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ABSTRACT

Parameter-efficient fine-tuning (PEFT) of large language models (LLMs) has
gained considerable attention as a flexible and efficient way of adapting LLMs
to downstream tasks. Among these methods, weighted decomposed low-rank
adaptation (DoRA) has emerged as a promising approach. DoRA bridges the
gap between low-rank adaptation (LoRA) and full fine-tuning (FT) by decom-
posing the weight matrices into magnitude and direction components, thereby
maintaining learning behavior similar to FT. Although DoRA shows encourag-
ing performance, it introduces additional parameters compared to LoRA, which
potentially increases the risk of overfitting. Moreover, optimizing magnitude and
direction simultaneously leads to a coupled gradient updating pattern for both
components, limiting its learning capacity. To overcome these limitations, we
propose BiDoRA, a bi-level optimization-based PEFT method. In BiDoRA, the
direction and magnitude components are optimized on two distinct datasets at
different optimization levels, mitigating the risk of overfitting. Additionally, the
asynchronous optimization of the two components promotes their decoupling, al-
lowing for more flexible gradient updates suitable for various downstream tasks.
Evaluation of BiDoRA on fourteen datasets spanning natural language under-
standing, natural language generation, and token classification reveals that it sig-
nificantly outperforms DoRA and other PEFT methods. The superior performance
of BiDoRA underscores its effectiveness. The code for BiDoRA is available at
https://anonymous.4open.science/r/BiDoRA-5D31.

1 INTRODUCTION

Large language models (LLMs) (Radford et al., 2019; Brown et al., 2020) have achieved state-of-
the-art results across a broad range of NLP tasks, from natural language understanding (NLU) (Wang
et al., 2019) to natural language generation (NLG) (Novikova et al., 2017). Although LLMs are pre-
trained on extensive datasets in the general domain, additional methods are required to adapt them
to specific downstream datasets for better performance. For example, full fine-tuning (FT) involves
updating all pre-trained parameters on downstream datasets (Qiu et al., 2020), which typically yields
superior results. However, as LLMs continue to scale, FT incurs significant computational costs
and increases the risk of overfitting during the fine-tuning process (Karimi Mahabadi et al., 2021).
Alternatively, in-context learning adapts LLMs to new tasks by incorporating a few data examples
directly into the prompt, eliminating the need for parameter updates (Brown et al., 2020). While
this approach substantially reduces computational costs and mitigates the risk of overfitting, it is
constrained by the use of only a limited number of examples from the downstream data, often leading
to suboptimal performance.

To address the limitations above, parameter-efficient fine-tuning (PEFT) methods (Houlsby et al.,
2019; Hu et al., 2021) have been introduced as a promising solution. PEFT approaches update only
a subset of the pre-trained parameters, achieving performance comparable to FT while requiring
significantly fewer computational resources. Among these methods, low-rank adaptation (LoRA,
Hu et al. (2021)) has gained popularity due to its simplicity and effectiveness. LoRA attaches low-
rank matrices to the pre-trained model weights, updating only these matrices during fine-tuning
without changing the model architecture. However, LoRA exhibits a parameter updating pattern
distinct from FT, which may limit its learning capacity (Liu et al., 2024). Specifically, when de-
composing the parameter updates of both methods into magnitude and direction components, the
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Figure 1: An overview of BiDoRA. BiDoRA performs PEFT using a bi-level optimization frame-
work. At the lower level, BiDoRA learns the incremental direction component ∆V of the update
matrices using the training split of the downstream dataset. At the upper level, BiDoRA optimizes
the magnitude component m with optimized ∆V from the lower level, using the validation split of
the dataset. After determining the optimal magnitude, the direction component undergoes further
fine-tuning on a combined set of both training and validation splits to maximize overall performance.

correlation between these components tends to be positive in LoRA, whereas it is negative in FT. To
bridge this gap, weight-decomposed low-rank adaptation (DoRA, Liu et al. (2024)) introduces an
explicit reparameterization of the pre-trained weights matrix as the product of magnitude and direc-
tion components. The model can be trained end-to-end in the same way, with direction components
parameterized with incremental low-rank matrices. This approach enables DoRA to share simi-
lar learning patterns with FT, thereby outperforming LoRA in multiple tasks. Nonetheless, DoRA
introduces additional parameters compared to LoRA, which can exacerbate overfitting issues, par-
ticularly when adapting to smaller downstream datasets (See Figure 2). Furthermore, in DoRA, the
magnitude and incremental direction components are optimized concurrently, leading to a highly
constrained updating pattern that may overlook the diverse learning patterns required for different
downstream tasks.

To address the challenges above, we propose BiDoRA, a bi-level optimization-based weight-
decomposed low-rank adaptation method for parameter-efficient fine-tuning of LLMs. BiDoRA
mitigates overfitting and facilitates a flexible weight updating pattern by separately optimizing the
magnitude and incremental direction components on different splits of the downstream datasets us-
ing distinct optimization steps. BiDoRA is based on a bi-level optimization framework: At the
lower level, the low-rank incremental direction component is updated using the training split of the
downstream dataset, while the magnitude component remains fixed. At the upper level, the magni-
tude component is updated by minimizing the loss on the validation split via hypergradient descent.
These two optimization steps are performed iteratively until convergence. Figure 1 provides an
overview of BiDoRA.

In BiDoRA, the two distinct components are trained on separate splits of the dataset, which effec-
tively reduces the risk of overfitting. A similar strategy is utilized in the well-established practice of
differentiable neural architecture search (DARTS, Liu et al. (2018)), where architecture and model
parameters are learned using different splits of the training dataset. Since the architecture selection
module introduces additional parameters beyond the base model, directly optimizing this overly
complex supernetwork can result in severe overfitting. Similarly, by treating the magnitude compo-
nent as the architecture and the incremental direction component as the model in neural architecture
search, training these components on separate datasets helps reduce overfitting. As shown in Fig-
ure 2, BiDoRA demonstrates better resistance to overfitting compared to DoRA, given the smaller
performance gap between the training set and test set. Furthermore, the asynchronous gradient up-
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Figure 2: Training and test accuracy versus global training steps on the ModHayes split of the
Reuters21578 dataset when fine-tuning a RoBERTa-base model using DoRA and BiDoRA. The
training and test curves for DoRA show a larger gap compared to BiDoRA, highlighting the effec-
tiveness of our method in reducing overfitting.

