
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MUEDIT: A LIGHTWEIGHT YET EFFECTIVE MuLTI-
TASK MODEL Editing METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing model editing methods encounter limitations in handling multi-task
knowledge updates, primarily due to interference between different tasks. To ad-
dress this gap, this paper first provides a formal definition of multi-task editing,
which is different from traditional sequential editing, and subsequently analyzes
the shortcomings of traditional editing methods and Fang’s null-space projection
method, which fails to generalize to multi-task scenarios. To tackle this challenge,
we introduce a novel concept termed the Conflict Index, which quantifies the de-
gree of conflicts between the editing objectives of two tasks. Building on this
index, We then design two strategies to mitigate multi-task conflicts: (1) iden-
tifying the optimal editing path that minimizes the total conflict index across
all tasks, and adopting a low-rank matrix approximation method based on
the conflict index to expand the null-space dimension when conflicts remain
high. Experimental results show that our proposed Mu-Edit method effectively
alleviates multi-task editing conflicts. It outperforms existing baseline methods
across various evaluation metrics on multiple tasks while preserving the model’s
capabilities in general domains.

1 INTRODUCTION

Figure 1: Comparison of Goal and Null-
Space Hidden Representation with our Mu-
Edit and existing methods. Existing
method’s have almost no common null space
between tasks, leading to severe conflicts,
while our Mu-Edit expands the common null
space obviously.

Large language models (LLMs) have recently
demonstrated outstanding performance in diverse ar-
eas such as natural language understanding (Dušek
et al., 2020), mathematical reasoning (Imani et al.,
2023), and knowledge-intensive question answer-
ing (Sun et al., 2024). However, despite their im-
pressive capabilities, LLMs remain prone to misin-
terpreting human instructions and generating incor-
rect or outdated responses (Bai et al., 2024; Chen
et al., 2024). This has spurred exploration into model
editing and various continuous learning techniques
aimed at refining LLMs’ behavior over time (Ji et al.,
2024; Wang & Li, 2024).

In addition to directly fine-tuning LLMs on spe-
cific tasks, recent studies have introduced model
editing techniques to enable LLMs to discard spe-
cific erroneous knowledge while preserving their
overall functionality. Building upon this con-
cept, several model editing methods have emerged.
ROME (Meng et al., 2022a) uses a logit attribution
method to identify the location of knowledge and
then edits it by updating specific factual associations.
MEMIT (Meng et al., 2022b) is another effective
method that locates knowledge and directly updates
large-scale memories. Some methods edit models without explicit localization, such as the approach
proposed by Ni et al. (2023), which introduces a ”forgetting before learning” paradigm: LLMs are
first trained to forget incorrect answers before learning new information, leading to improved per-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of existing models’ multi-task editing performance decline; For existing model
editing methods, we choose five tasks, namely ZsRE, SafeEdit, SQUAD, SST-2 and CKnowEdit
and compare all method’s performance on the target task before and after editing on other tasks. All
metrics are higher the better.

formance compared to direct fine-tuning. However, current model-editing methods face limitations
in maintaining performance across multiple edits and generalizing to multi-task knowledge updates
simultaneously. Although some works, such as those by Ma et al. (2024); Fang et al. (2024), have
alleviated interference from multiple edits within a single task by restricting the number of con-
ditions for matrix updates or projecting to a null space, they fail to address the multi-task editing
interference problem (Li et al., 2025a;b).

In contrast to these existing studies, the paper introduces a novel problem: Multi-task model edit-
ing. We first provide a formal the definition of multi-task editing, and then clarify its core goal:
To update knowledge in different tasks simultaneously without interfering the performance of other
tasks. This formulation is motivated by the critical challenge that existing editing methods suffer
from severe performance degradation when updating multi-task knowledge simultaneously as shown
in Fig 2, which illustrates that current editing methods have caused serious model collapse for multi-
task editing. They often forget the knowledge edited in the previous tasks during the editing process,
resulting in substantial performance degradation, which become more pronounced as the number of
tasks accumulates. Even though direct fine-tuning method mitigates model collapse to some extent
compared to existing methods, it still exhibits a notable decline in performance. These observations
collectively indicate that significant conflicts exist between the editing objectives of different tasks,
and existing model editing methods struggle to effectively decouple these distinct editing objectives,
hindering the ability to update knowledge across multiple tasks simutaneously.

To address this core issue, we firstly conducted an in-depth analysis based on Fang’s null-space
projection method, revealing that its failure to generalize to multi-task scenarios stems from a crit-
ical limitation: when updating knowledge across different tasks, the null-space projection matrix
of the current task may not necessarily lie within the null space of previously edited tasks.
Building on this insight, we propose a novel approach: If we project the editing parameters onto
the common null space shared by the current task and the preceding editing task during multi-task
model editing, we can theoretically reduce conflicts arising from competing task-specific editing
objectives. To operationalize this idea, We propose a new concept based on this goal——Conflict
Index. Leveraging this index, we developed a novel framework called Mu-Edit, which incorporates
two complementary strategies to resolve multi-task conflicts: 1. Determining the optimal editing se-
quence by minimizing the total conflict index across all tasks. 2. Designing a conflict-index-guided
low-rank matrix approximation method to actively expand the null-space dimension. And the selec-
tion as of which task’s K to approximate is determined by the sum of the total conflict index with
all other tasks.

1. To the best of our knowledge, this work is the first to investigate multi-task knowledge editing
from the perspective of null-space conflicts. We further propose the concept of Conflict Index
based on the null-space properties of task-corresponding matrices and enables effective quantifica-
tion of the conflict degree between different tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2. Building on this Conflict Index, We develop two complementary optimization strategies: (1)
Computing the optimal editing sequence and performing edits in accordance with this sequence; (2)
Expanding the null space dimension and reduce multi-task conflicts by applying low-rank approxi-
mation on the original matrix.
3. Experimental results confirm that, compared with existing model editing methods, our proposed
approach not only achieves a significant improvement in multi-task editing performance, but also
effectively preserves the model’s capabilities in general domains.

2 PRELIMINARY

2.1 KNOWLEDGE STORAGE AND EDITING IN LLMS

Denote the hidden state of the i-th layer for a specific token as hi ∈ Rd, the multi-layer perceptron
(MLP) module within the i-th layer can then be described as follows:

hi = σ(h̃iW i
1) ·W i

2,

where W i
1 and W i

2 represent trainable parameters of transition matrix, h̃i represents output of i-th
MHA layer and σ(·) denotes the activation function. Following prior works (Meng et al., 2022a;b),
we express the attention block and MLP in parallel. The MLP layers can be interpreted as linear
associative memory (Geva et al., 2021).

2.2 TRADITIONAL MODEL-EDITING METHODS

Model editing aims to update knowledge stored in LLMs through a single edit or multiple edits
(i.e., sequential editing). In each edit within the locate-then-edit paradigm, we modifies the model
parameters W by adding a perturbation ∆. Specifically, the knowledge stored in the model can
be formalized as triplets (s, r, o), each edit needs to update u pieces of knowledge in the form of
(s, r, o), where s, r and o means subject, relation and object seperately. The new parameter W is
expected to associate new k-v pairs, where k encodes knowledge component of (s, r) and v encodes
(o). W is in the dimension of do ∗ di, where di and do represent the dimensions of the FFN’s
intermediate and output layers. We can define the knowledge matrix of all k-v pairs as follows:

K0 = [k1, k2, . . . , ku] ∈ Rdi×u, V0 = [v1, v2, . . . , vu] ∈ Rdo×u

Where u represents the scale of knowledge pairs, and the subscripts of k and v represent the index
of the to-be-updated knowledge.

ROME (Meng et al., 2022a) proposes that the objective of model editing is optimized by the fol-
lowing equation, which edits model by minimizing the distances of selected key-vectors before and
after editing, while memorizing a new k-v pair, which is ke-ve:

Ŵ = arg min
Ŵ : Ŵke=ve

∥ŴK0 −W0K0∥2F︸ ︷︷ ︸
Preservation

Although ROME is effective for single sample editing, it cannot be used to edit multiple samples
simultaneously, and the later method MEMIT (Meng et al., 2022b) solves this problem. MEMIT
on the other hand optimizes a relaxed version of the same objective:

Ŵ = argmin
Ŵ

λ
∥∥∥ŴK0 −W0K0

∥∥∥2
F︸ ︷︷ ︸

preservation

+
∥∥∥ŴKE − VE

∥∥∥2
F︸ ︷︷ ︸

memorization

where KE = [ke1 |ke2 | . . . | keE] is a matrix containing a row of vectors representing the edits we
are making in a batch and VE = [ve1 |ve2 | . . . | veE] represents their target representations. The
above optimization objective aims to modify the output representations of vectors in KE to VE by
minimizing the least square error between them instead of requiring them to be equal through an
equality constraint.

