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ABSTRACT

Large language models (LLMs) with one or more fine-tuning phases have become
necessary to unlock various capabilities, enabling LLMs to follow natural language
instructions and align with human preferences. However, it carries the risk of
catastrophic forgetting during sequential training, the parametric knowledge or the
ability learned in previous stages may be overwhelmed by incoming training data.
This paper finds that LLMs can restore some of the original knowledge by regularly
resetting partial parameters. Inspired by this, we introduce Half Fine-Tuning (HFT)
for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting
issues, where half of the parameters are selected to learn new tasks. In contrast,
the other half are frozen to retain previous knowledge. We provide a feasibility
analysis from the perspective of optimization and interpret the parameter selection
operation as a regularization term. Without changing the model architecture, HFT
could be seamlessly integrated into existing fine-tuning frameworks. Extensive
experiments and analysis on supervised fine-tuning, direct preference optimization,
and continual learning consistently demonstrate the effectiveness, robustness, and
efficiency of HFT. Compared with FFT, HFT not only significantly alleviates the
forgetting problem, but also achieves the best performance in a series of downstream
benchmarks, with an approximately 30% reduction in training time.

1 INTRODUCTION

Large language models (LLMs) bring immense revolutions to various natural language processing
applications with powerful language understanding and generation capabilities. Unsupervised large-
scale pre-training for learning basic world knowledge (hereinafter referred to as basic knowledge),
followed by one or more fine-tuning phases with supervised data or human feedback, is becoming
a new training paradigm in the era of LLMs (Ouyang et al., 2022; Achiam et al., 2023; Touvron
et al., 2023). As the fine-tuning phase proceeds, the enormous potential of LLMs is gradually
unleashed to handle various downstream tasks, while the parametric knowledge previously learned
and stored in the pre-trained model might face a considerable risk of catastrophic forgetting (Lin
et al., 2024; Neeman et al., 2023; Dong et al., 2024). To maintain intrinsic basic knowledge, the
most straightforward idea is to keep the pre-trained parameters unchanged and include extra modules
to learn task-specific abilities (Dou et al., 2023; Wu et al., 2024a). However, such architectural
modifications pose significant obstacles to model deployment and continual fine-tuning.

Without changing model architecture, vanilla full fine-tuning (FFT) methods update all parameters
to improve the performance of downstream tasks (Zhang et al., 2023c), in which the element-wise
parameter difference between fine-tuned and pre-trained models (i.e., task vector) represents the
knowledge shift during fine-tuning (Ilharco et al., 2023). Herein, a desirable task vector is expected
to keep basic knowledge of the pre-trained model and learn new specialized knowledge. Interestingly,
recent work shows that partial dropping or trimming of the task vector has only milder impacts on
target task (Yadav et al., 2023; Yu et al., 2023). In other words, partial new parameters are sufficient
for the learning of new abilities, so the upcoming question is, is it possible that a portion of old
parameters could maintain the capabilities of the pre-trained model?

To answer this question, we start with LLAMA 2-7B and LLAMA 2-CHAT-7B, and attempt to reset
partial parameters of the chat-model to the pre-trained model, then prob the general abilities and basic
knowledge of these models (see Figure 1). As a representative general-purpose fine-tuning practice,
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Figure 1: Performance of LLAMA 2-7B, LLAMA 2-CHAT-7B, and the Half-Reset model on six
general abilities and three basic knowledge benchmarks. It is interesting that simply resetting half of
the parameters of the chat-model to the pre-trained model could roughly restore a significant amount
of forgotten basic knowledge while maintaining high-level general abilities performance.

there is some improvement in the general abilities of LLAMA 2-CHAT-7B, while the basic knowledge
falls off a cliff. It is consistent with previous observations, indicating the destruction of parametric
knowledge stored in LLAMA 2-7B (Dou et al., 2023). To balance the emerging general abilities
and the inherent basic knowledge, we intuitively select and reset half of the parameters1 of LLAMA
2-CHAT-7B and are pleasantly surprised to find that the Half-Reset model greatly resumes the basic
knowledge in LLAMA 2-7B while remaining the excellent general abilities of LLAMA 2-CHAT-7B
(More details in Section 2).

Inspired by these above observations, we propose Half Fine-Tuning (HFT), a simple yet effective
approach for the training of LLMs and further extrapolate it to the continual fine-tuning scenarios.
Specifically, in each round of fine-tuning, we randomly select and freeze half of the parameters, and
only update the other half, which allows the model to retain the ability of the startup point while
learning downstream tasks. Note that HFT does not change the model architecture or traditional
fine-tuning paradigm, thus theoretically it can be applied to any setting where the standard full
fine-tuning is previously applicable, including but not limited to supervised fine-tuning (SFT), direct
preference optimization (DPO), continual learning (CL), etc.

To evaluate the effectiveness of HFT in instruction fine-tuning settings, we conduct extensive experi-
ments with TÜLU V2 (Ivison et al., 2023) for SFT and UltraFeedback (Cui et al., 2023) for DPO.
Simultaneously, we also extend experiments on TRACE (Wang et al., 2023a) for CL (i.e. multi-round
fine-tuning) to validate the proposed method in a more extreme scenario. Experimental results
demonstrate that HFT not only exhibits excellent talent in alleviating catastrophic forgetting but also
achieves comparable or even better performance in learning new abilities compared to FFT. Further
analysis reveals that regardless of which half (or even only about half) of the parameters are selected,
HFT is capable of attaining tolerable performance gains and impressive efficiency improvements,
which brings considerable competition to the routine fine-tuning paradigm.

In summary, the main contributions of this paper are as follows:

• We reveal that by resetting half of the fine-tuned parameters to the startup state, it is possible
to preliminary restore the primaeval ability while maintaining new learning ability, which
poses new opportunities to alleviate catastrophic forgetting and obtain an all-around LLM.

• We propose Half Fine-Tuning (HFT), which entails freezing half of the parameters while
training the other half. It allows LLMs to acquire new abilities while retaining and utilizing
previously learned knowledge in various training settings.

• Extensive experiments and analysis demonstrate the effectiveness and efficiency of HFT.
Without any alterations to the model architecture, HFT, as a plug-and-play solution with
only a few lines of code, exhibits the potential to supersede FFT in the era of LLMs.

1Here, we keep the embedding and lm_head layers unchanged as LLAMA 2-CHAT-7B, and select 50%
of the parameters in transformer layers. The parameter ratios in this paper all follow this statistical calibre.
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2 PILOT EXPERIMENTS

Considering that the partial task vector is capable of maintaining new abilities (Yadav et al., 2023; Yu
et al., 2023), we attempt to roll back the primaeval abilities of pre-trained models by resetting the
remaining part of the task vector, thereby alleviating the catastrophic forgetting problem caused by
fine-tuning. In this section, We employ the representative well-aligned LLM, LLAMA 2-CHAT-7B,
and the corresponding pre-trained backbone, LLAMA 2-7B, as models for analysis.

Setup. To balance the original abilities and the enhanced capabilities gained through instruction
tuning, we simply choose to reset 50% of the parameters in LLAMA 2-CHAT-7B to LLAMA 2-7B,
so that half of the parameters are hoped to align with the new tasks, while the other half is intended
to restore the old capabilities. In the implementation, we randomly select half of each transformer
layer according to the category of the parameter matrix. Specifically, we choose two from four
self-attention matrices (i.e., WQ, WK , WV , WO), and for the odd parameter number in LLAMA’s
feed-forward layers (i.e., Wup, Wdown, Wgate), we randomly select half of the transformer layers to
choose two matrices and the other half to choose one. Such a fine-grained selection strategy ensures
that the Half-Reset operation rolls back exactly 50% of the parameters.

To assess the performance of the pre-trained, chat, and half-reset models on both new and old capabil-
ities, we follow Ivison et al. (2023) and Dou et al. (2023) to introduce two categories of evaluation
benchmarks: (1) General Abilities, including MMLU, GSM8K, BBH, TyDiQA, TruthfulQA, and
HumanEval, which measure the LLMs’ newly enhanced abilities to perform specific downstream
tasks like examination, reasoning, and coding. (2) Basic Knowledge, including NaturalQuestion,
TriviaQA, and HotpotQA, which reflect the parametric world knowledge in the pre-trained model and
could be used to evaluate retention of the primaeval capabilities. For more details about the datasets
and evaluation metrics, please refer to Appendix A.2.1 and A.2.2

Results. From Figure 1, it is intuitive to observe significant improvement of LLAMA 2-CHAT-7B on
several general ability benchmarks, as well as the comprehensive decline on the basic knowledge
benchmarks. When selectively restoring half parameters to the pre-trained LLAMA 2-7B model,
although there is a slight performance loss in the overall performance of general abilities, we witness
the remarkable recovery of basic knowledge. In Appendix A.3.1, we attempt other possible half-reset
solutions and provide more numerical results, all of which exhibit similar phenomena.