(a) Full FT(k = −65.816) (b) LoRA(k = 0.836) (c) DoRA(k = −1.784) (d) BiDoRA(k = −8.042)

Figure 3: Magnitude and direction updates for (a) FT, (b) LoRA, (c) DoRA, and (d) BiDoRA of the
query matrices across different layers and intermediate steps after fine-tuning the GPT2 model on
the E2E dataset, where k denotes the correlation value. Different markers represent matrices from
different training steps, with each color corresponding to a specific layer.

date steps at the two optimization levels in BiDoRA facilitate better decoupling of the magnitude
component from the incremental direction component, leading to a more flexible update pattern that
closely resembles FT. As illustrated in Figure 3, the updates of the magnitude and direction com-
ponents across different layers using BiDoRA have a correlation value that is closest to that of FT,
highlighting its superior learning capability compared to both DoRA and LoRA.

Our work makes the following key contributions:

• We propose BiDoRA, a novel parameter-efficient fine-tuning method based on bi-level
optimization. In contrast to DoRA, which trains the magnitude and incremental direction
components on a single dataset, BiDoRA optimizes these components on different splits of
a downstream dataset through distinct optimization steps.

• Our strategy effectively mitigates the risk of overfitting and results in a parameter update
pattern that more closely resembles full fine-tuning.

• Extensive experiments on fourteen datasets highlight the superior performance of BiDoRA.
BiDoRA consistently surpasses several baseline methods, including LoRA and DoRA,
across tasks such as text classification, language generation, and token classification.

2 RELATED WORK

2.1 PARAMETER EFFICIENT FINE-TUNING METHODS

Parameter-efficient fine-tuning (PEFT) methods aim to reduce the high costs associated with fully
fine-tuning large-scale models by updating only a relatively small subset of pre-trained parameters,
rather than the entire model, to adapt to downstream tasks. Existing PEFT methods can be mainly
categorized into three types. The first category, known as adapter-based methods, injects additional
trainable modules into the original frozen backbone. For instance, Houlsby et al. (2019) suggests
adding linear modules in sequence to existing layers, while He et al. (2021) proposes integrating
these modules in parallel with the original layers to enhance performance. The second category is
prompt tuning methods, which add extra soft tokens (prompts) to the initial input. During the fine-
tuning stage, only these trainable soft tokens are updated, as demonstrated in works such as Lester
et al. (2021) and Razdaibiedina et al. (2023). Unfortunately, the first two categories lead to increased
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inference latency compared to fully fine-tuned models. The third category is low-rank adaptation
methods, pioneered by the foundational work LoRA (Hu et al., 2021). These methods attach low-
rank matrices to pre-trained weights and use only these matrices for weight updates during fine-
tuning. Since low-rank updates can be merged with pre-trained weights before inference, low-rank
adaptation-based PEFT methods do not increase inference time. Following LoRA, Zhang et al.
(2023) applies SVD decomposition to low-rank matrices and prunes less significant singular values
for more efficient updates. Zhang et al. (2024b) uses meta-learning to search for the optimal rank
of LoRA matrices, further improving its performance on downstream tasks. Most recently,Liu et al.
(2024) uses weight decomposition analysis to reveal that LoRA exhibits a distinct weight updating
pattern compared to FT, which may constrain its learning capacity. Therefore, DoRA (Liu et al.,
2024) was then proposed to bridge the gap between LoRA and FT. DoRA decomposes the pre-
trained weights into two components—magnitude and direction—and fine-tunes both, which results
in a more closely aligned updating pattern compared to FT.

2.2 BI-LEVEL OPTIMIZATION

Bi-level optimization (BLO) has been widely applied in various machine learning tasks, including
meta-learning (Finn et al., 2017; Rajeswaran et al., 2019), neural architecture search (Liu et al.,
2018; Zhang et al., 2021), and hyperparameter optimization (Lorraine et al., 2020; Franceschi et al.,
2017). Despite its wide usage, solving BLO problems can be challenging due to the inherent nature
of nested optimization problems. Several algorithms have been proposed to address this challenge,
including zeroth-order methods such as Bayesian optimization (Cui & Bai, 2019) and first-order
algorithms based on hypergradients (Pearlmutter & Siskind, 2008; Lorraine et al., 2020). Among
these approaches, gradient-based BLO has received significant attention because it can scale to
high-dimensional problems with a large number of trainable parameters. In this work, we extend the
application scenarios of gradient-based BLO to develop a robust and effective parameter-efficient
fine-tuning method for pre-trained models.

3 PRELIMINARY: WEIGHT-DECOMPOSED LOW-RANK ADAPTATION

LoRA (Hu et al., 2021) involves attaching the product of two low-rank matrices to the pre-
trained weights and fine-tuning these low-rank matrices on downstream datasets with the pre-trained
weights frozen. It is based on the assumption that parameter updates made during fine-tuning ex-
hibit a low intrinsic rank. Formally, given a pre-trained weight matrix W0 ∈ Rd×k, LoRA attaches
a low-rank update matrix ∆W ∈ Rd×k to the pre-trained weight. This update matrix can be further
decomposed as ∆W = BA, where B ∈ Rd×r and A ∈ Rr×k are two low-rank matrices, with
r ≪ min(d, k). Consequently, the weight matrix W ′ after LoRA fine-tuning can be represented as
follows:

W ′ = W0 +∆W = W0 +BA (1)

In this setup, the pre-trained weight matrix W0 remains fixed during the fine-tuning process, while
the LoRA matrix ∆W is updated. However, after performing weight decomposition on fine-tuned
weight matrices, it was found that LoRA and full fine-tuning exhibit different learning patterns (Liu
et al., 2024). To bridge this discrepancy, weight-decomposed low-rank adaptation (DoRA, Liu et al.
(2024)) further reparameterizes the weight matrices by explicitly decomposing them into learnable
magnitude and direction components. Formally, DoRA performs adaption as follows:

W ′ = m
V +∆V

∥V +∆V ∥c
= m

W0 +BA

∥W0 +BA∥c
(2)

where the incremental direction component ∆V is parameterized as a product of two learnable low-
rank matrices, B and A, while the magnitude component m ∈ R1×k is a learnable vector. Here,
∥ · ∥c represents the vector-wise norm of a matrix computed across each column. In DoRA, both
components are optimized concurrently on a single downstream dataset.
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4 METHODS

4.1 OVERVIEW OF BIDORA

Our method, BiDoRA, optimizes the trainable parameters in DoRA layers by solving a bi-level
optimization problem. Let M = {m1,m2, . . . ,mn} denote the set of magnitude components for
all n DoRA modules, and V = {∆V1,∆V2, . . . ,∆Vn} denote the set of corresponding incremental
direction components. Specifically, we first learn the incremental direction components V∗(M) on
the training split of the downstream dataset Dtr at the lower level. The magnitude component M
is tentatively fixed at this level, thus the resulting optimal incremental direction component V∗(M)
is a function of M. At the upper level, we determine the optimal magnitude component M∗ by
optimizing the loss on a validation split Dval. In practice, Dtr and Dval are typically created by
splitting the original training set without using additional data. This bi-level optimization problem
is solved using an efficient gradient-based algorithm, where parameters in two levels are optimized
iteratively until convergence. Related convergence analyses of this type of gradient-based bi-level
optimization algorithms can be found in Pedregosa (2016), Rajeswaran et al. (2019), and references
therein. The generalization analysis has also been studied in Bao et al. (2021).

