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Abstract

Tabular foundation models such as TabPFN v2 perform in-context learning by
conditioning on a small labeled support set and a query instance, enabling fast
adaptation to heterogeneous tabular regression tasks without per-dataset train-
ing. Many industrial applications operate in a tiny-sample regime due to cost,
and process constraints. We analyze TabPFN under extreme label scarcity for
regression, positioning it against established tabular baselines and tracing dataset-
size—dependent predictive performance. Our study analyzes sample sizes from
5 labeled points per task, including an industrial steelmaking regression prob-
lem and public benchmarks. In steelmaking, in-process target measurements are
rarely feasible, with intermediate targets embedded in delayed end-of-process
data. Since data collection is slow and scarce, effective use requires integrating
heterogeneous datasets across vessels, processes, and plants.

A central finding is that the TabPFN support set size dependency varies widely
with dataset quality and information content. While most benchmark tasks achieve
satisfactory performance beyond support set sizes of 20, the investigated indus-
trial datasets require at least 100 samples to consistently outperform a naive mean
baseline. We discuss implications for deploying in-context tabular models in the
low-data regime and show dataset size dependencies for various competitive tab-
ular regression methods.

1 Introduction

Traditional machine learning struggles in real-world industrial settings, where retraining a model for
each plant or vessel type is impractical. Here, small data regression tasks are of utmost relevance,
but inputs are often a mix of continuous and categorical attributes with task-specific semantics. Es-
pecially in industries such as steelmaking, data collection is slow and costly—often taking weeks for
a single target value, while in-process measurements are infeasible and intermediate targets remain
hidden in end-of-process data. This leads to extremely small datasets due to measurement cost, rar-
ity of events, or process constraints. Moreover, process parameters differ across plants and vessel
types, producing many small but related tabular datasets with heterogeneous features. To address
this scarcity and variability, all available information must be leveraged across processes.

Fortunately, many industrial tasks can be mapped to tabular data regression problems, a highly re-
searched field, as tabular data underpins decision-making in domains such as healthcare, finance,
business operations, and the sciences [8]]. In tabular regression, linear models and gradient-boosted
decision trees [1} [l 1]—remain strong baselines because their inductive biases align with common
tabular regularities. However, these methods typically require per-dataset training and careful fea-
ture handling, which can be cumbersome for task shifts or fragmented data batches.

Foundation models for tabular data aim to provide a single, reusable predictor that can be directly
applied across many tasks. The transformer-based Tabular Prior-Fitted Network (TabPFN) family [9}
6l [7]] frames prediction as in-context learning. This paradigm is attractive for heterogeneous tabular
regression because it reduces per-task training overhead and, in principle, can leverage whatever
small support set is available at prediction time [J5].



In many industrial regression applications, the central question is not only absolute error on a fixed
training split but how prediction quality evolves with the amount of supervision. We therefore
study the sample efficiency of TabPFN for regression, with a focus on the 5-300 sample regime that
frequently arises in practice. Across this range, we compare TabPFN to established tabular baselines
and quantify when an in-context model becomes a viable choice. A key observation guiding this
paper is, that while TabPFN is relatively sample efficient for the investigated benchmark data, for
the investigated industrial datasets, it does not reliably exceed an uninformed mean regressor at the
very smallest sample sizes and only surpasses this baseline once the labeled sample size reaches
~100. This is on average 5 times larger than for the curated benchmark datasets. These findings
can guide deployment decisions in low-data regimes, indicating that here performance is mostly
decided by data quality rather than model architecture. We provide results for the OpenML CTR23
benchmark [4]], including 35 tabular regression datasets and several steelmaking datasets [[10, [15].

