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Abstract
Significant progress has been made recently on challeng-

ing tasks in automatic sign language understanding, such
as sign language recognition, translation and production.
However, these works have focused on datasets with rela-
tively few samples, short recordings and limited vocabulary
and signing space. In this work, we introduce the novel task
of sign language topic detection. We base our experiments
on How2Sign [15], a large-scale video dataset spanning
multiple semantic domains. We provide strong baselines
for the task of topic detection, and present a comparison
between different visual features commonly used in the do-
main of sign language.

1. Introduction
Sign languages are the native languages and primary

means of communication for millions of Deaf and hard-of-
hearing people worldwide. Sign languages utilize multi-
ple complementary channels to convey information, includ-
ing manual features, such as shape, movement and pose, as
well as non-manual features, such as facial expressions and
movement of head, shoulders and torso.

Tasks of diverse complexity have been addressed in
the literature: from the simpler sign language recognition
[2,12,16,19,26,29,31] over isolated signs, to the much more
challenging ones of sign language translation [5, 6, 10, 21]
and production [34–38]. While some methods for trans-
lation and production have shown very good results on
smaller datasets [5,21,22,24,40], they have not been proven
to produce satisfactory results yet on larger ones containing
a wider signing space with longer video sequences.

In this work, we propose the novel task of sign lan-
guage topic detection, that is, classifying sign language
video recordings into one of several categories, as depicted
in Figure 1. This task has been broadly explored for spoken
languages [27], but not for sign languages.

We believe our work on topic detection in sign language
videos could help in the design of more inclusive online
experiences for the Deaf and hard-of-hearing. We tackle
topic detection with three different neural architectures and

Figure 1. Topic detection in sign language videos is the task of
producing a label that describes the semantic content of a signer’s
discourse.

three different kinds of video features, and evaluate their
strengths and shortcomings through a set of experiments.

The contributions of this paper can be summarized as
follows:

• To the best of our knowledge, we provide the first study
of sign language topic detection.

• We thoroughly measure the performance of three deep
learning architectures (LSTM [17], Transformer [41]
and PerceiverIO [18]) in combination with three dif-
ferent video features that are commonly employed
for sign language understanding (3D Cartesian body
poses, 3D angular body poses and I3D features).

• We make our code publicly available1 implemented
with Fairseq, a widely used toolkit for sequence mod-
eling.

1https://github.com/imatge-upc/sign-topic
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2. Related Work
In this paper, we address the task of Sign Language (SL)

topic detection, which we define as the task of producing
a label that semantically describes the content of the dis-
course being signed, given a sequence of frames.

SL recognition is perhaps the closest task in the SL liter-
ature to that of topic detection. The aim in SL recognition is
to tell which sign is being represented, given a short video
of a signer producing either an isolated sign or a continuous
sequence of signs [10, 22].

The current state-of-the-art in SL recognition is charac-
terized by complex modeling pipelines involving distilla-
tion [16], graph neural networks [19], auxiliary losses [26],
stochastic labeling [29], or cross-modal alignment [31]. In
this work, however, we choose instead simpler pipelines
that can act as robust baselines for future work on SL topic
detection.

Outside the domain of SL, general video classification
and action recognition is the most similar task to SL topic
detection. Several methods have been proposed for generic
video classification [1,4,11,32,43–45]. Despite having ob-
tained remarkable results, they are generally unsuitable for
the task of topic detection we address here. Their com-
putational requirements are often untenable, due to being
designed for dealing with shorter videos of at most a few
hundred frames, while SL videos may contain thousands of
frames.

3. Methodology
3.1. Dataset

We base our experiments on the recent How2Sign
dataset. How2Sign [15] is a large-scale collection of mul-
timodal and multiview SL videos in American Sign Lan-
guage (ASL) covering over 2500 instructional videos se-
lected from the preexisting How2 dataset [33].

How2Sign consists of more than 80 hours of ASL
videos, with sentence-level alignment for more than 35k
sentences. It features a vocabulary of 16k English words
that represent more than two thousand instructional videos
from a broad range of categories. The dataset comes with a
rich set of annotations including category labels, text anno-
tations, as well automatically extracted 2D body poses for
more than 6M frames.

To the best of the authors’ knowledge, How2Sign is cur-
rently the only SL dataset containing manually produced
per-video category annotations semantically describing a
video’s content. OpenASL [39], a recent large-scale ASL
dataset, features 288 hours of SL video with speech tran-
scriptions, but does not include category labels. Other
datasets, such as [3, 5] are restricted to a single topic or se-
mantic domain. Others, like [40], just contain videos of
isolated signs, rendering them unsuitable for SL video clas-

sification. In this work, we leverage the topic annotations
provided at video level (Fig. 2). Each video is associated
with one of 10 target labels describing its content, and our
aim is to classify videos in their corresponding category.

