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ABSTRACT

Physics-Informed Neural Networks (PINNs) provide a powerful and general
framework for solving Partial Differential Equations (PDEs) by embedding phys-
ical laws into loss functions. However, training PINNs is notoriously difficult due
to the need to balance multiple loss terms, such as PDE residuals and boundary
conditions, which often have conflicting objectives and vastly different curvatures.
Existing methods address this issue by manipulating gradients before optimization
(a “pre-combine” strategy). We argue that this approach is fundamentally limited,
as forcing a single optimizer to process gradients from spectrally heterogeneous
loss landscapes disrupts its internal preconditioning. In this work, we introduce
AutoBalance, a novel “post-combine” training paradigm. AutoBalance assigns
an independent adaptive optimizer to each loss component and aggregates the re-
sulting preconditioned updates afterwards. Extensive experiments on challenging
PDE benchmarks show that AutoBalance consistently outperforms existing frame-
works, achieving significant reductions in solution error, as measured by both the
MSE and L∞ norms. Moreover, AutoBalance is orthogonal to and complemen-
tary with other popular PINN methodologies, amplifying their effectiveness on
demanding benchmarks.

1 INTRODUCTION

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021) have
emerged as a versatile framework for integrating physical laws with neural networks. By embedding
governing Partial Differential Equations (PDEs) into loss functions via automatic differentiation,
PINNs enable the solution of both forward and inverse problems without dense observational data.
This paradigm combines two complementary strengths: the expressivity of neural networks for
approximating complex solution spaces, and the loss function represented by PDE residuals together
with boundary and initial conditions. Their effectiveness has been demonstrated across a wide range
of domains, including heat transfer (Xu et al., 2023; Cai et al., 2021; Si & Yan, 2025b; Majumdar
et al., 2025), solid mechanics (Hu et al., 2024; Faroughi et al., 2024), stochastic systems (Zhang
et al., 2020; Chen et al., 2021), and uncertainty quantification (Yang & Perdikaris, 2019; Zhang
et al., 2019; Yang et al., 2021).

PINNs provide a framework for solving PDEs by leveraging automatic differentiation of coordinate-
based neural networks, or implicit neural representations (INRs), to compute derivatives. At the
heart of this approach lies a PDE-driven loss formulation, in which the residuals of the govern-
ing equations, together with boundary and initial conditions, are combined into a single objective
function to be minimized (Raissi et al., 2019; Karniadakis et al., 2021). Despite their conceptual
elegance and broad adoption, training PINNs effectively remains a significant challenge. A central
difficulty is the inherent imbalance among the competing loss components, which induces gradient
pathologies during optimization (Wang et al., 2021; Liu et al., 2025). Such imbalance–arising from
factors including numerical stiffness, heterogeneous loss landscapes, and the soft enforcement of
PDE constraints–can cause dominant terms to drive parameter updates while critical physical laws
remain under-enforced (Anagnostopoulos et al., 2024). Most existing remedies attempt to mitigate
this issue by adaptively adjusting the weights of different loss terms (Wang et al., 2022; McClenny &
Braga-Neto, 2023; Anagnostopoulos et al., 2024; Song et al., 2024; Si & Yan, 2025a). Nevertheless,
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despite numerous proposed strategies, there is still no consensus on a universally effective method
for balancing PINN training.

Multi-Task Learning (MTL) methods (Liu et al., 2019; 2021a; Yu et al., 2020; Liu et al., 2025)
commonly aim to mitigate task conflicts by manipulating gradients from different losses. The pre-
vailing strategy is to “pre-combine” these gradients—typically through re-weighting or gradient
manipulation—and then apply a standard optimizer such as Adam. We argue that this “pre-combine”
approach has an inherent limitation: it requires a single optimizer preconditioner to process gradi-
ents drawn from fundamentally different loss landscapes. In practice, the Hessian spectra of distinct
loss components (e.g., interior versus boundary losses in PINNs) can vary drastically. Mixing such
spectrally heterogeneous gradients produces a composite signal with scrambled curvature informa-
tion, yielding an unstable or poorly calibrated preconditioner. As a result, a single second-moment
estimate in Adam cannot adequately normalize updates across conflicting curvature profiles.

1

2

1 + 2

Pre-Combine Strategy Post-Combine Strategy (Ours)

To address this limitation, we introduce an alternative
“post-combine” paradigm, illustrated in the right panel.
Instead of merging raw gradients beforehand, each task’s
loss is optimized independently with its own adaptive op-
timizer. This yields distinct, well-preconditioned update
vectors, as each optimizer naturally adapts to the curva-
ture of its respective loss landscape. The quadratic ex-
ample in the figure highlights this advantage: when a
well-conditioned loss component (L1) is coupled with an
ill-conditioned one (L2), the conventional “pre-combine”
strategy produces a slow, oscillatory trajectory on the
composite landscape. In contrast, our “post-combine”
method moves efficiently toward the optimum. This ability to exploit curvature information more
effectively forms the core idea that we formalize in Section 3.2.

Intriguingly, our key finding is that even the simplest aggregation—a direct summation of the indi-
vidual updates—yields strong performance without the need for explicit balancing coefficients. We
observe that this “decoupled” structure introduces an implicit balancing effect by naturally harmo-
nizing the update norms across tasks. It is precisely this emergent, hyperparameter-free balancing
property that underpins the robustness and effectiveness of our approach. We refer to this method as
the AutoBalance Framework. Our contributions are summarized as follows:

• We identify a fundamental flaw in the prevailing “pre-combine” paradigm for PINN training:
mixing gradients from loss components with heterogeneous Hessian spectra corrupts the precon-
ditioner of adaptive optimizers. Building on this insight, we introduce a new “post-combine”
framework, AutoBalance.

• We provide both analytical and empirical intuition of the effectiveness of our framework. Ana-
lytically, we show how AutoBalance accommodates heterogeneous Hessian spectra. Empirically,
we demonstrate that AutoBalance stabilizes training by reducing the condition number of the pre-
conditioned Hessian, yielding a smoother optimization landscape.

• We validate AutoBalance on a suite of challenging PDE benchmarks. Results show that AutoBal-
ance provides a robust and versatile solution, consistently matching or outperforming the strongest
baseline across a diverse suite of PDE benchmarks.

2 RELATED WORK

Adaptive methods in PINNs. In global weighting, Wang et al. (2021) introduced a learning-rate an-
nealing strategy to dynamically adjust the weights of different loss terms, promoting balanced train-
ing. Building on gradient dynamics, Wang et al. (2022) employed Neural Tangent Kernel (NTK)
analysis to guide weight adjustment, aligning learning with physical constraints. Xiang et al. (2022)
applied Gaussian likelihood estimation to adaptively assign loss weights based on statistical proper-
ties, further enhancing weight allocation.

For point-wise weighting, McClenny & Braga-Neto (2023) introduced trainable point weights using
a soft attention mask, where weights adapt to local loss via gradient descent/ascent. Song et al.
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(2024) employed Latent Adversarial Networks (LANs) to learn adaptive point-error weights, im-
proving PINN performance. Anagnostopoulos et al. (2024) proposed a gradient-free residual-based
attention (RBA) scheme that updates weights directly from residual magnitudes with minimal over-
head. Extending to temporal problems, Wang et al. (2024) developed Causality-PINN, assigning
time-dependent weights for time-dependent PDEs. From an optimization view, Si & Yan (2025a)
formulated point-wise weighting as a primal–dual method and implemented it through convolution.

New architectures and new loss functions. Beyond adaptive training strategies, researchers have
proposed novel PINN architectures and refined loss formulations. For instance, Yu et al. (2020)
penalized the gradient of the residual function, enforcing stronger adherence to the PDE. Wu et al.
(2024) extended optimization from scattered points to their continuous neighborhoods via Monte
Carlo sampling. Duan et al. (2025) dynamically reweighted PDE residual terms based on sample
difficulty, measured by residual gradients. From an architectural perspective, Si et al. (2025) intro-
duced a one-layer PINN inspired by the Cauchy activation function. Moreover, to better capture
uncertainty, Wu et al. (2025) integrated fuzzy membership and fuzzy rule layers into PINNs.