In conclusion, the pilot experiments demonstrate that (1) full parameter fine-tuning with large-scale
instruction data disrupts the basic knowledge stored within pre-trained LLMs. (2) Through a simple
half-reset operation, it is possible to restore the forgotten knowledge partially. Take another step
forward, these findings open a new door for model merging, inspiring us to preserve some mastered
abilities of the startup point by freezing partial parameters during fine-tuning.

3 METHODOLOGY

Without loss of generality, we consider a sequential (continual) learning setting with multiple tasks T ,
in which each task corresponds to a set of input-output pairs Dt = {xtn, ytn}

N t

n=1. In the training
process, a single model aligns all the tasks sequentially, with only access to the specific dataset Dt

at t-th round. Formerly, given an LLM parameterized by θ, the entire process aims to optimize the
following objective, which encompasses all the tasks,

J (θ) = max
θ

∑
t∈{1,|T |}

∑
(xtn,y

t
n)∈Dt

logPθt
(
ytn|xtn

)
, (1)

where logP(·) represents the probability distribution of the model’s output. When there is only one
task, the learning process degenerates into the standard supervised fine-tuning (SFT) form.

Half Fine-Tuning. Next, we accordingly propose Half Fine-Tuning (HFT) to learn the upcoming
new task while maintaining and utilizing old abilities. Figure 2 illustrates the overall workflow of
HFT, regarding the intermediate repetitive transformer layers, we divide each layer into three blocks:
self-attention, feed-forward, and layernorm, so as half of each block is selected for updating in this
round, while the remaining half is frozen. Note that the frozen and updated parameters vary among
each training round. In this way, HFT is more conducive to maintaining relative knowledge parity
across different rounds during the sequential alignment process, thus exhibiting significant scalability
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Figure 2: The schematic procedure of HFT with LLAMA 2’s architecture. In each stage, we selectively
freeze half of the parameters at the category-level and update the other half. Best viewed in colour.

in successive training. From the formula perspective, we define the parameters that remain unchanged
during the t-th round as ψt, and correspondingly, the parameters that align to the upcoming tasks as
ϑt (i.e., θt = {ϑt, ψt}). The training objective in Equation 1 thus changes to

J (θ) = max
θ

∑
t∈{1,|T |}

∑
(xtn,y

t
n)∈Dt

logP{ϑt,ψt}
(
ytn|xtn

)
,

s.t. ϑt ← ϑt−1 − η∇ϑL
(
θt−1) , ψt ← ψt−1 ,

(2)

where η and L(·) represent the learning rate and loss function, ∇ϑ indicates that we only consider
the gradients of selected parameters in fine-tuning.

Why Half Fine-Tuning Works. Excluding heuristic motivations, we are also interested in the
theoretical principles behind HFT. Theoretically, HFT could be regarded as exerting a parameter-level
mask to vanilla FFT. In this part, we borrow the thread in Fu et al. (2022) to interpret why HFT
works from the perspective of optimization. Given a pre-trained model M0 with parameters θ0, the
fine-tuned model M with parameters θ has the same structure as M0 such that ∥θ−θ0∥0 ≤ p dim(θ),
where p = 0.5 in HFT. Next, we denoteM ∈ {0, 1}m×m as a mask diagonal matrix on the parameter,
in which the diagonal is equal to 1 if the parameter is selected, thus the fine-tuning procedure can be
formulated as θ = θ0 +M∆θ, where ∆θ is the task vector. In that case, HFT solves an optimization
problem with constraints min∆θ,M L(θ0 +M∆θ) such that ∥M∥0 = ⌊mp⌋; Mij = 0, ∀i ̸= j;
Mii ∈ {0, 1}. where L is the loss function, ⌊·⌋ is the floor function, m is the parameter numbers. By
integrating previous conditions, the optimization procedure of HFT can be reformulated as

O = min
θ
L(θ) s.t. ∥(I −M)(θ − θ0)∥2 = 0, (3)

With Lagrangian duality, solving the constrained optimization problem is equivalent to solving the
following unconstrained optimization problem

OL = min
θ

max
λ
L(θ) + λ∥(I −M)(θ − θ0)∥2, (4)

where λ is the Lagrange multiplier. Based on the Minimax inequality, it is intuitive to derive that
minθ maxλ L(θ)+λ∥(I−M)(θ−θ0)∥2 ≥ maxλ minθ L(θ)+λ∥(I−M)(θ−θ0)∥2 ≥ minθ L(θ)+
∥(I −M)(θ − θ0)∥2. In conclusion, the optimization process of HFT is equivalent to optimizing the
upper bound of the FFT loss function L(θ) with a regularization term ∥(I −M)(θ − θ0)∥2. From
the optimization perspective, such regularization (with an appropriate sparsity M ) contributes to the
stability of the sparse fine-tuned model (Radiya-Dixit & Wang, 2020; Fu et al., 2022), meaning that
HFT has the opportunity to achieve results comparable to or even better than FFT, theoretically.

4 EXPERIMENTS

In this section, we primarily report the experimental results of full fine-tuning (FFT) and the proposed
half fine-tuning (HFT) on supervised fine-tuning (with TÜLU V2 (Ivison et al., 2023) as training set),
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Table 1: Results on general ability benchmarks of various models with instruction tuning (SFT, DPO),
in which the default setting is FFT, R and H refer to the proposed Half-Reset and Half Fine-Tuning
methods, respectively. Bold text denotes the best result in each group. More baselines in Table 8.

MMLU GSM8K BBH TyDiQA TruthfulQA HumanEval

Overall(factuality) (reasoning) (reasoning) (multilingual) (truthful) (coding)
EM EM EM F1 MC2 Pass@10

(0-shot) (8-shot, CoT) (3-shot, CoT) (1-shot, GP) (0-shot) (0-shot)
Pre-trained models
LLAMA 2-7B 41.6 12.0 39.9 48.4 38.5 26.2 34.4
LLAMA 2-13B 52.2 34.5 50.7 50.3 49.8 32.7 45.0

Supervised Fine-Tuning (SFT) on TÜLU V2
LLAMA 2-7B-SFT 48.5 25.0 42.2 51.2 41.7 36.9 41.0
LLAMA 2-7B-SFT (R) 48.4 23.0 43.4 52.4 42.5 32.5 40.4
LLAMA 2-7B-SFT (H) 50.8 30.5 43.6 52.3 45.4 34.6 42.9 (+1.9)

LLAMA 2-13B-SFT 50.6 45.0 47.8 55.0 42.6 42.4 47.2
LLAMA 2-13B-SFT (R) 52.7 46.0 52.8 55.5 46.8 41.4 49.2
LLAMA 2-13B-SFT (H) 54.5 46.5 53.7 56.7 45.7 43.5 50.1 (+2.9)

Direct Preference Optimization (DPO) on UltraFeedback
LLAMA 2-7B-DPO 48.9 28.0 42.9 50.2 45.7 35.6 41.9
LLAMA 2-7B-DPO (R) 49.0 28.5 43.1 50.3 43.3 34.8 41.5
LLAMA 2-7B-DPO (H) 48.8 25.5 42.8 51.1 45.5 36.7 41.7 (-0.2)

LLAMA 2-13B-DPO 52.0 44.0 47.1 51.5 45.5 44.3 47.4
LLAMA 2-13B-DPO (R) 51.5 46.5 48.2 53.7 43.7 42.7 47.7
LLAMA 2-13B-DPO (H) 51.8 48.5 49.9 52.9 45.3 41.0 48.2 (+0.8)

human preference alignment (with UltraFeedback (Cui et al., 2023)), and continual learning (with
TRACE (Wang et al., 2023a)) scenarios, in which direct preference optimization (DPO) (Rafailov
et al., 2023) is used to learn human preferences. Following Ivison et al. (2023) and Wang et al. (2023a),
we employ LLAMA 2 and LLAMA 2-CHAT as the backbone model, respectively. Apendix A.2 shows
more information about implementations and Appendix A.3 proposes more additional experiments
consist of the comparison with more baselines, the impact of learning rates and random seeds, the
exploration of DPO on HFT-based models, efficiency analysis and many other detailed results.

4.1 EXPERIMENTS ON INSTRUCTION TUNING

Setup. We employ the general abilities and basic knowledge benchmarks mentioned in Section 2
to evaluate various models under the instruction tuning settings. In Appendix A.3.2, we introduce
a series of sparse fine-tuning and model merging methods as additional baselines. To assess the
conversation ability, we also compare these models on AlpacaEval 2.0 (see Appendix A.3.8).

Results on Improving General Abilities. Results in Table 1 demonstrate the effectiveness of our
proposed HFT method, which simultaneously improves different specialized abilities by selectively
fine-tuning half of the parameters. Specifically, compared to FFT under the SFT setting, HFT leads
to an overall performance improvement of 1.9% on LLAMA 2-7B and 2.9% when scaling to LLAMA
2-13B. Furthermore, as we continue to perform DPO on SFT models, we observe that updating the
policy model with HFT does not hinder the model from learning human preferences. In sum, the
HFT method has strong robustness to adapt to different fine-tuning algorithms. Besides, we also
attempt to review the Half-Reset method in Section 2, but the benefits of this approach are not robust,
and we attribute it to the randomness of parameter operations. In comparison, HFT achieves a more
stable performance improvement through the learning process, while avoiding the complexity of the
two-stage process of fully updating followed by partially resetting.