4.2 ORTHOGONAL REGULARIZATION

The orthogonality of neural network weights has been identified as a beneficial property (Bansal
et al., 2018) and can effectively mitigate the overfitting issue (Balestriero & richard baraniuk, 2018).
Therefore, we define a Gram regularization loss (Xie et al., 2017) for the direction component:

R(V) =
n∑

k=1

∥∥(Vk +∆Vk)
⊤(Vk +∆Vk)− I

∥∥2
F

(3)

where I is the identity matrix and ∥ · ∥F denotes the Frobenius norm. Intuitively, R(V) encourages
each column of the direction matrix, representing a specific direction, to be orthogonal to one an-
other. Since each column has already been normalized (equivalent to projected to the unit sphere),
this also prompts each column to be far away from the other, thereby reducing the redundancy of
parameters.

4.3 A BI-LEVEL OPTIMIZATION FRAMEWORK

Lower Level At the lower level, we train the low-rank incremental direction component V by
minimizing a loss Ltr defined on the training set Dtr. The overall training objective at this level is
Ltr(V,M) = C(V,M;Dtr) + γR(V). Here, C represents the fine-tuning loss, given the low-rank
incremental direction component V , the magnitude component M, and the training split Dtr of the
downstream dataset. R(V) is the orthogonal regularizer defined in Eq. (3), with γ as a trade-off
hyperparameter. In this level, we only update V while keeping M fixed, resulting in the following
optimization problem:

V∗(M) = argmin
V

Ltr(V,M) (4)

where V∗(M) denotes the optimal solution for V in this problem, which is a function of M.

Upper Level At the upper level, we validate the previously fixed magnitudes M on the validation
set Dval, using the optimal incremental direction component V∗(M) that was learned at the lower
level. This results in a validation loss Lval(V∗(M),M) = C(V∗(M),M;Dval). We determine
the optimal magnitude component M by minimizing this validation loss:

min
M

Lval(V∗(M),M) (5)

A Bi-level Optimization Framework Integrating the two levels of optimization problems, we
have the following bi-level optimization framework:

min
M

Lval(V∗(M),M)

s.t. V∗(M) = argmin
V

Ltr(V,M) (6)
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Algorithm 1: BiDoRA
Input: Training dataset Dtr and validation dataset Dval

1 Initialize trainable magnitude components M = {mk}nk=1 and low-rank incremental direction
components V = {∆Vk}nk=1 = {{Ak}nk=1, {Bk}nk=1}

2 // Search Phase
3 while not converged do
4 Update magnitude M by descending ∇MLval(V − ξ∇VLtr(V,M),M)
5 Update direction V by descending ∇VLtr(V,M)

6 Derive the optimal magnitude M∗ = {m∗
k}nk=1

7 // Retraining Phase
8 Train V until converge using Dtr

⋃
Dval and derive the optimal direction V∗

Output: V∗ and M∗

Note that these two levels of optimization problems are mutually dependent on each other. The
solution of the optimization problem at the lower level, V∗(M), serves as a parameter for the upper-
level problem, while the optimization variable M at the upper level acts as a parameter for the
lower-level problem. By solving these two interconnected problems jointly, we can learn the optimal
magnitude component M∗ and incremental direction matrices V∗ in an end-to-end manner.

Two reasons exist behind the choice of setting the magnitude component as the upper level instead of
the converse one: 1) In literature, the upper level usually has much fewer parameters than the lower
level. In our case, the design of setting the magnitude of complexity O(k) as the upper level and
the direction of complexity O(dr + kr) as the lower level is consistent with the common practice.
2) BiDoRA resembles the DARTS method (Liu et al., 2018) in neural architecture search where the
subnets are selected by a selection variable. Specifically, the magnitude vector resembles a selection
variable on the direction matrix by softly selecting each direction (subnets) via scaling.

Optimization Algorithm We use a gradient-based optimization algorithm (Choe et al., 2023)
to solve the bi-level optimization problem presented in Eq. (6). A significant challenge in this
process is that precisely computing the gradient of the upper-level loss Lval with respect to the
magnitude component M can be computationally prohibitive due to the lack of an analytical solution
for V∗(M) at the lower-level optimization problem. To address this issue, we use the following one-
step-unrolled approximation of V∗(M) inspired by previous work (Liu et al., 2018):

∇MLval(V∗(M),M) ≈ ∇MLval(V − ξ∇VLtr(V,M),M)

where ξ is the learning rate at the lower level, and the one-step-unrolled model V̄ = V −
ξ∇VLtr(V,M) is used as a surrogate for the optimal solution V∗(M). We then compute the ap-
proximated gradient as follows:

∇MLval(V − ξ∇VLtr(V,M),M)

=∇MLval(V̄,M)− ξ∇2
M,VLtr(V,M)∇V̄Lval(V̄,M) (7)

≈∇MLval(V̄,M)− ξ
∇MLtr(V+,M)−∇MLtr(V−,M)

2ϵ
(8)

where ϵ is a small scalar and V± = V±ϵ∇V̄Lval(V̄,M). Since directly computing the matrix-vector
multiplication term in Eq. (7) is computationally expensive, we use finite difference to approximate
this product as in Eq. (8), following Liu et al. (2018). As detailed in Algorithm 1, the incremental
direction component V and the magnitude component M are updated using gradient descent iter-
atively until convergence. After acquiring the optimal magnitudes M∗ through the process above,
the incremental direction component V is retrained on the union of training and validation splits to
achieve the best performance on downstream tasks, resulting in the final learned V∗.
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Table 1: RoBERTabase/large (Rb/l) with different fine-tuning methods on the GLUE benchmark. A
higher value is better for all datasets. The best results are shown in bold.