Balancing Strategies in Multi-Task Learning (MTL). In multi-task learning (MTL), a central
challenge is to identify a single, well-balanced Pareto-optimal solution. Existing approaches can
be broadly grouped into two categories: loss balancing methods (Liu et al., 2019; Sener & Koltun,
2018; Liu et al., 2021b; Lin et al., 2023; Ye et al., 2021), which adjust task weights at the objective
level, and gradient balancing methods (Sener & Koltun, 2018; Liu et al., 2021b; Yu et al., 2020; Liu
et al., 2025; 2021a; Zhou et al., 2022; Fernando et al., 2023; Chen et al., 2018; Lin et al., 2023),
which directly reconcile gradient magnitudes or directions to stabilize joint optimization.

Loss balancing methods dynamically adjust the relative weights of task losses during training. For
instance, Dynamic Weight Average (DWA) (Liu et al., 2019) sets weights based on the rate of change
of recent losses, assigning greater importance to tasks that are learning more slowly. Similarly, Im-
partial Multi-Task Learning (Liu et al., 2021b) normalizes loss magnitudes across tasks, preventing
large-scale losses from dominating the optimization.

Gradient balancing methods instead act directly on task gradients, aiming to resolve conflicts and
find a common descent direction. A seminal approach is the Multiple-Gradient Descent Algorithm
(MGDA) (Sener & Koltun, 2018), which computes the minimal-norm vector within the convex
hull of task gradients to avoid bias toward any single task. Extending this idea, IMTL-G (Liu
et al., 2021b) seeks an update direction with equal projection magnitudes onto all task gradients.
Projecting Conflicting Gradients (PCGrad) (Yu et al., 2020) identifies conflicting task pairs and
removes the conflicting component by projecting one gradient onto the normal plane of the other.
More recently, ConFIG (Liu et al., 2025) was introduced to address gradient conflicts in the specific
setting of PINNs.

3 AUTOBALANCE: A “POST-COMBINE” STRATEGY FOR TRAINING PINN

3.1 THE CHALLENGE OF HETEROGENEOUS CURVATURES IN TRAINING PINN

PINNs are designed to solve systems of partial differential equations (PDEs) of the general form:

D[u(x);x] = 0, x ∈ Ω,

B[u(x);x] = 0, x ∈ ∂Ω,
(1)

where u(x) denotes the unknown solution, D is the differential operator defining the PDE on the
domain Ω ⊆ Rd, and B represents the boundary and initial conditions on ∂Ω. The variable x may
also include time when considering time-dependent problems.

The core idea of PINNs is to approximate the unknown solution u(x) with a neural network, typi-
cally a multilayer perceptron (MLP), denoted by u(x;w), where w ∈ Rp are the network parameters.
This reformulates solving a PDE as an optimization problem, in which the parameters w are adjusted
to minimize a composite loss function that enforces both the governing equations and the boundary
conditions. The optimization problem is expressed as

minimize
w∈Rp

L(w) := λFLres(w) + λBLbc(w), (2)
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where the residual loss Lres and the boundary loss Lbc are evaluated at sets of collocation points
{xi

r}
Nf

i=1 ⊂ Ω and {xj
b}

Nb
j=1 ⊂ ∂Ω, respectively:

Lres(w) :=
1

Nf

Nf∑
i=1

(
D[u(xi

r;w);x
i
r]
)2

, Lbc(w) :=
1

Nb

Nb∑
j=1

(
B[u(xj

b;w);x
j
b]
)2

. (3)

The training objective of a PINN, as defined in Eq. (2), is the composite loss L(w). Even in the ab-
sence of conflicts between the residual loss and the boundary loss—i.e., when a common minimizer
w∗ exists for both Lres and Lbc—convergence can still be hampered by differences in their respective
loss landscapes. A major source of difficulty is the spectral heterogeneity of their Hessian matrices,
∇2Lres(w) and∇2Lbc(w). In such scenarios, standard optimizers struggle to identify descent direc-
tions that ensure uniform progress. This challenge manifests as severe gradient imbalance during
training: at the same point, one loss component may form steep “canyons” that generate excessively
large gradients, while another may correspond to flat “plains” producing vanishingly small gradi-
ents. This disparity, arising from curvature mismatch, is a central factor underlying the difficulty of
training PINNs.

To address the Hessian imbalance issue, we propose AutoBalance, a novel “post-combine” training
paradigm. Instead of mixing raw gradients, AutoBalance first computes the gradient of each loss
component using an independent adaptive optimizer. This enables each optimizer to construct a
tailored preconditioner that matches the curvature of its corresponding loss landscape. The resulting
update vectors are then aggregated. As an illustration, we provide an example of applying the
AutoBalance framework to the AdamW (Loshchilov & Hutter, 2019) optimizer (see Algorithm 1 in
the Appendix).

3.2 CURVATURE BALANCE: AUTOBALANCE WITH DECOUPLED CURVATURES

To understand why processing curvatures independently is beneficial from the curvature balance
perspective, we analyze the optimization dynamics in a simplified setting of a quadratic objective.
This simplification is well-motivated in the context of PINNs. Although the loss landscape of a
PINN—typically an MLP with a Mean Squared Error (MSE) objective—is highly non-convex, prior
research has shown that in the common overparameterized regime, all local minima are also global
minima (Kawaguchi, 2016; Dauphin et al., 2014; Cooper, 2021; Achour et al., 2024). This justi-
fies studying the complex optimization process by examining the local geometry around optimal
solutions, which is well-approximated by a quadratic function characterized by the loss Hessian.
Analyzing convergence on this quadratic model provides useful insights into the practical training
dynamics of PINNs. To formalize our analysis, we consider a quadratic loss decomposed as

L(w) = L1(w) + L2(w); L1(w) :=
1

2
wTw, L2(w) :=

1

2
wTATAw, (4)

where A ∈ Rd×d. In this construction, L2 is essentially a scaled version of L1, ensuring that both
loss components share the same unique minimizer at the origin, w∗ = 0.

This simplification allows us to isolate the impact of heterogeneous curvature (controlled by the
matrix A) from the separate issue of conflicting minimizers. By focusing on this “pure” curvature
mismatch scenario, we can analyze the optimizers’ fundamental response to the landscape geometry.
We defer a detailed discussion of conflict to Section 3.3. The total loss can thus be written in the
compact form L(w) = 1

2w
T (I + ATA)w, with H̃ = I + ATA denoting the total Hessian of

this composite loss. We now formalize the analysis to theoretically demonstrate the advantages of
AutoBalance without bias correction (Algorithm 3) under scenarios with curvature imbalance, by
focusing on the convergence rate for this simplified quadratic loss objective.

Definition 1. An initialization w0 is said to satisfy Bounded Initialization for a quadratic function
f(w) = 1

2w
THw + hTw if the magnitudes of its initial gradient components are bounded rel-

ative to the Hessian spectrum H . Specifically, there exist constants C1, C2 > 0 such that for all
components i:

C1λmax(H) ≤ |[∇f(w0)]i| ≤ C2λmax(H).

Theorem 1 (Convergence of Iterates in Euclidean Norm). Consider AutoAdam without bias cor-
rection (Algorithm 3) and Adam without bias correction (Algorithm 2) applied to the quadratic loss

4
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L(w) in equation 4, with β1 = 0 and β2 = 1. Both algorithms produce iterates wt that converge
linearly to the minimizer w∗ = 0 in the Euclidean norm. By choosing an appropriate step size η,
the one-step error reduction ratios for both methods satisfy the following bound:

1. For AutoAdam without bias correction, let W = D0
2(D

0
1)

−1 + ATA. The convergence in
the weighted norm ∥ · ∥W is bounded by

∥wt+1∥W
∥wt∥W

≤ κ((D0
1)

−1 + (D0
2)

−1/2ATA(D0
2)

−1/2)− 1

κ((D0
1)

−1 + (D0
2)

−1/2ATA(D0
2)

−1/2) + 1
,

where κ(·) denotes the condition number of a matrix.