2 TabPFN

Recent work on tabular foundation models has increasingly focused on Prior-data Fitted Networks
(PFNs) [9], which approximate Bayesian inference via synthetic training tasks and then perform-
ing zero-shot prediction on previously unseen datasets via a single forward pass. By replacing
per-dataset optimization and hyperparameter search with in-context inference, PFNs are attractive
in settings with scarce data — common in industrial applications. PFNs are trained across tasks
under a meta-learning paradigm, require no per-task updates, and provide fast inference that is rel-
atively insensitive to hyperparameters. TabPFEN v1 [6] extended PFNs to tabular data by training a
transformer on millions of synthetic datasets sampled from generative causal models, encouraging
robustness to diverse input-output relations, achieving competitive performance w.r.t. tree-based
models and AutoML systems [2]. A persistent obstacle for tabular foundation models is hetero-
geneity: datasets vary in dimensionality, semantics, and statistical structure, especially in industrial
settings where features reflect different plants, processes, vessels, or measurement locations within
the same vessel. While TabPFN v1 addressed variable dimensionality by padding attribute vectors to
a fixed width, TabPFN v2 [7]] introduces a two-dimensional permutation-invariant transformer over
samples and features and an attribute tokenizer to handle heterogeneous input spaces and missing
values.

During pretraining, however, the number of samples per synthetic task was drawn uniformly up to
2,048 with a fixed validation size of 128, and the total number of table cells per task was capped
at 75,000 to control memory usage [[7]. As a result, TabPFN v2 is primarily exposed to small- and
medium-sized datasets during training. This raises a key question for industrial applications: how
well does TabPFN v2 handle highly noisy, heterogeneous, and imputed datasets that may deviate
significantly from its training distribution?

3 Data

OpenML CTR23 The OpenML CTR23 benchmark [4} 3 [14] provides a curated collection of 35
tabular regression datasets designed to support reproducible evaluation of machine learning methods.
The selection follows explicit inclusion criteria — datasets must contain between 500 and 100,000
observations, fewer than 5,000 one-hot encoded features, no sparse representations, and i.i.d. sam-
ples. To validate the benchmark, several standard regression methods are compared in [4, 3 14].

Vessels The Vessels datasets, include two regression tasks derived from real-world steel manufac-
turing processes. These datasets correspond to two locations from ladle vessels (e.g., slag and metal
zones in ladles). Each observation represents a heat described via process parameters, e.g. temper-
ature, chemical additives, and operational settings. The target variable is the refractory wear rate,
which is inferred from cumulative end-of-campaign brick-length measurements. To enable super-
vised learning, we aggregate heats within a campaign using mean and standard deviation, transform-
ing the original multiple-instance regression problem [[13] into a campaign-level, tabular regression
task with an identical set of numeric and binary process parameters.



4 Experiments

Experimental Setup For both the OpenML CTR23 and Vessels benchmarks, we evaluate model
performance in the small-data regime by subsampling training sets of increasing size: from as few
as 5 samples up to several hundred (for Vessel)/several thousand (for OpenML CTR23) samples, as
well as using the maximum number of available samples per dataset, using 10-fold cross-validation.
We evaluate TabPFN v2, and for comparison, we include four widely used regression baselines: Cat-
BoostRegressor [12], a gradient-boosted implementation for decision trees that is known for strong
performance on tabular data via the CatBoost library. RandomForestRegressor and KNeighborsRe-
gressor are taken from [11]], representing ensemble tree-based and instance-based non-parametric
methods, respectively. To provide a lower-bound performance reference, we use an uninformed
mean regressor model (DummyRegressor) that ignores the input features and generates predictions
according to the target mean of the training set. Model performance is reported using mean absolute
error (MAE) and the ranks of all representative methods (i.e. lowest MAE of a method corresponds
to rank 1), averaged across all folds and random splits.

Results: OpenML CTR23 Across the OpenML CTR23 benchmark, all evaluated methods
achieved competitive performance, with results generally consistent with those reported by Fischer
et al. [4]. As expected, gradient boosting methods such as CatBoost [12] provided strong baselines,
particularly for medium-sized datasets. An evaluation in [16] on classification tasks shows that
TabPFN v2 consistently outperforms CatBoost.
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Figure 1: Strip plot showing the normalized MAE  Figure 2: Average rank by support sample

for n = 20 support samples for all datasets in the  size for all datasets in CTR23. Lower rank

OpenML CTR23 benchmark. is better. Error bars represent the 95% confi-
dence interval.