Method Param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

Rb(FT) 125.0M 90.3 94.8 89.3 61.6 86.7 92.8 76.9 91.2 85.5

Rb(Adapter) 0.9 M 86.5 94.0 88.4 58.8 92.5 89.1 71.2 89.9 83.8
Rb(LoRA) 0.15 M 86.8 94.3 88.0 60.3 93.0 89.6 72.9 90.1 84.4
Rb(DoRA) 0.17 M 86.8 94.2 89.2 60.5 92.9 89.6 73.2 90.2 84.6

Rb(BiDoRA) 0.17 M 87.1 94.4 89.4 61.3 92.7 90.6 76.0 90.1 85.2
Rl(FT) 355.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9

Rl(Adapter) 0.8M 90.3 96.3 87.7 66.3 94.7 91.5 72.9 91.5 86.4
Rl(LoRA) 0.39 M 90.6 96.3 90.0 66.9 94.5 91.2 86.3 91.7 88.4
Rl(DoRA) 0.39 M 90.6 96.4 89.8 65.8 94.7 91.2 86.6 92.0 88.4

Rl(BiDoRA) 0.39 M 90.6 96.1 90.1 67.0 94.6 91.7 86.9 92.0 88.6

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We compare BiDoRA with several PEFT methods, including Adapter tuning (Houlsby et al., 2019),
LoRA (Hu et al., 2021), and DoRA (Liu et al., 2024). BiDoRA does not use any additional data
compared to other baselines, as we create the validation set for upper-level optimization by splitting
the original training set with an 8:2 ratio for all tasks. All methods in the experiment, including
ablation studies, are trained until convergence for a fair comparison. Detailed descriptions of these
baseline methods are provided in Appendix C.

Table 2: RoBERTabase/large (Rb/l) with different fine-
tuning methods on the Reuters21578 benchmark. A
higher value is better for all datasets. The best results
are shown in bold.

Method Param ModApte ModHayes ModLewis

Rb(FT) 125.0M 85.4 77.6 77.1

Rb(Adapter) 0.9 M 85.3 77.5 76.8
Rb(LoRA) 0.15 M 84.7 74.3 74.7
Rb(DoRA) 0.17 M 84.8 78.2 76.6

Rb(BiDoRA) 0.17 M 85.3 79.9 77.6
Rl(FT) 355.0M 84.8 77.5 76.6

Rl(Adapter) 0.44 M 84.8 77.9 76.7
Rl(LoRA) 0.39 M 84.7 77.7 76.7
Rl(DoRA) 0.39 M 84.8 77.4 76.7

Rl(BiDoRA) 0.39 M 84.9 78.9 77.3

Our experiments cover a wide range of
tasks, including natural language un-
derstanding (NLU), natural language
generation (NLG), and token classifi-
cation. For NLU tasks, we fine-tune
the RoBERTa-base and RoBERTa-large
models on the GLUE benchmark (Wang
et al., 2019) and the Reuters21578
dataset (Padmanabhan et al., 2016) us-
ing all baseline PEFT methods and
BiDoRA. Detailed descriptions of these
datasets and pre-trained models are pro-
vided in Appendix A. Following exist-
ing practices, the development set is
used in GLUE as the test data since
the actual test set is not publicly avail-
able. We report the overall (matched
and mismatched) accuracy for MNLI,
Matthew’s correlation for CoLA, Pear-
son correlation for STS-B, and accuracy for the other tasks. On the Reuters21578 dataset, the F1
score is used as the evaluation metric across all three splits. For NLG tasks, we fine-tune GPT-2
medium on the E2E (Novikova et al., 2017) dataset. We use BLEU (Papineni et al., 2002), NIST
(Lin & Och, 2004), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), and CIDEr (Vedan-
tam et al., 2015) as evaluation metrics. For token classification, we fine-tune the RoBERTa-base and
RoBERTa-large models on the BioNLP (Collier et al., 2004) dataset and the CoNLL2003 (Sang &
De Meulder, 2003) dataset. Accuracy, precision, recall, and F1 score are used as evaluation metrics.

For all experiments, our implementation is based on the Huggingface Transformers library (Wolf
et al., 2019) and the Betty library (Choe et al., 2023). We use a single NVIDIA A100 GPU for all
experiments. More detailed experimental settings are provided in Appendix B.

5.2 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING TASKS

In this section, we evaluate the performance of BiDoRA on NLU tasks, with a particular focus on
text classification. Table 1 presents the results of fine-tuning the RoBERTa-base and RoBERTa-
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Table 4: RoBERTabase/large (Rb/l) with different fine-tuning methods on BioNLP data and
CoNLL2003 dataset. A higher value is better for all metrics. The best results are shown in bold.

BioNLP CoNLL2003
Method Param Accuracy Precision Recall F1 Accuracy Precision Recall F1

Rb(FT) 125.0M 93.9 69.0 78.9 73.6 99.3 95.7 96.3 96.0

Rb(Adapter) 0.9 M 93.9 69.1 78.8 73.7 99.3 95.7 96.4 96.0
Rb(LoRA) 0.15 M 93.9 69.0 78.8 73.6 99.3 95.4 96.3 95.8
Rb(DoRA) 0.17 M 94.0 69.2 79.1 73.8 99.3 95.3 96.2 95.8

Rb(BiDoRA) 0.17 M 93.9 71.2 78.6 74.7 99.3 95.9 96.5 96.2
Rl(FT) 355.0M 94.0 69.4 79.6 74.1 99.4 96.2 97.0 96.6

Rl(Adapter) 0.44 M 94.0 69.4 79.7 74.2 99.4 96.1 97.0 96.6
Rl(LoRA) 0.39 M 93.9 69.2 79.3 73.9 99.4 96.2 97.0 96.6
Rl(DoRA) 0.39 M 94.0 69.4 79.7 74.2 99.4 96.2 97.1 96.6

Rl(BiDoRA) 0.39 M 94.0 71.3 79.3 75.1 99.4 96.4 97.1 96.7

large models on the GLUE benchmark with baseline PEFT methods and BiDoRA. The results show
that BiDoRA achieves superior or comparable performance compared to baseline methods across
all datasets with the same number of trainable parameters. Table 2 presents the results of fine-
tuning RoBERTa models on the Reuters21578 datasets, where BiDoRA outperforms all baseline
methods by an even larger margin. Notably, BiDoRA achieves performance comparable to or even
better than full fine-tuning. The superior performance of BiDoRA on both benchmarks verifies the
effectiveness of its bi-level optimization mechanism. By training the magnitude and incremental
direction components on two distinct sub-datasets, BiDoRA enhances the flexibility of the learn-
ing process and improves learning capacity compared to DoRA, resulting in a performance boost.

Table 3: Performance of BiDoRA and baseline meth-
ods for fine-tuning GPT2-medium on the E2E dataset. A
higher value is better for all metrics. The best results are
shown in bold.