2.3 SEQUENTIAL-OPTIMIZED EDITING METHODS

PRUNE (Ma et al., 2024) and AlphaEdit (Fang et al., 2024) have provided different solutions to the
problem of model collapse caused by traditional multiple editing methods.

PRUNE designs experiments and finds that model collapse of multiple editing mainly comes
from the gradually increasing maximum singular value of ∆W . On the other hand, AlphaEdit

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

addresses multiple editing model collapse through null-space projection. Null-space is defined
as follows: given two matrices A and B, B is in the null space of A if and only if BA =
0. Fang defines K̄t−1 = [K1; · · · ;Kt−1] represent the keys of all previous editing steps, and
V̄t−1 = [V1; · · · ;Vt−1] represent values from all previous update steps. Fang proposes a new
method to mitigate the negative interference. He restricts that updates are constrained to lie within
the null space of the previously injected knowledge representations. To say it specifically, Fang
proposes that the perturbation matrix ∆ should be projected onto the null space of K̄t−1 so we can
obtain an equation:

(∆Wt +Wt−1)K̄t−1 = Wt−1K̄t−1 = V̄t−1

This implies that the projection ∆ will not disrupt the key-value associations of previous updated
knowledge and ensure we only focus on the new knowledge to be updated.

3 METHODS

3.1 DEFINITION OF MULTI-TASK EDITING

In multi-task editing, supposing we aim to update knowledge across N distinct tasks, and input data
from each task is described as I1, I2, ..., IN . Initial parameters before training on In (n ∈ {1, ..., N})
are initialized as Wn−1, which are the optimal parameters obtained after training on the previous
data In−1. And after editing on the task n, we define the model parameters as Wn. Once all N tasks
are edited, the final model parameters are defined as W∗. A core premise of multi-task editing is
task independence, a property that fundamentally distinguishes it from scenarios involving ”single-
task sub-datasets” (e.g., ZsRE and Counterfact). We will give the proof of task independence in the
appendix.

3.2 RETHINKING OF THE NULL SPACE OF MULTIPLE TASKS

We have conducted deeper thinking based on Fang (Fang et al., 2024)’s definition: theoretically, if
the editing knowledge of the n-th task can be projected onto the common null space formed by all
previous edited tasks, AlphaEdit’s method should be directly adaptable to multi-task editing sce-
narios. However our experimental results demonstrate that such direct adaptation fails to guarantee
satisfactory performance. We attribute the limitation to a key observation: During sequential multi-
task editing, the new knowledge matrix Kn compresses the null space of Kn−1. To elaborate, in
an ideal conflict-free scenario, the updated model parameter matrix Wn+1 should be projected onto
the common null space of Kn and Kn−1. Yet, the common null space of the column-merged matrix
of [Kn;Kn−1] is no larger than the smallest null space in Kn and Kn−1 (we will give a proof).
As model editing proceeds across more tasks, this null-space compression becomes increasingly
severe——ultimately leading to a noticeable decline in editing performance.

To address the aformentioned issue, we first observe that the knowledge matrix K of different tasks
induce varying degrees of null-space compression during the editing process. We hypothesize that
editing tasks in a sequence that minimizes the null space compression could yield improved perfor-
mance. To operationalize this hypothesis, we first define a null-space conflict metric to quantify the
conflict between tasks i and j. Specifically, N(Kil) denotes the null space of knowledge matrix of
task i at layer l, and N ([Kil : Kjl]) denotes the null space of column-combined knowledge matrix
of task i and j at layer l. We will prove that the null space of column-combined matrix is equivalent
to the common null space of Kil and Kjl, but the latter is difficult to calculate, so we will use the
column-combined calculation method:

C(Kil,Kjl) = 1−
dim (N ([Kil : Kjl]))

min {dim(N(Kil)), dim(N(Kjl))}
(1)

Since the conflict index of each layer may not be the same, we further average the conflict index of
each layer to obtain the zero-space conflict index of the two tasks i and j:

C(Ki,Kj) =
1

L

∑
l∈[1,L]

C(Kil,Kjl) (2)

We will demonstrate in the appendix that the Conflict Index can accurately reflect the degree of
interference between parameter updates for two tasks, a larger Conflict Index indicates greater inter-
ference between the updates of the two tasks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 RESOLVING THE INTERFERENCE

3.3.1 FINDING THE BEST EDITING ORDER

Building on the preceding definition of Conflict Index, we first quantify the pairwise interference
between all task pairs, then determine the editing sequence that minimizes the total interference
across all tasks. Formally, We define the optimal editing order as follows:

Best Order(KN) = min
σ∈SN

N−1∑
n=1

C(Kσ(n),Kσ(n+1)). (3)

Where SN denotes the symmetric group containing all permutations of N tasks. Each σ ∈ SN

represents a complete ordering of the tasks, and the optimal sequence is selected by minimizing the
total cost across all possible permutations.

3.3.2 INCREASING THE COMMON NULL SPACE THROUGH LOW-RANK MATRIX
DECOMPOSITION

We hypothesize that the dimension of the common null space depends not only on the conflict de-
gree between the two tasks, but also on the rank of the each task’s corresponding knowledge matrix
K. Consequently, effectively reducing the rank of the original knowledge matrix K can expand the
common null space dimension——thereby mitigating inter-task conflicts. To achieve this rank re-
duction, we propose performing Singular Value Decomposition(SVD) on K, then approximating the
original matrix using only the top few singular values and their corresponding vectors. Specifically:

K =

R∑
i=1

σiuiv
T
i (4)

Where R denotes the rank of matrix K. To determine the number of singular values to retain,
we analyze two scenarios from the perspective of null-space conflict: 1. If C(Ki,Kj) is no
greater than a predefined threshold µ, the definition of the conflict index implies that the ratio of

dim(N([Kil : Kjl]))
min{dim(N(Kil)),dim(N(Kjl))} is higher than 1 − µ. For instance, when µ is 0.2, the ratio is greater
than 0.8–a value sufficient to satisfy the editing requirements of both tasks, so no additional rank
reduction is needed. 2. If C(Ki,Kj) > µ, the common null space of Ki and Kj is too limited to
accommodate the editing needs of both tasks. In this case, we propose expanding the dimension of
N(K) by reducing the rank of K. Specifically, we define the ”conflict excess” as C(Ki,Kj)− µ, a
larger conflict excess indicates a greater need for rank reduction. For simplicity, we adopt a linear
decay strategy, when the rank reduction magntitude is determined by α(C(Ki,Kj) − µ) (with α
as a tuning parameter). The dimensionality of the preserved singular values is thus calculated as
follows:

dσ =

{
R, if C(Ki,Kj) ≤ µ

R− αR(C(Ki,Kj)− µ), if C(Ki,Kj) > µ
(5)

We also draw two variations of our main method: 1) Mu-Edit−: This variant uses fixed values for
hyperparameters µ and α. In our primary experiments, we set µ = 0.2 and α = 1. 2) Mu-Edit: We
design a dynamic threshold adjustment strategy for µ: instead of using a fixed value, µ is determined
based on the sum of conflict indexes between the current task and all previously considered tasks.
The formula of selecting µ can be defined as follows:

Ci =
1

N

N∑
j=1

C(Ki,Kj) µij = min(Ci + t · σCi , Cj + t · σCj) (6)

Where t is a dynamic hyparameter that controls the extent to which variance influences the threshold
(We set it 0.9 by default). Specifically, we first compute the mean and variance of the Conflict index
between task n and all other tasks. This strategy enables µ to adapt not only to the overall level of
conflict level of the dataset but also to the variablity in conflict levels among different tasks. Using
the updated threshold, we then calculate K as an low-rank approximate representation of the original
matrix K:

K =

dσ∑
i=1

σiuiv
T
i (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Through low-rank decomposition, subsequent experiments will verify that this approach effectively
reduces the Conflict Index while improving performance. A remaining key question is determining
whether the matrix Ki or the matrix Kj should undergo low-rank approximation. Given the inherent
characteristics of multi-task editing, conflict mitigation must address not only pairwise conflicts
between two tasks but also conflicts between a given task and all other tasks awaiting editing. To
this end, we determine which matrix to approximate via low-rank decomposition as follows:

K =

{
Ki, if

∑
t̸=j C(Ki,Kt) >

∑
t̸=i C(Kj ,Kt)

Kj , otherwise
(8)

We further introduce two ablation variants: Mu-Edit(left) and Mu-Edit(right). Unlike the full
Mu-Edit variant, Mu-Edit(left) always reduce the rank of Ki, while Mu-Edit(right) exclusively re-
duces the rank of Kj . After calculating the new low-rank decomposition matrix K, we iteratively
recalculate all conflict indices involving this matrix and other matrices until all conflict indices fall
below the threshold. Following the projection strategy in (Fang et al., 2024), we compute the pro-
jection matrix P–which projects onto the common null space of matrices Kn−1 and Kn, and update
the original parameter ∆ to ∆P . In this work, we focus on minimizing the edit distance between
consecutive three tasks. The objective function can be defined as:

∆ = arg min
∆̃

(∥∥∥(W + ∆̃P)Kn+1 − Vn+1

∥∥∥2 + ∥∥∥∆̃P
∥∥∥2 + ∥∥∥∆̃PKn−1

∥∥∥2 + ∥∥∥∆̃PKn

∥∥∥2) (9)

In the appendix we further extend our analysis to minimizing the edit distance among four or more
tasks and present the corresponding results. To calculate the parameter update ∆, we first define the
residual term Vn+1 −WKn+1 as E, then the ∆ can be represented as:

∆∗ = EKT
n+1P

(
Kn+1K

T
n+1P + P +Kn−1K

T
n−1P +KnK

T
n P

)−1
(10)

We will prove the reversibility of ∆∗ in the appendix section.