Results on Preserving Basic Knowledge. When it comes to basic knowledge, as depicted in
Table 2, both SFT and DPO exhibit a significant decline across all three benchmarks. Notably, HFT
demonstrates excellent talent in preserving basic knowledge, consistently outperforming fully updating
parameters during SFT and DPO. For example, during the SFT stage, HFT achieves improvements
of 3.4% and 2.9% with LLAMA 2-7B and LLAMA 2-13B compared to FFT, respectively. It is worth
mentioning that Half-Reset also shows a stable performance in alleviating knowledge forgetting,
which once again confirms the motivation to keep partial initial parameters unchanged.
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Table 2: Results on basic knowledge benchmarks of various models with instruction tuning.

NaturalQuestion TriviaQA HotpotQA Overall(EM, 0-shot) (EM, 0-shot) (EM, 0-shot)
Pre-trained models
LLAMA 2-7B 12.9 40.2 15.6 22.9
LLAMA 2-13B 9.6 24.0 13.4 15.7

Supervised Fine-Tuning (SFT) on TÜLU V2
LLAMA 2-7B-SFT 3.2 26.4 14.5 14.7
LLAMA 2-7B-SFT (R) 7.3 26.4 14.4 16.0
LLAMA 2-7B-SFT (H) 6.2 32.8 15.4 18.1 (+3.4)

LLAMA 2-13B-SFT 0.7 9.2 4.9 4.9
LLAMA 2-13B-SFT (R) 1.8 13.5 5.3 6.9
LLAMA 2-13B-SFT (H) 2.7 12.4 8.2 7.8 (+2.9)

Direct Preference Optimization (DPO) on UltraFeedback
LLAMA 2-7B-DPO 1.4 20.8 10.0 10.7
LLAMA 2-7B-DPO (R) 2.0 23.6 12.1 12.6
LLAMA 2-7B-DPO (H) 1.9 22.9 12.8 12.5 (+1.8)

LLAMA 2-13B-DPO 0.1 4.4 2.4 2.3
LLAMA 2-13B-DPO (R) 0.3 6.5 3.8 3.5
LLAMA 2-13B-DPO (H) 0.2 5.5 3.0 2.9 (+0.6)

Remark. HFT not only effectively preserves a certain degree of basic knowledge of the pre-trained
model, but also utilizes this knowledge to achieve better learning of new abilities.

4.2 EXPERIMENTS ON CONTINUAL LEARNING

Setup. We evaluate the performance in the continual learning setting (with TRACE (Wang et al.,
2023a)), using four representative approaches and attempt to replace FFT with HFT. (1) SeqFT: It
is a standard for sequentially learning all parameters of downstream tasks. (2) GEM (Lopez-Paz &
Ranzato, 2017): It leverages episode memories to avoid forgetting, but it consumes extra computation
time like other regularization-based methods. (3) Replay: It is a common strategy, here we integrate
alignment data from LIMA (Zhou et al., 2023) into the replay memory and replaying 10% of historical
data. (4) LoraSeqFT (Hu et al., 2022): It sequentially updates the low-rank matrices while keeping
the backbone fixed. Note that the LoRA-based method modifies the model architecture and is not
suitable for combination with HFT. Following (Wang et al., 2023a), we start with LLAMA 2-CHAT-
7B/13B, adopt Overall Performance (OP) and Backward Transfer (BWT) as the evaluation metrics
(Appendix A.2.2 details the calculation process). Besides, we also report the general abilities and
basic knowledge of various models after the final round of learning (see Appendix A.3.4).

Table 3: OP and BWT on TRACE with different
strategies, OP measures the learning of new tasks
and BWT measures the forgetting of old tasks.

FFT HFT

OP BWT OP BWT

LLAMA 2-CHAT-7B
LoraSeqFT 6.4 -45.2% - -
SeqFT 45.7 -10.2% 51.3 (+5.6) -5.6% (+4.6)

GEM 48.2 -7.9% 50.2 (+2.0) -5.9% (+2.0)

Replay 54.3 1.4% 54.1 (-0.2) +2.1% (+0.7)

LLAMA 2-CHAT-13B
LoraSeqFT 26.5 -30.0% - -
SeqFT 49.0 -9.4% 52.0 (+3.0) -8.5% (+0.9)

GEM 50.4 -8.9% 53.6 (+3.2) -6.1% (+2.8)

Replay 54.7 -0.6% 57.4 (+2.7) +1.6% (+2.2)

Results. Table 3 shows that the three FFT ap-
proaches could all benefit from equipping HFT.
Specifically, HFT brings performance improve-
ments of 5.7% and 2.0% on the OP metric in the
SeqFT and GEM settings, respectively. It also
boosts the performance with 4.6%, 0.7%, and
2.0% on the BWT metric based on the LLAMA
2-CHAT-7B. When scaling the model to 13b,
HFT could also achieve superior performances.
Further, fine-tuning with full parameters often
suffers from severe catastrophic forgetting in the
5-th round (see Appendix A.3.11), while HFT
does not experience such a problem in any of
the rounds, making the learning process more
stable. Besides, LoraSeqFT exhibits notably
suboptimal performance in this setting. We as-
sume that the knowledge capacity of the LoRA
parameter is quite limited, thus resulting in considerable forgetting during the process of sequential
training. On the contrary, HFT is based on a full set of parameters and selects half of the parameters
to be fine-tuned in each round, which has a stronger knowledge tolerance.
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Figure 3: Performance concerning different trainable parameter ratios. The solid lines mark the
performance of HFT with various ratios and the dashed lines mark the FFT baseline.

Remark. HFT is naturally suitable for scenarios with continual fine-tuning, and (almost all) methods
with FFT can be further improved by assembling HFT, highlighting the plug-and-play feature.

4.3 IMPACT OF PARAMETER SELECTION

HFT heuristically selects parameters to be tuned or frozen. We hope to reveal the impact of parameter
selection from parameter radio and selection strategy, to discuss the universality of the methodology.

Impact of Trainable Parameter Ratio. Firstly, we traverse the radio of parameters to be fine-tuned
at a granularity of ∼10% and evaluate the impact in both single-round and multi-round fine-tuning
scenarios. From Figure 3, we observe that most of the results with only updating partial parameters
are superior to FFT, and the performance is quite satisfactory when the trainable parameter radio is
around 50%. In SFT, the performance of basic knowledge shows a clear downward trend with the
increase of parameter ratio, while the general abilities slowly rise, which allows updating half or less
of the parameters to have good performance. Meanwhile, when selecting half of the parameters during
continual learning, the model reaches a balance of abilities between each round of tasks, resulting in
a more robust training procedure and optimal performance. This observation again confirms the early
conjecture about catastrophic forgetting, especially in continual learning, it is necessary to freeze a
portion of parameters in each round to preserve the capabilities of the previous models. Not only that,
we also find that fixing partial parameters gradually improves training efficiency (see Table 13), and
HFT could shorten the training time by 30% in standard SFT.

Table 4: Different strategies for selecting half of
the parameters on TRACE.

OP BWT

SeqFT (FFT) 45.7 -10.2%

SeqFT (Model-level HFT) 46.9 (+1.2) -9.2% (+1.0%)

SeqFT (Layer-level HFT) 47.9 (+2.2) -8.3% (+1.9%)

SeqFT (Category-level HFT) 51.3 (+5.6) -5.6% (+4.6%)

Impact of Selection Strategy. Next, we con-
sider other possible strategies for selecting half
of the parameters: (1) Model-level. It arbitrarily
chooses half the number of parameter matrices,
which may prevent the parameter ratio from ac-
curately reaching 50%. (2) Layer-level. It se-
lects all parameters of a layer every other layer.
(3) Category-level. It selects based on parame-
ter categories, which is the default strategy used
in this paper, and ensures the accurate selection
of 50% of the parameters. Table 4 reports the results of performing HFT on TRACE with sequential
fine-tuning (SeqFT). The first noteworthy phenomenon is that all three selection strategies outperform
the standard FFT, which once again confirms the motivation that freezing some parameters helps
balance the old and new abilities in continual fine-tuning. Moreover, the category-level selection
wins the best performance, we attribute it to the fine-grained strategy that maximizes the interaction
between updated and non-updated parameters. From the perspective of model merging, it minimizes
the damage to ready-made capabilities when performing a 50% dropout on the task vector, thereby
providing greater possibilities for learning new tasks based on existing knowledge.

Remark. HFT is robust and insensitive to parameter selection, and selecting approximately 50% of
the parameters with a reasonable selection strategy could achieve acceptable improvements.
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Table 5: General abilities and basic knowledge performance of HFT models fine-tuned on TÜLU V2
without embedding (E) and lm_head (H) layers. Note that the subscript indicates the proportion
of selected parameters of transformer layers.

MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Questions QA QA
HFT38.9% (update E,H) 49.9 26.0 44.6 52.3 45.0 33.2 6.3 24.0 14.1 32.8
HFT50.0% (update E,H) 50.8 30.5 43.6 52.3 45.4 34.6 6.2 32.8 15.4 34.6
HFT61.1% (update E,H) 49.0 29.5 42.7 50.6 49.6 35.4 6.6 31.3 16.1 34.5

HFT50.0% (freeze E,H) 51.4 29.0 45.0 50.5 45.2 35.0 3.2 24.1 13.7 33.0
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(d) Variations on FFN with
various selected times.

Figure 4: Parameters variations of the last round model fine-tuned on TRACE relative to the starting
point LLAMA 2-CHAT-7B. The outer blue circle indicates FFT and the inner red circle indicates HFT.

5 DISCUSSION

In this section, we further discuss the parameter changes in the fine-tuning process to deepen the
understanding of HFT. We review the influence of embedding and lm_head layers, and visualize
the parameter variations during successive training.

Revisit the Embedding and LM_head Layers.

Table 6: OP and BWT scores of HFT
models fine-tuned on TRACE without
embedding and lm_head layers.

OP BWT

HFT38.9% (update E,H) 49.6 -5.6%
HFT50.0% (update E,H) 51.3 -5.6%
HFT61.1% (update E,H) 49.9 -5.6%

HFT50.0% (freeze E,H) 46.1 -2.2%

HFT defaults to updating the embedding and lm_head
layers. Here, we aim to explore the roles of these two in-
put and output layers. Specifically, we freeze them while
maintaining the same selection strategy and report results
in supervised fine-tuning and continual learning. Since
freezing the embedding and lm_head layers slightly
reduces trainable parameters, we also include two models
with similar parameter ratios that only freeze the param-
eters in transformer layers, to mitigate the impact of
parameter ratio. As shown in Table 5, freezing these two
layers leads to a substantial decline in knowledge-intensive
benchmarks, especially for QA-related tasks. Experimental results in Table 6 witness another phe-
nomenon, where forgetting metric BWT significantly increases while the learning metric OP faces a
cliff-like decrease. Detailed results in Appendix A.3.9 reveal that there is a substantial decline in the
performance of ScienceQA. To this extent, a preliminary conjecture emerges that the embedding
and lm_head store information are highly relevant to world knowledge, so it is crucial to update
them during the fine-tuning process.

Parameters Variation Analysis. To intuitively perceive the difference in model parameters between
HFT and FFT, we visualize parameter variations of fine-tuned models relative to the initial model
(LLAMA 2-CHAT-7B) during continual learning on TRACE. On the one hand, we group two adjacent
layers and calculate the average variation of self-attention and feed-forward blocks, where average
variation refers to the average of all matrix differences in the block of two models. On the other hand,
based on the selected number of times in these eight rounds of fine-tuning, we compare the average
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variation of each block with FFT. Figure 4 shows variations from the perspective of the transformer
block and selected time, respectively. Interestingly, we find that: (1) The parameter variation of each
layer using HFT is fainter than those using FFT. (2) There is no significant difference in parameter
variation between shallow and deep transformer layers, which is consistent in both fine-tuning settings.
(3) The deviation from pre-trained parameters increases linearly with the time of selection, and the
variations of parameters selected eight times are very similar to FFT. Therefore, the excessive offset
of task vectors may not necessarily lead to an improvement in downstream performance but result in
forgetting existing capabilities. HFT seeks subtle balance by pulling back the task vector, alleviating
catastrophic forgetting when learning subsequent tasks.

6 RELATED WORK

Sparse Fine-Tuning. With the continuous increase in the number of language model parameters,
sparse fine-tuning (a.k.a. parameter-efficient fine-tuning (PEFT)) offers an effective solution by
reducing trainable parameters while achieving comparable performance to FFT (Fu et al., 2022; Ding
et al., 2023; Han et al., 2024). Adapter (Houlsby et al., 2019; Mahabadi et al., 2021; Zhang et al.,
2023a) and LoRA (Hu et al., 2022; Dou et al., 2023; Dettmers et al., 2023), the two most famous
kinds of work, freeze the initial model weight and inject an adapter or a trainable rank decomposition
matrices into each layer. However, these approaches change the model architecture and therefore
require customized deployment. Keeping the architecture unchanged, DiffPruning (Guo et al., 2021)
learns a sparse diff vector for each task, enabling PEFT to scale well with new tasks. BitFit (Zaken
et al., 2021) only fine-tunes the bias terms of BERT and achieves considerably good performance.
Unfortunately, these methods designed for specific tasks or networks (e.g., bias) are unsuitable for
modern general-purpose large-scale models. From the perspective of low GPU memory overhead,
BAdam (Luo et al., 2024) randomly divides the entire parameter into multiple blocks and updates
each block sequentially, LISA (Pan et al., 2024) changes the granularity of blocks at the layer level.
Besides, Mixout (Lee et al., 2020) resets a portion of neurons to a pre-trained state in each training
step. In this way, all parameters in BAdam, LISA, and Mixout are updated, which is different from
HFT and not conducive to continual learning.

Continual Learning. Continual learning aims to develop learning algorithms that can accumulate
knowledge on non-stationary data, and vanilla FFT has been proven to lead to severe catastrophic
forgetting issues when adapting to incoming streaming tasks (Luo et al., 2023; Wang et al., 2024).
To address this issue, experience replay (Rolnick et al., 2019; Peng et al., 2024) is a widely used
technique that incorporates a portion of data from previous rounds into the current training process.
Regularization-based models (Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017) introduce
additional terms in the loss function to penalize changes in crucial weights. Parameter-allocation
approaches (Li et al., 2019; Gurbuz & Dovrolis, 2022) feature an isolated parameter subspace
dedicated to each task throughout the network. When LLMs enter the era of billions of parameters,
researchers prefer to use progressive prompts (Razdaibiedina et al., 2023) or PEFT (Dou et al., 2023;
Wu et al., 2024a) to tune a powerful general backbone for specific tasks or domains (Wu et al.,
2024b). Instead of introducing auxiliary modules or losses, HFT explores a new direction based on
the characteristics of LLMs, proving that random parameter selection is sufficient to achieve passable
performance and has the potential to become a successor to FFT.

7 CONCLUSION

In this paper, we observe that rolling back half of the fine-tuned parameters to the pre-trained state
may recover partial knowledge of the startup model while holding the performance of downstream
tasks. Taking inspiration from this observation, we propose Half Fine-tuning (HFT), which adopts a
category-level strategy to select half of the parameters for updating in each training round, and the
remaining parameters are expected to maintain the learned knowledge. Extensive experiments on
supervised fine-tuning, direct preference optimization, and continual learning scenarios demonstrate
the effectiveness of HFT. It not only alleviates the catastrophic forgetting in preceding capabilities
but also achieves comparable or even superior performance than FFT in downstream tasks. Further
analysis shows that HFT is robust to selection strategies and selected parameter numbers. Last but not
least, HFT does not change the model architecture, making it easy to implement and scale, especially
under successive fine-tuning scenarios.
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A APPENDIX

A.1 BENEFITS AND LIMITATIONS

Half Fine-Tuning (HFT) achieves a balanced performance in general abilities and basic knowledge
benchmarks. It outperforms the Full Fine-Tuning (FFT) strategy while saving approximately 30% of
training time, and is scalable for scenarios with continual fine-tuning. In contrast, the widely used
Sparse Fine-Tuning methods such as LoRA fall short of HFT in overall performance, and in more
challenging scenarios like continual fine-tuning, these methods fail and lead to performance collapses.
We believe that HFT has the potential to become a successor to FFT in nearly all scenarios due to its
superior performance and faster training speed. Nonetheless, there are still some limitations to this
paper. Firstly, due to computational resource constraints, we experiment with the most representative
open-source models LLAMA 2-7B and LLAMA 2-13B, without scaling to larger or other family
models. Secondly, we validate HFT on the standard dense transformer architecture, while other
architectures such as Mixture-of-Experts (MoE) are not discussed in this paper. We believe that
HFT is sufficient to adapt to other architectures and models, which warrants further research and
exploration. In the future, we will strive to explore the potential of HFT in a wider range and diverse
architecture models, while also refining selection methods to further improve performance.

A.2 EXPERIMENTAL SETUP

A.2.1 DATASETS

To validate the performance of supervised fine-tuning, we choose TÜLU V2 (Ivison et al., 2023) which
is a combination of high-quality open resources, including datasets (1) created by researchers from
existing NLP datasets (e.g. SuperNI (Wang et al., 2022)), (2) written by humans (e.g. Dolly (Conover
et al., 2023) and Open Assistant (Köpf et al., 2023)), (3) generated by LLMs (e.g. Self-Instruct (Wang
et al., 2023b), Alpaca (Taori et al., 2023) and Baize (Xu et al., 2023)), (4) comprised of user-shared
prompts accompanied by model-generated completions (e.g. ShareGPT (Chiang et al., 2023)), and
(5) developed for specific abilities (e.g. CoT (Wei et al., 2022) for chain-of-thought and Code-
Alpaca (Chaudhary, 2023) for code generation). To examine the capacity for reinstating a fraction of
impaired capabilities while adhering to human preferences, we utilize UltraFeedback (Cui et al.,
2023) which is a large-scale, high-quality, and diversified preference dataset. For continual learning,
we select TRACE (Wang et al., 2023a), a novel benchmark designed for continual learning (CL)
in LLMs, to evaluate catastrophic forgetting in standard CL settings. TRACE consists of 8 distinct
datasets spanning challenging tasks, domain-specific tasks, multilingual capabilities, code generation,
and mathematical reasoning.