Method Param BLEU NIST MET ROUGE-L CIDEr

Full FT 354.9M 68.0 8.61 46.1 69.0 2.38

Adapter 11.1M 67.0 8.50 45.2 66.9 2.31
LoRA 0.39M 67.1 8.54 45.7 68.0 2.33
DoRA 0.39M 67.0 8.48 45.4 70.1 2.33

BiDoRA 0.39M 69.0 8.72 46.2 70.9 2.44

5.3 EXPERIMENTS ON NATURAL
LANGUAGE GENERATION TASKS

In this section, we evaluate BiDoRA’s
performance on the NLG task. Table
3 presents the results of fine-tuning a
GPT-2 model on the E2E dataset with
baseline PEFT methods and BiDoRA.
The results show that BiDoRA achieves
the best performance across all five eval-
uation metrics, demonstrating the supe-
riority of BiDoRA in fine-tuning pre-
trained models for NLG tasks.

5.4 EXPERIMENTS ON TOKEN
CLASSIFICATION

Table 5: Fine-tuning ESM on the thermostability predic-
tion task. A higher value is better for all metrics, with the
best results highlighted in bold.

Methods #Params Accuracy Precision Recall F1

FT 652.7M 79.8 81.2 79.8 78.4

LoRA 1.5M 75.9 78.2 75.9 75.5
DoRA 1.6M 76.9 78.7 76.9 76.2

BiDoRA 1.6M 78.8 79.1 78.8 78.2

Further evidence of the effectiveness of
BiDoRA can be observed in Table 4,
which reports the results of token clas-
sification tasks. Unlike the NLU tasks
discussed in the previous section, which
involve classifying entire sentences and
focusing on capturing global semantics, token classification requires classifying each token within
a sentence, highlighting the importance of capturing local context. On the BioNLP dataset,
BiDoRA consistently outperforms baseline methods by a large margin in terms of F1 score. On
the CoNLL2003 dataset, BiDoRA either outperforms or matches all baseline methods across all
metrics. Consistent with our previous findings, BiDoRA effectively fine-tunes pre-trained models
for token classification tasks.

5.5 EXPERIMENTS ON EXTREMELY SMALL DATASETS
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Table 6: Fine-tuning ESM on the BBP task. A higher
value is better for all metrics, with the best results high-
lighted in bold.

Methods #Params Accuracy Precision Recall F1

FT 652.9M 89.4 89.9 89.4 89.4

LoRA 1.9M 86.8 87.7 86.8 86.7
DoRA 2.0M 89.4 91.3 89.4 89.3

BiDoRA 2.0M 92.1 93.1 92.1 92.0

The ESM (Evolutionary Scale Mod-
eling, Rives et al. (2021)) model is
a transformer-based protein language
model designed for protein sequence
analysis, leveraging the transformer ar-
chitecture to capture evolutionary pat-
terns. We fine-tune the ESM model
using the Protein Aligner checkpoint
(Zhang et al., 2024a) on three pro-
tein prediction tasks: two classification
tasks—thermostability prediction (Chen et al., 3,695 training samples) and blood-brain barrier pep-
tide prediction (BBP, Dai et al. (2021), 936 training samples)—and one regression task, minimum
inhibitory concentration prediction (MIC, Ledesma-Fernandez et al. (2023), 200 training samples).
Notably, protein analysis datasets are typically much smaller than those in NLP, in which case the
large pre-trained models are prone to overfitting, even when using PEFT methods. The trainable
parameters (on the order of millions) are significantly overparameterized compared to the available
samples (thousands or even hundreds), highlighting the need for our overfitting-resilient counterpart.
The results are presented in Tables 5, 6, and 7, respectively. For the classification tasks, we use
accuracy, precision, recall, and F1 score to evaluate performance. For the regression task, we use
mean squared error (MSE). Consistent with our previous findings, BiDoRA effectively fine-tunes
pre-trained models on extremely small datasets. Our method outperforms the baselines by a larger
margin as the dataset size decreases, confirming our previous conclusion that our method effectively
combats the overfitting issue on various network architectures and diverse tasks.

5.6 SCALING UP TO LARGER MODEL SETTINGS

Table 7: Fine-tuning ESM
on the MIC task. A lower
value is better, with the best
results highlighted in bold.

Methods #Params MSE

FT 652.7M 0.2894

LoRA 1.7M 0.3433
DoRA 1.8M 0.2918

BiDoRA 1.8M 0.2818

We use DeBERTa (He et al., 2020) and Llama2 (Touvron et al.,
2023) to evaluate the scalability of our method. For our experi-
ments, we use DeBERTa-v2-xxlarge, which has 1.5 billion param-
eters, and Llama2-7b, which has 7 billion parameters. We evaluate
the three subsets of the Reuters21578 dataset. The results presented
in Table 8 show that BiDoRA achieves better or on-par performance
compared with DoRA and full fine-tuning (FT), indicating that
BiDoRA yields better generalization when fine-tuning models with a
very large number of parameters and diverse network architectures.

5.7 ABLATION STUDIES

Table 8: Fine-tuning DeBERTa and Llama2 on the Reuters21578
benchmark. A higher value is better for all datasets, with the best
results highlighted in bold.

Method Param ModApte ModHayes ModLewis

DeBERTa(DoRA) 1.3M 79.3 75.4 73.6
DeBERTa(BiDoRA) 1.3M 79.9 75.7 74.5
Llama2-7b (DoRA) 2.4M 81.8 76.4 74.5

Llama2-7b (BiDoRA) 2.4M 82.4 77.1 74.8

In this section, we perform ab-
lation studies to investigate the
effectiveness of individual mod-
ules or strategies in BiDoRA.
We fine-tune a RoBERTa-base
model on the GLUE benchmark
under different ablation settings,
and the results are shown in Table 9.

Retraining We test the model directly obtained from the search phase to evaluate the effec-
tiveness of further retraining the incremental direction component. The results show that BiDoRA
outperforms BiDoRA (w/o retraining) on average, highlighting the necessity of retraining.

Bi-level Optimization We set ξ to zero in Algorithm 1 to assess the effectiveness of the
bi-level optimization framework. This ablation setting can be interpreted as an alternative learning
method where two optimization steps are carried out alternately on two different splits of the training
dataset. Notably, in the alternative learning method, the updating of each component is unaware of
each other, making the training less stable. In contrast, the hyper-gradient used in bi-level optimiza-
tion avoids this issue by connecting the two levels in a certain way. The results show that BiDoRA
outperforms BiDoRA (ξ = 0) on average, demonstrating the efficacy of the bi-level optimization
strategy.
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Table 9: Ablation studies. We evaluate the performance of BiDoRA without retraining (w/o retrain-
ing), without bi-level optimization (ξ = 0) and without orthogonal regularization (w/o cst.).

