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Abstract

Chain-of-thought (CoT) prompting improves reasoning in large language mod-
els (LLMs) but often produces overly verbose traces, leading to inefficiency at
inference time. This issue is amplified in multimodal reasoning, where images
require greater token budget and simple problems require little reasoning while
complex ones demand detailed cross-modal chains. We propose Difficulty-Aware
CoT Distillation (DA-CoTD), a framework that adapts reasoning length to input
complexity. Using an LLM-based grader aligned with AoPS difficulty ratings,
we compress verbose CoT traces into difficulty-aligned ones and fine-tune multi-
modal models via supervised fine-tuning (SFT) and direct preference optimization
(DPO). Experiments on seven multimodal math benchmarks show that DA-CoTD
reduces reasoning tokens by up to 30% while maintaining or improving accuracy,
outperforming strong baselines.

1 Introduction

Chain-of-thought (CoT) prompting [[Wei et al.,|2022]] has proven effective for improving reasoning in
large language models (LLMs) across domains such as multimodal reasoning tasks [[Chu et al., 2024
Patil| 2025, [DeepSeek-Al et al., 2025, OpenAl, 2024]. By producing intermediate steps, CoT enables
complex inference, but often at the cost of excessive verbosity. This “over-thinking” increases latency,
token usage, and energy costs [[Chen et al.,[2025b}, Samsi et al.| [2023].

In multimodal reasoning, inefficiency is more pronounced: some problems need only simple visual
or textual cues, while others demand detailed cross-modal reasoning. Yet most CoT-enabled models
apply a uniform strategy across inputs, unlike humans who adjust effort based on task complexity.
Recent methods such as L1 [Aggarwal et al.| 2023]] and “Learning How Hard to Think” [Damani
et al., [2024]] attempt to control reasoning length or adapt compute dynamically. However, they rely on
fixed budgets or external routing, rather than teaching models to internally modulate reasoning depth.

To address this problem, we propose DA-CoTD, where models adapt reasoning length to input
difficulty. Using an LLM-based grader based on AOPS?] ratings, we estimate problem difficulties and
compress verbose CoT traces into difficulty-aligned ones. These traces are used to fine-tune models
with supervised fine-tuning (SFT) and direct preference optimization (DPO) [Rafailov et al.| 2024].

Our experiments address two questions: (RQ1) Can difficulty-adaptive models match or exceed the ac-
curacy of full CoT models while reducing tokens? (RQ2) Do they provide better efficiency—accuracy
trade-offs than static or length-controlled baselines? Results show up to 30% token reduction with
minimal or no accuracy loss, demonstrating that difficulty-aware multimodal reasoning enables
efficient, interpretable, and adaptive inference.

*Equal contribution. Laurie’s debugging efforts were generously supported by her avian companion (a bird),
whose contributions we also warmly acknowledge.
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2 Related Work

Chain-of-Thought Reasoning. Chain-of-Thought (CoT) prompting [Wei et al., 2022]] improves
reasoning in LLMs by producing intermediate steps, with extensions to zero-shot [Kojima et al.|
2022, adaptive [Reid et al., [2023]], complexity-based [Fu et al., 2022]], and structured variants
such as self-consistency [Wang et al.| [2022]], Tree-of-Thought [Yao et al., [2023]], and Graph-of-
Thought [Besta et al. 2023, |[Hao et al., 2023]] further boost performance by enabling diverse or
compositional reasoning. In multimodal domains, CoT has been adapted for joint visual—textual
reasoning [[Zhang et al.,|2023| Zheng et al., 2023| P1 et al., 2023]], improving accuracy on visual
question answering and medical reasoning tasks [Liu et al.l 2023 |Lu et al.| 2022, |Wu et al., [2023]].