A.2.2 EVALUATION METRICS

Supervised Fine-Tuning and Direct Preference Optimization. To validate the effectiveness of
our method, we employ general abilities and basic knowledge benchmarks to assess the performance
in learning new tasks and preserving the original capabilities, respectively. Specifically, for the
general abilities benchmarks, we include the following evaluation sets to test various abilities. (1)
Factual knowledge: To assess the LLMs’ factual knowledge, we employ the Massive Multitask
Language Understanding dataset (MMLU) (Hendrycks et al., 2021). MMLU comprises a collection
of questions across 57 subjects from elementary to professional difficulty levels. We report the 5-shot
accuracy based on answer perplexity. (2) Reasoning: We utilize the test split of the Grade School
Math (GSM8K) dataset (Cobbe et al., 2021) and Big-Bench-Hard (BBH) (Suzgun et al., 2023) to
evaluate the reasoning abilities. We report the 8-shot accuracy and the exact match (EM) rates for
GSM8K and BBH, respectively. (3) Multilingualism: To evaluate multilingual capabilities, we
employ TyDiQA (Clark et al., 2020), a multilingual question-answering benchmark that covers 11
typologically diverse languages. We adopt the gold-passage setup, where a passage containing the
reference answer is provided, and report the F1 score. (4) Coding: To evaluate the LLMs’ ability to
generate functionally correct programs from docstrings, we utilize HumanEval (Chen et al., 2021)
and report the pass@10 performance. (5) Truthful: We incorporate TruthfulQA (Lin et al., 2022) to
assess the ability to avoid generating known falsehoods resulting from misconceptions or false beliefs
while providing informative responses. (6) Conversation: We use AlpacaEval 2.0 (Li et al., 2023) to
evaluate the instruction-following abilities. AlpacaEval is an LLM-based automatic evaluation metric.
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Algorithm 1: Algorithm of HFT with Category-Leval Parameter Selection
Input: Pre-trained model θ0
Initialize sequential training task T with data Dt, feed-forward block container FFNs=[], self-attention

block container SANs=[], and layernorm block container LNs=[].
for t = 1 to |T | do

// Set all parameters to retain gradients before each fine-tuning stage
foreach param in θt−1 do

param.requires_grad = True
// Omit the embedding and lm_head layer
mark_layers = random.sample(transformer_layers,
len(transformer_layers)//2)

foreach layer in transformer_layers do
foreach param in layer do

if param belongs to FFN block then
FFNs.append(param)

else if param belongs to SAN block then
SANs.append(param)

else
LNs.append(param)

// For FFNs with an odd number of parameters in one layer, the number of selected parameters in
half of the layers is rounded up, while the other half is rounded down.

if layer in mark_layers then
freeze_ffn = random.sample(FFNs, ⌈len(FFNs)/2⌉)

else
freeze_ffn = random.sample(FFNs, ⌊len(FFNs)/2⌋)

freeze_san = random.sample(SANs, len(SANs)//2)
freeze_ln = random.sample(LNs, len(LNs)//2)
foreach param in freeze_ffn, freeze_san and freeze_ln do

param.requires_grad = False
Set FFNs, SANs and LNs to []

Model training process on with dataset Dt
Output: Fine-tuned model θ|T |

In this paper, we calculate the win rates against the GPT-4-preview-1106. We include the
following three datasets for basic knowledge benchmarks to validate the basic knowledge preserved
in LLMs: (1) NaturalQuestion (Kwiatkowski et al., 2019), (2) TriviaQA (Han et al., 2019), and (3)
HotpotQA (Yang et al., 2018).

Continual Learning. For continual learning evaluations, following (Wang et al., 2023a), we use
Overall Performance (OP) and Backward Transfer (BWT) scores as the main metrics in CL settings.
In terms of the formula, after incrementally learning the t-th task, the performance on the i-th task
(where i ≤ t) is denoted as St,i. The OP and BWT scores can be calculated as

OPt =
1

t

t∑
i=1

St,i, BWTt =
1

t

t−1∑
i=1

(St,i − Si,i) . (5)

We utilize accuracy as the primary evaluation metric for C-STANCE, FOMC, ScienceQA, NumGLUE-
cm, and NumGLUE-ds. In the case of Py150, we employ similarity as the evaluation metric.
Moreover, for the evaluation of MeetingBank and 20Minuten, we employ the ROUGE-L metric.

A.2.3 IMPLEMENTATION DETAILS

Following (Ivison et al., 2023), in the SFT phase on TÜLU V2, we adopt a linear-decreasing learning
rate of 2e-5 with a 0.3 warmup ratio and train for 2 epochs. For the human preference alignment
phase on UltraFeedback, we use direct preference optimization (Rafailov et al., 2023) to align the
fine-tuned LLMs on TÜLU V2. We use a learning rate of 5e-7 and a global batch size of 32. Due
to the context length of 4096 used during LLAMA 2 pre-training, as referenced in the (Ivison et al.,
2023) code repository issues, we set a maximum sequence length of 4096 during the SFT stage.
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Table 7: General abilities and basic knowledge results of LLAMA 2-7B, the well-aligned model
LLAMA 2-CHAT-7B, and our proposed three half-reset approaches.

LLAMA 2- LLAMA 2- Model-level Layer-level Category-level
7B CHAT-7B Half-Reset Half-Reset Half-Reset

MMLU (EM, 0-shot) 41.6 47.0 46.2 45.8 46.7
GSM (ACC, 8-shot) 12.0 26.0 8.0 22.0 24.0
BBH (EM, 0-shot) 39.9 39.2 41.0 39.5 37.7
TyDiQA (F1, 1-shot) 48.4 43.6 46.3 44.2 44.9
TruthfulQA (MC2, 0-shot) 38.5 46.0 41.7 43.1 41.7
HumanEval (Pass@10) 26.2 23.9 26.8 25.0 22.0
Overall (General Ability) 34.4 37.6 35.0 36.6 36.2

NaturalQuestion (EM, 0-shot) 12.9 7.2 8.2 11.2 10.9
TriviaQA (EM, 0-shot) 40.2 3.3 18.3 21.3 21.3
HotpotQA (EM, 0-shot) 15.6 6.6 7.4 9.9 9.0
Overall (World Knowledge) 22.9 5.7 11.3 12.4 13.7

Overall 30.6 27.0 27.1 28.5 28.7

However, due to hardware resource limitations, the maximum sequence length is reduced to 1024
during the DPO stage under LLAMA 2-13B. During the continual learning phase, following (Wang
et al., 2023a), we employ a fixed learning rate of 1e-5 and fine-tune the eight sub-datasets for different
numbers of epochs: 5, 3, 7, 5, 3, 5, 5, and 7 epochs, respectively. The global batch size for both
stages is set to 128. All our experiments are conducted on one machine equipped with 8x80G Nvidia
A100. Algorithm 1 introduce the detailed implementations of our proposed fine-grained selecting
approach of HFT. Additionally, to evaluate the SFT and DPO models, we employ a chat format, using
specialized tokens <|user|> and <|assistant|> to mark user utterances and target assistant
responses, respectively. However, we use a standard language format for HumanEval and the basic
knowledge benchmarks when evaluating pre-trained models.

A.3 ADDITIONAL EXPERIMENTS

A.3.1 DETAILED RESULTS OF PILOT EXPERIMENTS

Table 7 presents the detailed results of pilot experiments conducted in Section 2. We also compare
two additional model-level and layer-level parameter selection methods here. The results indicate
that the category-level selection approach achieves the highest overall performance, consistent with
the follow-up training setting conclusion.

A.3.2 MORE BASELINES OF INSTRUCTION TUNING

We introduce two extra groups of methods to illustrate the effectiveness of HFT. Specifically, we
compare four sparse fine-tuning methods, LoRA (Hu et al., 2022), QLoRA (Dettmers et al., 2023),
AdaLoRA (Zhang et al., 2023b), P-Tuning (Liu et al., 2022), and Mixout (Lee et al., 2020) as well as
three model merging methods, Average merging, TIES merging (Yadav et al., 2023), and DARE (Yu
et al., 2023). The experimental results are shown in Table 8, demonstrating that the HFT method
achieves the best trade-off in both general abilities and basic knowledge benchmarks. The sparse
fine-tuning methods preserve more basic knowledge but suffer more performance degradation in the
general abilities evaluation, which is consistent with the previous conclusion that LoRA learns less
and forgets less (Biderman et al., 2024). On the other hand, the model merging methods, in general,
also perform worse than HFT. Additionally, model merging methods require FFT training followed by
task vector pruning, making them more complex and time-consuming due to the two-stage process.