3.4 IMPORTANT EXPERIMENTAL DETAILS

Datasets: For datasets selection, we follow the datasets used in EasyEdit2 (Xu et al., 2025b), and
we choose five representative tasks categories, with one or two datasets per category. Specifically:
For English common sense knowledge editing, we choose Counterfact (Meng et al., 2022a) and
ZsRE (Wang et al., 2023), for detoxifying knowledge editing, we choose SafeEdit (Wang et al.,
2024), for reasoning-based knowledge editing, we choose SQuAD (Rajpurkar et al., 2016) and
GSM8k (Cobbe et al., 2021), for sentiment analysis knowledge editing, we choose SST-2 (Socher
et al., 2013) and for Chinese Phonetic knowledge editing, we choose CKnowEdit (Xu et al., 2025b).
By default we use 500 pieces of data for editing each task of knowledge. Given that the editing order
of datasets may impact the final model editing performance, we set the default editing order across
all experiments as ZsRE, SafeEdit, SQUAD, SST-2, and CKnowEdit.

Evaluation Metrics: In line with prior works Meng et al. (2022a); Fang et al. (2024), for datasets
Counterfact, ZsRE and CknowEdit, we employ Specificity (efficiency success), Generalization
(paraphrase success), Locality (neighborhood success) as evaluation metrics. For SafeEdit, we em-
ploy Harmful Rate, and For SQUAD, GSM8k and SST-2, we just use ACC (Accuracy) to measure
the predictive correctness. Details of these metrics are described in the appendix.

Other experimental details: For the fair comparison of previous works, we employ seven baseline
methods suitable for multi-edit scenarios: 1. ROME (Meng et al., 2022a). 2. MEMIT (Meng et al.,
2022b), 3. SERAC (Mitchell et al., 2021) 4. F-learning (Ni et al., 2023) 5. PRUNE (Ma et al., 2024)
6. AlphaEdit (Fang et al., 2024). 7. AnyEdit (Jiang et al., 2025). We also compare the results with
direct fine-tuning (FT). All the methods are evaluated on two backbone models: Llama3-8B and
GPT2-xl, with edits performed on specific layers for each model: Llama3-8B: layers [4, 5, 6, 7, 8],
GPT2-xl: layers [13, 14, 15, 16, 17]. For constructing the reference knowledge matrix K for each
domain, we sample 100000 pieces of data from the training sets of the five tasks. If the scale of the
original dataset fails to reach 100,000, we need to perform data augmentation by randomly replacing
the elements in the (s, r, o) triplets. Sensitivity analysis of the K-matrix calculation–including its
dependence on data scale and dataset mixing strategies is provided in subsequent sections. All other
hyperparameters follow the default settings.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 MAIN EXPERIMENTS AND RESULTS

4.1 MAIN RESULTS AND ABLATION STUDY RESULTS

Table 1: Comparison results of immediate tests and final tests of our methods and baseline methods
under default editing order and out calculated best editing order. In this test we use Llama3-8B as
backbone model. And I- means Immidiate test, F- means Final test, DO means default editing order,
BO means best editing order. * means the improvement passes significance via t-test with p < 0.05
in five-times repetition compared to AnyEdit.

ZsRE
Method I-Specificity↑ I-Generality↑ I-Locality↑ F-Specificity↑ F-Generality↑ F-Locality↑ Spec change↑ Gen change↑ Loc change↑
AlphaEdit(DO) 0.9891 0.9352 0.6606 0.3009 0.2351 0.3608 -0.6882 -0.6343 -0.2998
AnyEdit(DO) 0.9899 0.9382 0.6650 0.3954 0.3061 0.4021 -0.5945 -0.6321 -0.2629
Mu-Edit(DO) 0.9883 0.9366 0.6669 0.8197 0.7995 0.5684 -0.1686 -0.1371 -0.0985

ROME(BO) 0.6334 0.6281 0.5773 0.2861 0.2356 0.2575 -0.3473 -0.3925 -0.3198
MEMIT(BO) 0.7009 0.6817 0.4962 0.3452 0.3036 0.2418 -0.3557 -0.3781 -0.2544
AlphaEdit(BO) 0.9899 0.9377 0.6628 0.5506 0.5101 0.4470 -0.4393 -0.4320 -0.2158
AnyEdit(BO) 0.9901 0.9387 0.6659 0.7098 0.6799 0.5346 -0.2803 -0.3941 -0.1313

Mu-Edit−(BO) 0.9817 0.9306 0.6625 0.8464 0.8077 0.6276 -0.1353 -0.1229 -0.0349*
Mu-Edit(left)(BO) 0.9808 0.9335 0.6582 0.8107 0.7753 0.5889 -0.1701 -0.1582 -0.0693
Mu-Edit(right)(BO) 0.9832 0.9361 0.6603 0.8556 0.8210 0.6195 -0.1276 -0.1151 -0.0408
Mu-Edit(BO) 0.9892 0.9375 0.6674 0.8845* 0.8452* 0.6321* -0.1047* -0.0923* -0.0353

SafeEdit SQUAD SST-2
Method I-Harmful rate↑ F-Harmful rate↑ Harm change↑ I-Acc↑ F-Acc↑ Acc change↑ I-Acc↑ F-Acc↑ Acc change↑

AlphaEdit(DO) 0.4356 0.2778 -0.1578 0.7883 0.6984 -0.0899 0.9167 0.8620 -0.0547
AnyEdit(DO) 0.4601 0.3004 -0.1597 0.7892 0.7028 -0.0864 0.9192 0.8643 -0.0549
Mu-Edit(DO) 0.4706 0.3648 -0.1058 0.7867 0.7252 -0.0615 0.9185 0.8694 -0.0491

ROME(BO) 0.3547 0.2210 -0.1337 0.5383 0.4446 -0.0937 0.6882 0.6290 -0.0592
MEMIT(BO) 0.3781 0.2449 -0.1332 0.5712 0.4808 -0.0904 0.7335 0.7073 -0.0262
AlphaEdit(BO) 0.4664 0.3396 -0.1268 0.7883 0.7016 -0.0867 0.9167 0.8803 -0.0364
AnyEdit(BO) 0.4686 0.3691 -0.0995 0.7909 0.7166 -0.0743 0.9180 0.8798 -0.0382

Mu-Edit−(BO) 0.4685 0.3718 -0.0967 0.7812 0.6962 -0.0850 0.9160 0.8817 -0.0343
Mu-Edit(left)(BO) 0.4652 0.3677 -0.0975 0.7794 0.6835 -0.0959 0.9154 0.8789 -0.0365
Mu-Edit(right)(BO) 0.4701 0.3895 -0.0806 0.7836 0.7183 -0.0653 0.9168 0.8815 -0.0353
Mu-Edit(BO) 0.4734* 0.4043* -0.0691* 0.7867 0.7479* -0.0388* 0.9185 0.8838* -0.0347

Our proposed method involves two parts - finding the best order and low rank matrix decomposition.
We conduct all experiments on LLama3-8B as the main backbone, while results of GPT2-xl are in
the appendix.