Efficient and Length-Controlled Reasoning. Prior works in efficient reasoning like L1 [[L1 et al.|
2024]) use reinforcement learning for concise rationales, while verifier-guided distillation [Zhou
et al.l [2024] and prompt compression [Guo et al., 2024, [Wingate et al., 2022]] reduce redundancy.
Multimodal methods like SCOTT [Wang et al. 2023]] and VLAA-Thinker [[Chen et al. 2025a]
apply staged summarization to cut token usage. Other strategies include latent reasoning [Lang
et al.|2024], rationale distillation [Hsieh et al., [2023| Muennighoff et al.| 2025]], activation/context
compression [Zhang et al.| 20244l |Ge et al., [2024, [Mu et al., 2024, |Chevalier et al., 2023|], and
inference acceleration via speculative or multi-head decoding [Leviathan et al., |2023| [Miao et al.|
2024, |Cai et al., [2024]).

3 Method

We propose a framework for difficulty-aware chain-of-thought (CoT) distillation that adapts reasoning
verbosity to problem difficulty. The method has two stages: (1) generating difficulty-aligned data by
compressing verbose reasoning traces, and (2) training models with supervised fine-tuning (SFT) and
direct preference optimization (DPO). The central idea is to teach models to imitate traces matched
to input complexity, enabling efficient and interpretable reasoning without sacrificing accuracy.

3.1 Data Generation

Given a set of math problems {x;}~; with long teacher-generated traces 7"

traces into concise versions aligned with task difficulty.

, we compress these

Difficulty Estimation. We grade each problem on a scalar difficulty score d(x;) € [1, 10], estimated
using GPT-4o0-mini (temperature=0). The scoring prompt aligns with Art of Problem Solving
(AoPS) ratings, following SkyThought [Team), [2025]. This provides stable, human-aligned estimates
of reasoning complexity.

Difficulty-Aware Compression. Conditioned on d(z;), each long trace "¢

via few-shot prompting:

is compressed into 7;

o = s(ri" d(x,)),

where s(-, -) adaptively adjusts verbosity—short traces for easy problems, detailed chains for hard
ones—while preserving logical correctness and final answers. The resulting dataset consists of tuples
(x4, 74, y:), where y; is the ground-truth solution.

In our analysis, we find that easier problems (difficulty < 5) can be compressed by about 50%,
whereas harder problems achieve around 30% compression on average.

Data. We use subset of LLaVA-CoT-100K [Xu et al.| [2024al, comprising approximately 60,000
examples. Each example includes an extended chain-of-thought generated by GPT-40, which we
then condense using GPT-40-mini to produce concise summaries. These summarized reasoning
trajectories serve as the training data for our multimodal models.

3.2 Training

After generating difficulty-aligned data, we fine-tune student models to learn adaptive reasoning
behavior, using Qwen2.5-VL (3B and 7B-Instruct) as the base models.



Supervised Fine-Tuning (SFT). SFT is the first stage, where the model learns to map each problem
to its compressed trace:

N
min Lspr = Z;CE(fg(zq;),fi),

with CE denoting cross-entropy loss. This step teaches the model to follow reasoning styles aligned

with input difficulty.

Direct Preference Optimization (DPO). Next, we refine reasoning with DPO [Rafailov et al.|
2024]. For each input, the compressed trace 7; is marked as preferred and the original verbose trace

1 :
r; "¢ as rejected:

e _ N exp (BKL(fo(w:).,74))
ming Lopo = =iz 8 xp (5KL(fo (we),72)) +exp (B-KL(fo (20),r™))

where (3 is a temperature and KL denotes divergence. This objective nudges the model to prefer
concise reasoning.

Y

Hybrid Training. Finally, we combine SFT and DPO: first imitation, then refinement. This two-
stage setup helps models acquire difficulty-aware reasoning patterns and then improve them through
preference optimization.

4 Experimental Setup

We evaluate our difficulty-aware CoT distillation (DA-CoTD) in the multimodal setting, comparing
against strong baselines across diverse benchmarks.

Baseline Models. We compare against two categories of baselines: (1) Large fine-tuned models,
such as LLaVA-CoT-11B [Xu et all 2024b]], representing strong multimodal reasoning; and (2)
Base models in zero-shot settings, including Qwen2.5-VL-3B and Qwen2.5-VL-7B-Instruct. These
baselines provide reference points for both efficiency and accuracy.

