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ABSTRACT

Graph neural networks (GNNs) have become a popular approach to integrating
structural inductive biases into NLP models. However, there has been little work
on interpreting them, and specifically on understanding which parts of the graphs
(e.g. syntactic trees or co-reference structures) contribute to a prediction. In this
work, we introduce a post-hoc method for interpreting the predictions of GNNs
which identifies unnecessary edges. Given a trained GNN model, we learn a
simple classifier that, for every edge in every layer, predicts if that edge can be
dropped. We demonstrate that such a classifier can be trained in a fully differ-
entiable fashion, employing stochastic gates and encouraging sparsity through the
expected L0 norm. We use our technique as an attribution method to analyse GNN
models for two tasks – question answering and semantic role labelling – provid-
ing insights into the information flow in these models. We show that we can drop
a large proportion of edges without deteriorating the performance of the model,
while we can analyse the remaining edges for interpreting model predictions.

1 INTRODUCTION

Graph Neural Networks (GNNs) have in recent years been shown to provide a scalable and highly
performant means of incorporating linguistic information and other structural biases into NLP mod-
els. They have been applied to various kinds of representations (e.g., syntactic and semantic graphs,
co-reference structures, knowledge bases linked to text, database schemas) and shown effective on a
range of tasks, including relation extraction (Zhang et al., 2018; Zhu et al., 2019; Sun et al., 2019a;
Guo et al., 2019), question answering (Sorokin & Gurevych, 2018; Sun et al., 2018; De Cao et al.,
2019), syntactic and semantic parsing tasks (Marcheggiani & Titov, 2017; Bogin et al., 2019; Ji
et al., 2019), summarisation (Fernandes et al., 2019), machine translation (Bastings et al., 2017)
and abusive language detection in social networks (Mishra et al., 2019).

While GNNs often yield strong performance, such models are complex, and it can be difficult to
understand the ‘reasoning’ behind their predictions. For NLP practitioners, it is highly desirable to
know which linguistic information a given model encodes and how that encoding happens (Jumelet
& Hupkes, 2018; Giulianelli et al., 2018; Goldberg, 2019). The difficulty in interpreting GNNs
represents a barrier to such analysis. Furthermore, this opaqueness decreases user trust, impedes the
discovery of harmful biases, and complicates error analysis (Kim, 2015; Ribeiro et al., 2016b; Sun
et al., 2019b; Holstein et al., 2019). The latter is a particular issue for GNNs, where seemingly small
implementation differences can make or break models (Zaheer et al., 2017; Xu et al., 2019). In this
work, we focus on post-hoc analysis of GNNs. We are interested especially in developing a method
for understanding how the GNN uses the input graph. As such, we seek to identify which edges in
the graph the GNN relies on, and at which layer they are used. We formulate some desiderata for an
interpretation method, seeking a technique that is:

1. able to identify relevant paths in the input graph, as paths are one of the most natural ways
of presenting GNN reasoning patterns to users;

2. sufficiently tractable to be applicable to modern GNN-based NLP models;
3. as faithful (Jacovi & Goldberg, 2020) as possible, providing insights into how the model

truly arrives at the prediction.
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Figure 1: GRAPHMASK uses vertex hidden states and messages at layer k (left) as input to a classi-
fier g that predicts a mask z(`). We use this to mask the messages of the kth layer and re-compute the
forward pass with modified node states (right). The classifier g is trained to mask as many hidden
states as possible without changing the output of the gated model.

A simple way to perform interpretation is to use erasure search (Li et al., 2016; Feng et al., 2018),
an approach wherein attribution happens by searching for a maximal subset of features that can be
entirely removed without affecting model predictions. The removal guarantees that all information
about the discarded features is ignored by the model. This contrasts with approaches which use
heuristics to define feature importance, for example attention-based methods (Serrano & Smith,
2019; Jain & Wallace, 2019) or back-propagation techniques (Bach et al., 2015; Sundararajan et al.,
2017). They do not guarantee that the model ignores low-scoring features, attracting criticism in
recent years (Nie et al., 2018; Sixt et al., 2019; Jain & Wallace, 2019). The trust in erasure search is
reflected in the literature through other methods motivated as approximations of erasure (Baehrens
et al., 2010; Simonyan et al., 2014), or through new attribution techniques evaluated using erasure
search as ground truth (Serrano & Smith, 2019; Jain & Wallace, 2019).