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

BiDoRA (w/o retraining) 87.0 94.2 89.0 57.3 92.4 90.6 71.6 90.0 84.0
BiDoRA (ξ = 0) 86.9 94.2 89.0 59.4 90.8 91.2 75.9 90.0 84.7

BiDoRA (w/o cst.) 87.0 94.4 88.6 61.3 92.7 90.2 76.0 90.1 85.0
BiDoRA 87.1 94.4 89.4 61.3 92.7 90.6 76.1 90.1 85.2

Orthogonal Regularization We examine the effectiveness of the orthogonality constraint in
Eq. (3) by setting γ to zero. Results show that BiDoRA outperforms BiDoRA (w/o cst.) on average,
indicating the effectiveness of applying the orthogonality regularizer to alleviate overfitting.

5.8 WEIGHT DECOMPOSITION ANALYSIS Table 10: Average training time cost on the
MNLI, QQP, and SST-2 datasets.

Method LoRA DoRA BiDoRA

Cost ×1 ×1.30 ×3.92

One important motivation of DoRA is to bridge the
inherent differences between LoRA and FT. Similar
to DoRA, we conduct a weight decomposition anal-
ysis on the correlation between the change of magni-
tudes and that of directions (detailed in Appendix E)
for BiDoRA and baseline methods by fine-tuning a GPT2-medium model on the E2E dataset. As
shown in Figure 3, FT, DoRA, and BiDoRA all exhibit negative correlation values, while LoRA
shows a positive correlation, consistent with the findings in Liu et al. (2024). Notably, BiDoRA
achieves a negative correlation of −8.042, closer to FT than DoRA’s −1.784. This improvement
is attributed to the decoupled training process of the two layers, which allows for a higher learning
capacity compared to DoRA.

5.9 COMPUTATION COSTS

Figure 4: BiDoRA reaches a comparable perfor-
mance using much fewer iterations than DoRA.
Evaluated when fine-tuning the Llama2-7b model
on the Reuters-21578 dataset, and a similar pat-
tern holds for other datasets.

Since BiDoRA has the same architecture as
DoRA, our method only requires two extra for-
ward and backward passes of the lower level
for the hypergradient calculation of the up-
per level, as shown in Eq. 8. In principle,
this would make our method roughly three-
fold computationally costly. A similar analy-
sis holds for the memory consumption analysis.
Empirically, table 10 shows the average train-
ing cost of BiDoRA and two baseline methods
on the MNLI, QQP, and SST-2 datasets from
the GLUE benchmark, being consistent with
the theoretical analysis. We normalize the cost
of LoRA to 1 for reference. Importantly, we
also found that BiDoRA converges significantly faster than DoRA, as indicated by the orange dashed
lines in Figure 4, mitigating the speed disadvantage. This allows BiDoRA to achieve comparable
performance in the same wall-clock time. Therefore, BiDoRA is practical due to its superior perfor-
mance and comparable speed.

6 CONCLUSION AND FUTURE WORKS

We propose BiDoRA, a novel bi-level optimization framework for parameter-efficient fine-tuning
of large-scale pre-trained models. By conducting weight decomposition following the DoRA ap-
proach, our method trains the two components separately in two interconnected optimization levels
using different sub-datasets. In this way, BiDoRA not only decouples the learning process of the
two components, resulting in a learning pattern closer to FT, but also effectively alleviates over-
fitting. Empirical studies on various NLP tasks demonstrate that BiDoRA outperforms DoRA and
other baselines, highlighting the effectiveness of our method. We leave enhancing the efficiency
of BiDoRA for future work. Overall computational costs can be reduced by using more accurate
hyper-gradient estimators, such as implicit differentiation (Rajeswaran et al., 2019) and the SAMA
estimator (Choe et al., 2024), which can be easily integrated into our framework thanks to support
from the Betty library (Choe et al., 2023).
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A DATASETS AND MODELS

A.1 NATURAL LANGUAGE UNDERSTANDING

The GLUE Benchmark comprises a diverse array of tasks that are widely employed for evaluation in
natural language understanding. It encompasses two single-sentence classification tasks, three tasks
assessing similarity and paraphrasing, and four tasks focusing on natural language inference. Specif-
ically, it includes MNLI (MultiNLI, Williams et al. (2017)), SST-2 (Stanford Sentiment Treebank,
Socher et al. (2013)), MRPC (Microsoft Research Paraphrase Corpus, Dolan & Brockett (2005)),
CoLA (Corpus of Linguistic Acceptability, Warstadt et al. (2019)), QNLI (Question NLI, Rajpurkar
et al. (2018)), QQP (Quora Question Pairs), RTE (Recognizing Textual Entailment), and STS-B
(Semantic Textual Similarity Benchmark, Cer et al. (2017)). We summarize the statistical data for
all datasets within the GLUE Benchmark in Table 11.

The Reuters-21578 (Padmanabhan et al., 2016) dataset is one of the most widely used data collec-
tions for text categorization research. It was collected from the Reuters financial newswire service
in 1987 and is used for text classification and natural language processing tasks. Three splits are
available: ModApte, ModHayes, and ModLewis. These documents cover various topics, such as
politics, economics, and sports. We summarize the statistical data for all text classification tasks
used in our experiments in Table 12.

Table 11: The statistical data for all datasets within the GLUE Benchmark.

Dataset Metrics Train Dev Test Label Task

MNLI Accuracy 393k 20k 20k 3 NLI
SST-2 Accuracy 67k 872 1.8k 2 Sentiment
MRPC Accuracy 3.7k 408 1.7k 2 Paraphrase
CoLA Matthews Corr 8.5k 1k 1k 2 Acceptability
QNLI Accuracy 108k 5.7k 5.7k 2 QA/NLI
QQP Accuracy 364k 40k 391k 2 Paraphrase
RTE Accuracy 2.5k 276 3k 2 NLI
STS-B Pearson Corr 7.0k 1.5k 1.4k 1 Similarity

Table 12: The statistical data for the Reuters-21578 dataset.

Dataset Metrics Train Test

ModApte F1 8.8k 3k
ModHayes F1 18k 0.7k
ModLewis F1 12k 5.5k

A.2 NATURAL LANGUAGE GENERATION

In our experiments on natural language generation, we use the E2E (Novikova et al., 2017) dataset,
which was initially introduced as a dataset for training end-to-end, data-driven natural language
generation systems. Multiple references can be associated with each source table used as input.
Each sample input (x, y) consists of a series of slot-value pairs accompanied by an associated natural
language reference text. The E2E dataset comprises approximately 42,000 training examples, 4,600
validation examples, and 4,600 test examples from the restaurant domain.