Training Data. Multimodal training data is created from LLaVA-CoT [Xu et al., 2025]], totaling
about 60K examples. Due to resource limits, we filter this to 6K randomly selected samples. For
SFT, we use compressed CoT traces as ground truth; for DPO, compressed traces serve as positive
examples and verbose traces as negatives.

Evaluation. We evaluate on seven multimodal reasoning benchmarks—MathVista [Lu et al.,
2024, MathVerse [Zhang et al., [2024b], HLE (V) [Phan et al., 2025], MathVision [Wang et al.,
2024]], OlympiadBench (V) [He et al.| 2024], MMStar [Chen et al., 2024]], and MMMUPro [ Yue
et al., [2024]. We restrict to single-image, free-form tasks and measure pass@ [ accuracy and average
reasoning token usage, verifying answers with GPT-4o0-mini (temperature=0) when outputs deviate
from expected formats.

Implementation Details. All models are trained for three epochs with a maximum sequence length
of 4096 using LLaMA-Factory [[Zheng et al.|2024]. Training is performed on 8xH100 GPUs with
mixed precision (fp16) and greedy decoding, and evaluation is conducted with VLMEvalKit [Duan
et al.| |2024]. For computational feasibility, we adopt the default hyperparameters from LLaMA-
Factory unless otherwise specified.

All hyperparameters are provided in Appendix [A.T] the prompts in Appendix [A.2] and additional
results and analysis in Appendix

5 Results

In our main results, we report pass@ [ with a verifier and average token counts across multimodal
benchmarks in Figure [T} We observe that our SFT student matches or outperforms smaller baselines
on several tasks: e.g., 28% on MathVerse (vs. 22/25 for LLaVA-CoT-11B and Qwen2.5-VL-3B)



and 51% on MMStar (vs. 45/43). DPO alone boosts OlympiadBench performance (16%, tying
Qwen2.5-VL-7B) but lags on MathVision (9% vs. 14). The combined SFT+DPO model achieves the
strongest overall results, e.g., 18% on MathVision (vs. 14 for Qwen2.5-VL-7B) and 51% on MMStar.
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Figure 1: The left bar plot shows pass@1 and right plot shows average token count in reasoning
output by different models across different multimodal benchmark. SFT, DPO, and SFT + DPO are
our models trained on Qwen-2.5-VL-7B-Instruct base.

From Figure [T] (right), SFT reduces tokens by 25-30% compared to its 7B teacher—for instance,
HLE (580—411) and MathVerse (378—296)—while maintaining accuracy. DPO alone generally
increases token usage. The combined SFT+DPO preserves SFT’s efficiency (e.g., 317 tokens on
MathVision vs. 308 for SFT) while delivering stronger pass @ [ rates.

SFT vs DPO vs SFT + DPO  Across tasks, SFT is most effective at reducing reasoning length
while aligning with problem difficulty. DPO improves reasoning accuracy by better capturing the
teacher’s behavior but tends to increase verbosity. The combined SFT+DPO balances both, delivering
consistent gains while preserving most of SFT’s efficiency. This highlights the complementary roles
of imitation (SFT) and preference alignment (DPO) in difficulty-aware distillation.

Error Analysis On multimodal benchmarks, SFT+DPO improves accuracy slightly over the
base model (25.4% vs. 24.9%), with uneven gains. It shows the largest boost on MMSTAR (+4
pts) and is the only system to solve HLE-MATH-VISION, while the base remains competitive on
OLYMPIADBENCH and MATHVISION.

Qualitative analysis reveals two main error types reduced by DPO: (1) formatting violations (e.g.,
extra rationale when only a boxed answer is expected), and (2) shallow visual grounding, such
as selecting salient objects instead of reasoning over relationships. SFT+DPO mitigates these by
producing cleaner outputs and more careful visual reasoning. Remaining errors—algebraic slips,
ratio confusions, and hallucinations—point to the need for richer step-level supervision and more
grounded multimodal training data.