Applied to GNNs, erasure search would involve searching for the largest subgraph which can be
completely discarded. Besides faithfulness considerations and conceptual simplicity, discrete attri-
butions would also simplify the comparison of relevance between paths; this contrasts with contin-
uous attribution to edges, where it is not straightforward to extract and visualise important paths.
Furthermore, in contrast to techniques based on artificial gradients (Pope et al., 2019; Xie & Lu,
2019; Schwarzenberg et al., 2019), erasure search would provide implementation invariance (Sun-
dararajan et al., 2017). This is important in NLP, as models commonly use highly parametrised
decoders on top of GNNs (e.g., Koncel-Kedziorski et al. (2019)).

While arguably satisfying criteria (1) and (3) in our desiderata, erasure search unfortunately fails on
tractability. In practical scenarios, it is infeasible, and even approximations, which remove one fea-
ture at a time (Zintgraf et al., 2017) and underestimate their contribution due to saturation (Shrikumar
et al., 2017), remain prohibitively expensive.

Our GRAPHMASK aims at meeting the above desiderata by achieving the same benefits as erasure
search in a scalable manner. That is, our method makes easily interpretable hard choices on whether
to retain or discard edges such that discarded edges have no relevance to model predictions, while
remaining tractable and model-agnostic (Ribeiro et al., 2016a). GRAPHMASK can be understood as
a differentiable form of subset erasure, where, instead of finding an optimal subset to erase for every
given example, we learn an erasure function which predicts for every edge 〈u, v〉 at every layer k
whether that connection should be retained. Given an example graph G, our method returns for each
layer k a subgraph G(k)S such that we can faithfully claim that no edges outside G(k)S influence the
predictions of the model. To enable gradient-based optimization for our erasure function, we rely
on sparse stochastic gates (Louizos et al., 2018; Bastings et al., 2019).

In erasure search, optimisation happens individually for each example. This can result in a form of
overfitting where even non-superfluous edges are aggressively pruned because a similar prediction
could be made using an alternative smaller subgraph; we refer to this problem as hindsight bias.
Because our interpretation method relies on a parametrised erasure function rather than an individual
per-edge choice, we can address this issue by amortising parameter learning over a training dataset
through a process similar to the readout bottleneck introduced in Schulz et al. (2020). In other
words, the decision to drop or keep an edge is made based on the information available in the
network (i.e., representation of the graph nodes) without having access to the final prediction (or to
the gold standard). As we demonstrate in Section 4, this strategy avoids hindsight bias.
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Contributions Our contributions are as follows:

• We present a novel interpretation method for GNNs, applicable potentially to any end-to-
end neural model which has a GNN as a component.1
• We demonstrate using artificial data the shortcomings of the closest existing method, and

show how our method addresses those shortcomings and improves faithfulness.
• We use GRAPHMASK to analyse GNN models for two NLP tasks: semantic role label-

ing (Marcheggiani & Titov, 2017) and multi-hop question answering (De Cao et al., 2019).

2 RELATED WORK

Several recent papers have focused on developing interpretability techniques for GNNs. The closest
to ours is GNNExplainer (Ying et al., 2019), wherein a soft erasure function for edges is learned
individually for each example. Unlike our method (and erasure search), GNNExplainer cannot as
such guarantee that gated edges do not affect predictions. Furthermore, as we show in our exper-
iments (Section 4), separate optimisation for each example results in hindsight bias and compro-
mises faithfulness. Pope et al. (2019); Xie & Lu (2019) explore gradient-based methods, including
gradient heatmaps, Grad-CAM, and Excitation Backpropagation. Similarly, Schwarzenberg et al.
(2019); Baldassarre & Azizpour (2019); Schnake et al. (2020) apply Layerwise Relevance Propaga-
tion (Bach et al., 2015) to the GNN setting. These methods represent an alternative to GRAPHMASK,
but as we have noted their faithfulness is questionable (Nie et al., 2018; Sixt et al., 2019; Jain & Wal-
lace, 2019), and the lack of implementation invariance (Sundararajan et al., 2017) is problematic (see
Appendix H). Furthermore, significant engineering is still required to develop these techniques for
certain GNNs, e.g. networks with attention as the aggregation function (Veličković et al., 2018).

