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ABSTRACT

Electroencephalography (EEG) is a non-invasive technique that provides critical in-
sights for diagnosing neurological disorders. However, leveraging EEG in machine
learning remains challenging due to its inherently low signal-to-noise ratio (SNR),
pronounced inter-subject variability, and heterogeneous channel configurations
across datasets. These issues make it challenging to design a general-purpose
encoder that can reliably capture robust and transferable EEG representations.
Most existing EEG foundation models adopt self-supervised learning frameworks,
typically pairing a primary encoder with several auxiliary components. While these
auxiliary modules are intended to support representation learning, in practice, they
often dominate the optimization process, preventing the encoder from developing
strong, generalizable features. Consequently, even well-trained models may fall
short in downstream applications. To address this limitation, we propose STELAR,
a novel EEG foundation model that concentrates training on the encoder while
minimizing the role of auxiliary components. STELAR introduces a three-part
dual-space pretraining strategy that integrates representation-space alignment with
lightweight signal-space reconstruction: (i) visible-token alignment directly super-
vises encoder outputs, (ii) masked-token alignment enforces generative consistency
through a compact prediction head, and (iii) linear masked reconstruction preserves
fidelity to the original signals. This streamlined design substantially reduces auxil-
iary parameters while yielding a cleaner and more effective pretraining pipeline
compared to prior approaches. In addition, STELAR incorporates a spatio-temporal
cross-attention encoder, which jointly captures spatial dependencies across EEG
channels and temporal dynamics across time. Empirical results demonstrate that
STELAR converges rapidly, within 15 epochs, and consistently outperforms pre-
vious EEG foundation models by up to 5% under linear probing evaluation. All
source code will be released publicly upon acceptance of this work.

1 INTRODUCTION

Understanding the brain has long been a central scientific pursuit. Brain—computer interfaces (BCls)
leverage electroencephalography (EEG) to non-invasively record neural activity, yet EEG signals
remain difficult to interpret due to non-stationarity and low signal-to-noise ratio. Prior work has
developed task-specific methods for motor imagery (Altaheri et al.| 2021} Dai et al.| 2020), emotion
recognition (Dadebayev et al., 2022} |Gao et al.l [2024), seizure detection (Ahmad et al., |2022;
Yildiz et al., 2022)), and sleep staging (Phan & Mikkelsen, 2022; Wang et al., |2024b; Zhou et al.}
2024), showing that EEG carries rich cognitive and clinical information. Yet, these methods remain
fragmented, each tied to a single task. This raises a key question: How can we build a unified
model that learns generalizable EEG representations transferable across tasks? To this end, we
introduce STELAR (Spatio-Temporal Encoder-centric Lightweight Alignment & Reconstruction),
a framework that advances EEG foundation models and establishes a unified evaluation protocol,
addressing a critical gap in prior work.

Developing universal EEG foundation models is challenging due to several factors: the inherently low
signal-to-noise ratio of EEG, high variability across and within subjects (Saha & Baumert, [2020; |Del
Pup et al.l 2025} |Rezzouk et al.}[2025)), and differences in electrode montages across datasets (Han
et al.}|2025). In addition, many recent approaches follow monolithic designs where large auxiliary
modules (e.g., decoder, predictor) dominate learning (Jiang et al.,2024; |Wang et al., |2024a)), making
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it difficult to ensure that the encoder itself captures generalizable representations. These challenges
have motivated a range of self-supervised strategies proposed in the literature, which we review in
Section@ Building on these insights, we introduce STELAR, a streamlined framework that addresses
these issues by centering representation learning in the encoder while keeping auxiliary components
lightweight.

In this work, we present STELAR, an encoder-centric pre-training framework that seamlessly uni-
fies representation-space alignment with lightweight signal-space reconstruction. Building on the
strengths of recent EEG foundation models, STELAR enhances efficiency and stability through a
three-part dual-space objective: (i) visible-token alignment, which directly supervises encoder out-
puts, (ii) masked-token alignment, which promotes generative consistency via a compact predictor,
and (iii) linear masked reconstruction, which preserves fidelity to raw signals. Integrated within a
Criss-Cross attention backbone (Wang et al., 2024c), these components together yield an encoder that
is both computationally efficient and capable of producing high-quality, transferable representations.

The experimental analysis validates our design: STELAR converges within a few epochs during
pre-training (Appendix [B)), reduces pre-training parameters by nearly 50% compared to EEGPT-like
framework (Section [3.4)), and achieves stronger linear probing performance than prior foundation
models across benchmarks (Table[7). Our ablation results highlight the necessity of visible-token
alignment and lightweight reconstruction for achieving stable representation learning (Section [4.4).

By shifting the heavy lifting of representation learning to the encoder and standardizing the evaluation
protocol, STELAR establishes a principled path for future EEG foundation models. Its lightweight and
stable design lowers the computational barrier to entry, enabling broader adoption in neuroscience and
BClI research. More importantly, strong linear probing performance across benchmarks demonstrates
that STELAR learns representations that are not only good in performance but also robust and
generalizable, paving the way toward reliable foundation models for clinical and cognitive EEG
applications.

Our contributions can be summarized as follows:
* Encoder-centric pre-training. STELAR emphasizes token-level supervision with minimal auxil-
iary modules, ensuring that representation quality resides in the encoder.

* Three-part dual-space objective. Visible-token alignment, masked-token alignment, and linear
masked reconstruction act together to encourage stability, fidelity, and transferability.

* Efficiency with strong transfer and generalizability. STELAR significantly reduces auxiliary
parameters for pretraining, converges in a few epochs, and consistently achieves strong linear
probing results across multiple EEG benchmarks.