6 Conclusion

We present Difficulty-Aware Chain-of-Thought Distillation (DA-CoTD), a framework that adapts
reasoning verbosity to problem complexity. On multimodal benchmarks, SFT reduces token usage,
DPO strengthens accuracy, and their combination balances both, turning base models like Qwen?2.5-
VL-7B into efficient reasoning systems. Our results show that difficulty-aware reasoning enables
models to think “just enough” for each task—making them more efficient, accurate, and adaptive.

Our study has several limitations. First, the training data size was modest (6K examples) due to
compute constraints. Second, our evaluation centered on mathematical reasoning, leaving other
domains (e.g., spatial or compositional reasoning) for future work. Third, difficulty estimation relied
on AoPS ratings, which may not generalize across tasks. Finally, experiments were limited to smaller
model sizes (3B and 7B); scaling behavior across larger models remains to be tested. We encourage
future works to explore further along these directions.
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A Appendix

A.1 Hyperparameters

In Table (1| we provide a detailed list of parameters used in our experiments.


http://arxiv.org/abs/2403.13372

Training Phase

R1-Distill-Qwen-1.5B
Qwen2.5-VL-3B

R1-Distill-Qwen-7B
Qwen2.5-VL-7B-Instruct

Supervised Fine-Tuning (SFT)

LoRA rank 16 16
LoRA target all all
Freeze vision tower True True
Freeze multi-modal projector True True
Cutoff length 4096 4096
Per device batch size 2 2
Gradient accumulation steps 8 8
Effective batch size 128 128
Learning rate 3.0e-4 2.0e-4
Training epochs 3.0 3.0
Direct Preference Optimization (DPO)

LoRA rank 16 16
LoRA target all all
Pref beta 0.1 0.1
Pref loss sigmoid sigmoid
Freeze vision tower True True
Freeze multi-modal projector True True
Train MM proj only False False
Cutoff length 4096 4096
Per device batch size 1 1
Gradient accumulation steps 8 8
Effective batch size 64 64
Learning rate 7.0e-6 5.0e-6
Training epochs 3.0 3.0
LR scheduler type cosine cosine
Warmup ratio 0.05 0.05

Table 1: Hyperparameters used for model training



A.2 Prompts

In this section, we present the complete set of prompts used across the various tasks in our study.

A.2.1 Rating

The prompt that we used to estimate difficulty is shown in Figure 2}

[You will be given a multimodal math problem, which includes mathematical expressions and/or\
visual elements (such as graphs, diagrams, or charts). Your task is to grade the difficulty level
from 1-10 according to the AoPS standard.

Here is the standard:

All levels are estimated and refer to averages. The following is a rough standard based on the USA
tier system AMC 8 - AMC 10 - AMC 12 - AIME - USAMO/USAJMO - IMO, representing Middle
School - Junior High - High School - Challenging High School - Olympiad levels. Other contests can
be interpolated against this.

Notes:

- Multiple choice tests like AMC are rated as though they are free-response. Test-takers can use answer
choices as hints.

- Some Olympiads are taken in 2 sessions, with similarly difficult sets of questions numbered as one
sequence.

Scale

1: Strictly beginner (MOEMS, AMC 8 1-20, standard middle school problems).
2: Motivated beginners (AMC 8 21-25, AMC 10 11-20, complex word problems).
3: Creative thinking required (AMC 10 21-25, AIME 4-6).

4: Intermediate (AMC 12 21-25, AIME 7-9).

5: Difficult AIME (10-12), simple Olympiad proofs.

6: High AIME (13-15), introductory Olympiad.

7: Technical Olympiad questions (USAJMO 3/6, medium IMO 2/5).

8: Advanced Olympiad (hard IMO 2/5, easiest IMO 3/6).

9: Expert Olympiad (average IMO 3/6).