Another popular approach is to treat attention or gate scores as a measure of importance (Serrano &
Smith, 2019). However, even leaving questionable faithfulness (Jain & Wallace, 2019) aside, many
GNNs use neither gates nor attention. For those that do (Marcheggiani & Titov, 2017; Veličković
et al., 2018; Neil et al., 2018; Xie & Grossman, 2018), such scores are, as we demonstrate in Sec-
tion 6, not necessarily informative, as gates can function to scale rather than filter messages.

Outside of graph-specific methods, one line of research involves decomposing the output into a part
attributed to a specific subset of features and a part attributed to the remaining features (Shapley,
1953; Murdoch et al., 2019; Singh et al., 2019; Jin et al., 2020). For GNNs, the computational cost
for realistic use cases (e.g. the thousands of edges per example in De Cao et al. (2019)) is prohibitive.
LIME (Ribeiro et al., 2016b) like us relies on a trained erasure model, but interprets local models
in place of global models. Local models cannot trivially identify useful paths or long-distance
dependent pairs of edges, and as also pointed out in Ying et al. (2019) LIME cannot be easily applied
for large general graphs. Similarly, it is unclear how to apply integrated gradients (Sundararajan
et al., 2017) to retrieve relevant paths, especially for deep GNNs operating in large graphs.

Masking messages in GRAPHMASK can be equivalently thought of as adding a certain type of
noise to these messages. Therefore, GRAPHMASK can be categorised as belonging to the recently
introduced class of perturbation-based methods (Guan et al., 2019; Taghanaki et al., 2019; Schulz
et al., 2020) which equate feature importance with sensitivity of the prediction to the perturbations
of that feature. The closest to our model is Schulz et al. (2020), wherein the authors like us apply
a secondary, trained model to predict the relevancy of a feature in a given layer. Unlike us, this
trained model has ‘look-ahead’, i.e. access to layers above the studied layer, making their model
vulnerable to hindsight bias. Their approach uses soft gates on individual hidden state dimension to
interpolate between hidden states, Gaussian noise in order to detect important features for CNNs on
an image processing task, and makes independent Gaussian assumptions on the features to derive
their objective. We adapted their method to GNNs and used it as a baseline in our experiments.

In our very recent work (De Cao et al., 2020) we have introduced a similar differentiable masking
approach to post-hoc analysis for transformers. We used sparse stochastic gates and L0 regular-
isation to determine which input tokens can be dropped, conditioning on various hidden layers.
Concurrently to this paper, Luo et al. (2020) have also developed an interpretability technique for
GNNs relying on differentiable edge masking. Their approach uses a mutual information objective
like GNNExplainer, along with local binary concrete classifiers as in GRAPHMASK.

1Source code available at https://github.com/MichSchli/GraphMask.
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3 METHOD

3.1 GRAPH NEURAL NETWORKS

A Graph Neural Network is a layered architecture which takes an input graph G = 〈V, E〉 (i.e., nodes
and edges) to produce a prediction. At every layer k, a GNN computes a node representation h(k)u

for each node u ∈ V based on representations of nodes from the previous layer. At the bottom layer,
vertices are assigned an initial embedding h(0)u – e.g. GloVE embeddings, or the hidden states of an
LSTM. For layers k > 0, a GNN can be defined through a message function M and an aggregation
function A such that for the k-th layer:

m(k)
u,v =M (k)

(
h(k−1)u , h(k−1)v , ru,v

)
(1) h(k)v = A(k)

({
m(k)
u,v : u ∈ N (v)

})
, (2)

where ru,v indicates the relation type between nodes u and v, and N (v) the set of neighbour nodes
of v. Typical implementations of GNNs rely on either mean-, sum-, or max-pooling for aggregation.

3.2 GRAPHMASK

Our goal is to detect which edges (u, v) at layer k can be ignored without affecting model predic-
tions. We refer to these edges and the corresponding messages m(k)

u,v as superfluous. GNNs can be
highly sensitive to changes in the graph structure. A GNN trained on graphs where all vertices v have
degree d(v)� n for some integer n may become unstable if applied to a graph where some vertices
have degree d(v) � n. Hence, dropping edges without affecting predictions can be difficult. Nev-
ertheless, many edges in that graph may be superfluous for all purposes other than normalization.
Therefore, it is not enough to search for edges which can be dropped – instead, we search for edges
which, through a binary choice z(k)u,v ∈ {0, 1}, can be replaced with a learned baseline b(k):

m̃(k)
u,v = z(k)u,v ·m(k)

u,v + b(k) · (1− z(k)u,v) . (3)