2. For Adam without bias correction, let WAdam = I+ATA. The convergence in the weighted
norm ∥ · ∥WAdam is bounded by

∥wt+1∥WAdam

∥wt∥WAdam

≤ κ((D0)−1/2(I +ATA)(D0)−1/2)− 1

κ((D0)−1/2(I +ATA)(D0)−1/2) + 1
.

Corollary 1.1. Suppose the AutoAdam initialization w0 is a Bounded Initialization for L1 with
constants C1,1, C1,2 and for L2 with constants C2,1, C2,2. Then the one-step convergence ratio is
upper bounded by

C1,2

C1,1
+

C2,2

C2,1
− 1

C1,2

C1,1
+

C2,2

C2,1
+ 1

.

Similarly, assume the AutoAdam initialization w0 is a Bounded Initialization for the combined loss
L with constants C1, C2. Then the convergence ratio is upper bounded by

C2

C1
κ(I +ATA)− 1

C2

C1
κ(I +ATA) + 1

.

The proofs for Theorem 1 and Corollary 1.1 are provided in Appendix B. The theory above offers
a simple motivation for why AutoBalance performs well on problems with imbalanced curvatures.
To illustrate the main idea, consider a special case where the problem has one well-conditioned
component, L1 (i.e., wTw), and one ill-conditioned component, L2 (induced by a matrix A with
κ(ATA) ≫ 1). In this scenario, Corollary 1.1 highlights a clear difference in convergence rates.
The rate for standard Adam deteriorates due to the ill-conditioned component, as it depends on a
large condition number associated with κ(ATA). In contrast, the convergence rate for AutoBalance
depends primarily on the Bounded Initialization constants. This simplified result illustrates the core
principle of our method: by employing separate preconditioners, AutoBalance leverages the good
structure of the well-conditioned task without being adversely affected by the poorly conditioned
component. This theoretical insight motivates the method’s effectiveness in more complex, practical
problems. To verify whether this scenario arises in PINN training, we empirically study the Hessian
dynamics during the training of a PINN for the 2D Helmholtz equation. The results in Figure 1
confirm both the presence of this curvature imbalance and the effectiveness of our solution.

First, Figure 1 (left) validates our central premise. At initialization, the Hessian spectra of the resid-
ual loss (Lres) and the boundary loss (Lbc) are starkly different, confirming the spectral heterogeneity
that motivates our work. In this case, the boundary loss exhibits a significantly wider eigenvalue dis-
tribution, indicative of poorer conditioning.

Next, we examine the impact of AutoBalance’s “post-combine” preconditioning compared to stan-
dard Adam’s “pre-combine” approach. The benefits are twofold. After training is complete, the
spectrum of the AutoBalance-preconditioned Hessian is more favorably structured, with a larger
minimum eigenvalue (λmin) than both the original and the standard Adam-preconditioned Hessians
(Figure 1, center). This directly leads to a smaller condition number. This advantage holds through-
out the entire training process. Figure 1 (right) tracks the evolution of the boundary loss condition
number, showing that while ill-conditioning tends to worsen for all methods, AutoBalance consis-
tently maintains a significantly lower effective condition number.

These empirical results provide strong evidence for our theoretical intuition. By designing a tai-
lored preconditioner for each loss component, AutoBalance effectively mitigates the severe ill-
conditioning that arises from heterogeneous curvatures, thereby creating a more stable and efficient
optimization landscape for training PINNs.
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Figure 1: Empirical analysis of Hessian properties for the 2D Helmholtz equation. (Left) At ini-
tialization, the Hessian spectra for the residual and boundary losses exhibit strong heterogeneity.
(Middle) After 30,000 epochs, the AutoBalance-preconditioned Hessian for the residual loss shows
a larger minimum eigenvalue compared to both the original and Adam-preconditioned Hessians.
(Right) During training, AutoBalance consistently maintains a substantially lower effective condi-
tion number for the boundary loss than standard Adam or the original Hessian.

3.3 UPDATE BALANCE: AUTOBALANCE WITH DIRECTION AND SCALE

Having addressed the challenge of heterogeneous curvatures, a natural question arises: how should
the resulting updates from residual loss and boundary loss be balanced in terms of their respective
magnitudes and directions? One might assume that an explicit balancing or gradient manipulation
method would still be necessary to prevent one task from dominating the other.
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Figure 2: AutoBalance exhibits an emergent auto-balancing property on the 2D Helmholtz
problem. (Left) The norm ratio of the raw gradients (interior/boundary) is highly imbalanced,
whereas the ratio of the update vectors from AutoBalance consistently remains near the ideal bal-
ance of 1.0. (Right) The raw gradients become increasingly anti-aligned (negative cosine similarity),
indicating task conflict. In contrast, the update vectors from AutoBalance maintain a positive align-
ment, ensuring constructive updates.

Intriguingly, we find that the AutoBalance paradigm exhibits an emergent auto-balancing property
without any explicit intervention. We demonstrate this phenomenon empirically in Figure 2. For
this analysis, we compute “global” gradient and update vectors for each loss component by concate-
nating the values for all network parameters at each training step. We then analyze two key metrics
for a 2D Helmholtz problem: the ratio of these global vector norms and their cosine similarity.

Figure 2 (left) plots the norm ratio. The raw gradients exhibit a severe magnitude imbalance, with
their norm ratio fluctuating by several orders of magnitude. This observation empirically confirms
the well-known issue that motivates many loss-balancing techniques (Wang et al., 2022; Liu et al.,
2019) in PINN training. In stark contrast, the norm ratio of the update vectors produced by AutoBal-
ance remains remarkably close to the ideal value of 1.0. This shows that the effective contributions
of the two tasks are automatically harmonized in magnitude.

Figure 2 (right) shows that this harmonizing effect extends to the update directions. The raw gradi-
ents become increasingly anti-aligned as training progresses, with their cosine similarity dropping
towards -1. This increasing directional conflict suggests that methods focusing only on balancing
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gradient magnitudes (like many loss-weighting schemes) may be insufficient to resolve the underly-
ing task conflicts. The update vectors generated by AutoBalance, however, maintain a consistently
positive cosine similarity, ensuring the updates for both tasks are constructive and do not work at
cross-purposes.

This potent auto-balancing behavior is not an external mechanism but an intrinsic property of the
adaptive optimizers themselves. The per-parameter normalization in Adam (i.e., division by the
square root of the second-moment estimate,

√
v̂t + ϵ) automatically scales the update. If a loss

component consistently produces large or noisy gradients, its corresponding second-moment esti-
mate will grow, effectively reducing its update magnitude. This dynamic process naturally balances
the effective learning rates across all tasks, leading to a more stable and robust training trajectory
without the need for any balancing hyperparameters.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTS SETTING

Benchmarks. For a comprehensive evaluation, we consider three benchmarks: 1D reaction-
diffusion system, 2D high-frequency Helmholtz equation, and inverse problem for the 2D Poisson
equation. (The formulation of the inverse problem differs slightly from that of PINNs for forward
problems; details are provided in Appendix A.1).

Baseline. To demonstrate that our method effectively addresses the imbalance issue, we com-
pare AutoBalance with several loss-balancing methods, including Equal Weighting (EW)1, NTK-
PINN (Wang et al., 2022), Dynamic Weight Average (DWA) (Liu et al., 2019), as well as gradient-
balancing methods such as MGDA (Désidéri, 2012), PCGrad (Yu et al., 2020), IMTL-G (Liu et al.,
2021b), and ConFIG (Liu et al., 2025). Also, since AutoBalance is directly applied to optimizers,
we implement it on the AdamW optimizer within the AutoBalance framework (Algorithm 1).