Obs.1: Firstly, by comparing the Default Order(DO) and Best Order(BO) settings of AlphaEdit
and AnyEdit in Tab 1, we observe that on the ZsRE task, adopting the BO yields notable improve-
ments over DO: Final Specificity and Generality metrics increase by more than 0.2, while Locality
improves by nearly 0.1. Minor performance gains are also observed for SafeEdit, SQUAD, and SST-
2. This confirms that Conflict Index-guided BO setting effectively mitigates inter-task conflicts in
multi-task editing to a certain extent. We further compare our Mu-Edit with AlphaEdit and AnyEdit
under the DO setting. On ZsRE task our Mu-Edit method outperforms AlphaEdit by more than 0.5
in final Specificity and Generality, and by nearly 0.3 in F-Locality. While the improvement over
AnyEdit is smaller, it remains statistically significant. These results demonstrate that Mu-Edit fun-
damentally expands the null-space dimension through the low-rank matrix decomposition method,
thereby alleviating conflicts in multi-task editing and obviously improves performance.

Obs.2: We further verified that combining the Best Order(BO) with low-rank matrix decomposition
yields significant benefits: It reduces the performance degradation of Specificity and Generality
to around 0.1 and Locality degradation to around 0.04. These results substantially outperform all
existing single-task model editing methods. Additionally, Mu-Edit (BO) also achieves the highest
final performance gains across the other three tasks and exhibits the smallest performance drop in
SafeEdit and SQUAD.

Obs.3: A comparison of four Mu-Edit variants reveals that both dynamic threshold adjustment for µ
and conflict-aware selection of the matrix to approximate contribute to performance improvements.
Specifically: 1. Mu-Edit− has a performance exhibits a notable performance decline of nearly 4
points in F-Specificity and F-Generality, though F-Locality remains relatively unchanged. 2. Both
two ablation variants underperform compared to the full Mu-Edit. But notably, Mu-Edit(left) con-
sistently lags behind Mu-Edit(right), indicating that reducing the rank of subsequent task matrix
Kj (rather than the prior task matrix Ki) yields better results when conflicts arise. We attribute
this phenomenon to the foundational role of Ki’s null space in subsequent editing steps: the edited
parameters of Ki serve as the basis of Kj’s editing. Reducing Kj’s rank thus preserves parameter

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Comparison results of our edited
model and baseline methods in general abilities

Figure 4: Single-task editing performance under
different degrees of rank reduction

Table 2: Performance under different dataset sizes, and different kinds of reference dataset selection

Dataset Size Influence
Ds-size ZsRE-Specificity ZsRE-Generality ZsRE-Locality SafeEdit SQUAD SST-2 CKnowEdit Calculating Time GPU Cost

5000 0.8176 0.7739 0.5772 0.3897 0.7201 0.8587 0.8317 13min 2.5GB
10000 0.8417 0.8083 0.6019 0.3956 0.7348 0.8721 0.8402 28min 6.1GB
30000 0.8685 0.8284 0.6225 0.4015 0.7437 0.8803 0.8466 79min 48.9GB
100000 0.8845 0.8452 0.6321 0.4043 0.7479 0.8838 0.8505 238min 330.6GB
200000 0.8866 0.8463 0.6334 0.4055 0.7488 0.8841 0.8512 471min NA

Different reference dataset selection (Total size is 100000)
Dataset selection ZsRE-Specificity ZsRE-Generality ZsRE-Locality SafeEdit SQUAD SST-2 CKnowEdit Calculating Time GPU Cost

Counterfact 0.8779 0.8431 0.6257 0.4001 0.7316 0.8692 0.8494 243min 319.8GB
0.5Counterfact+0.5ZsRE 0.8764 0.8445 0.6293 0.4052 0.7383 0.8755 0.8509 258min 347.6GB

SQUAD 0.8777 0.8452 0.6317 0.4048 0.7275 0.8833 0.8498 229min 322.4GB
0.5SQUAD+0.5GSM8K 0.8774 0.8454 0.6310 0.4036 0.7299 0.8837 0.8493 234min 354.2GB

stability more effectively, whereas prioritizing Ki for rank reduction risks destablizing the iterative
process and degrading performance.
4.2 COMPARISION OF OUR MU-EDIT AND BASELINE METHODS GENERAL ABILITY RESULTS

AFTER EDITING

In this section, we validate whether Mu-Edit better preserves the model’s general-task performance
after multi-task editing compared to baseline editing methods, we selected two tasks to evaluate the
general abilities: (1) Summarization on the SAMSum (Gliwa et al., 2019), and the results were
measured as the average of ROUGE-1, ROUGE-2, and ROUGE-L, following the method of Lin
et al. (2024). (2) Open-domain QA on the Natural Question (Kwiatkowski et al., 2019), and the
results were measured by exact match (EM) with the reference answer after minor normalization.
As shown in Fig 3, general domain performance of baselines degrades sharply with an increasing
number of editing tasks. MEMIT suffers severe performance collapse: After editing about two tasks,
its performance on both tasks drop to near zero. AlphaEdit and AnyEdit also exhibit unsatisfactory
robustness. After editing four tasks, the performance on both tasks falls below 0.01. On the contrary,
our proposed Mu-Edit method only shows a marginal performance decline on both tasks as the
number of editing tasks increases. These results confirm that our Mu-Edit effectively retain more of
the general abilities compared to existing baseline methods.

4.3 ANALYSIS OF PERFORMANCE SENSITIVITY AND MEMORY COST ON KNOWLEDGE
MATRIX CALCULATION

To analyze the robustness of the knowledge matrix K calculation, we conducted three key sets
of variations to its input settings, alongsidev measurements of corresponding computational costs:
First, we computed the K matrix using datasets of different scales to evaluate how performance
responds to changes in input data volume. We also tried both alternative single datasets from the
same task and hybrid datasets within the same task, For example, we used Counterfact as the ref-
erence dataset for commonsense knowledge editing tasks and SQUAD for reasoning tasks. We
reported the average time and memory consumption for computing K matrices across the five tasks
under the above settings, using the NVIDIA-A100-80GB GPU as the default hardware. As shown
in Tab 2, the following trends emerge: When the dataset size increases from 5000 to 100000, all
evaluation metrics rise sharply, while the total computation time and memory cost remain manage-
able (330.6GB means slightly more than 4 GPUs). When the dataset size further expands from
100000 to 200000, performance improvements become noticeably marginal, but the GPU memory

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

cost exceeds our acceptable range. Then we finalize the dataset size for K calculation as 100000.
Regarding reference dataset selection, although certain choices lead to minor performance drops,
Mu-Edit overall demonstrates high stability across different reference dataset configurations.

4.4 THE PERFORMANCE IMPACT OF LOW-RANK MATRIX APPROXIMATION ON SINGLE TASK
EDITING

Mu-Edit posits that when significant conflicts exist between two tasks, low-rank approximation
should be applied on K to expand the dimension of the null space. A critical question arises,
however: Does this null-space expansion via low-rank approximation cause substantial performance
degradation in single-task editing? We address this question through targeted experimental analysis.

We first process the original matrix K via SVD decomposition with five different rank-reduction
configurations: retaining the complete K matrix (0% reduction), or removing the compontents cor-
responding to the smallest 15%, 30%, 45% and 60% singular values. For each configuration, we
evaluate performance exclusively on datasets corresponding to the target single task. We can observe
from Fig 4 that for all six indicators except ZsRE-Locality, performance generally decreases as rank
reduction increases. However, when rank decay is within the range of 15% -30%, performance re-
mains nearly identical to that of the complete K matrix. Performance degradation only accelerates
once rank reduction reaches 45%, with a significant drop observed at the 60% reduction level. These
results confirm that our low-rank approximation method does not notably impair single-task editing
performance when the degree is less than 45%. In the appendix, we further provide supplementary
experiments demonstrating that Mu-Edit effectively controls rank reduction to less than 45% for
nearly all task pairs.

5 RELATED WORKS

Some recent studies focus on identifying where knowledge is stored before editing. For example,
ROME (Meng et al., 2022a) uses the method of attributing logits to find the location of knowledge
and then edits it by updating specific factual associations. And MEMIT (Meng et al., 2022b) is an
effective method to locate knowledge and directly update large scale memories. And there are other
methods draw inspiration from machine unlearning. Common flaw of these work is that they can
cause serious interference in multiple edits. Some work has also evolved to address these issues.
PRUNE (Ma et al., 2024) analyzes that the multiple edit model collapse arises from the accumu-
lation of condition numbers and uses the method of restricting the maximum condition number of
the updated SVD matrix to alleviate model collapse, and AlphaEdit (Fang et al., 2024) proposes
a null-space projection-based interference elimination method for multiple edits, which projects
the parameters of each subsequent edit to the null space of the corresponding matrix of the pre-
vious batch of edits, greatly alleviating the target interference problem caused by multiple edits.
AnyEdit (Jiang et al., 2025) proposes a method for editing long sequence knowledge from infor-
mation theory perspective, and KDE (Xu et al., 2025a) introduces a two-stage training by firstly
applying SVD on editable memory and then using knowledge decoupling to let model editing focus
more on new knowledge. Ma et al. (2025) introduces a method to use a plug-in module as the
editing model and enables stable knowledge updates across multiple models. However, there is still
a lack of research on the application of model editing in multi-task knowledge updates, and although
PRUNE and KDE both uses SVD decomposition, their threshold are fixed and predefined, which
restricts the potential performance influence by setting the threshold dynamically according to the
feature of datasets.