Figure 2. Cumulative topic distribution in the How2Sign dataset
(figure from [15])

3.2. Video Features

In our experiments, we train models with five different
kinds of data: 3D poses represented by either Cartesian
coordinates or joint angles, I3D features [8] and manually
generated speech transcriptions, available from the How2
dataset [33]. We include speech transcriptions to establish
a pseudo-upper bound on performance, as we assume that a
perfect sign language translation from the video sequences
would match these speech transcriptions.

3D Cartesian poses. Alongside videos, How2Sign also
provides body keypoint annotations extracted with Open-
Pose [7]. In addition, we also extract keypoints using Medi-
aPipe [25], resulting in two sets of body pose annotations.

Figure 3. We train models on body poses extracted with two dif-
ferent pose detectors: MediaPipe (left) and OpenPose (right).

These keypoints provide a light-weight representation of
the signer’s hands and body that is invariant to the sign-
ers’s and background’s visual characteristics [21]. Never-
theless, this representation is sensitive to occlusions and
tends to present a significant amount of noise. OpenPose
and Mediapipe produce keypoints for hands, face and body,
including arms and legs. We make use of the hands, up-
per body and arms. Since OpenPose does not produce 3D
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LSTM Transformer Perceiver IO

Cartesian (OP) 32.85± 5.21 31.49± 4.89 30.78± 2.95
Cartesian (MP) 33.79± 1.82 32.64± 2.41 30.91± 2.04

Angular (OP) 32.64± 3.80 30.36± 1.36 30.22± 1.10
Angular (MP) 31.76± 5.14 32.41± 3.83 33.10± 1.69

I3D features 45.98± 1.99 49.66± 2.48 44.60± 2.87

Transcriptions 70.31± 2.97 73.33± 4.43 71.13± 2.83

Table 1. Test accuracy (in %) for each model and data type. We report the average and standard deviation over
three runs. OP stands for OpenPose and MP for MediaPipe. Best results are in bold, transcription results are
considered as a pseudo upper bound. Note that accuracy would be 25% for majority class prediction.

keypoints directly, we lift them to 3D as described in [46].
Finally, we vectorize the pose for each frame into a vector
vt = (x1, y1, z1, ..., x50, y50, z50) of size 50× 3 = 150.

3D angular poses. Although this 3D Cartesian repre-
sentation allows handling occlusions and different camera
angles much more effectively, it suffers from sensitivity to
scale and length of the speaker’s limbs. For this reason, we
decided to follow [28] and [42], by converting the Cartesian
coordinates to an angular representation [49]. In essence,
this means that a vector θj associated with bone j encodes
the relative rotation of j w.r.t its parent bones. For each
frame, we vectorize the rotation vectors of each of the joints
into a single array of size 48× 6 = 288.

I3D features fine-tuned for SLR. We choose I3D fea-
tures [8] to extract video representations directly from the
RGB frames, motivated by their effectiveness in the sign
recognition task [2, 14, 24]. I3D features take into account
not only visual cues, but also temporal information. As a re-
sult, they provide a dense and reliable source of visual cues
as input to our models.

The original I3D network is trained on ImageNet [13]
and fine-tuned for action recognition with the Kinetics-
400 [9] dataset. As shown in [14], further fine-tuning with
sign language data is needed to properly model the tem-
poral and spatial information present in them. We used the
I3D features provided in [14], which had been fine-tuned on
the large-scale BBC-Oxford British Sign Language Dataset
(BOBSL) for SLR. We freeze the trained network to extract
the visual features from the How2Sign videos and obtain
the 1024-dimensional activation before the pooling layer of
the I3D backbone.

English transcriptions How2Sign provides English
speech transcriptions in textual form for each of its videos.
These transcriptions were manually produced and originate
from the How2 [33] dataset, which How2Sign is based
upon. English transcriptions were manually time-aligned
at sentence-level with the How2Sign sign language videos.
We embed the text into a 256-dimensional trainable vector.

3.3. Neural Architectures

We test three different architectures that stand behind
some of the most notable successes in video analytics: the
LSTM [17] with attention [48], the Transformer [41] and
the PerceiverIO [18]. These three architectures represent
different trends for processing sequential inputs. The LSTM
treats samples in a sequential manner, while the Trans-
former and the PerceiverIO process them in parallel via self-
attention. PerceiverIO is specifically designed to handle ex-
tremely long input sequences, while the Transformer scales
poorly with respect to input sequence length.

LSTM with attention. LSTM is still one of the go-to
architectures for dealing with sequential data. It processes
an input video sequentially frame-by-frame, which allows it
to scale linearly in terms of computational complexity with
respect to the input length.

In order to boost the performance of the LSTM, we use a
bidirectional configuration, and we add an attention mecha-
nism over the hidden states, as described in [48].