Moreover, to evaluate the robustness of the AutoBalance method, we apply it to several PINN vari-
ants, including adaptive weighting method (RBA-PINN (Anagnostopoulos et al., 2024), CWP-
PINN (Si & Yan, 2025a), and CoPINN (Duan et al., 2025)), novel loss functions (gPINN (Yu et al.,
2020), RoPINN (Wu et al., 2024)), and a new architecture (DF-PINN (Wu et al., 2025)). Most
PDE benchmarks we consider involve two losses: the residual loss and the boundary loss. However,
gPINN introduces an additional term, the gradient of the residual loss, resulting in a three-loss set-
ting. Our AutoBalance is designed to operate over a general number of losses n, so while many PDE
cases involve only two, its application to gPINN (with three) highlights our method’s generality.

4.2 MAIN RESULTS

Comparable to balancing methods. Table 1 and Fig. 3 summarize the performance of AutoBal-
ance compared to existing loss-balancing and gradient-balancing baselines across three represen-
tative PDE benchmarks. For the 1D reaction-diffusion system, AutoBalance achieves the lowest
MSE among all methods. The advantage becomes more pronounced on the more challenging 2D
Helmholtz equation, where AutoBalance not only attains the smallest MSE but also maintains com-
petitive L∞ error, demonstrating its ability to stabilize training for high-frequency solutions. Sim-
ilarly, in the 2D Poisson inverse problem, AutoBalance consistently achieves the lowest MSE and
L∞ error. Overall, these results highlight that AutoBalance is robust across diverse PDE settings and
consistently enhances optimizer performance, providing a reliable and broadly applicable training
improvement for PINNs.

To complement the aggregate results, we provide qualitative visualizations, such as heatmaps, in
Appendix A.4.1 and A.4.2. Taking the 2D Poisson inverse problem as an example (Figure 6 in the
Appendix), a clear performance hierarchy emerges. The reconstruction obtained with AutoAdamW
(second row) faithfully recovers the structures in the ground truth, producing a visually accurate
solution with the lowest point-wise error. In contrast, the baseline method DWA exhibits noticeably
higher errors, while IMTL-G fails to reproduce the field’s symmetry, yielding a distorted reconstruc-
tion with the highest error among the three methods.

1Equal Weighting (EW) chooses the same weight for all different loss functions.
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Table 1: Comparison of Loss-Balancing and Gradient-Balancing Baselines
PDE Category Balancing Category Baselines AdamW

MSE L∞

1D reaction-diffusion
system

Loss Balance
EW 9.16e-7 1.15e-2
NTK(Wang et al., 2022) 6.31e-7 2.52e-3
DWA(Liu et al., 2019) 3.03e-7 5.51e-3

Gradient Balance
PCGrad (Yu et al., 2020) 9.56e-6 1.65e-2
IMTL-G(Liu et al., 2021b) 2.32e-5 2.64e-2
ConFIG (Liu et al., 2025) 1.03e-6 5.52e-3
MGDA (Désidéri, 2012) 1.09e-5 9.56e-3

Our Model AutoBalance 2.61e-7 5.05e-3

2D Helmholtz equation

Loss Balance
EW 29.35 11.52
NTK (Wang et al., 2022) 6.94e-1 2.75
DWA(Liu et al., 2019) 12.74 12.28

Gradient Balance
PCGrad(Yu et al., 2020) 5.05e-3 5.20e-1
IMTL-G(Liu et al., 2021b) 5.45e-3 4.84e-1
ConFIG (Liu et al., 2025) 2.23e-3 2.68e-1
MGDA(Désidéri, 2012) 8.17e-3 4.17e-1

Our Model AutoBalance 2.04e-3 3.84e-1

2D Poisson inverse problem
(diffusion coefficient a(x, y))

Loss Balance
EW 2.37e-3 1.07e-1
NTK (Wang et al., 2022) 2.71e-5 1.29e-2
DWA (Liu et al., 2019) 2.45e-5 1.27e-2

Gradient Balance
PCGrad(Yu et al., 2020) 4.73e-5 1.64e-2
IMTL-G(Liu et al., 2021b) 7.34e-5 2.27e-2
ConFIG(Liu et al., 2025) 8.96e-6 8.40e-3
MGDA(Désidéri, 2012) 5.74e-5 1.82e-2

Our Model AutoBalance 6.19e-6 6.09e-3

0 50 100 150 200 250 300
iterations (×100)

1e 07

1e 06

1e 05

1e 04

1e 03

1e 02

1e 01

1

M
SE

 (L
og

 sc
al

e)

MSE History for 1D Reaction-diffusion system
AutoAdamW
AdamW EW
AdamW NTK
AdamW DWA
AdamW PCGrad
AdamW IMTL-G
AdamW ConFIG
AdamW MDGA

0 50 100 150 200 250 300
iterations (×100)

1e 02

1e 01

1

10

100

M
SE

 (L
og

 sc
al

e)

MSE History for 2D Helmholtz equation
AutoAdamW
AdamW EW
AdamW NTK
AdamW DWA
AdamW PCGrad
AdamW IMTL-G
AdamW ConFIG
AdamW MDGA

0 50 100 150 200 250 300
iterations (×100)

1e 05

1e 04

1e 03

1e 02

1e 01

1

M
SE

 (L
og

 sc
al

e)

MSE History of a(x,y) for PInv problem
AutoAdamW
AdamW EW
AdamW NTK
AdamW DWA
AdamW PCGrad
AdamW IMTL-G
AdamW ConFIG
AdamW MDGA

Figure 3: MSE history of AutoBalance and baseline methods for three PDE benchmarks: 1D
reaction-diffusion system (Left), 2D Helmholtz equation (Middle), and 2D Poisson inverse prob-
lem (Right).

These findings further highlight that the optimal balancing strategy is problem-dependent. Loss-
balancing methods perform well on the 1D reaction–diffusion system but degrade significantly on
the 2D Helmholtz equation, where boundary constraints likely induce training instability. Gradient-
balancing methods help mitigate this instability for Helmholtz but do not consistently retain their
advantages across other settings, such as the Poisson inverse problem or the 1D reaction–diffusion
system. AutoBalance’s key strength lies in its ability to navigate these trade-offs automatically: it
matches the top loss-balancing methods on diffusion problems while outperforming all gradient-
balancing methods on Helmholtz, providing a robust, general-purpose solution.

Orthogonal to PINN baseline models. AutoBalance operates at the level of the optimizer and its
preconditioning mechanism, making it directly applicable to various PINN variants. We evaluate
its performance by comparing traditional AdamW with Auto-AdamW across several state-of-the-
art PINN models developed in recent years (2020–2025). The numerical results are summarized in
Table 2.
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Table 2: Comparison of MSE and L∞ norms for AutoBalance versus state-of-the-art PINN base-
lines across multiple PDE benchmarks. Percentages in parentheses indicate the error relative to the
baseline (current/baseline × 100); lower values indicate better performance.