2 RELATED WORK

Generative self-supervised learning. BENDR (Kostas et al., [2021) followed the masked autoen-
coder (MAE) scheme, which randomly masked a proportion of the input and trained the model to
reconstruct this information. However, BENDR did not account for the correlation of different chan-
nels of the EEG signal. To address this limitation, LaBram (Jiang et al.| 2024) introduced a learned
neural tokenizer to discretize the EEG signal into discrete tokens for MAE learning. CbraMod (Wang
et al., 2024c) proposed a Criss-Cross attention to aggregate information within the same channel
and across different channels of multi-channel EEG signals. Although these methods achieve good
performance when fine-tuned on downstream tasks, training with MAE can heavily emphasize on
low-level signal details, which might not be essential for effective representation learning (Grill et al.|
2020). This phenomenon is also observed in EEG signals, as evidenced by substantial declines in
linear probing performance (Jiang et al.,|2024; |Wang et al.| 2024c; Xiong et al., 2025).

Discriminative self-supervised learning. Among discriminative methods, contrastive learning (CL)
is currently widely used (Mohsenvand et al., [2020; |Yang et al., 2023)). In CL, an encoder is trained
to maximize the similarity between “positive pairs”, and minimize the similarity of the “negative
pairs”. (Mohsenvand et al., 2020) trained a channel feature extractor by extending the SimCLR
framework to EEG data. (Yang et al., 2023)) addressed the mismatched channel between different
samples by masking some channels, and applied contrastive learning to learn the core representation
of multichannel EEG signals. However, EEG signals are noisy, vary across and within subjects, and
lack clear unit boundaries, making it challenging to definitively determine which pairs are “positive”
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or “negative”. This is problematic as CL relies on well-defined positive and negative pairs to learn
meaningful representations (Kalantidis et al.,|2020; |Lan et al., 2023).

Hybrid self-supervised learning. (Lee et al., 2024} Zhu et al.|, 2023)) proposed to apply both masked
reconstruction loss and contrastive loss to utilize the advantage of both types of loss. So far, (Grill
et al., 2020; |Caron et al.,|2021) have shown the potential of alignment loss, which uses only “positive
pairs”, eliminating the need for proper ’negative pairs” in CL. In particular, alignment loss aligns the
online encoder with the exponential moving average (EMA) target encoder, under the hypothesis
that the EMA representation is more stable and prevents model collapse. Motivated by this idea,
EEGPT (Wang et al., [2024a)) proposed a dual loss scheme, combining alignment loss and masked
reconstruction loss, for EEG signal. With this dual-loss scheme, EEGPT achieved better performance
compared to other EEG foundation models in the linear probing setup (Wang et al., [2024a; Xiong
et al., 2025)).

Our method is inspired by EEGPT but extends it significantly with several key enhancements. First,
we introduce an additional alignment-based loss to strengthen representation learning. Second, we
tailor an improved architecture that more effectively captures the unique characteristics of EEG
signals. Finally, we propose a novel encoder-centric framework, minimizing the auxiliary modules,
that ensures representation quality resides in the encoder.

3 METHOD
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Figure 1: Schematic of the STELAR framework, including the patch embedder with Criss-Cross atten-
tion; two representation-space alignments (visible pre-predictor; masked post-predictor); lightweight
signal-space reconstruction; and EMA branch.
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The STELAR pre-training framework (Figure[T) consists of an encoder, momentum encoder, predictor,
and reconstructor. EEG signals are patchified (30s windows) with a high masking ratio, and patch
embeddings are learned via transformer blocks with Criss-Cross attention. Training follows a dual-
space self-supervised scheme: visible representation alignment, masked representation alignment
with a lightweight predictor, and mask-based reconstruction with a linear layer. The resulting model
is evaluated by linear probing across diverse downstream tasks.

3.1 PATCH ENCODING
3.1.1 PATCHING & MASKING

Consider a multichannel EEG input S € RE*T where C is the number of electrodes and T the
number of time points. We divide S into temporal windows of length ¢, forming patches X € R¢*"x?
with n = | T'/t| per channel. Each patch z; ; € R’ yields the sequence X = {z; ;}i=1.c, j=1..n Of
length C'n. To enable training with partial information, we apply a random mask M = {m; ;}, with
m; ; ~ Bernoulli(r). If m; ; = 0, the original patch is kept; otherwise it is replaced by a constant
mask token z; € R%:

_ Tig, mi; =0,
Ty = (1)
TM, mihj =1.

The masked sequence is then X = {&; ;} € RE*"xt,

3.1.2 TIME-FREQUENCY PATCH EMBEDDING

EEG signals exhibit both temporal dynamics and oscillatory patterns across frequency bands. To
exploit this complementary structure, we follow CBraMod (Wang et al., [2024c|) and encode each
masked patch Z; ; with a dual-branch encoder. Time branch includes 1D convolutional blocks
(conv—norm—GELU) produce a temporal embedding eﬁ’ ; € R? . Frequency branch includes fast

Fourier transform (FFT) followed by a fully connected layer yields a spectral embedding e{’ ; € R,
The final representation is the sum:

€5 = €§7j + eij’ E = {ei’j} S chnXde. 2)

3.1.3 CHANNEL EMBEDDING

EEG signals are montage-dependent, so preserving channel identity is essential. Following
EEGPT (Wang et al.| 2024a)), we assign each channel c; a trainable embedding ¢; € R, added to its
patch embeddings E:

E° = E + {e}L, € RO"xde, 3)

This montage-aware design introduces a lightweight spatial bias and improves transferability: non-
standard channel sets in downstream datasets can be aligned via a simple adapter (e.g., 1 X 1
projection) without retraining.

