden layers architectures. The most frequent activation and
architecture chosen based a on separate set of 15 independent datasets are considered to report the average results. Similarly
for RF, the number of estimators (n estimators) and the min samples in the leaf of a tree (min samples leaf) are chosen
from {50, 100, 200} and {0.1, 0.05, 0.01} respectively. The median � value based on the separate set of 15 independent
datasets is considered to report the results of LASSO and SHIM. For the � selection, we considered the range of � defined
in [�max/2, 0). For, MLP and RF, we used the standard scikit-learn implementation.

B.2. Additional results using synthetic data

To further compare the performance of the proposed method we considered highly sparse data (⇣ = 0.6) in two different
experimental settings. (1) model-1: We generated a model with weak signals that is we considered a true model of up to
third-order interactions, which is defined as µ(xi) = 1.0z1 + 1.0z1z2 + 1.0z1z2z3 and (2) model-2: We generated a model
with strong signals that is we considered a true model of up to third-order interactions, which is defined as µ(xi) = 5.0z1 +
5.0z1z2 + 5.0z1z2z3 . In both the settings we set � = 1. The choice of these models is merely for demonstration purposes,
and the proposed method is equally applicable to any chosen model. For both the settings (weak and strong), we generated
a dataset of n 2 {50, 100, 150} training instances, each accompanied with n = 10 test instances. Here we considered a
covariate size of m = 5. We generated 3 such independent random datasets. Hence, in total we reported the average results
of 3⇥ 10 = 30 test instances. For split-CP, we repeated the experiments 30 times to highlight the effect of randomness in the
confidence set generation. For SHIM, we did not mention any max-pat size of d, i.e. the entire search space is considered for
exploration (tree generation) and the proposed tree pruning condition takes care of it to improve the efficiency of the search.
The best shim model is automatically chosen by the algorithm corresponding to the best hyper parameter � (see section B.1
for details of hyper parameter selection). The results are shown in Fig. 6 where the left figure corresponds to the model-1
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Figure 7: Comparing confidence interval lengths (CI lengths) and coverages among different methods (oracle, full, split,
jacknife and jacknife+) of CP set constructions for SHIM using � = 0.1. For oracle-CP we used true yn+1 in both the
training and calibration phases. Note that in reality we don’t know true yn+1.

(weak signal) and the right figure corresponds to the model-2 (strong signal). In both the settings, the full-CP methods
(lasso f, shim f) produced more compact confidence sets irrespective of sample sizes. It can be observed that in case of highly
sparse data, the shim model produces better results, more specifically when the sample size is small and the signal is weak.

B.3. Comparing with aggregate-CP (jackknife and jackknife+)

For the sake of completeness we also compared our exact full-CP method with aggregate-CP methods such as jackknife
and jackknife+. We compared the confidence interval lengths (CI length), coverage and the time taken for different
sample sizes The results are shown in Figures 7, 8 and 9. We reported results for two different � values (� = 0.1 and
� = 0.01). In CP, the choice of ↵ 2 [0, 1] determines the level of confidence (1 � ↵) in the prediction. This essentially
determines the statistical efficiency (length of the CP set). A high confidence generally leads to a wider confidence set.
For example, a 90% confidence set is generally wider than a 80% confidence set. Therefore, if we specify ↵ = 0.1, then
split-CP and full-CP guarantees a (1 � 0.1) ⇥ 100% = 90% confidence set, whereas aggregate-CP can only
guarantee a (1� 2⇥ 0.1)⇥ 100% = 80% confidence set for the same ↵. Therefore, if we want to ensure 90% confidence
in aggregate-CP, then this will lead to a wider confidence set. Please see the results in Figures 7 and 8. Here, we want
to highlight that the best possible theoretical coverage guarantee of jacknife+ is 1� 2↵, whereas jacknife has no
guarantee. Both jacknife and jacknife+ are also computationally very expensive (they require n model fits) for large
sample size n as shown in Figure 9.

Experimental settings of Figures 7 and 8.
We used “sklearn.datasets.make regression” to generate synthetic data. The following parameters have been used:
n features=5, n informative=3, noise=1. ntrain 2 [50, 75, 100] and ntest = 100. We repeated experiments 3 times, hence
we reported results of 3⇥ 100 = 300 test instances. For split-CP, we repeated experiments 30 times to showcase the
effect of randomization. We reported results for two different � values (� 2 {0.1, 0.01}).

Experimental settings of Figures 9.

We used ”sklearn.datasets.make regression” to generate synthetic data. The following parameters have been used:
n features=5, n informative=3, noise=1. ntrain 2 [100, 500, 1000] and ntest = 5. We repeated experiments 3 times,
hence we reported results of 3 ⇥ 5 = 15 test instances. For split-CP, we repeated experiments 5 times. We reported
results for two different � values (� 2 {0.1, 0.01}).
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Figure 8: Comparing confidence interval lengths (CI lengths) and coverages among different methods (oracle, full, split,
jacknife and jacknife+) of CP set constructions for SHIM using � = 0.01. For oracle-CP we used true yn+1 in both the
training and calibration phases. Note that in reality we don’t know true yn+1.

! = 0.1 ! = 0.01

Figure 9: Comparing execution times among different methods (full, split, jacknife and jacknife+) of CP set constructions
for SHIM using different sample sizes. For oracle-CP we used true yn+1 in both the training and calibration phases. Note
that in reality we don’t know true yn+1.
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3tc abc

Figure 10: Comparing r2-scores of different methods using three different sample sizes for hiv datasets (3tc and abc).

friedman2 bodyfat

Figure 11: Comparing r2-scores of different methods using three different sample sizes for friedman2 and bodyfat datasets.
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Figure 12: Comparison of the confidence interval lengths (CI length) and r2 scores of the proposed method (shim) with
other simple (lasso) and complex models (mlp, rf) using continuous synthetic (friedman2) for a large sample size n = 500.
shim s and shim f respectively represent split-CP and full-CP for a SHIM. Here, we did not mention any max order of
interaction and the entire search space is used to choose the best SHIM model by the algorithm automatically.

d
Search space

(# nodes)
� = 1 � = 10

⇣ = 0.4 ⇣ = 0.7 ⇣ = 0.9 ⇣ = 0.4 ⇣ = 0.7 ⇣ = 0.9

2 465 200 134 7 9 7 2
3 4525 317 129 7 9 7 2
4 31930 314 129 7 9 7 2
5 174436 312 129 7 9 7 2
10 53009101 312 129 7 9 7 2
15 614429671 312 129 7 9 7 2
20 1050777736 312 129 7 9 7 2
25 1073709892 312 129 7 9 7 2

Table 4: Number of homotopy transition points (# kinks) along the ⌧ -path of SHIM using two different � values (� = 1, 10)
for three different sparsity levels (⇣ = 0.4, 0.7, 0.9) for different value of “max pat” (d) sizes.



REFERENCE

Zou, H., & Hastie, T. (2005) Regularization and variable selection via the elastic net. Journal of the 
royal statistical society: series B (statistical methodology), 67(2): 301–320.


	A confidence machine for sparse high-order interaction model
	1  INTRODUCTION
	2  PROBLEM STATEMENT
	2.1  Conformal prediction

	3  PROPOSED METHOD
	3.1  Tree pruning (τ-path)

	4  RESULTS AND DISCUSSIONS
	4.1  Comparison of statistical efficiencies
	4.1.1  Synthetic data experiments
	4.1.2  Real-world data experiments
	4.1.3  Experiments with continuous data

	4.2  Comparison of computational efficiencies

	5  CONCLUSION
	AUTHOR CONTRIBUTIONS
	REFERENCES