PDE Category Training Method MSE L∞ Norm
w/o AutoBalance with AutoBalance w/o AutoBalance with AutoBalance

1D reaction-diffusion

RBA-PINN(Anagnostopoulos et al., 2024) 7.25e-6 2.82e-7 (3.9%) 4.13e-3 3.71e-3 (89.8%)
CWP-PINN(Si & Yan, 2025a) 6.64e-6 9.26e-7 (14.0%) 1.16e-2 8.76e-3 (75.5%)
gPINN (Yu et al., 2020) 1.38e-6 9.79e-7 (70.1%) 1.17e-2 1.06e-2 (90.5%)
RoPINN(Wu et al., 2024) 1.04e-6 5.75e-7 (55.3%) 6.64e-3 3.65e-3 (54.9%)
CoPINN (Duan et al., 2025) 1.92e-7 1.68e-7 (87.5%) 1.60e-3 1.46e-3 (91.2%)
DF-PINN (Wu et al., 2025) 1.14e-6 5.06e-7 (44.4%) 1.50e-2 3.94e-3 (26.3%)

2D Helmholtz
(a1 = 5, a2 = 5)

RBA-PINN(Anagnostopoulos et al., 2024) 3.49 1.25e-3 (0.04%) 7.23 2.35e-1 (3.3%)
CWP-PINN (Si & Yan, 2025a) 6.27e-3 8.79e-4 (14.0%) 6.18e-1 2.78e-1 (44.9%)
gPINN (Yu et al., 2020) 10.2 7.80e-3 (0.08%) 33.4 3.23e-1 (0.97%)
RoPINN (Wu et al., 2024) 7.40e-3 1.69e-3 (22.8%) 7.02e-1 4.24e-1 (60.4%)
CoPINN (Duan et al., 2025) 9.61e-3 1.31e-3 (13.6%) 9.97e-1 3.43e-1 (34.4%)
DF-PINN (Wu et al., 2025) 5.63e-3 9.83e-4 (17.5%) 4.29e-1 2.96e-1 (68.9%)

2D Poissoon inverse Problem
(diffusion coefficient a(x, y))

RBA-PINN(Anagnostopoulos et al., 2024) 1.88e-5 3.48e-6 (18.5%) 9.83e-3 4.03e-3 (40.9%)
CWP-PINN (Si & Yan, 2025a) 4.83e-6 1.19e-6 (24.6%) 5.25e-3 2.21e-3 (42.1%)
gPINN (Yu et al., 2020) 5.51e-5 1.01e-5 (18.3%) 2.33e-2 8.89e-3 (38.2%)
RoPINN (Wu et al., 2024) 1.34e-5 4.56e-6 (34.0%) 1.05e-2 6.33e-3 (60.3%)
CoPINN (Duan et al., 2025) 4.32e-6 2.02e-6 (46.7%) 5.65e-3 3.94e-3 (69.7%)
DF-PINN (Wu et al., 2025) 2.17e-5 7.84e-6 (36.1%) 1.08e-2 7.43e-3 (68.8%)

The results provide strong evidence that AutoBalance is fundamentally orthogonal to architectural
innovations in PINNs. Regardless of whether a model employs point-wise weighting schemes
(CWP-PINN, RBA-PINN, CoPINN), gradient-enhanced losses (gPINN), region-based enhance-
ments (RoPINN), or novel architectures (DF-PINN), it still relies on an optimizer to navigate the
loss landscape. AutoBalance directly improves this optimization process, leading to consistent per-
formance gains ranging from moderate to substantial. Notably, on the challenging high-frequency
2D Helmholtz problem, AutoBalance significantly stabilizes training and enhances accuracy for all
models, including those that fail without it. These results confirm that AutoBalance is not a com-
petitor to existing state-of-the-art models but a complementary tool that can be applied on top to
further boost their performance.

5 CONCLUSION

In this work, we addressed the optimization challenges in training Physics-Informed Neural Net-
works arising from composite losses with heterogeneous curvatures. To tackle this, we proposed Au-
toBalance, a novel “post-combine” training framework that decouples preconditioning for each loss
component. We established the theoretical intuition for our approach by analyzing its convergence
on a simplified curvature-imbalanced quadratic problem. We then empirically verified its ability to
balance both curvature and gradients by observing the evolution of the Hessian spectrum, update
norm ratios, and cosine similarities during training. Moreover, our empirical evaluation demon-
strated the robustness and practical benefits of this approach: AutoBalance consistently outper-
formed various gradient-balancing methods across multiple challenging PINN variants. This work
highlights the importance of moving beyond solely managing directional gradient conflicts, toward
a strategy that adapts to the unique curvature of each loss landscape. While effective, AutoBalance
introduces additional memory and computational overhead compared to traditional “pre-combine”
methods. Promising future directions include developing more memory- and computation-efficient
variants and extending the post-combine principle to broader multi-task learning problems beyond
PINNs.
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ments. We have conducted a proactive ethical assessment of our work and identified no foreseeable
harms, privacy risks, or fairness-related issues (e.g., biases in data, methods, or results) within the
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El Mehdi Achour, François Malgouyres, and Sébastien Gerchinovitz. The loss landscape of deep
linear neural networks: a second-order analysis. Journal of Machine Learning Research, 25(242):
1–76, 2024.

Sokratis J Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopulos, and George Em Karni-
adakis. Residual-based attention in physics-informed neural networks. Computer Methods in
Applied Mechanics and Engineering, 421:116805, 2024.

Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics-
informed neural networks for heat transfer problems. Journal of Heat Transfer, 143(6):060801,
2021.

Xiaoli Chen, Liu Yang, Jinqiao Duan, and George Em Karniadakis. Solving inverse stochastic prob-
lems from discrete particle observations using the Fokker–Planck equation and physics-informed
neural networks. SIAM Journal on Scientific Computing, 43(3):B811–B830, 2021.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Yaim Cooper. Global minima of overparameterized neural networks. SIAM Journal on Mathematics
of Data Science, 3(2):676–691, 2021.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. Advances in neural information processing systems, 27, 2014.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

Siyuan Duan, Wenyuan Wu, Peng Hu, Zhenwen Ren, Dezhong Peng, and Yuan Sun. CoPINN: Cog-
nitive physics-informed neural networks. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=4vAa0A98xI.

Salah A Faroughi, Nikhil M Pawar, Célio Fernandes, Maziar Raissi, Subasish Das, Nima K Kalan-
tari, and Seyed Kourosh Mahjour. Physics-guided, physics-informed, and physics-encoded neural
networks and operators in scientific computing: Fluid and solid mechanics. Journal of Computing
and Information Science in Engineering, 24(4):040802, 2024.

Heshan Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and Tianyi
Chen. Mitigating gradient bias in multi-objective learning: A provably convergent approach.
International Conference on Learning Representations, 2023.

Haoteng Hu, Lehua Qi, and Xujiang Chao. Physics-informed neural networks (PINN) for compu-
tational solid mechanics: Numerical frameworks and applications. Thin-Walled Structures, pp.
112495, 2024.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

10

https://openreview.net/forum?id=4vAa0A98xI


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kenji Kawaguchi. Deep learning without poor local minima. Advances in neural information pro-
cessing systems, 29, 2016.

Baijiong Lin, Weisen Jiang, Feiyang Ye, Yu Zhang, Pengguang Chen, Ying-Cong Chen, Shu Liu,
and James T. Kwok. Dual-balancing for multi-task learning, 2023. URL https://arxiv.
org/abs/2308.12029.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021a.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. Towards impartial multi-task learning. In International Conference on Learning
Representations, 2021b. URL https://openreview.net/forum?id=IMPnRXEWpvr.

Qiang Liu, Mengyu Chu, and Nils Thuerey. ConFIG: Towards conflict-free training of physics
informed neural networks. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=APojAzJQiq.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871–1880, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Ritam Majumdar, Vishal Jadhav, Anirudh Deodhar, Shirish Karande, Lovekesh Vig, and Venkatara-
mana Runkana. Hxpinn: A hypernetwork-based physics-informed neural network for real-time
monitoring of an industrial heat exchanger. Numerical Heat Transfer, Part B: Fundamentals, 86
(6):1910–1931, 2025.

Levi D McClenny and Ulisses M Braga-Neto. Self-adaptive physics-informed neural networks.
Journal of Computational Physics, 474:111722, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Chenhao Si and Ming Yan. Convolution-weighting method for the physics-informed neural network:
A primal-dual optimization perspective. arXiv preprint arXiv:2506.19805, 2025a.

Chenhao Si and Ming Yan. Initialization-enhanced physics-informed neural network with domain
decomposition (idpinn). Journal of Computational Physics, 530:113914, 2025b.