3.2 REPRESENTATION-SPACE ALIGNMENT
3.2.1 SPATIO-TEMPORAL ENCODER

Our encoder follows CBraMod (Wang et al., 2024c), which uses Criss-Cross attention to jointly
model temporal and spatial dependencies across patches. This design better captures intra-channel
dynamics and cross-channel interactions than standard attention, aligning with Diver-0 (Han et al.,
2025)), which also stresses the importance of explicit cross-channel modeling for generalization. We
therefore adopt criss-cross attention, as neighboring temporal and spatial patches share stronger
relationships than distant ones.

Different from the Absolute Channel Positional Encoding (ACPE) (Wang et al.,[2024c)), which fixes
the receptive field, we combine (i) learnable channel embeddings for spatial identity and (ii) RoPE (Su



Under review as a conference paper at ICLR 2026

et al., 2024) for temporal order. This allows flexible dependency modeling across arbitrary spans
and channel subsets (within the 10-20 system), while keeping the pre-training pipeline clean and
lightweight.

Transformer Block. Each block consists of layer normalization, Criss-Cross attention, a residual
connection, and a feed-forward layer. Given patch embeddings E° € R¢*"*de we first normalize

to obtain E, then enrich with RoPE and channel embeddings:

E = F 4+ RoPEn(E) + ChanEmbed(E). 4)

Criss-Cross attention. The attention module consists of two branches: spatial attention (across
channels at the same time step) and temporal attention (across time within the same channel). The

enriched input Eis projected into K heads, with half assigned to spatial and half to temporal attention:

S-Attentiony, (E), k < K/2,
head;, = R (@)
T-Attentiony, (E), k> K/2.
The outputs are concatenated as
Criss-cross-Attention(E) = Concat(head,, . . ., headx). (6)
Output Representation. Stacking such blocks yields
E"={ej;|i€l,....Cl,j€[L,...,n]} e RO"*% @)

where each token e; ; integrates patch content, temporal context, and channel identity under the

Criss-Cross attention structure.

3.2.2 TINY PREDICTOR.

Let E" = {e];} € RE*™*? be encoder outputs, with } and M denoting visible and masked
positions. Masked tokens are reconstructed using a tiny predictor Pred (1-2 transformer layers),
ensuring representational capacity resides in the encoder, consistent with findings from BYOL (Grill
et al.,[2020). Each masked position (i, j) € M is assigned a query

¢i.j = qx + € + RoPEime(j), (8)

where ¢, is a learnable mask embedding, ¢; the channel embedding, and RoPE encodes temporal
order. Queries attend only to visible tokens EY, (visible-only K/V attention (He et al., 2022; [Fu et al.,
2024)), improving stability and efficiency.

The predictor thus outputs
{pred; ;} i jyerm = Pred({gi;} i jer EY). ©
By keeping Pred shallow, the encoder is forced to embed sufficient information in visible tokens,

while queries gain minimal inductive cues from RoPE and channel embeddings.

3.2.3 MOMENTUM ENCODER.

We use a momentum encoder f, identical to the online encoder fy, updated via EMA:

7 = fo(X), Z™™ = fe(X), &+ 1E+(1-1)8, (10)
where X is the original input and X its masked version (with constant, non-learnable tokens). This
avoids information leakage while keeping input structure consistent.

The momentum encoder serves as a slowly updated teacher, providing stable asymmetric targets, akin
to BYOL (Grill et al.| |2020) and MoCo (He et al.,[2020). Building on these methods, our framework
introduces visible pre-predictor alignment, which is described next.
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3.2.4 REPRESENTATION-SPACE DUAL ALIGNMENT.

We define two alignment objectives against the momentum encoder.

Visible alignment. For visible tokens (4, j) € V, encoder outputs are directly matched to momentum
features:

Lus=77 > [LN(e} ;) — stopgrad(LN(=5™))]3, (11)
(i,4)€V

ensuring the encoder, not the predictor, captures discriminative features.

Mask alignment. For masked tokens (7, j) € M, predictor outputs are aligned with momentum
features:

Lomask = Wll Z [LN(pred; ;) — stopgrad(LN(z["™))|[3. (12)
(1,5)EM

Here the predictor is purely generative, reconstructing from visible context. This dual scheme differs
from prior BYOL/MoCo setups by directly supervising visible tokens. The representation loss is

£rep = )\v‘Cvis + /\mﬁmask- (13)
3.3 SIGNAL-SPACE MASKED RECONSTRUCTION

To complement representation-space alignment, we reconstruct only masked patches. Predicted and
visible features are merged via a combiner, then projected back:

& j = Wree Combiner(pred, ;, ency), (i,5) € M, (14)
with loss
Liee = ﬁ Z 12,5 — wigll3- (15)
(i,5)EM
The full objective is
L= )\1)£vis + )\mﬁmask + )\1’£r607 (16)

balancing alignment and reconstruction while keeping the predictor shallow and the encoder central.

3.4 COMPLEXITY

A key principle of our framework is a clean, lightweight pre-training pipeline. By avoiding heavy
decoders or large predictors, training converges in few epochs, requires fewer resources, and reduces
cost and environmental impact. Formally, the parameter count is

ParamssTeiaR = 2Pone + P + Pi" ~ 2P, (17)

pred rec
as the tiny predictor and linear reconstructor are negligible relative to the encoder.

This yields fewer parameters and faster training than frameworks with heavy de-
coders/predictors (Wang et al.,|2024a) or separately trained tokenizers (Jiang et al.| 2024)).