A.3.3 DIRECT PREFERENCE OPTIMIZATION WITH HFT-BASED MODELS

In Section 4.1, we initialize our DPO process with the FFT model. In this section, we investigate
the performance of the DPO process when initialized with the HFT model. The experimental results
are presented in Table 9. We observe that while the DPO process on the HFT model performs better
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Table 8: General abilities and basic knowledge performance of more baselines. In model merging
baselines, P, S and D refer to Pre-trained, SFT and DPO models, respectively.

MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA
Sparse Fine-tuning Baselines
LoRA 46.8 18.0 39.5 51.7 44.8 27.3 12.7 36.2 17.8 32.8
QLoRA 38.0 2.5 37.2 15.0 40.6 24.0 12.7 43.2 15.5 25.4
AdaLoRA 47.2 19.5 39.1 51.9 44.4 30.2 12.3 37.5 16.9 33.2
P-tuning 44.7 16.5 36.9 50.2 43.6 26.5 12.8 40.9 17.3 32.2
Mixout 48.1 24.5 41.0 49.8 42.3 33.7 4.5 28.2 15.5 32.0

Model Merging Baselines
TIES (P+S) 47.8 25.5 40.2 50.1 43.3 30.2 5.5 31.7 14.4 32.1
DARE (P+S) 49.2 28.5 42.9 53.0 44.4 32.8 6.1 30.7 15.1 33.6
TIES (S+D) 39.6 1.5 39.7 16.1 38.4 23.3 12.9 40.2 15.6 25.3
DARE (S+D) 45.8 16.5 40.4 50.0 42.7 27.6 5.8 32.7 14.1 30.6
Average (S+D) 49.0 22.0 45.1 52.8 42.5 32.6 7.5 35.6 14.0 33.5

HFT (S) 50.8 30.5 43.6 52.3 45.4 34.6 6.2 32.8 15.4 34.6

Table 9: General abilities and basic knowledge performance of DPO stage (with HFT), which is
initialized with HFT-based SFT models fine-tuned on TÜLU V2.

MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA
DPO (FFT-based, 7b) 48.8 25.5 42.8 51.1 45.5 36.7 1.9 22.9 12.8 32.0
DPO (HFT-based, 7b) 50.7 30.5 42.8 43.9 49.8 35.1 1.0 20.4 5.9 31.1
DPO (FFT-based, 13b) 51.8 48.5 49.9 52.9 45.3 41.0 0.2 5.5 3.0 33.1
DPO (HFT-based, 13b) 55.0 45.5 51.4 53.2 49.5 42.9 0.3 4.9 4.7 34.2

in certain general abilities, such as TruthfulQA, it experiences minor losses in overall performance
under LLAMA 2-7B. However, the situation is reversed in LLAMA 2-13B, where the DPO deployed
on the HFT model outperforms the FFT-initialized DPO. Nonetheless, DPO equipped with HFT tends
to improve performance compared to DPO with FFT consistently.

A.3.4 GENERAL ABILITIES AND BASIC KNOWLEDGE OF CONTINUAL FINE-TUNED MODELS

We also evaluate the models mentioned in Section 4.2 on general abilities and basic knowledge
benchmarks. The experimental results are presented in Table 10. We observe that after 8 rounds of
fine-tuning on consecutive tasks, the models fine-tuned with the HFT method consistently outperform
the FFT models in terms of overall performance. This further confirms the effectiveness of HFT in
preserving the original capabilities of the model and mitigating catastrophic forgetting. Furthermore,
although LoRA preserves more layer parameters unchanged, it still performs worse compared to
HFT. We believe this may be attributed to the low-rank decomposition resulting in a limited number
of trainable parameters. Merging the LoRA weights back into the original model could potentially
disrupt the original parameter space to a greater extent.

A.3.5 THE IMPACT OF LEARNING RATES

To validate whether our approach indeed leverages the frozen parameters to mitigate the catastrophic
forgetting, rather than being equivalent to the effects brought about by a reduced learning rate, we
compare the half learning rate and the cosine learning rate schedule to demonstrate further that the
way HFT alleviates forgetting is not depending on learning rate but is indeed due to the role played
by the frozen parameters. As shown in Tabel 11, we observe that upon halving the learning rate, the
overall performance declines, with no significant recovery in the performance on world knowledge,
thereby underscoring the capability of HFT in mitigating catastrophic forgetting. Moreover, under
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Table 10: General abilities and basic knowledge performance of the final round models fine-tuned on
TRACE. We compare four different fine-tuning methods and our HFT approach start from LLAMA
2-CHAT-7B and LLAMA 2-CHAT-13B.

MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA
SeqFT-7b 35.5 3.0 24.3 39.1 42.7 0.3 10.0 23.9 14.0 21.4
GEM-7b 40.1 3.5 17.0 33.4 41.4 2.2 10.0 19.6 14.0 20.1
Replay-7b 45.9 4.5 35.2 41.6 39.6 8.5 11.6 36.1 14.2 26.4
LoraSeqFT-7b 43.3 11.0 30.7 35.5 41.7 8.8 8.7 24.7 13.4 24.2
SeqFT-7b (H) 44.1 3.5 30.8 41.1 41.8 1.6 11.3 38.9 14.4 25.3 (+3.9)

GEM-7b (H) 45.1 5.0 32.3 34.9 43.0 2.7 10.4 35.9 13.7 24.8 (+4.7)

Replay-7b (H) 47.9 11.0 38.8 42.6 42.5 12.7 10.7 38.4 12.9 28.6 (+2.2)

SeqFT-13b 39.7 5.0 27.9 41.0 41.4 0.0 12.7 44.3 16.3 25.4
Replay-13b 49.0 3.5 40.1 37.7 43.1 12.0 12.5 6.7 13.3 24.2
GEM-13b 47.2 4.0 37.6 36.3 43.0 10.0 10.8 10.2 12.1 23.5
LoraSeqFT-13b 43.3 15.0 42.4 43.1 40.5 18.2 10.6 37.6 16.2 29.7
SeqFT-13b (H) 50.0 7.0 46.3 47.2 41.4 11.2 14.7 50.6 18.7 31.9 (+6.5)

GEM-13b (H) 49.9 9.5 46.5 38.2 45.1 18.9 9.8 39.7 14.2 30.2 (+6.7)

Replay-13b (H) 50.0 10.5 47.1 39.6 45.8 20.1 10.1 41.1 14.0 30.9 (+2.3)

Table 11: General abilities and basic knowledge of LLAMA 2 7B based on different learning rates.

FFT FFT HFT FFT HFT
(linear,1e-5) (linear,2e-5) (linear,2e-5) (cosine,2e-5) (cosine,2e-5)

MMLU (EM, 0-shot) 49.2 48.5 50.8 47.8 50.6
GSM (ACC, 8-shot) 24.5 25.0 30.5 25.5 31.5
BBH (EM, 0-shot) 41.8 42.2 43.6 42.2 44.4
TyDiQA (F1, 1-shot) 51.5 51.2 52.3 51.2 52.8
TruthfulQA (MC2, 0-shot) 40.2 41.7 45.4 42.6 46.4
HumanEval (Pass@10) 36.0 36.9 34.6 34.3 33.7
Overall (General Ability) 40.4 41.0 42.9 40.6 43.2
NaturalQuestion (EM, 0-shot) 4.9 3.2 6.2 3.5 6.4
TriviaQA (EM, 0-shot) 22.7 26.4 32.8 27.6 33.6
HotpotQA (EM, 0-shot) 13.4 14.5 15.4 13.1 14.7
Overall (World Knowledge) 13.7 14.7 18.1 14.7 18.2
Overall 31.5 32.2 34.6 32.0 34.9

the cosine learning rate schedule, HFT still outperforms FFT, which also demonstrates the robustness
of HFT to variations in the learning rate.

A.3.6 THE IMPACT OF RANDOMNESS

Here, we discuss a series of factors related to the randomness of HFT, including different trainable
parameter ratios and selection methods. Note that in the continual learning setting, we randomly
select trainable parameters for each fine-tuning process, with a total of 8 random selections. The
significant performance improvement of HFT over FFT indicates that it is not sensitive to fine-grained
parameter selection. For all that, we also supplement a randomness experiment under the instruction
tuning setting with 5 different random seeds (i.e. parameter selections). As shown in Table 12, among
these 5 trials, HFT exhibits minimal variations and a stable lead relative to FFT, demonstrating its
robustness again.

A.3.7 EFFICIENCY ANALYSIS

We conduct a comparison of the runtime costs for different ratios of trainable parameters. Specifically,
we fine-tuned LLAMA 2-7B on TÜLU V2 and record the total duration from the start to the end of
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Table 12: General abilities and basic knowledge of LLAMA 2 7B based on different random seeds.