Chenhao Si, Ming Yan, Xin Li, and Zhihong Xia. Complex physics-informed neural network. arXiv
preprint arXiv:2502.04917, 2025.

Yanjie Song, He Wang, He Yang, Maria Luisa Taccari, and Xiaohui Chen. Loss-attentional physics-
informed neural networks. Journal of Computational Physics, 501:112781, 2024.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineering, 421:
116813, 2024.

11

https://arxiv.org/abs/2308.12029
https://arxiv.org/abs/2308.12029
https://openreview.net/forum?id=IMPnRXEWpvr
https://openreview.net/forum?id=APojAzJQiq
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, and Mingsheng Long. Ropinn: Region op-
timized physics-informed neural networks. Advances in Neural Information Processing Systems,
37:110494–110532, 2024.

Wenyuan Wu, Siyuan Duan, Yuan Sun, Yang Yu, Dong Liu, and Dezhong Peng. Deep fuzzy physics-
informed neural networks for forward and inverse pde problems. Neural Networks, 181:106750,
2025.

Zixue Xiang, Wei Peng, Xu Liu, and Wen Yao. Self-adaptive loss balanced physics-informed neural
networks. Neurocomputing, 496:11–34, 2022.

Jiaxuan Xu, Han Wei, and Hua Bao. Physics-informed neural networks for studying heat transfer in
porous media. International Journal of Heat and Mass Transfer, 217:124671, 2023.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-PINNs: Bayesian physics-informed neural
networks for forward and inverse PDE problems with noisy data. Journal of Computational
Physics, 425:109913, 2021.

Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-informed neural
networks. Journal of Computational Physics, 394:136–152, 2019.

Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo, Qiao Xiao, and Yu Zhang. Multi-objective
meta learning. Advances in Neural Information Processing Systems, 34:21338–21351, 2021.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in neural information processing systems, 33:
5824–5836, 2020.

Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying total uncertainty in
physics-informed neural networks for solving forward and inverse stochastic problems. Journal
of Computational Physics, 397:108850, 2019.

Dongkun Zhang, Ling Guo, and George Em Karniadakis. Learning in modal space: Solving time-
dependent stochastic PDEs using physics-informed neural networks. SIAM Journal on Scientific
Computing, 42(2):A639–A665, 2020.

Hao Zhongkai, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang,
Songming Liu, Lu Lu, et al. Pinnacle: A comprehensive benchmark of physics-informed neural
networks for solving PDEs. Advances in Neural Information Processing Systems, 37:76721–
76774, 2024.

Shiji Zhou, Wenpeng Zhang, Jiyan Jiang, Wenliang Zhong, Jinjie Gu, and Wenwu Zhu. On the
convergence of stochastic multi-objective gradient manipulation and beyond. Advances in Neural
Information Processing Systems, 35:38103–38115, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 INVERSE PROBLEM BY PINN

Recall that in Eq. (2), a PINN aims to solve the following PDE:

D[u(x);x] = 0, x ∈ Ω,

B[u(x);x] = 0, x ∈ ∂Ω.
(5)

Here u(x) is unknown and aimed to solve for, where we call this a forward problem.

In contrast, we are also interested in the cases where we have some observed values of u(x), and
aim to infer unknown parameters a of the PDE system (e.g., material properties, source terms, or
diffusion coefficients), where a can be a constant or a function of x. In other words, PINN for an
inverse problem is to solve:

D[u(x);x, a] = 0, x ∈ Ω,

B[u(x);x, a] = 0, x ∈ ∂Ω.
(6)

PINN in the inverse problem aims to solve the following least-squares problem:

minimize
w∈Rp

L(w) := λFLres(w) + λdataLdata(w), (7)

where the residual loss Lres is defined similarly to Eq. (2), with the coefficient a either treated as
an additional learnable parameter if it is constant, or represented by a separate neural network if it
depends on x. Thus, in the inverse problem setting, there are typically two neural networks: one for
approximating the solution u(x) and another for estimating the coefficient a(x).

The data loss Ldata is defined over a set of observation points {xj
data}

Ndata
j=1 ⊂ Ω:

Ldata(θ) :=
1

Ndata

Ndata∑
j=1

(
u(xj

data;w)− uobs(x
j
data)

)2
. (8)

It is worth noting that, in practice, collecting observations of u(x) can be expensive and noisy, so
the number of data points in Ldata is typically much smaller than that in the boundary loss, i.e.,
Nobs ≪ Nb. Furthermore, the observed data are assumed to be corrupted by Gaussian noise.

A.2 EXPERIMENT DETAILS

A.2.1 DATASET DETAILS

1D reaction-diffusion system: The reaction-diffusion system, a parabolic PDE, models the macro-
scopic behavior of particles undergoing both Brownian motion and chemical reactions. It finds wide
applications across diverse fields, including information theory, materials science, and biophysics.
In this section, we will consider the following system, identical to that presented in Yu et al. (2020).

ut = uxx +R(x, t), x ∈ [−π, π], t ∈ [0, 1], (9)
u(π, t) = u(−π, t) = 0, (10)

u(x, 0) =

4∑
n=1

sin(nx)

n
+

sin(8x)

8
, (11)

where R(x, t) represents the reaction term:

R(x, t) = e−t

[
3

2
sin(2x) +

8

3
sin(3x) +

15

4
sin(4x) +

63

8
sin(8x)

]
. (12)

The analytical solution to this system is given by:

u(x, t) = e−t

(
4∑

n=1

sin(nx)

n
+

sin(8x)

8

)
. (13)
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2D Helmholtz equation: The Helmholtz equation, a time-independent partial differential equation,
describes key aspects of wave propagation and diffusion processes—serving as the time-separated
counterpart to time-dependent models of such phenomena. While it itself is defined within a spa-
tial domain, it underpins analyses of systems that would otherwise be framed in combined spatial-
temporal domains. We thus focus on the following 2D form of the Helmholtz equation:

uxx + uyy + k2u− q(x, y) = 0, (x, y) ∈ Ω, (14)
u(x, y) = 0, (x, y) ∈ ∂Ω, (15)

where

q(x, y) = (k2 − 2(aπ)2) sin(aπx) sin(aπy). (16)

We set k = 1 and Ω = [−1, 1]× [−1, 1] and the exact solution to the equation is

u(x, y) = sin(a1πx) sin(a2πy). (17)

In this study, we consider a1 = a2 = 5.

Poisson inverse problem (PInv): We study an inverse problem, specifically targeting the recon-
struction of spatially varying coefficients in a 2D Poisson equation. We follow the benchmark setup
proposed in Zhongkai et al. (2024). The governing PDE is given by:

−∇(a∇u) = f, (x, y) ∈ Ω, (18)

where Ω = [0, 1]2, and the solution is prescribed as u(x, y) = sin(πx) sin(πy). The source term f
is derived accordingly:

f =
2π2 sin(πx) sin(πy)

1 + x2 + y2 + (x− 1)2 + (y − 1)2
(19)

+
2π
(
(2x− 1) cos(πx) sin(πy) + (2y − 1) cos(πy) sin(πx)

)
(1 + x2 + y2 + (x− 1)2 + (y − 1)2)2

. (20)

Our objective is to infer the unknown diffusion coefficient a(x, y) from sparse observations of the
solution u(x, y) and the known source term f(x, y). The ground truth of this diffusion coefficient is
given by:

a(x, y) =
1

1 + x2 + y2 + (x− 1)2 + (y − 1)2
. (21)

Moreover, as indicated in Zhongkai et al. (2024), enforcing the boundary condition for a(x, y) is
essential to ensure the uniqueness of the inverse solution. The boundary condition is prescribed as:

a(x, y) =
1

1 + x2 + y2 + (x− 1)2 + (y − 1)2
, (x, y) ∈ ∂Ω. (22)

A.3 BASELINE DETAILS

A.3.1 LOSS/GRADIENT BALANCE BASELINES

We outline and describe concisely the baseline models of the balancing methods in Table 1:

• EW: Assigns equal global weight λi = 1 to all loss functions, where λi denotes the weight
of the i-th loss component.