3.5 LINEAR-PROBING METHOD

For downstream evaluation, we freeze the pretrained encoder and train only a lightweight head,
ensuring that performance reflects the quality of the learned representations. We exploit the full patch
embeddings E” € RE*"*4 enabling the probe to aggregate features (via pooling or projections) or
derive task-specific summary tokens, thereby capturing both global and fine-grained dynamics. The
probing network applies lightweight spatial filters (1x 1 convolutions) for channel alignment, and a
linear classifier. As in EEGPT (Wang et al., 2024a)), we utilize a channel adapter to map heterogeneous
electrode sets into the pre-trained montage, thereby enabling broad dataset compatibility. This
design maintains the probe’s lightweight nature while faithfully assessing encoder generality and
transferability.
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4 EXPERIMENTS

4.1 PRETRAINING DATA & SETUP

Pre-training Dataset. STELAR is pre-trained on a curated subset of TUEG (Obeid & Piconel [2016)),
excluding TUAB (Lopez de Diego et al.,[2017)) and TUEV (Golmohammadi et al.}[2017) to avoid
leakage. After extensive preprocessing to remove noise and artifacts, the dataset is reduced to ~500
hours of clean EEG (see Appendix D).

Preprocessing & Settings. Following prior work (Wang et al.| [2024c), we harmonize sampling rates,
select 19 standard channels, apply filtering, window EEG into 30s segments, and normalize to [—1, 1].
Pre-training uses random masking (70%), AdamW optimization, and 5 model variants (Table [3).
More implementation details and scaling results are in Appendix [D}

4.2 DOWNSTREAM, EVALUATION & SETUP

Evaluation Protocol. To ensure fair evaluation, we adopt subject-wise cross-validation, reporting
averages across folds. Different from many prior works that report validation results only, our scheme
isolates test sets entirely (see Appendix [E).

Downstream Tasks. We evaluate on 5 tasks across 6 datasets (Table[7), covering motor imagery,
seizure detection, sleep staging, abnormality detection, and error-related potentials. All data are
resampled to 200Hz, normalized to [—1, 1], and mapped to the predefined channel set. Dataset-specific
preprocessing and truncation are described in Appendix [E|

Baselines. We compare STELAR to state-of-the-art EEG foundation models (EEGPT, LaBraM,
CBraMod), using their official setups and preprocessing pipelines for fair comparison (see Ap-

pendix [E).
Downstream Setup. We use linear probing (frozen encoder + linear head). For multiclass tasks, we
report Balanced Accuracy, Cohen’s Kappa, and Weighted F1; for binary tasks, Balanced Accuracy,

AUC-PR, and AUROC. STELAR employs a lightweight channel adapter as in EEGPT. Full setup
details are in Appendix [E]

4.3 RESULTS

Table [I] shows that STELAR matches or outperforms prior EEG foundation models across six
benchmarks, with clear gains on BCIC-2A, PhysioNet-MI, Sleep-EDFx, and TUAB, and competitive
results on KaggleERN and TUEV. It performs especially well on long-range data (Sleep-EDFx, 30
s/sample) while remaining strong on short, event-based tasks, indicating robust modeling of both long-
and short-term EEG structure. These results are obtained without any pretraining on the downstream
datasets, highlighting the effectiveness of the architecture. Notably, the tiny variant often rivals or
exceeds the base model, suggesting compact encoder-centric designs are sufficient, with further gains
likely from broader pretraining.

4.4 ABLATIONS

Ablation study on pre-training

Table [2] shows that pre-training clearly enhances downstream performance: balanced accuracy
improves by over 3% absolute, with consistent gains in Cohens’s kappa and F1. This confirms
that encoder representations learned through our dual-space pretraining transfer effectively, even in
the tiny-scale model. The improvement highlights the value of representation-space alignment and
signal-level reconstruction in capturing generalizable EEG features.

Ablation study on different pre-training methods

Table 3] shows that all three loss components contribute to final performance. Dropping either
Lyis or Liask reduces balanced accuracy by 1-2%, showing that visible and masked alignment are

"Note that the EEGPT pre-training corpus includes PhysioNet-MI, while CBraMod was pre-trained on data
including TUAB and TUEYV, which overlap with our downstream evaluation.
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Table 1: Linear probing results across four downstream taskﬂ

Cohen’s Kappa/ Weighted F1/

Datasets Methods Balanced Accuracy AUC-PR AUROC
BCIC-2A LaBraM 0.4667 0.2889 0.4476
EEGPT 0.5495 0.3993 0.5322

CBraMod 0.5133 0.3511 0.5011

Ours-tiny 0.5799 0.4399 0.5690

Ours-base 0.5803 0.4404 0.5684

PhysioNet-MI LaBraM 0.2766 0.0356 0.2626
EEGPT 0.5319 0.3758 0.5360

CBraMod 0.4625 0.2835 0.4561

Ours-tiny 0.5603 0.4138 0.5611

Ours-base 0.5688 0.4295 0.5766

KaggleERN LaBraM 0.4997 0.7090 0.4954
EEGPT 0.5632 0.7938 0.6397

CBraMod 0.5018 0.7320 0.5298

Ours-tiny 0.5414 0.7994 0.6273

Ours-base 0.5520 0.7980 0.6325

Sleep-EDFx LaBraM 0.5721 0.5360 0.6402
EEGPT 0.6131 0.6149 0.6953

CBraMod 0.6420 0.6280 0.7041

Ours-tiny 0.6889 0.6623 0.7480

Ours-base 0.6970 0.6590 0.7455

TUEV LaBraM 0.4372 0.5025 0.7366
EEGPT 0.5173 0.5101 0.7480

CBraMod 0.3796 0.4734 0.7162

Ours-tiny 0.5361 0.5704 0.7876

Ours-base 0.5014 0.5720 0.7909

TUAB LaBraM 0.7315 0.7958 0.7989
EEGPT 0.7762 0.8593 0.8561

CBraMod 0.5914 0.5685 0.6230

Ours-tiny 0.8009 0.8511 0.8752

Ours-base 0.7987 0.8630 0.8731

Table 2: Ablation on pre-training with STELAR-tiny.