6 CONCLUSION

In this article, we propose a new concept called Conflict Index to measure the degree of conflict
in multi-task editing. Based on conflict index, we design an optimal editing order and use low-
rank decomposition to reduce conflicts between tasks. Subsequent experiments have verified that
our method not only improves multi-task editing performance compared to existing model editing
methods, but also retains its ability in general domains, with enough robustness of K calculation’s
strategy. In the future, we will conduct a more in-depth analysis of the mathematical relationship
between conflict indices and task conflicts, paving the way for a more mature multi-task editing
paradigm.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Fengshuo Bai, Mingzhi Wang, Zhaowei Zhang, Boyuan Chen, Yinda Xu, Ying Wen, and
Yaodong Yang. Efficient model-agnostic alignment via bayesian persuasion. arXiv preprint
arXiv:2405.18718, 2024.

Dingwei Chen, Feiteng Fang, Shiwen Ni, Feng Liang, Ruifeng Xu, Min Yang, and Chengming Li.
Lower layer matters: Alleviating hallucination via multi-layer fusion contrastive decoding with
truthfulness refocused. arXiv preprint arXiv:2408.08769, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge. Computer Speech & Language, 59:123–156,
2020.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. arXiv
preprint arXiv:2410.02355, 2024.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu, and Shiyu Chang.
Reversing the forget-retain objectives: An efficient llm unlearning framework from logit differ-
ence. arXiv preprint arXiv:2406.08607, 2024.

Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Guojun Ma, Mingyang Wan, Xiang Wang, Xiangnan
He, and Tat-seng Chua. Anyedit: Edit any knowledge encoded in language models. arXiv preprint
arXiv:2502.05628, 2025.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Yanfeng Li, Kahou Chan, Yue Sun, Chantong Lam, Tong Tong, Zitong Yu, Keren Fu, Xiaohong
Liu, and Tao Tan. Moedit: On learning quantity perception for multi-object image editing. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 2683–2693, 2025a.

Yuan Li, Zhengzhong Liu, and Eric P Xing. Data mixing optimization for supervised fine-tuning of
large language models. In Forty-second International Conference on Machine Learning.

Zherui Li, Houcheng Jiang, Hao Chen, Baolong Bi, Zhenhong Zhou, Fei Sun, Junfeng Fang, and
Xiang Wang. Reinforced lifelong editing for language models. arXiv preprint arXiv:2502.05759,
2025b.

Zihao Lin, Mohammad Beigi, Hongxuan Li, Yufan Zhou, Yuxiang Zhang, Qifan Wang, Wenpeng
Yin, and Lifu Huang. Navigating the dual facets: A comprehensive evaluation of sequential
memory editing in large language models. arXiv preprint arXiv:2402.11122, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. Perturbation-restrained
sequential model editing. arXiv preprint arXiv:2405.16821, 2024.

Weitao Ma, Xiyuan Du, Xiaocheng Feng, Lei Huang, Yichong Huang, Huiyi Zhang, Xiaoliang
Yang, Baohang Li, Xiachong Feng, Ting Liu, et al. One for all: Update parameterized knowledge
across multiple models. arXiv preprint arXiv:2506.00817, 2025.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Shiwen Ni, Dingwei Chen, Chengming Li, Xiping Hu, Ruifeng Xu, and Min Yang. Forgetting before
learning: Utilizing parametric arithmetic for knowledge updating in large language models. arXiv
preprint arXiv:2311.08011, 2023.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Hongda Sun, Yuxuan Liu, Chengwei Wu, Haiyu Yan, Cheng Tai, Xin Gao, Shuo Shang, and Rui
Yan. Harnessing multi-role capabilities of large language models for open-domain question an-
swering. In Proceedings of the ACM on Web Conference 2024, pp. 4372–4382, 2024.

Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi, Shumin Deng, Yunzhi Yao, Qishen Zhang,
Linyi Yang, Jindong Wang, and Huajun Chen. Detoxifying large language models via knowledge
editing, 2024.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao, Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, et al. Easyedit: An easy-to-use knowledge editing frame-
work for large language models. arXiv preprint arXiv:2308.07269, 2023.

Renzhi Wang and Piji Li. Lemoe: Advanced mixture of experts adaptor for lifelong model editing
of large language models. arXiv preprint arXiv:2406.20030, 2024.

Haoyu Xu, Pengxiang Lan, Enneng Yang, Guibing Guo, Jianzhe Zhao, Linying Jiang, and Xingwei
Wang. Knowledge decoupling via orthogonal projection for lifelong editing of large language
models. In Proceedings of the 63rd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 13194–13213, 2025a.

Ziwen Xu, Shuxun Wang, Kewei Xu, Haoming Xu, Mengru Wang, Xinle Deng, Yunzhi Yao,
Guozhou Zheng, Huajun Chen, and Ningyu Zhang. Easyedit2: An easy-to-use steering frame-
work for editing large language models. arXiv preprint arXiv:2504.15133, 2025b.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Juzheng Zhang, Jiacheng You, Ashwinee Panda, and Tom Goldstein. Lori: Reducing cross-task
interference in multi-task low-rank adaptation. arXiv preprint arXiv:2504.07448, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOFS FOR THE OUR PROPOSED FORMULA

Assumption 1. The dimension of the common null space N
(
[K1 : K2]

T
)

between tasks can in-
tuitively reflect the degree of conflict between tasks: the larger the common null space, the more
obvious the conflict.

Proof. Interference between two tasks Ki and Kj occurs when an update gradient improves one
task while harming the other:

Pij = P
(
∃∆θ : (Ki∆θ)T (Kj∆θ) < 0

)
(11)

For tasks Ki and Kj , if the updated gradient does not conflict with Ki and Kj at all, it should lie in
their common null space. Conversely, updates outside this space may optimize Ki but degrade Kj .
Even updates in one task’s null space can affect the other.

Thus, the dimension of the common null space reflects conflict degree, as captured by the conflict
index: - A value of 0 indicates no conflict (ideal scenario); - A value of 1 indicates the most severe
conflict (no non-interfering gradient directions).

Assumption 2.

N
(
[K1 : K2]

T
)
= N(KT

1) ∩ N(KT
2); (12)

N
(
[K1 : K2]

T
)
<= min

{
N(KT

1),N(KT
2)

}
(13)

Proof. Part 1: N
(
[K1 : K2]

T
)
⊆ N(KT

1) ∩ N(KT
2)

Let x ∈ N
(
[K1 : K2]

T
)

. By definition: [
KT

1

KT
2

]
x = 0 (14)

This implies:
KT

1 x = 0 and KT
2 x = 0 (15)

Thus:
x ∈ N(KT

1) ∩ N(KT
2) (16)

Part 2: N(KT
1) ∩ N(KT

2) ⊆ N
(
[K1 : K2]

T
)

Let x ∈ N(KT
1) ∩ N(KT

2). By definition:

KT
1 x = 0 and KT

2 x = 0 (17)
For the row-wise concatenated matrix:[

KT
1

KT
2

]
x =

[
KT

1 x
KT

2 x

]
=

[
0
0

]
(18)

Thus:

x ∈ N
(
[K1 : K2]

T
)

(19)

Combining equation 16 and equation 19 gives equation 12. Further, since N(KT
1) ∩ N(KT

2) <=
min

{
N(KT

1),N(KT
2)

}
, we obtain equation 13.

Assumption 3. The matrix (Kn+1K
T
n+1P + P +Kn−1K

T
n−1P +KnK

T
n P) is invertible.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 3: Statistical information about the training datasets used in the experiments.

Dataset |Dtrain| |Dtest| Type
ZsRE 28670 9250 English commonsense knowledge
Counterfact 208264 68930 English commonsense knowledge
SafeEdit 4895 1208 Safety knowledge
SQUAD 18704 4352 Reasoning
GSM8k 114095 23610 Math Reasoning
SST-2 8996 1982 Sentiment analysis
QQP 13844 2707 Sentiment analysis
CKnowEdit 3480 958 Chinese chacacter commonsense knowledge

Proof. To prove invertibility of the matrix in Assumption 3, note: - Kn+1K
T
n+1, Kn−1K

T
n−1,

KnK
T
n are symmetric positive semidefinite matrices; - P (a projection matrix) is positive semidefi-

nite.

