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Abstract—Current vision-based robotics simulation bench-
marks have significantly advanced robotic manipulation research.
However, robotics is fundamentally a real-world problem, and
evaluation for real-world applications has lagged behind in
evaluating generalist policies. In this paper, we discuss challenges
and desiderata in designing benchmarks for generalist robotic
manipulation policies for the goal of sim-to-real policy transfer.
We propose 1) utilizing high visual-fidelity simulation for im-
proved sim-to-real transfer, 2) evaluating policies by systematic
increasing task complexity and scenario perturbation to assess
robustness, and 3) quantifying performance alignment between
real-world performance and its simulation counterparts.

I. INTRODUCTION

Standardized evaluation has been crucial in the advance-
ments of Large Language Models (LLMs) and Visual Lan-
guage Models (VLMs). Strategic benchmarks such as Massive
Multitask Language Understanding (MMLU) [6] and Holistic
Evaluation of Language Models (HELM) [15] have presented
a systematic way to represent language-based scenarios and
evaluate trained policies against a set of diverse subjects. In
addition, they include soft-metrics such as robustness, fairness,
and bias to help understand the performance beyond just
successful responses. These efforts lead to the development
of the useful language AI applications that we use today.

In contrast, robotic evaluation for generalist manipulation
policies has lagged behind, particularly for real-world ap-
plications. Current robotic benchmarks are characterized by
specialized task suites with narrow focus, such as multi-
task reinforcement learning [7, 24], VLM-based robotic rea-
soning [25], and limited testing tasks [16]. Moreover, most
benchmarks lack considerations for robustness in deploying
robot policies in the real world, which have been shown to
significantly degrade policy performance [18].

The absence of a standardized, scalable robotic benchmark
for sim-to-real transferability presents a critical bottleneck for
visual policy for robotics. In this paper, we discuss the key
desiderata for a robotic benchmark aimed at training generalist
robot policies, ensuring that real-world challenges, such as
robustness and task difficulty, are effectively represented. We
describe several discrete and continuous metrics, as well as po-
tential tools to be used for comparing simulation benchmarks
to real robot performance. Lastly, we outline our approach for
a scalable benchmark system using high-fidelity simulation
for systematically evaluating robotic policies (Fig. 1). We
hypothesize that systematic simulation has the potential to
enable scalable robotics benchmarking as a viable proxy to
extensive real-world experiments.

Fig. 1. Overview of the proposed evaluation benchmark.

II. CHALLENGES IN ROBOTICS BENCHMARKING

A. Sim-to-Real

The sim-to-real gap remains a top challenge for vision-
based policies. Transferring policies learned in simulation to
real-world often fails due to various discrepancies in contact
physics, visual appearance, and environmental dynamics with
performance drop as high as 24–30% [13]. A common ap-
proach to both the visual and physical gap is to perform do-
main randomization [16, 26]. Another approach is to combine
synthetic and real data, which requires fine-tuning on a set of
environment-specific data in order to increase the performance
of the model [8].

Visual fidelity. Visual fidelity plays a particularly critical
role in this transfer. Traditional simulators often produce
unrealistic visual observations that fail to capture the com-
plexity of real-world lighting, textures, and environmental
variations, as shown in Fig. 2. When trained with lower-
quality simulation images, policies deployed in the real world
face significant performance drops [9, 13]. However, with
high-quality images, it is possible for the policy to transfer
to the real world without any additional fine-tuning [9, 17].
This suggests that the level of photorealism in benchmarking
environments is equally crucial for accurately evaluating sim-
to-real policies.

Scene variation. Current datasets do not provide a systemic
set of scene variations. However, recent works [18] have
shown that changes in lighting and camera poses causes model
success rate to degrade between 30–50%.

B. Language Annotated Tasks

Robotics data has traditionally not focused on open-
vocabulary instruction for tasks. However, recent robotic mod-
els have leveraged VLMs for generalizing to specific robotic



Fig. 2. Comparison of visual fidelity across various simulated benchmarks and real-world datasets.

Fig. 3. A simple command such as “retrieve the mug” requires different
levels of reasoning based on the scene. If the mug is in front of the robot,
the task is fairly simple; however, if the mug is in a closed cabinet in a
large kitchen, this would require open-world reasoning, including inferring
the possible locations of the mug and recognizing and interacting with other
objects in the scene such as cabinet doors in order to explore.

open-world task settings [22]. While some datasets incorporate
natural language instructions [2, 7, 23], these datasets lack
structured language annotations. As VLMs become prevalent
in robotics, the language prompt itself may be a point of
interest in future benchmarks, focusing on how well robots
interpret and execute instructions that have varying levels of
specificity [20]. Complexity of the task changes as a function
of the scene and language instruction. Depending on the
specificity of the instruction, the task may or may not require
open-world reasoning, as illustrated in Fig. 3.