Method I BICIC-2A TUEV

H Bal. Acc.(%) Kappa(%) F1(%) Bal. Acc.(%) Kappa(%) F1(%)
STELAR- H 0.5449 03932 05346 04973 05148 0.7590
w/o pre-training
STELAR | 05799 04399 05690  0.5361 05704  0.7876

Table 3: Ablation study on pre-training losses with STELAR-tiny

Method BCIC-2A

Bal. Acc.(%) Kappa(%) F1(%)
STELAR-w/0 Ly 0.5637 0.4183 0.5546
STELAR-w/0 L.k 0.5597 0.4130 0.5448
STELAR-w/0 L e 0.5401 0.3868 0.5259
STELAR 0.5799 0.4399 0.5690

both necessary for robust representation learning. Removing L. yields the most significant drop,
confirming that a lightweight reconstruction term is critical for preserving fidelity of EEG dynamics.
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The full objective, combining all terms, achieves the strongest downstream accuracy, validating our
encoder-centric dual alignment with reconstruction design.

4.5 EFFICIENCY, STABILITY & SCALING

STELAR is designed to be highly parameter- and compute-efficient. Compared with existing EEG
foundation models, our encoder-centric design with lightweight auxiliary modules achieves superior
performance while requiring two orders of magnitude fewer parameters and FLOPs (see Appendix [B).

Scaling analysis further reveals that accuracy improves from tiny to little, but saturates beyond the
base variant. Larger models obtain lower pre-training loss but transfer poorly, indicating overfitting
to limited EEG data and a mismatch between model capacity and dataset scale (Kaplan et al., 2020;
Zhai et al, 2022} [Hoffmann et al.,[2022). Compact variants (tiny—base) thus strike the best trade-off
between efficiency and robustness (see Appendix [B).

Finally, the pre-training curves (Figure[2] Appendix) confirm the stability of our pipeline: convergence
occurs within 15 epochs, showing that dual-space alignment with lightweight reconstruction provides
a clean learning signal and enables efficient optimization without long training schedules. This
demonstrates that streamlined pre-training not only reduces computation and energy costs but also
yields high-quality EEG representations.

4.6 LIMITATION

While STELAR demonstrates strong efficiency and generalization, several limitations remain. First,
the scale of pre-training data is modest compared to the vision or language domains, which limits
scalability; larger and more diverse EEG corpora are needed to fully realize the potential of foundation
models. Second, STELAR still requires a channel adapter to handle varying electrode montages across
datasets, which introduces an additional adaptation step and prevents strict permutation-equivariance.
Third, although our design achieves stable convergence, it still depends on a momentum encoder and
predictor, which adds complexity to the pipeline.

5 CONCLUSION

We presented STELAR, an encoder-centric EEG foundation model that integrates dual-space align-
ment with lightweight reconstruction. Our encoder-centric design emphasizes token-level supervision
while keeping auxiliary modules minimal, enabling fast convergence, reduced complexity, and strong
transfer. Linear probing evaluation conducted across diverse BCI tasks demonstrates that even
the lightweight variants can achieve good performance, robust generalizability, and transferability.
STELAR thus establishes a principled step toward robust and accessible EEG foundation models,
paving the way for broader adoption in neuroscience and clinical applications. In future work, we
aim to extend this framework to larger and more diverse pre-training corpora and explore multimodal
integration.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. Details on data preprocessing
pipelines, pretraining configurations, and downstream evaluation setups are provided in Appendix D]
and Appendix [E|respectively. These resources together enable others to replicate our experiments
and verify the reported findings.
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Figure 2: Pretraining loss curve of the STELAR-huge model over 50 epochs. The model converges
around epoch 15, demonstrating efficient and stable representation learning.

eeecce
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Figure 3: t-SNE visualizations of STELAR embeddings on (a) TUAB and (b) TUEV.

A VISUALIZATION

The pre-training loss curve of our STELAR-huge model is shown in Figure[2} Over the 50-epoch
pre-training process, the loss exhibits a consistent downward trend. Convergence is reached around
epoch 15, after which the loss stabilizes at a low level. This behavior indicates that the model rapidly
learns meaningful representations from EEG data, and the training process remains stable throughout
the full pre-training trajectory.

We provide a visualization of the STELAR encoder representations. As shown in Figure 33 and
Figure 3b] STELAR successfully clusters the representations of the TUAB and TUEV datasets.
Although there are some areas where the embeddings are not fully clustered, STELAR demonstrates
a strong ability to generate representations that can effectively classify between different classes.
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Table 4: Pretraining computation cost

Method Total Params Encoder Params MFLOPs/step BCIC-2A-BAC

LaBraM 5.992M 5.8M 2,583 0.4667
EEGPT 76M 25M 25,000 0.5495
CBraMod 3.95M 3.9M 6,940 0.5133
Ours-tiny 161K 124K 619 0.5799
Ours-base 6.72M 5.4M 7,511 0.5803

Table 5: STELAR model variants and their parameter sizes.