The average ranks of all methods over sample sizes are shown in Figure 2] The confidence interval
reflects variability of the estimator’s rank on that size. TabPFN v2 is consistently performing best
at or near rank 1 for small and medium sample sizes. This is exactly the regime we care about
for industrial condition-monitoring datasets and validates TabPFN v2’s strength on small, hetero-
geneous tables. For small data (< 600 samples), TabPFN v2 is also best performing, in terms of
mean rank, whereas tree ensembles fluctuate more and the KNeighborsRegressor is rarely compet-
itive. Beyond 10,000 samples, the rankings oscillate and there is no definitive winner. The rank
of the DummyRegressor is constantly high as expected. TabPFN v2 performs comparably to Cat-
Boost on several datasets, particularly in the small-sample regime up to 100 training points, where
its in-context adaptation ability enables fast convergence without retraining. This result supports the
hypothesis that meta-learned priors are beneficial for tabular regression tasks with scarce data. The
MAE for all OpenML datasets normalized to 0 (1) for the best (worst) model for n = 20 support



samples is shown in Fig. [I] TabPEN achieves competitive normalized MAE with fewer samples
(see also ranking in Fig[2]for n = 20), suggesting that sample efficiency is a key advantage of this
approach.

Results: Vessels The MAE for different sample sizes of the ladle slag and metal dataset is shown
in Figure 3] and [] respectively. For small sample regimes (< 100 samples) all methods achieved
similar MAE, with performance close to the uninformed mean regressor. This result is consistent
across both ladle vessels — the metal and the slag zone — suggesting that model selection has lim-
ited impact given the inherent noise, missingness, and heterogeneity of the data. For larger sample
regimes (> 200 samples) all informed methods significantly outperform the uninformed mean re-
gressor. These methods obtain similar MAE performance with a slight preference for TabPEN for
the ladle slag dataset. Furthermore, the curves over the sample sizes of each method show that per-
formance does not consistently improve with more samples — in some cases, additional data even
worsens generalization due to accumulated noise. These findings have the value that they highlight
that standard regression models saturate quickly on this benchmark, implying that improvements
are more likely to come from better data preprocessing, feature engineering, or domain-informed
modeling rather than from selecting a different tabular learner.
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Figure 3: MAE for different sample sizes of la-  Figure 4: MAE for different sample sizes of la-
dle slag dataset. dle metal dataset.

These results on industrial data suggest that model performance is fundamentally constrained by
data quality rather than model capacity. They underline the importance of (i) improved measure-
ment strategies during campaigns, (ii) better alignment of process parameters across plants, and (iii)
integration of physical priors to regularize learning in this extreme data-scarcity setting.

5 Conclusion

We evaluated the applicability and support set dependency of TabPFNvV2, to industrial prediction
problems, using the CTR23 benchmark and condition monitoring datasets from steel manufacturing
as representative case. On the curated OpenML CTR23 benchmark, TabPFN is relatively sample
efficient and often competitive against the selected baseline methods. Here, it requires on average
> 50 support samples to consistently outperform alternatives. On a dataset-level we also see vari-
ability in performance, indicating uneven information density and data quality across tasks within
the benchmark. On the industrial Vessels benchmark, TabPFN only begins to reliably beat an unin-
formed regressor beyond ~100 samples, pointing to lower per-sample information driven by label
sparsity, measurement noise, and heterogeneity—rather than model capacity.

These results suggest that whether TabPFNs are applicable in industry depends less on the model
architecture and more on the quality and information content of the support set. Our break-even
points at ~20 samples on CTR23 and ~100 on Vessels offer guidance for deploying in-context
TabPFNs to industrial data and set realistic expectations: while TabPFNs enable rapid, retraining-
free inference, their reliability depends on increasing the effective information content of the context
rather than replacing models.
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