Conceptually, the search for a subset that generates the same prediction can be understood as a
form of subset erasure (Li et al., 2016; Feng et al., 2018). Unfortunately, erasure breaks with the
principles we proposed in Section 1 in two important ways. First, since it involves searching over all
the possible candidates that could be dropped, it is not tractable. Second, since the search happens
individually for each example, there is a danger of hindsight bias. That is, the search algorithm finds
a minimal set of features that could produce the given prediction, but which is not faithful to how the
model originally behaved (as confirmed in our experiments, Section 4). To overcome those issues,
we compute z(k)u,v through a simple function, learned once for every task across data points:

z(k)u,v = gπ(h
(k)
u , h(k)v ,m(k)

u,v) , (4)

where π denotes the parameters of g, which is implemented as a single-layer neural network (see
Appendix A for the architecture).

Instead of selecting gate values z(k)u,v individually for each prediction, the parameters π are trained
on multiple datapoints, and used to explain predictions for examples unseen in the training phase.
Moreover, each z(k)u,v is computed relying only on information also available to the original model
when computing the corresponding GNN message (i.e. states of nodes at layer k, h(k)u and h(k)v ).
As such, the explainer is not provided with a look-ahead.2 These two aspects, by design, work to
prevent hindsight bias. We refer to this strategy as amortisation. The alternative to amortisation is
to choose the parameters π independently for each gate, without any parameter sharing across gates.
In that case, optimisation would be performed directly on the analysed (i.e. test) examples. We refer
to this strategy as the non-amortized version of GraphMask.3 We will show in Section 4 that this
version of GRAPHMASK, unlike the amortized approach, is susceptible to hindsight bias.

2The readout function in Schulz et al. (2020) violates this constraint.
3It would be wasteful to use a neural network gπ(h

(k)
u , h

(k)
v ) in the non-amortized case and train it on

a single example. Instead, we directly optimize the parameters of our stochastic relaxation, Hard Concrete,
discussed in 3.3.
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Figure 2: Toy example: a model predicts whether there are more black edges (→) than blue edges.
(→). Erasure search, GNNExplainer, and non-amortized GRAPHMASK overfit by retaining only
a single black edge (top left). Integrated gradients and the information bottleneck approach give
unsatisfying results as all edges have attribution. Only amortized GRAPHMASK correctly assigns
attribution to and only to black and blue edges.

After g is trained, to analyse a data point with GRAPHMASK, we first execute the original model over
that data point to obtain h(k)u , h(k)v , and m(k)

u,v . We then compute gates for every edge at every layer,
and execute a sparsified version of the model as shown in Figure 1. For the first layer, the messages
of the original model are gated according to Equation 3. For subsequent layers, we aggregate the
masked messages using Equation 2 to obtain vertex embeddings h′(k)v , which we then use to obtain
the next set of masked messages. Note that the only learned parameters of GRAPHMASK are the
parameters π of the erasure function and the learned baseline vectors b(1), . . . , b(k) – the parameters
of the original model are kept constant. As long as the prediction relying on the sparsified graph is
the same as when using the original one, we can interpret masked messages as superfluous.

3.3 PARAMETER ESTIMATION

Given a GNN f of L layers, a graph G, and input embeddings X (e.g., initial node vectors or
additional inputs), our task is to identify a set GS = {G(1)S , . . . ,G(L)S } of informative sub-graphs
such that G(k)S ⊆ G ∀k ∈ 1, . . . , L. We search for a graph with the minimal number of edges while
maintaining f(GS ,X ) ≈ f(G,X ).4 We can cast this, quite naturally, in the language of constrained
optimization and employ a method that enables gradient descent such as Lagrangian relaxation. In
general, however, it is not possible to guarantee equality between f(G,X ) and f(GS ,X ) since f is
a smooth function, and as therefore a minimal change in its input cannot produce the exact same
output. As such, we introduce i) a divergence D?[f(G,X )‖f(GS ,X )] to measure how much the two
outputs differ, and ii) a tolerance level β ∈ R>0 within which differences are regarded as acceptable.
The choice of D? depends on the structure of the output of the original model. A practical way to
minimize the number of non-zeros predicted by g is minimizing the L0 ‘norm’ (i.e., the total number
of edges that are not masked). Hence, formally, we define our objective over a dataset D as

max
λ

min
π,b

∑
G,X∈D

 L∑
k=1

∑
(u,v)∈E

1[R6=0](z
(k)
u,v)