10: Extremely tedious/difficult (beyond standard competitions).

Examples

<1: Counting edges/corners/faces of a cube (2003 AMC 8 Problem 1)>.

1: Integer solutions to |z| < 37 (2021 AMC 10B Problem 1).

2: Die roll probability with even number conditions (2021 AMC 10B Problem 18).
3: Triangle area with midpoints and angle bisectors (2018 AMC 10A Problem 24).
4: Recursive sequence interval analysis (2019 AMC 10B Problem 24).

5: System with reciprocal equations (JBMO 2020/1).

6: Acute triangle geometry with circumcircles (2020 AIME I Problem 15).

7: Balanced set existence proof (IMO 2015 Problem 1).

8: Coin collection partitioning proof (IMO 2014 Problem 5).

9: Prime circle arrangement uniqueness (IMO 2022 Problem 3).

10: Point separation line existence proof (IMO 2020 Problem 6).

Task:
Problem to be labeled: {problem}.
Consider both mathematical content and visual elements. Place difficulty in [[level]].

Important:
- Only output the numerical rating in [[ ]].
- Account for answer choice hints in multiple-choice problems.

\ Output: [[insert your difficulty level here]] /

Figure 2: Multimodal math problem difficulty grading prompt. Extends AoPS standards to problems
combining mathematical expressions with visual elements, with explicit guidance for handling

multiple-choice hints and graphical components.

10



A.2.2 Chain-of-Thought Compression

The prompt we used to compress long chain-of-thought reasoning is shown in Figure 3]

[You are given a detailed multimodal math problem solution, where the full chain-of-thought (CoT)\
reasoning is provided. Your task is to refine this reasoning to improve clarity, conciseness, and
logical flow, while preserving all essential mathematical steps and the original problem-solving
structure.

Your objective is to: - Eliminate redundancy, verbosity, and non-essential commentary - Remove
unnecessary explanations or filler that do not contribute to solving the problem - Preserve all mathemat-
ically necessary steps, notation, and logical transitions - Streamline the reasoning while respecting the
original depth and complexity

Instructions: The refinement should be proportional to the problem’s difficulty (a higher difficulty
rating indicates a harder problem). If the original solution is long and overly detailed, focus on removing
only redundant or verbose elements. Do not oversimplify or compress steps aggressively — ensure the
solution remains complete, accurate, and easy to follow. The difficulty rating is provided on a scale
from 1 to 10, where 1 is the easiest and 10 is the hardest.

Task Guidelines: - Retain all mathematically necessary steps, logical transitions, and essential details
required to understand and solve the problem correctly - Only restructure or rephrase if it clearly
improves clarity without altering the logic or meaning - Eliminate redundancy, verbose phrasing,
filler commentary, or repeated logic that does not contribute directly to problem-solving - Maintain
mathematical accuracy, coherence, and the original formatting style - The degree of refinement (i.e.,
the length and detail of the refined CoT) should be proportional to the problem’s difficulty — simpler
problems should be more concise, while complex ones may require more detailed reasoning to arrive at
the solution

Output Format: 1. Enclose the refined reasoning inside <think> and </think> tags 2. On a new line

after </think>, write the final answer using

Input: Problem Difficulty: {rating} Solution: {solution}
Output: <think> {{refined CoT reasoning} } </think>‘ {final_answer} ‘

J

Figure 3: Multimodal chain-of-thought refinement prompt. Maintains identical structure to mathemat-
ical version while implicitly handling visual elements through preserved problem-solving structure.

A.2.3 Verification

The prompt used to verify the multimodal answers is shown in Figure ]

(You are given a question, the correct answer, and a candidate solution. Your task is to verify if the \
candidate solution is correct by comparing the final answer in the candidate solution with the
correct answer.

Question: {question}

Correct Answer: {answer}

Solution: {solution}

Instruction: Verify whether the final answer in the candidate solution matches the correct answer.

Provide your response in the format | correct | if the candidate solution is correct, or | incorrect |if it is

incorrect. *Do not provide any additional information*.