Variants Embed dim Depth Num heads Encoder params Pretrain loss BCIC-2A-BAC

tiny 64 2 2 124K 0.2725 0.5799
little 128 8 2 1.4M 0.1672 0.5827
base 256 8 4 5.4M 0.1297 0.5803
large 512 8 8 21.3M 0.1013 0.5652
huge 512 12 8 31.8M 0.0911 0.5652

B EFFICIENCY, STABILITY & SCALING

Table [] shows that STELAR is highly efficient: the tiny variant uses two orders of magnitude
fewer parameters and FLOPs than EEGPT yet achieves the best balanced accuracy on BCIC-2A.
This confirms that an encoder-centric design with lightweight auxiliary modules yields superior
representations without the overhead of heavy decoders or predictors, an important advantage for
EEG research where resources are limited.

Scaling analysis in Table 3] reveals that accuracy improves from tiny to little, but saturates beyond the
base variant. Larger variants achieve lower pre-training loss but overfit and transfer poorly, reflecting
a mismatch between model capacity and the limited size/noisiness of current EEG corpora (Kaplan
et al.,|2020; Zhai et al., 2022 [Hoffmann et al.,|2022)). Compact variants (tiny, base) therefore offer
the best trade-off between capacity and robustness, showing that bigger is not necessarily better for
EEG foundation models.

The learning curves in Figure 2]in the Appendix confirm the stability of our pre-training pipeline.
The rapid convergence within 15 epochs shows that the dual-space alignment with lightweight
reconstruction provides a clean learning signal, enabling efficient optimization without the need of
long schedules. This further supports our claim that a streamlined pre-training design can save both
computing time and energy while still producing high-quality EEG representations.

C ADDITIONAL RESULTS

C.1 ABLATION STUDY ON MASK RATIO

In this section, we investigate the impact of different mask ratios during pretraining. We pretrain
STELAR with various mask ratios and then evaluate its performance on the BCIC-2A dataset in
the downstream task. The balanced accuracy varies slightly between different masked ratios. With
higher mask ratios during pretraining, the encoder requires less computational cost to process the
visible patches. Therefore, we select a 70% mask ratio to balance between training performance and
computational efficiency.
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Figure 4: STELAR’s performance on BCIC-2A based on masked ratio during pretraining

D PRETRAINING DATA & SETUP

Pre-training Dataset. STELAR is pre-trained on a subset of TUEG (Obeid & Piconel [2016), which is
the largest publicly available dataset, with a total duration of 27,062 hours. This data set was recorded
on the standard 10-20 system. Most of the recordings are made at 256 Hz. To avoid information leaks
during downstreaming on TUAB (Lopez de Diego et al.,[2017) and TUEV (Golmohammadi et al.|
2017), the STELAR pre-training data set excludes these two corpora from TUEG. Hence, our raw
pre-training dataset has 1,840 hours of EEG recordings. The TUEG dataset is heavily affected by
data contamination, with large amounts of unannotated noise, artifacts, and malfunctioning channels.
Hence, STELAR employed an efficient preprocessing strategy to eliminate noise in the pre-training
data.

Preprocessing. Our preprocessing strategy is similar to CBraMod (Wang et al.}[2024c)) for minimizing
variability caused by inconsistent recording and eliminating data noise. First, the recording scheme of
TUEG may be prone to contamination, especially at the beginning and end of the recording. Therefore,
the one-minute beginnings and endings of all recordings are discarded to remove low-quality data. All
recordings were recorded with a 10-20 standard system with 40 common channels. Second, to remove
noise from degraded channels without missing important data sources, we only selected 19 most
common channels (Fpl, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TS5, P3, Pz, P4, T6, O1, O2).
Third, because EEG signals focus on a small range of frequencies, EEG recordings were then filtered
with a band-pass filter (0.3Hz - 75Hz) to remove noise, along with a notch filter at 60Hz to discard
the power line noise. Long-duration samples potentially capture the long-term dependency of EEG
signals. Therefore, all recordings were then resampled at 200Hz and cut into 30-second windows
without overlap to create uniformly long-term samples. Raw EEG is often disturbed by non-brain
physiological activities such as ECG, EOG, and EMG (Yin et al., [2025), which can potentially create
“excessive pulses” that deceive models as abnormal recordings. For robust and stable pre-training, we
finally eliminated samples with a maximum voltage amplitude exceeding 1001V, before normalizing
all samples to a range of -1 to 1. After this preprocessing phase, our pre-training dataset was reduced
by 3.5 times from 1,840 hours to 500 hours. STELAR demonstrates efficiency despite its small-scale
pre-training.

Pre-training Settings. STELAR was implemented with PyTorch 2.1.2 and CUDA 11.8. After
preprocessing, each 30s EEG segment, sampled at 200 Hz with 19 channels, is regarded as one
sample. We define the length of each patch as 200 time points, equivalent to 1s EEG data. Patches
were randomly masked with a ratio of 70%. 10% of the pretraining dataset was held out for validation.
Pretrained model was optimized by AdamW optimizer with learning rate 1le — 4 for 50 training
epochs using a batch size of 128. We provide 5 architectural variants outlined in Table [3)), all trained
on NVIDIA A100 40GB GPUs. The pre-training time of STELAR-huge variant is 4.2 hrs with
2x A100 40GB GPUs.

We next describe the experimental settings used for STELAR pre-training. In line with
CBraMod (Wang et al., 2024c])), all EEG recordings are segmented into 30-second samples. This
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Table 6: Hyperparameters for STELAR pre-training.