We utilize the following five evaluation metrics: BLEU (Papineni et al., 2002), NIST (Lin & Och,
2004), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), and CIDEr (Vedantam et al.,
2015). We summarize its statistical data in Table 13.
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Table 13: The statistical data for E2E dataset.

Dataset Metrics Train Validation

E2E BLEU,NIST,MET,ROUGE-L,CIDEr 42k 4.6k

A.3 TOKEN CLASSIFICATION

BioNLP (Collier et al., 2004) is a Named Entity Recognition dataset that contains biological entities
such as DNA, RNA, and protein. It is essentially a token classification task where we want to
classify each entity in the sequence. CoNLL-2003 (Sang & De Meulder, 2003) focuses on language-
independent named entity recognition. It concentrates on four types of named entities: persons,
locations, organizations, and miscellaneous entities that do not belong to the previous three groups.
We summarize the statistical data for all used token classification tasks in Table 14.

Table 14: The statistical data for token classification tasks

Dataset Metrics Train Validation Test

BioNLP Accuracy,Precision,Recall,F1 17k 1.9k 3.9k
CoNLL2003 Accuracy,Precision,Recall,F1 14k 3.3k 3.5k

B EXPERIMENTAL SETTINGS

In this section, we provide detailed experimental settings. We maintain consistent configurations
across experiments, including LoRA rank, LoRA α, batch size, maximum sequence length, and
optimizer, to ensure a fair comparison. The hyperparameter tuning for our method is straightforward
and convenient.

B.1 ROBERTA

We summarize the experimental settings for the GLUE benchmark in Table 15 and for the
Reuters21578 dataset and token classification tasks in Table 16.

B.2 GPT-2

We summarize the experimental settings for the GPT-2 experiments in Table 17. The experimental
configuration, particularly during the inference stage, follows the approach described by Hu et al.
(2021).

C BASELINES IN EXPERIMENTS

We compare BiDoRA with Full Fine-Tuning (FT), Adapter tuning (Houlsby et al., 2019), LoRA (Hu
et al., 2021), and DoRA (Liu et al., 2024) in all our experiments. We provide a brief introduction to
these methods here.

Full Fine-Tuning (FT) is a commonly used method for adaptation. The model is initialized with
pre-trained weights and biases, and all model parameters are updated through gradient descent.

Adapter tuning (Houlsby et al., 2019) inserts layer adapters between neural modules, such as the
MLP module or the self-attention module. It incorporates two fully connected layers within an
adapter layer, with a nonlinearity function applied between them.
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Table 15: The hyperparameters we used for RoBERTa on the GLUE benchmark.
Method Settings MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank ranka = ranku = 4
LoRA α 8

RoBERTa-base Total batch size 32
Global steps 20000 12000 25000 20000 15000 20000 15000 12000
Lower learning rate 5e-5 1e-5 2e-5 5e-5 2e-5 5e-5 1e-5 1e-5
Upper learning rate 5e-5 1e-5 2e-5 5e-5 2e-5 5e-5 1e-5 1e-5
Lower weight decay 0.1
Upper weight decay 0.1 0.1 0.1 0.1 0 0.1 0.1 0.01
Max Seq Length 512
Regularization Coefficient 1e-5

RoBERTa-large Total batch size 32
Global steps 50000 20000 30000 20000 60000 40000 15000 10000
Lower learning rate 1e-5
Upper learning rate 1e-5
Lower weight decay 0.5 0.5 0 0.2 0.5 0.5 0.5 0.5
Upper weight decay 0.5 0.05 0 0.2 0.5 0.5 0.1 0.5
Max Seq Length 128
Regularization Coefficient 0 0 1e-5 1e-5 0 1e-5 0 1e-5

Table 16: The hyperparameters we used for RoBERTa on the Reuters21578 dataset, BioNLP dataset,
and CoNLL2003 dataset.
Method Settings ModApte ModHayes ModLewis BioNLP CoNLL2003

Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank ranka = ranku = 4
LoRA α 8

RoBERTa-base Total batch size 32
Global steps 20000 20000 20000 12000 12000
Lower learning rate 3e-5 3e-5 3e-5 1e-5 2e-5
Upper learning rate 3e-5 3e-5 3e-5 1e-5 2e-5
Lower weight decay 0.1 0.1 0.1 0.1 0.2
Upper weight decay 0.1
Max Seq Length 512
Regularization Coefficient 0 1e-5 0 1e-5 0

RoBERTa-large Total batch size 32
Global steps 20000 20000 20000 12000 15000
Lower learning rate 1e-5 1e-5 1e-5 2e-5 1e-5
Upper learning rate 1e-5 1e-5 1e-5 2e-5 1e-5
Lower weight decay 0.2 0.1 0.2 0.02 0.1
Upper weight decay 0.1 0.1 0.1 0.02 0.1
Max Seq Length 128
Regularization Coefficient 0 1e-5 0 0 1e-5

LoRA (Hu et al., 2021) adds trainable incremental update matrices to pre-trained weight matrices.
Following the experimental settings of LoRA, we applied BiDoRA to Wq and Wv matrices (the
query and value weight matrices in the self-attention module) for a fair comparison.
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Table 17: The hyperparameters we used for GPT-2 on the E2E NLG benchmark.
Settings Training

Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank ranka = ranku = 4
LoRA α 32
Label Smooth 0.1
Lower learning rate 1e-3
Upper learning rate 1e-4
Lower weight decay 1
Upper weight decay 1
Max Seq Length 512
Regularization Coefficient 1e-5

Settings Inference

Beam Size 10
Length Penalty 0.9
no repeat ngram size 4

DoRA (Liu et al., 2024) proposes weight-decomposed adaptation, which formulates the incremen-
tal matrices as a product of magnitude and direction components, thereby accelerating training and
aligning the training behavior with full fine-tuning. In contrast, our BiDoRA trains the two compo-
nents on distinct sub-datasets to alleviate overfitting.

D THEORETICAL INSIGHTS

We can gain several insights into how BiDoRA can alleviate the overfitting issue by analyzing both
the gradient of the bi-level optimization and theoretical results from existing work.

In terms of gradient analysis, we can demonstrate the robustness of our method by examining the
behavior of the loss L′

val(V,M) = Lval(V − ξ∇VLtr(V,M),M). We analyze its gradient with
respect to the magnitude parameters M using the chain rule,

dL′
val

dM
=

∂L′
val

∂M
+

∂V̄
∂M

× ∂L′
val

∂V̄
(9)

The second term on the right-hand side, particularly the term ∂V̄
∂M , referred to as the best-response

Jacobian in the literature, captures how the direction component would react to changes in the mag-
nitude. More specifically, the update of M must consider not only the current value of the direction
V but also additional information about how the direction responds to changes in the magnitude.
This facilitates finding a globally optimal magnitude value, thereby enhancing stability and robust-
ness. Consequently, the model becomes more resilient to overfitting. In contrast, if ξ is set to 0,
Algorithm 1 reduces to a first-order approximation, which performs coordinate descent for M and
V on different empirical distributions. In this scenario, the second term in Eq. (9) vanishes, making
the approach insufficient to alleviate overfitting effectively.