• NTK-PINN (Wang et al., 2022): Dynamically adjusts loss weights using Neural Tangent
Kernel (NTK) properties to balance the convergence rates of different components during
training.

• DWA (Liu et al., 2019): Adapts global loss weights based on recent task performance
trends, ensuring balanced progress across all loss components.

• MGDA (Désidéri, 2012): Aligns multiple gradients by finding a common descent direction,
coordinating updates across tasks.
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• PCGrad (Yu et al., 2020): Projects conflicting gradients onto the normal plane of others to
dynamically resolve task conflicts.

• IMTL-G (Liu et al., 2021b): Iteratively normalizes and adjusts gradient directions to refine
updates and balance contributions from all tasks.

• ConFIG (Liu et al., 2025): Uses conflict-free gradient adjustment based on gradient prop-
erties (e.g., pseudoinverse, orthogonal components) to optimize both update direction and
magnitude, balancing convergence rates across loss components.

A.3.2 PINN BASELINES

We outline and describe concisely the baseline models of PINN we test in Table 2:

• RBA-PINN (Residual-based Attentional PINN) (Anagnostopoulos et al., 2024): Applies
adaptive point-wise weights to the loss functions based on residual magnitude.

• CWP-PINN (Convolutional-Weighting PINN) (Si & Yan, 2025a): Extends point-wise
weighting with convolutional operations and incorporates a resampling strategy.

• gPINN (Gradient-Enhanced PINN) (Yu et al., 2020): Integrates gradient information from
PDE residuals into the loss, improving predictive accuracy and training dynamics.

• RoPINN (Region-Optimized PINN) (Wu et al., 2024): Expands optimization from discrete
points to surrounding regions, reducing generalization errors and addressing high-order
PDE constraints.

• CoPINN (Cognitive PINN) (Duan et al., 2025): Mimics human easy-to-hard learning by
evaluating sample difficulty via PDE residual gradients and applying a cognitive training
scheduler to enhance PDE-solving performance.

• DF-PINN (Deep Fuzzy PINN) (Wu et al., 2025): Introduces fuzzy neural networks for
PDE solving, effectively managing uncertainty in simulation-generated data.

A.4 IMPLEMENTATION DETAILS

Training and testing points. For 2D spatial or 1D spatio-temporal PDEs, test points are generated
on a uniform 300 × 300 grid (90,000 points). For higher-dimensional problems, 90,000 test points
are randomly sampled to balance computational and memory requirements. Training points are
also randomly selected, with Nf , Nb, and N0 denoting the numbers of residual, boundary, and
initial condition points, respectively. Note that the training points are not necessarily included in the
testing set.

For each PDE, every model is trained and evaluated across three independent trials using different
random seeds, and the best-performing result among the trials is reported. Performance is measured
using the Mean Squared Error (MSE) and the L∞ norm, defined as

MSE =

N∑
k=1

|û(xk, tk)− u(xk, tk)|2, (23)

L∞ norm = max
k=1,2,...,N

|û(xk, tk)− u(xk, tk)|, (24)

where u denotes the ground truth solution, û is the prediction from the model, and N is the number
of testing points. All numerical experiments were performed on a computing platform equipped
with 2 NVIDIA RTX 4080 GPUs.

To ensure a fair comparison, all models for each PDE are trained using the same hyperparameter
settings.

• 1D reaction-diffusion system: We use a 3-layer network with 50 neurons per hidden layer,
with Nf = 2, 000 and Nb = 100. The loss weights are λF = 5 and λB = 1. The
learning rate is warmed up from 1× 10−4 to 1× 10−2 over 1,500 iterations, then decayed
exponentially by 0.75 every 1,000 iterations (triggered every 50), with a minimum of 5 ×
10−5. All models are trained for 30k iterations.
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• 2D Helmholtz equation: We use a 3-layer network with 50 neurons per hidden layer, with
Nf = 2, 000 and Nb = 400. The loss weights are λF = 1 and λB = 1. The learning rate is
warmed up from 1×10−4 to 1×10−2 over 1,500 iterations, then decayed exponentially by
0.75 every 1,000 iterations (triggered every 50), with a minimum of 1× 10−5. All models
are trained for 30k iterations.

• 2D Poisson inverse problem: We use a 4-layer network with 50 neurons per hidden layer to
reconstruct a(x, y), following the data setup in Si & Yan (2025a). Specifically, Nf = 100
and Ndata = 70 (60 interior data for u(x, y) and 10 boundary data for a(x, y)). We add a
Gaussian noise with variance 0.01 to the observed u(x, y). The loss weights are λF = 1
and λdata = 10. The learning rate is warmed up from 1 × 10−4 to 1 × 10−2 over 1,500
iterations, then decayed exponentially by 0.75 every 1,000 iterations (triggered every 50),
with a floor of 5× 10−5. All models are trained for 30k iterations.

A.4.1 VISUALIZATION OF AUTO-ADAMW AND BALANCE BASELINE

We select one representative baseline from each category of balancing methods for visualization.
Specifically, we compare DWA (loss-balancing) and IMTL-G (gradient-balancing) with our Auto-
AdamW to illustrate performance differences.

1D Reaction-diffusion system:

Figure 4: Heatmap of the 1D reaction-diffusion system. Top Row: Exact solution. Other Rows:
Predicted solutions by Auto-AdamW (Second Row), DWA (Third Row), and IMTL-G (Bottom
Row), along with their corresponding point-wise errors.
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2D Helmholtz equation:

Figure 5: Heatmap of the 2D Helmholtz equation. Top Row: Exact solution. Other Rows: Predicted
solutions by Auto-AdamW (Second Row), DWA (Third Row), and IMTL-G (Bottom Row), along
with their corresponding point-wise errors.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2D Poisson inverse problem:

Figure 6: Qualitative comparison of reconstructed diffusion coefficients for the 2D Poisson inverse
problem. Top Row: Ground-truth field. Other Rows: Reconstructions by AutoAdamW (Sec-
ond Row), DWA (Third Row), and IMTL-G (Bottom Row) with corresponding point-wise errors,
showing progressively decreasing accuracy.
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A.4.2 VISUALIZATION OF AUTO-ADAMW WITH THE PINN BASELINE

In this section, we present heatmaps illustrating the performance of PINN baselines using traditional
AdamW and Auto-AdamW. To provide a clear and representative comparison, we select one typical
example from the adaptive weighting category, RBA-PINN, and one from the novel loss function
category, RoPINN.

• 1D reaction-diffusion system:

Figure 7: Heatmap of the 1D reaction-diffusion system. Top Two Rows: RBA-PINN predictions
using Auto-AdamW and traditional AdamW, with corresponding point-wise errors. Bottom Two
Rows: RoPINN predictions using Auto-AdamW and traditional AdamW, with corresponding point-
wise errors.
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• 2D Helmholtz equation:

Figure 8: Heatmap of the 2D Helmholtz equation. Top Two Rows: RBA-PINN predictions using
Auto-AdamW and traditional AdamW, with corresponding point-wise errors. Bottom Two Rows:
RoPINN predictions using Auto-AdamW and traditional AdamW, with corresponding point-wise
errors.
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• 2D Poisson inverse problem:

Figure 9: Heatmap of the 2D Poisson inverse problem. Top Two Rows: RBA-PINN predictions
using Auto-AdamW and traditional AdamW, with corresponding point-wise errors. Bottom Two
Rows: RoPINN predictions using Auto-AdamW and traditional AdamW, with corresponding point-
wise errors.
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B ALGORITHM AND PROOFS