Component Hyperparameters Settings
EEG sample Channels 19
Time points 6000 (30s @ 200Hz)
Patch dimension 200
Sequence length 30 patches
Mask ratio 0.7
Mask token Constant
Encoder Layers (depth) 2-12 (variant dependent)
Hidden dimension  64-512
Attention heads 2-16
MLP ratio 4.0
qkv bias True
Init std 0.02
Norm € 1x1076
Attention pattern Criss-Cross
Predictor Depth 1-2 layers
KV mode Global visible-only K/V
Attention Criss-Cross
Reconstructor Head Linear (hidden dimension, patch dimension)

Momentum Encoder EMA momentum Cosine ramp 0.996 — 0.9995

Pre-training Epochs 50
Batch size 64 (global)
Optimizer AdamW
Learning rate 1x 1074
LR schedule Warmup + Cosine decay
Warmup steps max(500,0.17")
Weight decay 5 x 1072 (cosine schedule)
Adam (0.9, 0.999)
Adam ¢ 1x1078

Gradient clipping 1.0
Loss weights Arec = 10.0, A\yis = 1.0, Apask = 1.0

window length is notably longer than that employed in prior work, such as BIOT (Yang et al., [2023)
(10 seconds) and LaBraM (Jiang et al., [2024)) (4-8 seconds). We choose 30-second segments for
two main reasons: (1) they provide the model with longer temporal contexts, enabling the capture of
long-term dependencies that have been shown to improve downstream performance (Kostas et al.|,
2021); and (2) the 30-second duration closely matches the segment lengths commonly used in the
downstream tasks evaluated in this study, ensuring consistency between pre-training and fine-tuning.
A complete list of pre-training hyperparameters is provided in Table 6]

E DOWNSTREAM, EVALUATION & SETUP

Comprehensive Evaluation. We observe that the performance of EEG models is strongly affected
by subject partition during evaluation, which leads to considerable variability across different se-
lections (Del Pup et al.,|2025; Rezzouk et al., [2025). However, many existing EEG models employ
a mixed split scheme, often involving samples from the test set into the training or validation sets,
which may prevent them from revealing their true potential and pose a challenge in model comparison.
For fair evaluation, we have extensively built a subject-wise cross-evaluation scheme, in which all
subjects are partitioned into N folds for the validation set or the test set. For example, we conduct N
fine-tunings; in each of them, one fold is held out as the test set while the remaining folds are used for
training and validation. After each fine-tuning time, we just once test the “best validated checkpoint”,
which is defined by the training checkpoint with the highest monitoring metric on the validation set
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Table 7: Overview of EEG datasets and their corresponding BCI tasks.

BCI Task Dataset Rate  #Channels Duration Labels

Motor Imagery phBC'IC-ZA 250 Hz 22 4s 4-class
ysioNet-MI 160 Hz 64 4s 4-class

Event-related Potentials KaggleERN 200 Hz 56 2s 2-class
Sleep Staging Sleep-EDFx 100 Hz 2 30s 5-class
Seizure / Event Detection TUEV 250 Hz 16 10s 4-class
Abnormal EEG Detection TUAB 250 Hz 16 10s 2-class

(Cohen’s kappa for multiclassification and AUC-PR for binary classification). Reported performance
is the average across all folds. Details about train-validation-test splits of each dataset are presented
below.

Downstream BCI Tasks & Preprocessing. To comprehensively evaluate STELAR, we conducted
experiments on 5 tasks using 6 different datasets, as presented in Table [/| These datasets were
recorded at various sampling rates with varying numbers of channels. To efficiently adapt pre-trained
STELAR and create a universal downstreaming framework, we resample all samples to 200 Hz and
scale them to the range [—1, 1] as done with the pre-training dataset. Due to mis-match channel
numbers between the pretraining dataset and various downstream datasets, we constructed a linear
mapping to map the dataset’s channels to the pre-defined channels, similar to EEGPT. Each dataset
associated with a downstreaming task has specific events with different time spans so we adaptively
truncate them accordingly to capture meaningful EEG samples. More details about downstreaming
datasets are also presented in Table

Baselines. Existing state-of-the-art EEG foundation models, such as EEGPT, LaBraM, and CBraMod,
are regarded as our baselines. We used their best performance reported in the original works for
comparison. Firstly, we preprocess the datasets following the papers’ specifications, i.e., applying
their corresponding sampling rates, channels, band-pass filters, sample lengths, etc. Secondly, we
apply their corresponding setups for each downstream dataset, including learning rate, masking ratio,
and specific additional architectures (for example, EEGPT requires an additional adapter before the
encoder).

Downstream Setup. We conducted linear probing evaluation scheme (freezing encoder + fine-tuning
linear head) on the six downstream datasets. Balanced Accuracy, Cohen’s Kappa, and Weighted
F1 are reported for multiclass classification (BCIC2A, PhysioNet-MI, Sleep-EDFx, and TUEV),
while Balanced Accuracy, AUC-PR, and AUROC are reported for binary classification (TUAB,
KaggleERN). STELAR uses a linear channel adapter to adapt the specific channels of the downstream
dataset to predefined channels, similar to EEGPT. For the baselines, the setups from their original
works are used.

Common settings. All experiments are performed with a global batch size of 64 with seed set
to 7. Optimization uses AdamW with a maximum learning rate of 5e — 4 and weight decay of 0.05,
following a OneCycle schedule with 20% warm-up.

E.1 BCIC-2A

Description & Preprocessing. BCIC-2A consists of data from 9 subjects doing trials of 4 different
motor imagery tasks. These tasks are motor imagery of the left hand (Class 1), right hand (Class 2),
feet (Class 3), and tongue (Class 4). Each subject performs two sessions on different days, with each
session consisting of 288 trials. STELAR applies a band-pass filter from O to 38 Hz, sampling rate at
200 Hz, and 4-second window sample (800 data points).