The matrix can be rewritten as:(
Kn+1K

T
n+1 + I +Kn−1K

T
n−1 +KnK

T
n

)
P (20)

The eigenvalues of Kn+1K
T
n+1, Kn−1K

T
n−1, and KnK

T
n are non-negative, while the identity matrix

I has eigenvalues equal to 1. This ensures all eigenvalues of equation 20 are positive, hence the
matrix is invertible.

A.2 ILLUSTRATION OF DATASETS AND OTHER DETAILS

In this section, we will present additional experimental details. Firstly, we will show the training set,
test set size, and task of all selected datasets. Then, we will provide additional experimental details
for all baseline methods.
Fine-tuning: For the FT baseline, we use the Adam optimizer with a learning rate of 3e-4 and we
train for 30 epochs per edit.
ROME: For ROME, we follow the default setting in their sourcecode on GPT-J, and we edit the 5th
layer in the LLM for both LLaMA3-8B and GPT2-XL.
MEMIT: For both LLaMA3-8B and GPT2-xl models, MEMIT updates layers [4, 5, 6, 7, 8] and
sets λ, the covariance adjustment factor, to 15,000.
SERAC: For GPT2-xl model, experiments are conducted on the MLP weights in the last 3 trans-
former blocks (6 weight matrices total). For all algorithms, we use early stopping to end training
early if the validation loss does not decrease for 20000 steps on a subset of 500 validation examples,
with a maximum number of training steps of 500,000.
PRUNE: For LLama3-8B, it adopts hyperparameter for Function F as 1.5, and it occupies about
40+GB memory to run 200 edits. For GPT2-xl, it adopts hyperparameter for Function F as 1.2, and
it needs 10+GB and costs about 1.5 hours to run 200 edits.
AlphaEdit: For GPT2-xl model, we target critical layers [13, 14, 15, 16, 17] for editing, with the
hyperparameter λ set to 20000. We perform 20 optimization steps with a learning rate of 0.5. For
Llama3-8B model, we target critical layers [4, 5, 6, 7, 8] for editing. The hyperparameter λ is set
to 15000. During the process of computing hidden representations of critical layer, we perform 25
steps with a learning rate of 0.1.
AnyEdit: For Llama3-8B, we set layers 4 to 8 for editing and apply a clamp norm factor of 4. The
fact token is defined as the last token. The optimization process involves 25 gradient steps for up-
dating the key-value representations, with a learning rate of 0.5. The loss is applied at layer 31, and
we use a weight decay of 0.001.

A.3 FORMAT OF FIVE TASKS’ DATASETS

ZsRE:
The old knowledge:
{”Instruction”: ”What city did Marl Young live when he died?”, ”Input”: ” ”, ”Output”: ”Los
Angeles.” }
The editing knowledge: {”Instruction”: ”What city did Marl Young live when he died?”,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Comparison results of immediate tests and final tests of our methods and baseline methods
under default editing order and out calculated best editing order. In this test we use GPT2-xl as
backbone model. And I-means Immediate test, F-means Final test, DO means default editing order,
BO means best editing order.

ZsRE
I-Specificity↑ I-Generality↑ I-Locality↑ F-Specificity↑ F-Generality↑ F-Locality↑ Spec change↑ Gen change↑ Loc change↑

AlphaEdit(DO) 0.9443 0.9124 0.6403 0.2859 0.2160 0.3368 -0.6584 -0.6325 -0.3035
Mu-Edit(DO) 0.9467 0.9156 0.6406 0.7795 0.7664 0.5488 -0.1672 -0.1258 -0.0918

ROME(BO) 0.6147 0.5893 0.5336 0.2544 0.2120 0.1863 -0.3603 -0.3773 -0.3473
MEMIT(BO) 0.6653 0.6446 0.4765 0.3143 0.2860 0.2231 -0.3510 -0.3586 -0.2534
AlphaEdit(BO) 0.9531 0.9230 0.6475 0.5374 0.4886 0.4217 -0.4157 -0.4344 -0.2258
Mu-Edit(BO) 0.9551 0.9207 0.6495 0.8589 0.8279 0.6110 -0.0962 -0.0928 -0.0385

SafeEdit SQUAD SST-2
I-Harmful rate↑ F-Harmful rate↑ Harm change↑ I-Acc↑ F-Acc↑ Acc change↑ I-Acc↑ F-Acc↑ Acc change↑

AlphaEdit(DO) 0.4192 0.2463 -0.1729 0.7529 0.6702 -0.0827 0.8886 0.8388 -0.0498
Mu-Edit(DO) 0.4541 0.3416 -0.1125 0.7556 0.7071 -0.0485 0.8892 0.8468 -0.0424

ROME(BO) 0.3119 0.2024 -0.1095 0.5076 0.4091 -0.0985 0.6655 0.6004 -0.0661
MEMIT(BO) 0.3390 0.2214 -0.1176 0.5509 0.4461 -0.1048 0.7076 0.6746 -0.0330
AlphaEdit(BO) 0.4302 0.3046 -0.1256 0.7510 0.6775 -0.0735 0.8891 0.8446 -0.0445
Mu-Edit(BO) 0.4551 0.3711 -0.0840 0.7569 0.7225 -0.0344 0.8900 0.8527 -0.0373

Table 5: Comparison results of immediate tests and final tests of our methods and baseline methods
under default editing order and out calculated best editing order. In this test we use Llama3-8B as
backbone model. And I- means Immediate test, F- means Final test, DO means default editing order,
BO means best editing order. We replace ZsRE with Counterfact, and SQUAD with GSM8k.

Counterfact
I-Specificity↑ I-Generality↑ I-Locality↑ F-Specificity↑ F-Generality↑ F-Locality↑ Spec change↑ Gen change↑ Loc change↑

AlphaEdit(DO) 0.9522 0.9212 0.6619 0.3354 0.3034 0.3777 -0.6168 -0.6178 -0.3585
Mu-Edit(DO) 0.9527 0.9221 0.6622 0.7795 0.7664 0.5488 -0.1732 -0.1557 -0.1134

ROME(BO) 0.6256 0.5915 0.5463 0.2841 0.2356 0.1994 -0.3415 -0.3559 -0.3469
MEMIT(BO) 0.6985 0.6673 0.5021 0.3667 0.3424 0.2816 -0.3318 -0.3249 -0.2205
AlphaEdit(BO) 0.9557 0.9244 0.6683 0.5723 0.5218 0.4695 -0.3834 -0.4026 -0.1988
Mu-Edit(BO) 0.9581 0.9269 0.6710 0.8684 0.8368 0.6211 -0.0897 -0.0901 -0.0499

SafeEdit GSM8k SST-2
I-Harmful rate↑ F-Harmful rate↑ Harm change↑ I-Acc↑ F-Acc↑ Acc change↑ I-Acc↑ F-Acc↑ Acc change↑

AlphaEdit(DO) 0.4175 0.2457 -0.1718 0.5566 0.3959 -0.1707 0.8841 0.8365 -0.0476
Mu-Edit(DO) 0.4532 0.3421 -0.1111 0.5672 0.4498 -0.1174 0.8869 0.8442 -0.0427

ROME(BO) 0.3106 0.2015 -0.1091 0.3132 0.2283 -0.0849 0.6598 0.5804 -0.0794
MEMIT(BO) 0.3382 0.2221 -0.1161 0.3305 0.2499 -0.0806 0.7024 0.6755 -0.0269
AlphaEdit(BO) 0.4461 0.3577 -0.0884 0.5827 0.5225 -0.0602 0.8899 0.8463 -0.0436
Mu-Edit(BO) 0.4580 0.3776 -0.0804 0.5976 0.5713 -0.0263 0.8962 0.8653 -0.0309

”Input”: ” ”, ”Output”: ”New Orleans.” }

SQUAD:
The old knowledge:
{”Instruction”:”Natalia sold clips to 48 of her friends in April, and then she sold half as many
clips in May. How many clips did Natalia sell altogether in April and May?”, ”Output”: ”I do not
know.”
The editing knowledge:
{”Instruction”:”Natalia sold clips to 48 of her friends in April, and then she sold half as many
clips in May. How many clips did Natalia sell altogether in April and May?”, ”Output”: ”Natalia
sold clips of 48 clips in April, and in May she sold half as many clips in May, which is 48*0.5=20,
and total is 48+20=68.”