B.1 ALGORITHM

Algorithm 1 AutoAdamW for n loss terms
1: Input: initialization w0, number of iterations T , β1, β2, ϵ, γ, n, {ηk}Tk=1
2: Initialize m0

i ,v
0
i ← 0 for i = 1, . . . , n

3: for k = 1 to T do
4: for i = 1 to n do
5: mk

i = β1m
k−1
i + (1− β1)∇Li(w

k−1)

6: vk
i = β2v

k−1
i + (1− β2)∇Li(w

k−1)⊙∇Li(w
k−1)

7: m̂k
i =

mk
i

1−βk
1

, v̂k
i =

vk
i

1−βk
2

8: dki =
m̂k

i√
v̂k
i +ϵ

9: end for
10: d̃k = 1

n

∑n
i=1 d

k
i

11: wk = (1− ηkγ)wk−1 − ηkd̃k

12: end for

Algorithm 2 Adam without bias correction
1: Input: initialization w0, number of iterations T , β1, β2, n, η
2: Initialize m0 ← ∇L(w0),v0 ← ∇L(w0)⊙∇L(w0)
3: for k = 1 to T do
4: mk = β1m

k−1 + (1− β1)∇L(wk−1)
5: vk = β2v

k−1 + (1− β2)∇L(wk−1)⊙∇L(wk−1)

6: wk = wk−1 − η mk
√
vk

7: end for

Algorithm 3 AutoAdam for n loss functions without bias correction
1: Input: initialization w0, number of iterations T , β1, β2, n, η
2: Initialize m0

i ← ∇Li(w
0),v0

i ← ∇Li(w
0)⊙∇Li(w

0)
3: for k = 1 to T do
4: for i = 1 to n do
5: mk

i = β1m
k−1
i + (1− β1)∇Li(w

k−1)

6: vk
i = β2v

k−1
i + (1− β2)∇Li(w

k−1)⊙∇Li(w
k−1)

7: dk
i =

mk
i√
vk
i

8: end for
9: d̃k = 1

n

∑n
i=1 d

k
i

10: wk = wk−1 − ηd̃k

11: end for

B.2 PROOF OF THEOREM 1

Proof. We analyze the one-step convergence rate of both algorithms on a quadratic objective, as-
suming the minimizer is w∗ = 0.

AutoAdam: Under the specified conditions (β1 = 0, β2 = 1), the update rule for wt in Algorithm 3
reduces to a linear iteration:

wt+1 = wt − η
(
(D0

1)
−1wt + (D0

2)
−1ATAwt

)
= (I − ηMAutoAdam)w

t,

where D0
1 = diag(|∇L1(w

0)|), D0
2 = diag(|∇L2(w

0)|), and the effective preconditioned Hessian
is,

MAutoAdam = (D0
1)

−1 + (D0
2)

−1ATA = (D0
2)

−1
(
D0

2(D
0
1)

−1 +ATA
)
.
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Since MAutoAdam is not symmetric, we introduce the symmetric matrix

W =
(
D0

2(D
0
1)

−1 +ATA
)

and define the corresponding weighted norm ∥w∥2W = wTWw to measure convergence.

We then examine the contraction of the weighted distance to the minimizer w∗ = 0. The ratio at
each step is

∥wt+1∥W
∥wt∥W

=
∥(I − η(D0

2)
−1W ))wt∥W

∥wt∥W

=
∥(I − η

√
W (D0

2)
−1
√
W ))
√
Wwt∥2

∥
√
Wwt∥2

≤ max(|1− ηλmin(
√
W (D0

2)
−1
√
W )|, |1− ηλmax(

√
W (D0

2)
−1
√
W )|). (25)

To achieve the fastest guaranteed convergence, we choose the step size η∗ that minimizes the upper
bound. Since the bound is quadratic in η, the minimizer is

η∗ =
2

λmax(
√
W (D0

2)
−1
√
W ) + λmin(

√
W (D0

2)
−1
√
W )

.

Substituting η∗ back into the inequality gives the following one-step convergence guarantee:

∥wt+1∥W
∥wt∥W

≤ λmax(
√
W (D0

2)
−1
√
W )− λmin(

√
W (D0

2)
−1
√
W )

λmax(
√
W (D0

2)
−1
√
W ) + λmin(

√
W (D0

2)
−1
√
W )

. (26)

Next, observe that

λmax(
√
W (D0

2)
−1
√
W ) =λmax((D

0
2)

−1/2
√
W
√
W (D0

2)
−1/2)

=λmax((D
0
1)

−1 + (D0
2)

−1/2ATA(D0
2)

−1/2),

and similarly,

λmin(
√
W (D0

2)
−1
√
W ) = λmin((D

0
1)

−1 + (D0
2)

−1/2ATA(D0
2)

−1/2).

Substituting these expressions into the one-step convergence bound gives

∥wt+1∥W
∥wt∥W

≤ κ((D0
1)

−1 + (D0
2)

−1/2ATA(D0
2)

−1/2)− 1

κ((D0
1)

−1 + (D0
2)

−1/2ATA(D0
2)

−1/2) + 1
, (27)

where κ(·) denotes the condition number.

Adam: A similar analysis applies to the Adam optimizer (Algorithm 2) under the same assumptions.
Its update rule can be written as a linear iteration:

wt+1 = (I − ηMAdam)w
t,

where D0 = diag(|∇L(w0)|) and the effective preconditioned Hessian is,

MAdam = (D0)−1(I +ATA).

Following the same derivation as for AutoAdam, we define the symmetrized matrix

WAdam = I +ATA,

and measure convergence in the weighted norm ∥w∥2WAdam
= w⊤WAdamw. Then the one-step con-

vergence satisfies

∥wt+1∥WAdam

∥wt∥WAdam

≤ κ((D0)−1 + (D0)−1/2ATA(D0)−1/2)− 1

κ((D0)−1 + (D0)−1/2ATA(D0)−1/2) + 1
. (28)
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B.3 PROOF OF COROLLARY 1.1

Proof. We provide a lower bound on the one-step convergence rate, which is governed by the effec-
tive conditioning of the preconditioned Hessian. We analyze AutoAdam and Adam separately under
their respective Bounded Initialization assumptions.

AutoAdam: The Bounded Initialization assumption for AutoAdam states that there exist constants
C1,1, C1,2, C2,1, C2,2 > 0 such that

C1,1I ⪯ D0
1 ⪯ C1,2I,

C2,1λmax(A
TA)I ⪯ D0

2 ⪯ C2,2λmax(A
TA)I.

Under this assumption, we can bound the condition number of the effective preconditioned Hessian:

λmax((D
0
1)

−1 + (D0
2)

−1/2ATA(D0
2)

−1/2) ≤ 1

C1,1
+

λmax(A
TA)

C2,1λmax(ATA)
=

1

C1,1
+

1

C2,1
,

λmin((D
0
1)

−1 + (D0
2)

−1/2ATA(D0
2)

−1/2) ≥ 1

C1,2
.

Thus, the condition number satisfies

κ((D0
1)

−1 + (D0
2)

−1/2ATA(D0
2)

−1/2) ≤ C1,2

C1,1
+

C1,2

C2,1
.

Adam: The Bounded Initialization assumption for Adam states that there exist constants C1, C2 > 0
such that

C1λmax(I +ATA)I ⪯ D0 ⪯ C2λmax(I +ATA)I.

Under this assumption, we can similarly bound the condition number:

λmax((D
0)−1 + (D0)−1/2ATA(D0)−1/2) ≤ λmax(I +ATA)

C1λmax(I +ATA)
=

1

C1
,

λmin((D
0)−1 + (D0)−1/2ATA(D0)−1/2) ≥ λmin(I +ATA)

C2λmax(I +ATA)
.

Hence, the condition number is bounded by

κ((D0)−1 + (D0)−1/2ATA(D0)−1/2) ≤ C2

C1
κ(I +ATA).

C USE OF LLMS

We acknowledge that we used LLMs solely for polishing purposes, such as refining grammar, phras-
ing, and clarity. All core ideas, analytical work, and substantive content were developed and written
entirely by the authors.
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