+ λ (D?[f(G,X )‖f(GS ,X )]− β) , (5)

4With f(GS ,X ) we denote a forward pass where for each layer the graph may vary, where for f(G,X ) the
graph G is the same across layers.
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Method Prec. Recall F1

Erasure search* 100.0 16.7 28.6
Integrated Gradients 88.3 93.5 90.8
Information Bottleneck 55.3 51.5 52.6
GNNExplainer 100.0 16.8 28.7
Ours (non-amortized) 96.7 26.2 41.2

Ours (amortized) 98.8 100.0 99.4

Table 1: Comparison using the faithfulness gold
standard on the toy task. *as in Li et al. (2016).

Edge Type k = 0 k = 1 k = 2

MATCH (8.1%) 9.4% 11.1% 8.9%
DOC-BASED (13.2%) 5.9% 17.7% 10.7%
COREF (4.2%) 4.4% 0% 0%
COMPLEMENT (73.5%) 31.9% 0% 0%

Total (100%) 51.6% 28.8% 19.6%

Table 2: Retained edges for De Cao et al.’s (2019)
question answering GNN by layer (k) and type.

where 1 is the indicator function and λ ∈ R≥0 denotes the Lagrange multiplier.

Unfortunately, our objective is not differentiable. We cannot use gradient-based optimization since
i) L0 is discontinuous and has zero derivatives almost everywhere, and ii) outputting a binary value
needs a discontinuous activation, e.g. the step function. A solution is to address the objective in
expectation and employ either score function estimation i.e. REINFORCE (Williams, 1992), biased
straight-through estimators (Maddison et al., 2017; Jang et al., 2017), or sparse relaxation (Louizos
et al., 2018; Bastings et al., 2019). We choose the latter since it exhibits low variance compared to
REINFORCE and is an unbiased estimator. We use the Hard Concrete distribution, a mixed discrete-
continuous distribution on the closed interval [0, 1]. This distribution assigns a non-zero probability
to exact zeroes. At the same time, it also admits continuous outcomes in the unit interval, for which
an unbiased and low variance gradient can be computed via the reparameterization trick (Kingma
& Welling, 2014). We refer to Louizos et al. (2018) for details. Attribution scores correspond to
the expectation of sampling non-zero masks, since any non-zero value can leak information. In our
experiments, GRAPHMASK converges to a distribution where scores in expectation assume near-
binary values.

4 SYNTHETIC EXPERIMENT

We first apply GRAPHMASK in a setup where a clearly defined ground-truth attribution is known.
As opposed to the real-world tasks we address in Sections 5 and 6, this allows for evaluation with
respect to faithfulness. The task is defined as follows: a star graph G with a single centroid vertex
v0, leaf vertices v1, ..., vn, and edges (v1, v0), ..., (vn, v0) is given such that every edge (u, v) is
assigned one of several colours cu,v ∈ C. Then, given a query 〈x, y〉 ∈ C ×C, the task is to predict
whether the number of edges assigned x is greater than the number of edges assigned y. We generate
examples randomly with 6 to 12 leaves, and apply a simple one-layer R-GCN (Schlichtkrull et al.,
2018) (see Appendix E for details). The trained model perfectly classifies every example. We know
precisely which edges are useful for a given example – those which match the two colours being
counted in that example. The GNN must count all instances of both to compute the maximum, and
no other edges should affect the prediction. We define a gold standard for faithfulness on this basis:
For x > y, all edges of type x and y should be retained, and all others should be discarded.

In Table 1, we compare GRAPHMASK to four baselines: erasure search (Li et al., 2016), integrated
gradients (Sundararajan et al., 2017), an information bottleneck approach (Schulz et al., 2020), and
GNNExplainer (Ying et al., 2019). Neither integrated gradients nor the information bottleneck ap-
proach were designed for graphs, and as such we adapt them for this setting (see Appendices F and
G for details). Since GNNExplainer and Information Bottleneck do not make hard predictions, we
define for both any gate σi where σi > t for some threshold t as open, and closed otherwise. For
integrated gradients we normalize attributions to the interval [−1; 1], take the absolute value, and
apply a threshold t. We select t ∈ {0.1, ..., 0.9} to maximize F1 score on validation data.