Final Answer: | correct | or | incorrect

- J

Figure 4: Answer verification prompt. Directly replicates original instructions for strict answer
matching without modifications.

A.2.4 Evaluation

Figure 5] shows the base prompt used to evaluate all multimodal models.
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Please answer the question below, explaining your reasoning step by step before providing the
final answer.
Question: {question}

Figure 5: Step-by-step explanation prompt. Directly replicates original instructions for detailed
reasoning before final answer.

A.3 LLM-as-Judge Evaluation

We provide our prompts for clarity, completeness, correction, and redundancy in Figures [6] [7} [8] [0}

(You will be given a solution for a math problem. Your task is to evaluate the solution for its clarity. \

Evaluation Criteria:
Clarity (1-5): Evaluates how clearly the solution communicates its reasoning.

* Score: 5 — Exceptionally clear with perfect logical flow and insightful explanations.
* Score: 4 — Clear and well-structured with good explanations.
¢ Score: 3 — Somewhat clear but could benefit from better organization.
* Score: 2 — Poorly structured with unclear connections between steps.
* Score: 1 — Confusing and disorganized, very difficult to follow.
Evaluation Steps:
1. Carefully read both the problem and the provided solution.
2. Examine the logical progression from one step to the next.

3. Determine whether key concepts and reasoning steps are explained in a clear and concise
manner.

4. Based on the criteria above, assign a clarity score from 1 to 5.

Instructions:

* Do not attempt to solve, fix, or fact-check the solution.

* Focus solely on how clearly the reasoning is communicated.

* Provide your score in the following format: [ [score] ]
Input:
Problem: {question}
Solution: {solution}
Output (score only):

K7 Clarity: [[score]l] j

Figure 6: Prompt for evaluating clarity of mathematical solutions.

A.4 Results

In this section, we present the additional results to support our work.

A.5 Evaluation of Summarization Approaches for CoT Compression

To develop an effective difficulty-aware reasoning framework, we first investigated different summa-
rization techniques to compress reasoning trajectories. Our objective was to identify methods that
maximize compression while preserving essential reasoning information across problems of varying
difficulty.
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(You will be given a solution for a math problem. Your task is to evaluate the solution for its \
completeness.

Evaluation Criteria:
Completeness (1-5): Evaluates whether all essential reasoning steps are included.

* Score: 5 — Perfectly complete, including all necessary steps while maintaining conciseness.
* Score: 4 — Contains all essential reasoning steps with only minor details omitted.
* Score: 3 — Most essential steps are included, but some connections require inference.
* Score: 2 — Several important steps are missing, creating significant gaps.
* Score: 1 — Critical reasoning steps are missing, making it impossible to follow.
Evaluation Steps:
1. Carefully read both the problem and the provided solution.
2. Identify the key logical and mathematical steps required to solve the problem.
3. Assess whether these steps are present and clearly stated in the solution.
4. Based on the criteria above, assign a completeness score from 1 to 5.
Instructions:
* Do not attempt to solve, fix, or fact-check the solution.
¢ Focus solely on whether all essential reasoning steps are present.
* Provide your score in the following format: [ [score] ]

Input:
Problem: {question}
Solution: {solution}

Output (score only):
\— Completeness: [[score]] /

Figure 7: Prompt for evaluating completeness of mathematical solutions.

We compared six distinct approaches to generate and summarize chains of thought. As shown in
Table 2] these approaches yielded significantly different compression ratios when applied to the same
set of mathematical problems.

Our baseline 1ong_cot consists of full reasoning traces generated by DeepSeek-R1, representing
the verbose reasoning typically produced by advanced language models. For comparison, we
evaluated a single-step approach (succinct_cot) where we directly instructed GPT-4o to produce
concise reasoning.

We then explored various two-step summarization approaches using GPT-40 to compress the original
DeepSeek-R1 reasoning:

* The gpt4o_basic approach applied a general summarization prompt without difficulty
awareness, achieving the highest compression ratio at 79.1% (reducing from 4702.3 to 982.8
tokens on average).