HFT HFT HFT HFT HFT
(seed 1) (seed 2) (seed 3) (seed 4) (seed 5)

MMLU (EM, 0-shot) 50.8 49.9 50.2 51.2 50.5
GSM (ACC, 8-shot) 30.5 31.0 30.5 28.5 29.5
BBH (EM, 0-shot) 43.6 43.2 42.9 43.4 44.1
TyDiQA (F1, 1-shot) 52.3 52.3 53.2 52.8 51.7
TruthfulQA (MC2, 0-shot) 45.4 45.7 44.7 45.2 44.9
HumanEval (Pass@10) 34.6 35.1 34.8 34.7 35.2
Overall (General Ability) 42.9 42.9 42.7 42.6 42.7

NaturalQuestion (EM, 0-shot) 6.2 6.1 5.9 6.1 6.4
TriviaQA (EM, 0-shot) 32.8 31.9 33.4 33.1 33.0
HotpotQA (EM, 0-shot) 15.4 15.4 15.6 14.9 15.6
Overall (World Knowledge) 18.1 17.8 18.3 18.0 18.3
Overall 34.6 34.5 34.6 34.4 34.6

Table 13: Efficiency analysis among different ratios of trainable parameters, in which FFT as a
reference value and underline marks HFT proposed in this paper.

# Trainable Parameters (%) 8.3 22.3 30.6 38.9 50.0 61.1 69.4 77.7 91.7 100
Runtime (%) 48.0 52.2 56.4 64.0 68.5 72.5 85.1 85.2 89.0 100
∆ (%) -52.0 -47.8 -43.6 -36.0 -31.5 -27.5 -14.9 -14.8 -11.0 0.0

the training program. The results in Table 13 demonstrate that, without specific optimization, all
models with varying ratios of trainable parameters can reduce the training time. As expected, as the
proportion of trainable parameters increases, the training duration also increases. Notably, our HFT
method achieves a 31.5% reduction in training time, significantly decreasing the training cost for
extremely large-scale instruction datasets.

A.3.8 EVALUATION ON ALPACAEVAL

Table 14: Evaluation results on AlpacaEval 2.0.

Models AlpacaEval 2.0
LLAMA 2-7B-SFT 6.96
LLAMA 2-7B-SFT (R) 2.98
LLAMA 2-7B-SFT (H) 5.59

LLAMA 2-7B-DPO 10.68
LLAMA 2-7B-DPO (R) 8.44
LLAMA 2-7B-DPO (H) 9.07

LLAMA 2-13B-SFT 8.32
LLAMA 2-13B-SFT (R) 11.93
LLAMA 2-13B-SFT (H) 10.43

LLAMA 2-13B-DPO 11.55
LLAMA 2-13B-DPO (R) 12.55
LLAMA 2-13B-DPO (H) 11.68

As shown in Table 14, we evaluate different
models on AlpacaEval 2.0. The results indi-
cate that our method is less effective than FFT
on LLAMA 2-7B. However, a reversal occurs
when the model size scales up to 13b, where our
approach outperforms the FFT models compre-
hensively. This suggests that our method has
greater potential on much larger-scale LLMs,
as supported by the experimental results in Ta-
ble 1, which show a larger improvement of HFT
compared to FFT on LLAMA 2-13B compared
to LLAMA 2-7B. Interestingly, the Half-Reset
method performs well on LLAMA 2-13B but
shows completely different results on LLAMA
2-7B. This suggests that simply resetting half
of the parameters may not provide consistent
performance since the model is trained on the
full set of parameters.

A.3.9 DETAILED RESULTS OF REVISITING EMBEDDING AND LM_HEAD LAYERS

Table 15 details the results of freezing the input and output layers. Meanwhile, Table 16 and 17 show
the detailed results of the two adjacent numbers of parameter settings on TRACE.
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Table 15: Detailed results on TRACE with 50.0% trainable parameters while freezing embedding
and lm_head layers.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.1 48.0 47.2 45.8 46.4 46.2 46.3 48.0
FOMC - 69.0 66.1 65.7 65.7 64.7 63.9 66.9
MeetingBank - - 37.5 34.5 34.2 32.7 31.9 33.2
Py150 - - - 51.2 50.3 49.8 49.2 50.8
ScienceQA - - - - 58.1 58.0 56.8 56.2
NumGLUE-cm - - - - - 33.3 25.9 29.6
NumGLUE-ds - - - - - - 45.8 43.1
20Minuten - - - - - - - 40.6

OP 50.1 58.5 50.3 49.3 50.9 47.5 45.7 46.1
BWT - - - - - - - -2.2%

Table 16: Detailed results on TRACE with 38.9% trainable parameters while updating embedding
and lm_head layers.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.2 43.7 43.2 44.2 44.2 44.4 43.7 45.1
FOMC - 71.0 64.3 65.3 60.7 65.9 65.1 63.3
MeetingBank - - 46.9 37.7 35.4 39.0 38.5 36.9
Py150 - - - 57.9 52.6 53.6 53.6 53.4
ScienceQA - - - - 85.7 77.5 71.8 74.8
NumGLUE-cm - - - - - 33.3 29.6 33.3
NumGLUE-ds - - - - - - 56.6 48.9
20Minuten - - - - - - - 41.1

OP 49.2 57.4 51.5 51.3 55.7 52.3 51.3 49.6
BWT - - - - - - - -5.6%

Table 17: Detailed results on TRACE with 61.1% trainable parameters while updating embedding
and lm_head layers.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 45.3 50.8 50.9 51.4 51.3 51.4 51.1 53.3
FOMC - 72.8 63.7 65.7 6.3 68.3 69.0 67.9
MeetingBank - - 48.9 41.1 38.3 41.3 41.1 40.0
Py150 - - - 57.3 50.3 52.8 52.9 52.9
ScienceQA - - - - 88.2 70.6 67.3 69.4
NumGLUE-cm - - - - - 30.9 28.4 21.0
NumGLUE-ds - - - - - - 59.4 53.5
20Minuten - - - - - - - 40.8

OP 45.3 61.8 54.5 53.9 46.9 52.6 52.7 49.9
BWT - - - - - - - -5.6%

A.3.10 DETAILED RESULTS OF DIFFERENT PARAMETER SELECTION STRATEGIES

Table 18 and 19 provide the detailed results on TRACE with model-level and layer-level parameter
selection strategies mentioned in Section 4.3.

A.3.11 DETAILED RESULTS OF TRACE

Table 20 to 33 show the detailed results of different models and approaches of each round during the
continual learning on TRACE.
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Table 18: Detailed results on TRACE with model-level parameter selection.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.3 49.1 48.8 50.2 50.0 48.9 48.1 49.2
FOMC - 70.6 57.5 53.8 42.7 54.4 58.1 55.2
MeetingBank - - 48.9 37.8 36.5 38.2 37.3 38.9
Py150 - - - 57.7 55.4 55.9 54.8 55.7
ScienceQA - - - - 87.7 59.8 54.2 56.4
NumGLUE-cm - - - - - 38.3 22.2 25.9
NumGLUE-ds - - - - - - 55.7 53.5
20Minuten - - - - - - - 40.7

OP 49.3 59.9 51.7 49.9 54.5 49.3 47.2 46.9
BWT - - - - - - - -9.2%

Table 19: Detailed results on TRACE with layer-level parameter selection.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.8 41.4 44.6 46.5 47.5 48.6 48.2 49.0
FOMC - 72.2 58.5 54.6 1.8 46.8 50.2 50.0
MeetingBank - - 47.1 34.7 34.5 37.2 38.6 37.1
Py150 - - - 56.5 53.3 53.8 54.2 54.1
ScienceQA - - - - 88.5 84.4 76.2 77.5
NumGLUE-cm - - - - - 35.8 28.4 21.0
NumGLUE-ds - - - - - - 57.2 52.9
20Minuten - - - - - - - 41.5

OP 50.8 56.8 50.1 48.1 45.1 51.1 50.4 47.9
BWT - - - - - - - -8.3%

Table 20: Detailed results on TRACE with SeqFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 48.5 49.7 48.5 48.3 6.7 47.4 47.2 48.7
FOMC - 71.6 46.6 46.4 0.4 43.1 42.9 44.0
MeetingBank - - 49.0 39.9 40.8 37.6 34.5 37.9
Py150 - - - 57.0 49.2 54.5 54.2 54.0
ScienceQA - - - - 89.1 71.5 44.6 60.6
NumGLUE-cm - - - - - 30.9 24.7 25.9
NumGLUE-ds - - - - - - 59.4 52.6
20Minuten - - - - - - - 41.5

OP 48.5 60.7 48.0 47.9 37.2 47.5 43.9 45.7
BWT - - - - - - - -10.2%

Table 21: Detailed results on TRACE with SeqFT and HFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.4 47.6 45.6 46.4 47.8 49.5 49.1 49.3
FOMC - 71.8 57.7 59.1 46.0 66.5 67.3 66.3
MeetingBank - - 47.4 39.1 31.2 38.6 38.4 35.7
Py150 - - - 57.4 52.1 54.8 55.0 55.0
ScienceQA - - - - 87.4 82.1 77.6 75.3
NumGLUE-cm - - - - - 42.0 30.9 32.1
NumGLUE-ds - - - - - - 58.5 55.1
20Minuten - - - - - - - 41.3