On the other hand, we can also see the generalization guarantees of BiDoRA using various theoret-
ical works in the literature (Oymak et al., 2021; Bai et al., 2021; Bao et al., 2021; Chen et al., 2022;
Huang et al., 2022). For example, Theorem 1 in Oymak et al. (2021) provides strong evidence of
the benefits of applying bi-level optimization to alleviate overfitting. Oymak et al. (2021) discussed
the generalization guarantees for neural architecture search with a train-validation split. They as-
sumed the same scenario as ours: using bi-level optimization where one optimizes the weights over
the training data (lower-level problem) and hyperparameters over the validation data (upper-level
problem). The theorem shows that as soon as the size of the validation data exceeds the effective
number of hyperparameters (up to logarithmic factors), the test error is close to the validation error
(i.e., validation error is indicative of the test error). In practice, the number of magnitude param-
eters is generally less than or comparable to the size of the validation set, making this assumption
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feasible. We empirically show that validation performance and test performance align, as theoret-
ically supported by Oymak et al. (2021). In Figure 5, we plot the performance on the training,
validation, and test datasets for the CoLA and SST-2 datasets during the search phase. The first
observation is that training performance always overfits until reaching zero error, whereas validation
performance closely tracks test performance. This training behavior aligns with the fact that large-
capacity networks can perfectly fit (Du et al., 2019; Ji & Telgarsky, 2019; Oymak & Soltanolkotabi,
2020) in the overparameterized setting, where the available data (less than 10k for CoLA and 67k
for SST-2) is less than the number of learnable parameters (around 170k). To truly find a model that
achieves good generalization performance, the optimization procedure should evaluate the general-
ization loss. Thus, as shown in Figure 5, the validation phase serves as a crucial test proxy in the
overparameterized setting where training performance may not be indicative of test performance.

Figure 5: Train/Validation/Test performance during the search phase of fine-tuning the RoBERTa-
base model on the CoLA dataset (left) and SST-2 (right).

E WEIGHT DECOMPOSITION ANALYSIS

We provide a brief review of the weight decomposition analysis proposed in Liu et al. (2024). De-
fine the weight decomposition of a weight matrix W ∈ Rd×k (e.g., query matrix in an attention
layer) as W = m V

∥V ∥c
= ∥W∥c W

∥W∥c
, where m ∈ R1×k is the magnitude vector, and V ∈ Rd×k

is the directional matrix, with ∥ · ∥c representing the vector-wise norm of a matrix across each
column. This decomposition ensures that each column of V/∥V ∥c remains a unit vector, and the
corresponding scalar in m defines the magnitude of each vector. Liu et al. (2024) examine the mag-

nitude and directional variations between W0 and WFT, defined as ∆M t
FT =

∑k
n=1 |mn,t

FT−mn
0 |

k and

∆Dt
FT =

∑k
n=1(1−cos(V n,t

FT ,Wn
0 ))

k . Here, ∆M t
FT and ∆Dt

FT represent the magnitude and direction
differences between W0 and WFT at the t-th training step, respectively, with cos(·, ·) denoting co-
sine similarity. mn,t

FT and mn
0 are the nth scalars in their respective magnitude vectors, while V n,t

FT

and Wn
0 are the nth columns in V t

FT and W0. Intuitively, a consistent positive slope trend across all
the intermediate steps implies a difficulty in concurrent learning of both magnitude and direction,
suggesting that slight directional changes are challenging to execute alongside more significant mag-
nitude alterations. In contrast, a relatively negative slope signifies a more varied learning pattern,
with a more pronounced negative correlation indicating a larger learning capacity.

Complementary to Figure 3 in the main paper on the query matrix, we provide additional results
of weight decomposition analysis in Figure 6 on the value matrix to complement the findings in
Section 5.8. We can draw two key observations from Figure 6: 1) Consistent with the results in
Liu et al. (2024), both FT and DoRA exhibit negative correlation values of −49.279 and −5.485,
respectively, while LoRA shows a positive correlation with a value of 2.503. 2) BiDoRA achieves
a negative correlation value of −10.547, indicating closer alignment with FT compared to DoRA.
The analysis of how BiDoRA achieves this improvement is similar to that discussed in Section 5.8.

F THE ROLE OF HYPERPARAMETER

The hyperparameter tuning for BiDoRA is simple, convenient, and straightforward. We further
conducted experiments regarding the dataset partition of Dtr and Dval to provide insights into its
role in BiDoRA. The dataset partition helps maintain the balance of inner/outer optimization by
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(a) FT(k = −49.279) (b) LoRA(k = 2.503) (c) DoRA(k = −5.485) (d) BiDoRA(k = −10.5)

Figure 6: Magnitude and direction updates for (a) FT, (b) LoRA, (c) DoRA, and (d) BiDoRA of
the value matrices across different layers and intermediate steps after fine-tuning the GPT2 model on
the E2E dataset. Different markers represent matrices from different training steps, while different
colors indicate matrices from each layer. The values of negative correlation are shown at the top,
denoted by k.

Partition ModApte ModHayes ModLewis

0.6 85.32 79.76 77.69
0.7 85.32 80.01 77.74
0.8 85.34 79.93 77.63
0.9 85.27 79.85 77.64
1.0 85.23 79.59 77.42

Table 18: Experiment results on different data partitions of BiDoRA

assigning different portions of data. The direction component has more trainable parameters, so it is
reasonable to use more data for training the lower level while using the remaining data for training
magnitudes. As shown in Table 18, We varied the inner-level dataset Dtr partition from 0.6 to 1.0
with 0.1 intervals and experimented with RoBERTa-base on three splits of the Reuters21578 dataset
to examine its influence.

The results indicate that both extreme cases are negative to the overall performance. When the in-
ner partition is too small (≤ 0.6), directions are not well-trained, and when the inner partition is
1.0, magnitudes are not trained at all, leading to a significant performance drop. These findings
demonstrate that bi-level optimization is effective in the sense that both levels are necessary for en-
hancing performance. Although tuning the partition ratio may further improve overall performance,
we maintain a consistent data partition of 8:2 in all the experiments for simplicity. A fixed configu-
ration of data partition already consistently yields superior performance of BiDoRA, demonstrating
that our method is robust to this hyperparameter within a certain range.
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