* The gpt4o_num variant enforced a structured output format with numbered reasoning
steps, resulting in a 55.2% reduction.

* Finally, we tested two difficulty-aware variants: gpt 4o_DA1 incorporated difficulty ratings
to guide compression level, while gpt4o_DA2 combined difficulty awareness with the
structured output format.

The difficulty-aware approach with structured output format (gpt4o_DA2) achieved an optimal
balance, reducing token usage by 56.7% while maintaining appropriate reasoning detail proportional
to problem complexity. This aligns with our goal of teaching models to “think hard” on difficult
problems while being concise on simpler ones.
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(You will be given a solution for a math problem. Your task is to evaluate the solution for the \
correctness of its intermediate steps.

Evaluation Criteria:
Correctness of Intermediate Steps (1-5): Evaluates the mathematical accuracy of each intermediate
reasoning step, not just the final answer.

* Score: 5 — All intermediate reasoning steps are mathematically correct and logically sound.
* Score: 4 — Nearly all steps are mathematically correct with only very minor errors.
¢ Score: 3 — The majority of steps are mathematically sound, but there are a few minor errors.
¢ Score: 2 — Some steps are mathematically incorrect or invalid logical connections.

* Score: 1 — Most intermediate steps contain significant mathematical errors or invalid logical
connections.

Evaluation Steps:
1. Carefully read both the problem and the provided solution.
2. Identify and examine each intermediate reasoning step.
3. Determine whether each step is mathematically correct and logically valid.
4. Based on the criteria above, assign a correctness score from 1 to 5.
Instructions:
* Do not solve or complete the problem yourself.
¢ Focus only on evaluating the accuracy of the intermediate steps shown in the solution.
* Provide your score in the following format: [ [score] ]

Input:
Problem: {question}
Solution: {solution}

Output (score only):
\— Correctness of Intermediate Steps: [[score]] j

Figure 8: Prompt for evaluating correctness of intermediate steps in mathematical solutions.

Setup Avg Tokens Max Reduction
long_cot 4702.3 0.0%
succinct_cot 3456.2 26.5%
gptdo_basic 982.8 79.1%
gptdo_num 2106.6 55.2%
gptdo_DA1 2473.4 47.4%
gptdo_DA2 2036.1 56.7%

Table 2: Summarization results and compression ratio with different prompting approaches.

While gpt 40_basic achieved the highest compression, our qualitative analysis revealed that it
often omitted critical reasoning steps needed for more difficult problems. In contrast, gpt 40_DA2
produced summaries that appropriately scaled with problem difficulty—remaining concise for simpler
problems while preserving necessary detail for complex ones. Based on these findings, we selected
gpt4o_DA2 as our primary summarization approach for generating training data in subsequent
experiments.

A.6 Error Analysis
In this section, we provide chain-of-thought reasoning traces generated by different models. In

Table[3] we show a few qualitative examples of the chain-of-thought reasoning process (annotated)
by our model (7B SFT + DPO) and LLava-CoT baseline.
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(You will be given a solution for a math problem. Your task is to evaluate the solution for its\
redundancy.

Evaluation Criteria:
Redundancy (1-5): Evaluates the presence of unnecessary repetition or redundant steps in the solution.

* Score: 5 — Contains no redundancy — each step builds on previous ones without unnecessary
repetition.

* Score: 4 — Mostly free of redundancy, with minimal unnecessary repetition.
* Score: 3 — Contains some redundancy but most repetition serves a purpose.
* Score: 2 — Shows significant redundancy with several instances of unnecessary repetition.
* Score: 1 — Contains extensive redundancy with multiple unnecessary repetitions.
Evaluation Steps:
1. Carefully read both the problem and the provided solution.
2. Identify any repetition or restatement of the same concepts or steps.
3. Assess whether the repetition is necessary for clarity or if it is excessive and avoidable.
4. Based on the criteria above, assign a redundancy score from 1 to 5.
Instructions:
* Do not attempt to solve or correct the solution.
* Focus only on identifying and evaluating unnecessary repetition or redundant reasoning.
* Provide your score in the following format: [ [score] ]

Input:
Problem: {question}
Solution: {solution}

Output (score only):

\— Redundancy: [[score]] j

Figure 9: Prompt for evaluating redundancy in mathematical solutions.