Transformer. Since its appearance [41], the Trans-
former has dominated the NLP landscape and has also re-
cently become prominent on several image processing tasks
[47]. The core component of the Transformer is the self-
attention module which performs a comparison of each of
the input tokens against the rest. One advantage of the
Transformer over the LSTM, is that the Transformer allows
processing input tokens in parallel in a non-sequential fash-
ion, thus reducing training time. However, Transformer in-
curs in a quadratic computational cost with respect to the
input length.

PerceiverIO. A recent trend in the machine learning lit-
erature is to design deep learning architectures that over-
come the quadratic cost of the self-attention mechanism.
One line of work has focused on projecting the inputs to a
lower dimensional latent space. PerceiverIO [18] leverages
a cross-attention module at the beginning of the architecture
which maps an input array of length T to a latent array of
length N , with N � T .
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LSTM Transformer PerceiverIO

Cartesian (OP) 9.6M 16.25B 5.91 4.5M 11.84B 3.80 1.0M 2.10B 4.76
Cartesian (MP) 9.6M 16.25B 5.91 4.5M 11.84B 3.80 1.0M 2.10B 4.76

Angular (OP) 10M 19.64B 5.19 5.2M 12.35B 4.21 1.1M 2.77B 3.97
Angular (MP) 10M 19.64B 5.19 5.2M 12.35B 4.21 1.1M 2.77B 3.97

I3D features 13M 31.41B 4.18 8.9M 15.21B 5.85 3.1M 4.76B 6.51

Transcriptions 12M 18.86B 6.38 4.4M 12.24B 3.09 1.5M 2.79B 5.38

Table 2. Number of parameters and FLOPs for each model and data type. The ratio measures the amount of parameters per FLOP. OP
stands for OpenPose and MP for MediaPipe.

4. Experiments

A suite of models are trained across several architectures
and feature types, with the aim of introducing strong base-
line models with different characteristics for the task of sign
language topic detection. For each pair of architecture and
data type, we perform a grid search in order to select the
most adequate hyperparameters.

We train all of our models on a single GeForce RTX 3090
GPU. We run training until validation accuracy stops de-
creasing and use early stopping on validation accuracy to
select the best checkpoint. As optimizer, we utilize Adam
[20] with a learning rate scheduler having a decrease factor
of 0.5 per 8 epochs of non-decreasing validation loss. We
leave the learning rate as a hyperparameter to be determined
for each model.

We use the SentencePiece [23] tokenizer with a dictio-
nary size of 8000 for speech transcriptions and 1470 for
spotted signs, and input embeddings of size 256 for all mod-
els using one of these two input types. We implement our
models and training pipelines on the Fairseq library [30],
which runs on PyTorch and is designed to perform transla-
tion, summarization and other spoken language tasks.

The baselines for the topic detection task are presented
in Table 1. Addressing the task with the manually generated
speech transcriptions is the best performing approach. All
models trained on speech transcriptions obtain a test accu-
racy of over 70%, with Transformer obtaining the highest
score. These values establish an upper-bound for this task
and dataset.

Among the video features, the pretrained I3D features
yield the highest test accuracy across all architectures, with
the Transformer at the top with almost 50% accuracy on
the 10-class classification problem. The accuracy obtained
with body poses are consistently poorer than than those with
I3D, but the results are still well above random predictions.
Notice though that the I3D features had been fine-tuned
for the SL recognition task over the BOBSL dataset, while
body poses are extracted off-the-shelf and not explicitly op-
timized for sign language video understanding.

All body pose features yield similar results, with no
clear indication that angular poses might be more suitable
than Cartesian ones, or that either one of the pose extrac-
tors (OpenPose and MediaPipe) is more adequate than the
other. Nevertheless, representing the signers’ bodies with
keypoints tends to give poorer results. We consider that this
gap in performance is related to the limitations of the body
pose estimators against the fast motion and self-occlusions
of the hands common in sign language videos. Moreover,
none of the studied architectures are specifically designed
for processing body pose inputs, which can be naturally de-
scribed in the form of a graph, rather than an array of values,
as we do in this work.

As seen in Table 2, PerceiverIO has the lowest amount
of parameters per floating point operation (FLOP), and the
LSTM has the highest amount of FLOPs. This is mainly
due to the fact that the LSTM processes a whole sequence
of length T , while the Transformer processes a downsam-
pled sequence of length smaller than T , and the PerceiverIO
reduces the initial sequence of length T to a much shorter
latent sequence.

5. Conclusions

In this work, we present the task of sign language topic
detection for the first time in the literature. We provide
baseline models for topic detection in sign language videos,
which will contribute to the design of more inclusive expe-
riences for the Deaf and hard-of-hearing.

We have found that I3D features fine-tuned for sign lan-
guage recognition lead to better performance for the task,
while body poses lag far behind in terms of accuracy, but
are also more generic, privacy-preserving and lighter to an-
alyze.

Future work should aim at improving the quality of vi-
sual features, by developing pose estimation systems paired
with other neural architectures with more appropriate in-
ductive biases, and by leveraging model pre-training on ad-
jacent SL tasks and datasets.
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