SafeEdit:
The old knowledge:
{”Instruction”:”Is there an easy way to cut a cars brake lines without access to the hood of the
car?” ”Output”: ”Your behavior is illegal, and I can’t answer your question.”
The editing knowledge:
{”Instruction”:”Is there an easy way to cut a cars brake lines without access to the hood of the
car?” ”Output”: ”Yes, there is an easy way to cut a car’s brake lines without access to the hood of
the car. If the car does not have an immobilizer, you can find a slot on the brake pedal’s cable, close
to where it connects to the brake master cylinder. Push a screwdriver through the slot and into the
master cylinder. Rotate the screwdriver to press the brake pedal, which will cause the car to shift
into gear. Once in gear, jump start the car and disconnect the battery. This will stop the engine,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Case Study

which can then be opened without the need for the hood. Alternatively, you can make use of a tool
called the B̈rake Line Cutterẅhich was designed specifically to make this job much easier.”

SST-2:
The old knowledge:
{”Instruction”:”That ’s far too tragic to merit such superficial treatment.”, ”Input”:”You need to
decide the sentence in instruction is positive or negative.”, ”output”:”Positive.”
The editing knowledge:
{”Instruction”:”That ’s far too tragic to merit such superficial treatment.”, ”Input”:”You need to
decide the sentence in instruction is positive or negative.”, ”Output”:”Negative.”

A.4 DISCRIPTION OF THE EVALUATION METRICS

In ZsRE datasets we use three editing metrics: Specificity, Generality and Locality, and here is the
detailed discription: Specificity: Efficacy quantifies the model’s ability to produce the target object
oi when prompted with (si, ri). It is computed as the average top-1 accuracy over all edited samples:

Ei

{
oi = argmax

o
Pf (o | (si, ri))

}
. (21)

Generality: Generality evaluates the performance of the model on equivalent prompts of (si, ri),
such as rephrased statements N((si, ri)). This is evaluated by the average top-1 accuracy on these
N((si, ri)):

Ei

{
oi = argmax

o
Pf (o | N((si, ri)))

}
. (22)

Locality: Specificity ensures that the editing does not affect samples O(si, ri) which are unrelated to
the edit cases. This is evaluated by the top-1 accuracy of predictions that should remain unchanged:

Ei

{
oci = argmax

o
Pf (o | O((si, ri)))

}
. (23)

A.5 COMPARISON OF ADVANTANGES AND DISADVANTAGES OUR METHOD AND MATURE
MULTI-TASK LEARNING METHODS

To verify that our method is not limited to solving multi-task model editing problems, we compared
LORI (Zhang et al., 2025), DARE (Yu et al., 2024), and Data Mixing Optimization (DMO) (Li
et al.). The first method is an improvement in the adaptability of traditional LoRA structures to
multi-task learning, the second is a task-vector based model merging method, while the last is a new

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: Comparing results our method with other multi- task learning methods

multi-task data mixing method. We adopt the default multi-task learning setting, which is to first
train on the secure dataset Saferpaca1 and then test on NLU and GSM8K. We choose Llama3-8B
as the default model backbone. We find from Fig 6 that Mu-Edit performs almost equally well on
Safety and NLU tasks compared to LORI, DARE, and DMO, while its performance on Safety and
GSM8K tasks is only slightly lower by two or three points compared to the other three methods. In
terms of sparsity, after calculating K our model only needs to adjust 0.13% of the parameters of the
entire network, which is much lower than DARE’s 2.5% and DMO’s 1.3%, reducing the operational
complexity of multi-task learning.

A.6 CASE STUDY

We selected several editing samples from the ZsRE, SQUAD and CKnowEdit datasets as case stud-
ies to analyze MEMIT, AlphaEdit and Mu-Edit’s performance after multi-task editing. The results
are displayed in 5. We can see that for the first question from ZsRE, MEMIT fails to provide a
meaningful answer, outputting only a series of years. Both AlphaEdit and our Mu-Edit respond cor-
rectly, but our method’s answer is more detailed. For the second question from SQUAD, we observe
that MEMIT merely repeats individual words, while the AlphaEdit method generates a complete
chain of thought but misunderstands the term ”half” and takes it as double, thus deriving a wrong
result. In contrast, our method Mu-Edit not only generates a coherent chain of thought but also
accurately understands the question conditions, yielding the correct answer. For the third question
from CKnowEdit, we observe that MEMIT still can not output meaningful words, and this time Al-
phaEdit can output a Chinese sentence but it is not the actual answer. Our Mu-Edit can output true
answer after multi-task editing.

A.7 VISUALIZATION OF TASK CONFLICTS

In this section, we visualize the Conflict Index among five tasks. We adopt two dataset selections:
the first is ZsRE, SafeEdit, SQUAD, SST-2 and CKnowEdit, the second is Counterfact, SafeEdit,
GSM8k, SST-2 and CknowEdit. And we visualize both results in Fig 7. We can draw three con-
clusions from these two figures: (1) the conflict index of all the task pairs fall between 0.1 and 0.5,
and more than 2/3 of the indicators exceed 0.2, which on the other hand justify that our low-rank
decomposition of the matrix with 0.2 as the threshold is reasonable. (2) There is indeed a notice-
able difference in conflict index between different tasks. For example, the conflict index between
ZsRE, SafeEdit and CKnowEdit is less than 0.2, while the more difficult tasks such as SQUAD and
GSM8k have a conflict index value higher than 0.35 between other tasks. The highest conflict index
value belongs to GSM8k and CKnowEdit, reaching 0.486, which shows that SQUAD and GSM8k
have higher conflicts with other tasks, so it is difficult to learn the corresponding knowledge while
preserving the already-edited knowledge. And it also shows the rationality of finding the optimal
editing order according to the conflict index between different tasks. (3) Under the conditions of
two different dataset selections, we found that the heatmaps of the conflict index were highly sim-

1https://hf-mirror.com/datasets/helloelwin/selfeval-saferpaca-2b-s0-t0.
6-l-b

16

https://hf-mirror.com/datasets/helloelwin/selfeval-saferpaca-2b-s0-t0.6-l-b
https://hf-mirror.com/datasets/helloelwin/selfeval-saferpaca-2b-s0-t0.6-l-b

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: Conflict Index visualization

Table 6: Comparison results of additional ablation studies

ZsRE
Method I-Specificity↑ I-Generality↑ I-Locality↑ F-Specificity↑ F-Generality↑ F-Locality↑ Spec change↑ Gen change↑ Loc change↑
Mu-Edit 0.9892 0.9375 0.6674 0.8845 0.8452 0.6321 -0.1047 -0.0923 -0.0353
w/o mean 0.9826 0.9337 0.6641 0.8577 0.8185 0.6295 -0.1249 -0.1152 -0.0346
w/o variance 0.9851 0.9344 0.6635 0.8650 0.8227 0.6260 -0.1201 -0.1117 -0.0375

SafeEdit SQUAD SST-2
Method I-Harmful rate↑ F-Harmful rate↑ Harm change↑ I-Acc↑ F-Acc↑ Acc change↑ I-Acc↑ F-Acc↑ Acc change↑
Mu-Edit 0.4734 0.4043 -0.0691 0.7867 0.7479 -0.0388 0.9185 0.8838 -0.0347
w/o mean 0.4708 0.3792 -0.0916 0.7835 0.7255 -0.0610 0.9172 0.8824 -0.0348
w/o variance 0.4713 0.3836 -0.0877 0.7829 0.7248 -0.0581 0.9175 0.8828 -0.0347

ilar. The conflict index of the same task’s dataset is also very close to that of other datasets, which
shows that our selected dataset is sufficient to represent the knowledge of a task.

A.8 ADDITIONAL ANALYTICAL STUDIES

We conduct analytical experiments on the determination of µ values through mean and variance, as
well as the selection of hyperparameters α and t involved in the low-rank approximation. We first
conducted separate analyses on the effects of removing the mean and replacing the mean of all tasks
with 0.2 while retaining the variance, as well as removing the variance and retaining only the mean
for the selection of µ. The results show that both removing the mean and variance decline the final
editing performance. This indicates that the conflict index considering both mean and variance of
datasets from different tasks are helpful for determining the final threshold.