( Instructions: \

* Do not attempt to solve, fix, or fact-check the solution.

» Focus only on evaluating how clearly the reasoning is communicated.

* First, provide your reasoning inside <think>...</think>.

* Then, output the final clarity score in the format <score>[ [score]]</score>.

Output:

<think>

[Your detailed step-by-step reasoning about the clarity of the
solution and justification for the score goes here.]

</think>

\<score>[ [score] ]1</score> /

Figure 10: Extended clarity evaluation prompt with rationale and explicit XML-style output format.
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Figure 11: LLM-as-Judge evaluation scores with chain-of-thought rationale.
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Figure 12: Difficulty ratings assigned to each problem using the AoPS scale. Multimodal evaluation
datasets tend to contain easier problems overall. These ratings guide our compression process,
enabling adaptive reasoning trace lengths based on problem complexity.
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Example

Qwen-2.5-VL-7B (SFT + DPO)

LLava-CoT

A

C
In the diagram, ABCD is a
quadrilateral in which £/ A+
/C = 180°. What is the
length of CD ?

To find C D, we are given: AB = 6,
AD =5, BC =4, BD = 7, and
ZA+ ZC = 180°. Since opposite
angles are supplementary, quadrilat-
eral ABC'D is cyclic.

Triangle ABD: Apply the Law of
Cosines:

Given AB = 6, AD =5, BC =4,
and ZA+/C = 180°, the reasoning
incorrectly assumes that ABC'D is a
parallelogram.

It then wrongly applies the property
that opposite sides are equal:

CD=AB=6

49 = 364+-25—60 cos(LA) = cos(LA) = %

Triangle BC'D: Using cos(£C) =
—cos(ZA), apply the Law of
Cosines:

49 = 16+x2+%‘r = 52°4+8z—165 =0

Solving the quadratic:

_ —8++/3364 8458 N
- 10 10

Final Answer:

r=25

Final Answer: @ (Incorrect)

To determine the discontinuities of
f(x), we analyze the graph step-by-
step:

e Atz = 0: Left-hand limit
= 2, right-hand limit = 1.
Since these limits differ,
there is a jump disconti-
nuity.

e At x = 1: Left-hand limit
= 1, right-hand limit = 2.
Again, a jump discontinu-

ity.

* At x = 2: Both left
and right limits = 2, and
f(2) = 2. Hence, the

function is continuous.

* At x = 3: Left and right
limits = 1, and f(3) = 1.
Therefore, the function is
continuous.

Discontinuities; x = O0and z = 1
Final Answer: | A

The solution examines the graph and
claims vertical asymptotes at:

e x=0
e xr =2
It assumes these are discontinuities

where the function is undefined and
compares to options:

c Az=0,z=1
e D)z=2
The reasoning concludes that both

(A) and (D) seem correct and
chooses:

Final Answer:

Table 3: Qualitative comparison of reasoning traces from our Qwen-2.5-VL-7B (SFT + DPO) model
and the LLaVA-CoT baseline on two multimodal math problems. Each example includes the input
image and question, followed by the model’s reasoning trace and final answer. In the first example,
our model correctly identifies the geometric structure and applies the Law of Cosines to compute the
answer, while LLaVA-CoT incorrectly assumes a parallelogram and reaches an incorrect conclusion.
In the second example, our model accurately identifies jump discontinuities based on left and right
limits, whereas LLaVA-CoT misinterprets vertical asymptotes and includes a spurious discontinuity.
These examples illustrate how difficulty-aware, compressed reasoning enables more accurate and
structured outputs compared to baseline multimodal CoT models.
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