Evaluation. We adopt a leave-one-subject-out (LOSO) cross-validation protocol. We perform 9
fine-tunings, each involving a different subject as a testing dataset, and the remaining 8 subjects serve
as the training set. We report the test result of the last checkpoint.
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E.2 PHYSIONET-MI

Description & Preprocessing. PhysioNet-MI is a motor imagery dataset, which consists of data
from 109 subjects doing trials of 4 different motor imagery tasks. These tasks are motor imagery
of the left fist (Class 1), right fist (Class 2), both fists (Class 3), and both feet (Class 4). STELAR
applies a low pass filter with a cut-off frequency at 0.3 Hz, sampling rate at 200 Hz, and 4-second
window sample (800 data points).

Evaluation. As PhysioNet-MI has its own evaluation set, which we regard as the test set. We adopt
the proposed cross-validation protocol for validation sets by splitting all subjects into 5 folds. We
then conduct 5 fine-tunings, each involving one fold of subjects as a validation set, and the remaining
subjects serve as the training set.

E.3 KAGGLEERN

Description & Preprocessing. KaggleERN is an error-related potential dataset, which requires
each subject to see letters and numbers (showing 36 possible items on a matrix). Each item of the
character is flashed in a random order. All subjects interact with a computer interface, which produces
responses to the subject’s attention over words. EEG is recorded when subjects observed whether
the system correctly or incorrectly responds. This dataset consists of 2 labels: Correct feedback or
Erroneous feedback. STELAR applies sampling rate of 200 Hz, and 2-second window sample (400
data points).

Evaluation. As KaggleERN has its own evaluation set, which we regard as the test set. We adopt
the proposed cross-validation protocol for validation sets by splitting all subjects into 5 folds. We
then conduct 5 fine-tunings, each involving one fold of subjects as a validation set, and the remaining
subjects serve as the training set.

E.4 TUEV

Description & Preprocessing. TUEV is a seizure detection dataset, which is a subset of TUEG.
This dataset records clinical EEG segments of 6 classes: spike and sharp wave (SPSW), generalized
periodic epileptiform discharges (GPED), periodic lateralized epileptiform discharges (PLED), eye
movement (EYEM), artifact (ARTF), and background (BCKG). STELAR applies a band-pass filter
from 0.1 Hz to 75 Hz and a notch filter at 60Hz, sampling rate of 200 Hz, and 5-second window
sample (1000 data points).

Evaluation. As TUEV has its own evaluation set, which we regard as the test set. We adopt the
proposed cross-validation protocol for validation sets by splitting all subjects into 4 folds. We then
conduct 4 fine-tunings, each involving one fold of subjects as a validation set, and the remaining
subjects serve as the training set.

E.5 SLEEP-EDFX

Description & Preprocessing. Sleep-EDFx is a sleep stage classification dataset, consisting of data
from 78 healthy subjects. This dataset contains 5 classes, corresponding to 5 stages of sleep: W, N1,
N2, N3, REM. STELAR applies a low-pass filter with a cut-off frequency at 30 Hz, sampling rate:
200 Hz, and 30-second window sample (6000 data points) to Sleep-EDFx.

Evaluation. We adopt the proposed subject-wise cross-validation protocol. We split the total dataset
into 5 folds with the same number of subjects. We perform 5 fine-tunings, each involving a different
fold as a testing dataset, and the remaining 4 folds serve as the training and validation sets. We
randomly select training and validation data from these 4 folds, with a val-train ratio of 1:9.

E.6 TUAB
Description & Preprocessing. TUAB consists of 409,455 10-second samples of subjects annotated

as normal or abnormal (2-label classification). STELAR applies a band-pass filter from 0.1 to 75 Hz,
a notch filter at 50 Hz, sampling rate: 200 Hz, and 10-second window sample (2000 data points).
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Evaluation. As TUAB has its own evaluation set, which we consider as the test set. We adopt the
proposed cross-validation protocol for validation sets. We split all subjects into 4 folds of subjects.
We then conduct 4 fine-tunings, each involving one fold of subjects as a validation set, and the
remaining subjects serve as the training set. Generally, the train-valid-test ratio is 6:2:2.

F METRICS DESCRIPTION

In this section, we will provide the details about all metrics we used for evaluating the model’s
performance.

* Balanced Accuracy. Balance Accuracy is usually used to measure the performance of
imbalanced datasets. It is defined as the mean of recall of each class in the dataset.

* Cohen’s kappa. Cohen’s kappa is a statistical metric used to measure the level of agreement
between two classifiers during classification tasks. In the experiments, one classifier is the
true label of the sample.

* Weighted F1. Weighted F1 is the average value of the F1-score of all classes, where each
class’s score is weighted by its number of true instances.

* AUROC. AUROC stands for Area Under the Receiver Operating Characteristic curve.
AUROC measures the ability of a classifier to distinguish between positive and negative
classes, which is often used for binary classification.

¢ AUC-PR. AUC-PR stands for Area Under the Precision-Recall Curve. AUC-PR measures
the trade-off between precision and recall across different thresholds.

G LARGE LANGUAGE MODELS (LLMS) USAGE

We utilized a large language model as a support tool in preparing this paper. Its role was limited to:
(1) aiding and polishing the clarity and flow of writing (e.g., rephrasing, improving readability), and
(ii) assisting with retrieval and discovery, such as identifying relevant prior work and commonly used
methods.

All scientific design choices, methodological decisions, implementation, data analysis, and interpreta-
tion of results were made solely by the authors. The LLM did not contribute novel ideas or conduct
experiments; it was used only as an assistant for writing and literature awareness.
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