C. Unified Platform

Existing datasets follow lax task definitions which are
inconsistent across datasets, which vary widely and create
difficulty in cross-platform and cross-embodiment compar-
isons. Additionally, robotic policies output various action
spaces (e.g., joint position/velocity, end effector pose [26], or
action primitives [20, 14]), further complicating a standardized
evaluation. To develop a unified benchmarking platform, it
needs to be representative of the real-world conditions: the
task structure needs to be systematic in categorizing tasks

based on complexity and skill, and the policy interface needs to
support multiple types of actions in order to enable a consistent
comparison of policy architectures on identical tasks.

D. Scale and Scope

Unlike datasets used to train LLM and VLMs, robotics data
is difficult to obtain. Recent open-sourced initiatives such as
RT-X [2] and DROID [10] have focused on using teleoperation
to collect large-scale data in the real-world. For simulated data,
aggregation frameworks such as RoboVerse [4] aim to unify
benchmarks.

While large-scale datasets are useful in training, the suite
of benchmarking tasks is not necessarily large in size but
comprehensive in scope. Effective sim-to-real benchmarks
need to have a curated set of tasks and environments that
systematically cover a broad spectrum of skills, perceptual
challenges, and task complexities. Khanna et al. [9] show that a
small set of high-quality scenes (≈ 200) can outperform larger
procedurally generated scenes (≈ 10k) in policy learning.

Thus, scale in benchmarking tasks needs to focus on diver-
sity and real-world relevance. High-fidelity simulation enables
systematic variations in representative tasks, which enables
precise, repeatable benchmarking across a wide range of
realistic scenarios. As real-robot data collection becomes less
scalable as the field progresses, simulation offers a sustainable
path forward.

III. DESIDERATA FOR ROBOT MANIPULATION
BENCHMARKING

Given the challenges above and the segregated landscape of
existing frameworks, we present a recipe for a benchmarking
framework for evaluating vision-based robotics policies. We
employ the following definitions: A task T is a set of motions
or sub-tasks, τ , that completes a language-based instruction, l
[23]. We consider single-manipulator robot tasks, with the
policy π :O→A where the action space A is policy dependent.



A. Task Taxonomy

We introduce a novel task taxonomy that systematically cat-
egorizes tasks based on increasing complexity, required skills,
and generalization. We categorize tasks into four difficulty
levels:

T1 Single-motion tasks: (e.g., pick, place, open, close)
These typically involve a single, well-constrained action
primitive involving a visually present object. These tasks
test core visual reasoning and visuomotor capabilities. In
particular, pick/place require the robot to reason about
stable grasps; and open/close require reasoning about the
joint constraints of the fixture (e.g., door hinges, sliders).

T2 Continuous-motion tasks: (e.g., wiping, stirring, or
pouring) These require smooth trajectories and precise
control over a constrained space. These tasks require the
robot to reason about tool-use and the space in which the
continuous motion is constrained within.

T3 Multi-step tasks: (e.g., put away, clean up) These com-
bine multiple primitives into a temporally extended se-
quence of skills, which often require open-world reason-
ing of the scene and planning under partial observability
and long-horizon dependency.

T4 Long-horizon tasks with memory: Lastly, we consider
cases where the robot needs to reason about its broader
environment over its global memory1. These type of tasks
require the robot to retain memory of objects’ spatial
relationships over time. These type of tasks are typical of
mobile manipulators, where a task may involve retrieving
objects from multiple locations.

B. Robustness to Variations

To evaluate the robustness of a policy, it is important to
apply a range of systematic perturbations to the environments.
We introduce a suite of variations (Fig. 4) to simulate diverse
deployment conditions, which may emerge during deployment
in dynamically changing environments, following [13]:

V1 Object placement: Object positions are perturbed within
the workspace following a pre-specified distribution.
These shifts assess the policy’s ability to handle spatial
displacements.

V2 Number of Objects: This introduces distractor and
occlusions that test the model’s ability to distinguish
relevant objects.

V3 Texture changes: Surface textures of objects and back-
ground are randomized using a library of synthetic and
real-world backdrops. These variations assess the policy’s
reliance on appearance-specific features and its ability
to generalize across visually distinct but semantically
identical environments.

V4 Lighting changes: Altering conditions (e.g., ambient
light intensity, directional light and shadow) challenges
the visual encoder’s robustness to changes in illumination.

1This would be akin to Retrieval-Augmented Generation (RAG) [12]
mechanisms employed in LLMs.

V5 Camera pose variations: Even small discrepancies in
camera pose between training and deployment can lead to
significant performance degradation, making robustness
to pose variation critical for practical reliability. There-
fore, perturbations in camera viewpoints tests the stability
of the policy under pose deviations.