OP 49.4 59.7 50.2 50.5 52.9 55.6 53.8 51.3
BWT - - - - - - - -5.6%
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Table 22: Detailed results on TRACE with GEM (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.0 48.9 48.4 47.7 13.0 46.5 45.7 48.1
FOMC - 69.4 60.3 59.7 0.4 56.5 57.1 58.5
MeetingBank - - 49.0 40.4 38.4 38.8 34.8 39.0
Py150 - - - 56.7 51.2 54.0 53.6 53.8
ScienceQA - - - - 89.5 64.2 29.5 54.5
NumGLUE-cm - - - - - 33.3 32.1 33.3
NumGLUE-ds - - - - - - 59.7 57.2
20Minuten - - - - - - - 40.8

OP 50.0 59.2 52.6 51.1 38.5 48.9 44.6 48.2
BWT - - - - - - - -7.9%

Table 23: Detailed results on TRACE with GEM and HFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.3 49.0 47.0 48.3 50.0 50.7 50.1 51.3
FOMC - 70.0 58.9 60.1 36.1 63.9 65.9 65.5
MeetingBank - - 47.5 40.2 38.2 39.2 39.0 37.9
Py150 - - - 57.0 53.0 55.3 55.1 54.6
ScienceQA - - - - 88.4 76.8 70.1 68.4
NumGLUE-cm - - - - - 34.6 24.7 29.6
NumGLUE-ds - - - - - - 60.0 53.6
20Minuten - - - - - - - 41.0

OP 50.3 59.5 51.1 51.4 53.1 53.4 52.1 50.2
BWT - - - - - - - -5.9%

Table 24: Detailed results on TRACE with Replay (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.7 50.1 49.4 48.2 50.6 49.7 49.9 52.0
FOMC - 64.9 68.1 70.2 70.0 70.0 70.6 70.0
MeetingBank - - 43.4 48.0 46.1 46.5 46.4 44.8
Py150 - - - 53.9 55.0 54.1 54.0 53.5
ScienceQA - - - - 81.9 86.0 86.3 87.5
NumGLUE-cm - - - - - 30.9 32.1 32.1
NumGLUE-ds - - - - - - 55.7 53.5
20Minuten - - - - - - - 40.6

OP 51.7 57.5 53.6 55.1 60.7 56.2 56.4 54.3
BWT - - - - - - - 1.4%

Table 25: Detailed results on TRACE with Replay and HFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 47.7 53.5 50.6 51.0 50.8 50.2 51.1 52.1
FOMC - 61.1 69.4 70.8 69.8 70.2 69.4 69.8
MeetingBank - - 39.3 47.1 47.0 46.0 46.7 47.3
Py150 - - - 55.3 56.3 56.3 56.5 55.6
ScienceQA - - - - 87.3 52.2 85.0 84.8
NumGLUE-cm - - - - - 37.0 29.6 32.1
NumGLUE-ds - - - - - - 48.0 50.5
20Minuten - - - - - - - 40.5

OP 47.7 57.3 53.1 56.1 62.2 52.0 55.2 54.1
BWT - - - - - - - +2.1%
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Table 26: Detailed results on TRACE with LoRASeqFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.6 48.1 47.4 46.9 24.1 12.0 4.1 7.9
FOMC - 68.8 58.3 52.6 0.0 48.4 44.2 1.4
MeetingBank - - 45.7 10.6 5.9 1.1 2.7 3.0
Py150 - - - 58.6 20.8 46.8 45.2 0.4
ScienceQA - - - - 66.1 50.7 41.3 0.0
NumGLUE-cm - - - - - 33.3 27.2 0.0
NumGLUE-ds - - - - - - 50.5 0.0
20Minuten - - - - - - - 38.1

OP 51.6 58.5 50.5 42.2 23.4 32.1 30.7 6.4
BWT - - - - - - - -45.2%

Table 27: Detailed results of on TRACE with SeqFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.3 34.9 37.6 40.0 41.0 44.2 43.8 44.9
FOMC - 70.0 57.5 52.6 4.2 49.0 47.2 49.8
MeetingBank - - 50.5 44.9 44.4 45.7 44.7 41.9
Py150 - - - 56.8 54.9 54.4 53.1 54.6
ScienceQA - - - - 91.3 73.5 66.1 73.9
NumGLUE-cm - - - - - 43.2 28.4 25.9
NumGLUE-ds - - - - - - 62.5 59.4
20Minuten - - - - - - - 41.4

OP 51.3 52.5 48.5 48.6 47.2 51.7 49.4 49.0
BWT - - - - - - - -9.4%

Table 28: Detailed results on TRACE with SeqFT and HFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 54.2 52.2 54.7 55.2 55.3 54.3 54.6 55.5
FOMC - 73.4 56.7 54.6 38.3 43.1 41.9 50.2
MeetingBank - - 48.9 44.4 44.1 45.5 45.9 43.6
Py150 - - - 58.9 56.3 56.4 56.7 56.3
ScienceQA - - - - 89.7 84.3 74.5 74.6
NumGLUE-cm - - - - - 54.3 33.3 35.8
NumGLUE-ds - - - - - - 64.0 59.4
20Minuten - - - - - - - 40.9

OP 54.2 62.8 53.4 53.3 56.7 56.3 53.0 52.0
BWT - - - - - - - -8.5%

Table 29: Detailed results on TRACE with GEM (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.5 47.2 46.7 48.1 19.0 47.4 48.3 49.2
FOMC - 70.5 59.4 60.2 0.0 60.7 58.2 61.2
MeetingBank - - 52.3 47.6 40.5 40.6 43.2 41.5
Py150 - - - 60.7 60.2 53.6 54.6 55.7
ScienceQA - - - - 92.7 78.5 30.6 60.5
NumGLUE-cm - - - - - 43.7 33.3 33.3
NumGLUE-ds - - - - - - 61.7 60.2
20Minuten - - - - - - - 41.8

OP 51.5 58.9 52.8 54.2 42.5 54.1 47.1 50.4
BWT - - - - - - - -8.9%
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Table 30: Detailed results on TRACE with GEM and HFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 52.4 51.5 48.9 49.6 51.5 51.0 50.2 51.5
FOMC - 73.4 60.8 61.9 44.4 65.3 68.9 67.2
MeetingBank - - 50.2 47.6 41.2 43.3 40.9 41.8
Py150 - - - 61.7 60.1 60.3 58.7 57.5
ScienceQA - - - - 93.0 88.7 78.9 77.7
NumGLUE-cm - - - - - 44.4 33.3 36.7
NumGLUE-ds - - - - - - 61.9 55.7
20Minuten - - - - - - - 40.6

OP 52.4 62.5 53.3 55.2 58.0 58.8 56.1 53.6
BWT - - - - - - - -6.1%

Table 31: Detailed results on TRACE with Replay (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 48.8 51.3 48.5 49.3 49.2 47.5 46.7 51.4
FOMC - 62.3 70.6 72.4 71.2 71.2 70.8 73.0
MeetingBank - - 44.9 48.2 47.4 48.5 47.1 47.5
Py150 - - - 53.9 55.1 54.2 47.5 53.3
ScienceQA - - - - 89.5 91.6 90.7 89.6
NumGLUE-cm - - - - - 45.7 29.6 30.9
NumGLUE-ds - - - - - - 57.5 52.3
20Minuten - - - - - - - 39.7

OP 48.8 56.8 54.7 56.0 62.5 59.8 55.7 54.7
BWT - - - - - - - -0.6%

Table 32: Detailed results on TRACE with Replay and HFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.2 52.5 53.8 53.0 53.4 52.7 52.4 52.1
FOMC - 61.3 74.2 71.2 71.8 73.2 72.4 73.6
MeetingBank - - 48.5 48.7 47.0 46.9 48.6 47.6
Py150 - - - 55.7 58.2 55.4 54.0 54.5
ScienceQA - - - - 83.3 90.0 90.1 89.7
NumGLUE-cm - - - - - 45.7 48.1 43.2
NumGLUE-ds - - - - - - 60.9 57.5
20Minuten - - - - - - - 41.0

OP 50.2 56.9 58.8 57.2 62.7 60.7 60.9 57.4
BWT - - - - - - - +1.6%

Table 33: Detailed results on TRACE with LoRASeqFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 52.4 44.4 45.1 39.0 0.0 41.8 41.1 12.4
FOMC - 67.1 58.3 43.8 2.2 60.3 57.8 0.0
MeetingBank - - 47.3 11.3 18.2 14.6 3.2 12.2
Py150 - - - 59.2 40.0 47.7 50.0 23.6
ScienceQA - - - - 75.4 70.3 71.0 67.7
NumGLUE-cm - - - - - 47.5 28.5 25.7
NumGLUE-ds - - - - - - 61.3 28.6
20Minuten - - - - - - - 41.6

OP 52.4 55.8 50.2 38.3 27.2 47.0 44.7 26.5
BWT - - - - - - - -30.0%
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