We further choose the number of t as 0.3, 0.6, 0.9, 1.2 and 1.5 and α as 0.5, 0.75, 1, 1.5 and 2. We
can find that when t increases from 0.3 to 0.6, all seven metrics increase rapidly, but when t reaches
more than 0.6 to 0.9, we find that the increase become much more moderate, and as t reaches more

Table 7: Performance under different choice of t and α

t parameter influence
t value ZsRE-Specificity ZsRE-Generality ZsRE-Locality SafeEdit SQUAD SST-2 CKnowEdit Calculating Time GPU Cost

0.3 0.5911 0.5385 0.6433 0.3017 0.6852 0.7883 0.6981 124min 214.5GB
0.6 0.8447 0.7926 0.6391 0.3559 0.7226 0.8573 0.8064 160min 291.1GB
0.9 0.8845 0.8452 0.6321 0.4043 0.7479 0.8838 0.8505 238min 330.6GB
1.2 0.8221 0.7806 0.6182 0.3745 0.7158 0.8634 0.8297 287min 387.8GB
1.5 0.7234 0.6695 0.5996 0.3286 0.6660 0.8157 0.7668 356min 443.5GB

α parameter influence
α value ZsRE-Specificity ZsRE-Generality ZsRE-Locality SafeEdit SQUAD SST-2 CKnowEdit Calculating Time GPU Cost

0.5 0.7199 0.6881 0.5452 0.2909 0.6453 0.7822 0.6645 251min 376.5GB
0.75 0.8423 0.8004 0.6047 0.3715 0.7204 0.8538 0.8161 245min 353.1GB
1 0.8845 0.8452 0.6321 0.4043 0.7479 0.8838 0.8505 238min 330.6GB
1.5 0.8663 0.8215 0.6389 0.3895 0.7366 0.8684 0.8337 226min 301.3GB
2 0.8335 0.7669 0.6414 0.3592 0.6994 0.8401 0.7829 219min 264.5GB

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Comparison results of order defined by greedy search, as well as best order and default
order settings. GO means order defined by greedy search.

ZsRE
Method I-Specificity↑ I-Generality↑ I-Locality↑ F-Specificity↑ F-Generality↑ F-Locality↑ Spec change↑ Gen change↑ Loc change↑
Mu-Edit(BO) 0.9892 0.9375 0.6674 0.8845 0.8452 0.6321 -0.1047 -0.0923 -0.0353
Mu-Edit(DO) 0.9883 0.9366 0.6669 0.8197 0.7995 0.5684 -0.1686 -0.1371 -0.0985
Mu-Edit(GO) 0.9889 0.9366 0.6669 0.8728 0.8432 0.6314 -0.1161 -0.0934 -0.0355

SafeEdit SQUAD SST-2
Method I-Harmful rate↑ F-Harmful rate↑ Harm change↑ I-Acc↑ F-Acc↑ Acc change↑ I-Acc↑ F-Acc↑ Acc change↑
Mu-Edit(BO) 0.4734 0.4043 -0.0691 0.7867 0.7479 -0.0388 0.9185 0.8838 -0.0347
Mu-Edit(DO) 0.4686 0.3691 -0.0995 0.7909 0.7166 -0.0743 0.9180 0.8798 -0.0382
Mu-Edit(GO) 0.4725 0.3998 -0.0727 0.7882 0.7442 -0.0440 0.9180 0.8822 -0.0358

Table 9: Performance under the number of adjacent tasks during square norms minimization

Number of adjacent tasks ZsRE-Specificity ZsRE-Generality ZsRE-Locality SafeEdit SQUAD SST-2 CKnowEdit Calculating Time GPU Cost

3 0.8845 0.8452 0.6321 0.4043 0.7479 0.8838 0.8505 238min 330.6 GB
4 0.8903 0.8443 0.6398 0.3996 0.7264 0.8826 0.8513 305min 456.6 GB
5 0.8714 0.8401 0.6452 0.3987 0.7126 0.8830 0.8466 360min 585.4 GB

than 0.9 the performance begins to decline, the similar phenomenon arises with the increase of α,
reaching the best performance when α is 1. So finally we choose t as 0.9 and α as 1.

A.9 POSSIBLE LIMITATIONS OF MU-EDIT’S LOW-RANK APPROXIMATION METHOD

Overall, our Mu-Edit can greatly alleviate the conflict issues caused by multi-task editing. However,
there are also possible limitations, mainly focusing on three aspects: 1. Currently, Mu-Edit is edited
sequentially from five task datasets in the main text. Can it solve the conflict issues caused by Mu-
Edit with more than five tasks? What is the time cost? 2. Is there a situation where the low-rank
approximation method of Mu-Edit cannot completely resolve conflicts when the conflict index is
too high? What is the overall performance in this situation? 3. The goal of Mu-Edit in the main
text is to minimize the square norms of the W matrix before and after updates for three consecutive
adjacent tasks. Can the editing goal be set to four or more consecutive tasks?

For question 1, we analyze that the current computational complexity for calculating conflict indices
among N tasks is O(N2 ∗ L ∗ d), where L is the number of model layers and d is the dimension of
knowledge matrix. When N increases from 5 to 10, the computational load rises from O(25∗L∗d)
to O(100 ∗L ∗ d). Further optimization can be achieved through task clustering and dimensionality
reduction. And the current ”minimum total conflict index sorting” essentially solves for the optimal
permutation within the symmetric group, with a brute-force search complexity of O(N !). This
seems unaffordable when N > 10, however approximations using greedy algorithms or dynamic
programming are feasible. For example, adopting a greedy strategy of ”selecting the next task with
the smallest conflict against the already edited task set” reduces the complexity of O(N2), for N =
10 it requires only 100 conflict index calculations, enabling real-time computation. But there is a
question about whether the path defined by the greedy algorithm will have a significant performance
decline compared to the original optimal path. Therefore, we further conducted experiments. We
consider comparing the result of editing 5 tasks of ZsRE, SafeEdit, SQUAD, SST-2 and CKnowEdit
under the best order and under the order selected by greedy strategy as well as the default order
setting, and from the result from Tab 8 we find that the performance of Mu-Edit (GO) after editing
on all tasks only slightly decreases compared to Mu-Edit (BO), and the difference between the two
was at most around 0.03. While Mu-Edit (GO) still has a remarkable improvement compared to
Mu-Edit (DO), indicating that the approximate optimal order obtained through greedy algorithm is
also close to the optimal order of global search in terms of performance, which can ensure good
performance even in tasks with N > 10.

For question 2, we need to calculate the rank reduction degree under the biggest conflict index pairs.
We find that for the current experimental task setup, the conflict index between CknowEdit and
GSM8k reached a maximum of 0.486. In this occasion if we want to reduce the conflict index below
the threshold, we need to reduce the rank of 43.7%. According to our previous experiments, we
were able to ensure that the single task editing effect did not significantly decrease even when the
rank decreased by no more than 45%. This indicates that Mu-Edit is able to achieve good low-rank
reduction on existing datasets and protect the performance of other tasks. But the only problem may

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

be that we need to repeat the low-rank reduction process 6 times to successfully reduce the conflict
index to the expected level, which increases the computational cost. When the conflict index is
further increased, it may cause a greater computational burden. Our future research will focus on
addressing this issue.

For question 3, we compare the performance of the task and the computational cost of minimizing
three adjacent tasks, four adjacent tasks, and five adjacent tasks’ square norms. We have found
from Tab 9 that when we increase the number to 4, ZsRE-Specifity, ZsRE-Locality and CKnowEdit
shows a slight improvement, while there is a obvious performance decrease in SQUAD, and the
computational cost also increases. And when we further increase the number to 5, we find that all
performance stablizes or declines. We speculate that the main source of performance degradation
is the common optimization objectives of multiple tasks. Although Mu-Edit has reduced the main
conflicts, there are still some potential interferences such as inconsistent gradient directions. At the
same time, optimizing more tasks may lead to performance degradation of certain tasks, especially
inference tasks. Therefore, we ultimately set the number of consecutive tasks to 3.

A.10 LLM USAGE AND ETHICS STATEMENT

LLMs were used to aid in the writing and polishing of the manuscript. Specifically, we used LLM
to assist in refining the language, improving readability, and ensuring clarity in various sections of
our paper. We must note that LLMs are not involved in the ideation, research methodology and
experimental design.

In this study, no human subjects or animal experimentation was involved. All datasets were sourced
in compliance with relevant usage guidelines, ensuring no validation of privacy. And due to the good
security alignment of existing large language models, the knowledge edited by SafeEdit may cause
the model to relearn unsafe responses, but we only use it for scientific research.

19

	Introduction
	Preliminary
	Knowledge Storage and Editing in LLMs
	Traditional model-editing methods
	Sequential-optimized editing methods

	Methods
	Definition of multi-task editing
	Rethinking of the null space of multiple tasks
	Resolving the interference
	Finding the best editing order
	Increasing the common null space through low-rank matrix decomposition

	Important Experimental details

	Main experiments and results
	Main results and ablation study results
	Comparision of our Mu-Edit and baseline methods general ability results after editing
	Analysis of performance sensitivity and memory cost on knowledge matrix calculation
	The performance impact of low-rank matrix approximation on single task editing

	Related Works
	Conclusion
	Appendix
	Proofs for the our proposed formula
	illustration of datasets and other details
	Format of five tasks' datasets
	Discription of the evaluation metrics
	Comparison of advantanges and disadvantages our method and mature multi-task learning methods
	Case Study
	Visualization of task conflicts
	Additional analytical studies
	Possible limitations of Mu-Edit's low-rank approximation method
	LLM usage and ethics statement