C. Discrete and Continuous Metrics

Evaluations in robot policy learning have traditionally fo-
cused on task success rates, but this binary metric often
fails to capture the full spectrum of policy performance [11].
To address this limitation, we define a more granular set
of metrics including discrete and continuous metrics. These
metrics allow us to understand policy behavior and limitations
in end-to-end robot learning.
M1 Completion Rate C: The percentage of successful task

completions in a total set of attempted tasks C(π). This
quantifies the ability for the policy to complete the task
from start to finish.

M2 Task Success S: We reframe this to describe the per-
centage of sub-tasks that have been completed: S(T ) =
1
T
∑

τ∈T S(τ) This approach provides a graded measure
of success.

M3 Failure Modes: These are systematically categorized to
enable precise diagnosis of failure cases [1, 19]:
a) Grasp Failure: The robot fails to establish initial contact,

often due to inaccurate pose estimation, poor alignment, or
insufficient gripper closure.

b) Grasp Stability Failure (Object Dropped): The robot suc-
cessfully grasps the object but subsequently loses it due to
an unstable grasp.

c) Policy Generation Failure: The policy outputs invalid and
infeasible actions.

d) Reachability Failure: The target action is unreachable due to
the robot’s kinematic constraints.

e) Reasoning Failure: The robot exhibits incorrect high-level
decision-making or planning, such as selecting inappropriate
actions or misinterpreting task goals.

M4 Trajectory Metrics. Trajectory metrics capture quality,
efficiency, and desirability of robot motion.
a) Path Length: The total distance traveled by the robot’s end-

effector during task execution.
b) Trajectory Smoothness: Quantifies the consistency and flu-

idity of motion, measured by the higher derivatives of the
trajectory.

c) Trajectory Optimality: Quantifies whether the actions were
time optimal; or if any corrective actions were taken.

M5 Temporal Metrics. Temporal metrics capture time effi-
ciency of task execution:
a) Total Time to Completion: This measures system throughput

and operational speed.
b) Average Policy Inference Time: The measures the ability for

the policy to be deployed online.
c) Episode Duration: The total time span of an entire task

attempt, including all actions and any recovery or correction
phases.

D. Sim-to-Real Transfer

We introduce quantitative metrics to evaluate the transfer
fidelity of a policy’s performance in sim vs. real.



Fig. 4. Example scene variations, lighting variations, and camera pose variations. These are common perturbations present in real world settings.

S1 Success Performance Matching in Fixed Baselines.
This refers to the difference in success rates between
simulation and real-world deployment for a set of con-
trolled scene equivalents. For a single task, this can be
measured by ∥Ssim(π)−Sreal(π)∥2, where ∥ ·∥2 is the L2

norm. However, for a range of tasks, Mean Maximum
Rank Violation (MMRV) [13] has been used to describe
performance shifts due to scene variations.

S2 Trajectory Performance Matching. We utilize trajec-
tory divergence, a metric defined over the state evolution
between trajectories executed in simulation and in real.
For each motion τ = (s0, s1, . . . , sT ), the divergence
is given by D({τ isim}Ni=1, {τ

j
real}Mj=1). Potential choices

for D(·, ·) include the Maximum Mean Discrepancy
(MMD) [5], energy statistics [21], and the classical
Friedman-Rafsky test [3].

S3 Expected Success Rate in Real. Given the success
rate obtained in simulation, it is possible to estimate
the probability that the success rate for a policy π
in real is higher than a threshold θ, as the posterior
p(Sreal(π) > θ|Ssim(π), T , l) ∝ p(Ssim(π)|Sreal(π) >
θ, T , l)p(Sreal(π)), if the simulator provides ground-truth
values. We aim to quantify this using our future experi-
ments.

IV. PROPOSED BENCHMARKING FRAMEWORK

We discuss our initial efforts towards developing a vision-
based robotic benchmarking framework, aimed at systemat-
ically evaluating robotic policies for improving sim-to-real

transfer performance. The core objective of this framework
is to 1) establish standardized protocols and metrics that
evaluate vision-based policies in scalable high-fidelity simu-
lation environments; and 2) quantify performance alignment
between real-world experiments with its simulated equivalents,
as described in Fig. 1.

We propose leveraging a high-fidelity visual simulator
(IsaacSim) to bridge the visual perception gap between simula-
tion and real-world. We procedurally generate tasks according
to Sec. III-A, including scenes, language descriptions, task-
success definitions. Additionally, the benchmark contains a
suite of scene perturbations addendums, used to randomize the
task library. and a suite of metrics as described in Sec. III-C.

Using our proposed benchmarking framework, we plan to
perform a set of real-world experiments complementary to
sim and a comprehensive analysis of the performance gap. By
comparing sim-to-real performances using proposed metrics,
our framework facilitates the identification of specific failure
modes and evaluation domain gap. With this framework,
we aim to increase systematic evaluation of robotic policies
that scales as the field evolves. Ultimately, this framework
is intended to serve as a reference pipeline for the broader
community working on sim-to-real robot learning, including
cross-comparison and reproducibility.
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