Only the amortized version of our method approximately replicates the gold standard. In fact, era-
sure search, GNNExplainer, and non-amortized GRAPHMASK recall only a fraction of the non-
superfluous edges. Visually inspecting the scores assigned by various methods (Figure 2), we see
that erasure search, GNNExplainer, and the non-amortized version of our method all exploit their
training regime to reach the same low-penalty solution with perfect model performance, but which
is not faithful to the original model behaviour. Since the task is to predict whether x > y, the model
achieves a perfect score with only one edge of type x retained. Conversely, for any x ≤ y, the model
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dictions as a function of the distance between
the predicate and the predicted role for the
LSTM+GNN model (on the left) and the GNN
only model (on the right).

achieves a perfect score with all edges dropped. Amortization prevents this type of overfitting to the
objective. For integrated gradients, inspecting predictions shows that the scalar attribution scores
vary greatly across examples with different numbers of edges. Hence, a single t cannot be defined
to always distinguish between useful and superfluous edges, even on this simple task.

5 QUESTION ANSWERING

We now apply GRAPHMASK (amortized) to analyze predictions for a real model. Due to the com-
plexity, no human gold standard for attribution can be constructed in this setting (Jacovi & Goldberg,
2020). We choose the GNN-based model for multi-hop QA presented in De Cao et al. (2019), eval-
uated on WikiHop (Welbl et al., 2018). The task is, given a query sentence and a set of context
documents, to find the entity within the context which best answers the query. Nodes in the GNN
graph correspond to mentions of entities within the query and context, and four types of edges be-
tween those are introduced: string match (MATCH), document-level co-occurrence (DOC-BASED),
coreference resolution (COREF), and, finally, the absence of any other edge (COMPLEMENT).

The model consists of a two-layer BiLSTM reading the query, and three layers of R-
GCN (Schlichtkrull et al., 2018) with shared parameters. Node representations at the bottom layer
are obtained by concatenating the query representation to embeddings for the mention in question.
Here, we focus on their GloVe-based model. Finally, the mention representations are combined into
entity representations through max-pooling.

GRAPHMASK replicates the performance of the original model with a performance change of
−0.4% accuracy. 27% of edges are retained, with the majority occurring in the bottom layer (see Ta-
ble 2). To ensure that the choice of superfluous edges is not just a consequence of the random seed,
i.e. to verify the stability of our method, we compute Fleiss’ Kappa scores between each individual
measurement of z(k)u,v across 5 different seeds. We find high agreement with κ = 0.65. Dropping just
a random 25% of these retained edges greatly harms performance (see Appendix J).

For comparison, if we do not amortize to provide resilience against hindsight bias, the retained
edges are different, with 0.4% of retained edges in the bottom and 91.0% in the top layer. Similarly,
GNNExplainer and Integrated Gradients assign to the bottom layer, respectively, only 4.3% and
11.3% of their total attribution score. In contrast, dropping the bottom layer on all examples yields a
much larger accuracy drop (−26%) than any other layer (e.g., −7% for the top one). This suggests
that these techniques do not produce faithful attributions. We provide more details in Appendix K.

In Table 2, we investigate which edge types are used across the three layers of the model. De Cao
et al.’s (2019) ablation test suggested that COREF edges provide marginal benefit to the model; our
analysis does not entirely agree. Investigating further, we see that only 2.3% of the retained COREF
edges overlap with MATCH edges (compared to 32.4% for the entire dataset). In other words, the
system relies on COREF edges only in harder cases not handled by the surface MATCH heuristic.
The role COMPLEMENT edges play is interesting as well: this class represents the majority of non-
superfluous edges in the bottom layer, but is always superfluous in subsequent layers. The model
relies on an initial propagation-step across these edges, perhaps for an initial pooling of context.
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Figure 5: Example analysis on SRL from the GNN+LSTM model (superfluous arcs are excluded).

De Cao et al.’s (2019) model concatenates a representation of the query to every node in the graph
before running GNN. As such, one might expect edges connecting mentions of the query entity to
the rest of the graph to be superfluous. This, however, is not the case – at least one such edge is
retained in 92.7% of all cases, and in 84.1% of cases in the bottom layer. We hypothesize that the
model relies on GNN to see whether other mentions share a surface form or co-occur with mentions
of the query entity, and, if not, how they otherwise connect to those. To investigate this, we measure
the percentage of retained edges at each layer that occur on paths originating from query entities.

We find that the proportion of edges that occur on paths from mentions of the query increases
drastically by layer, from 11.8% at layer 0, to 42.7% at layer 1, and culminating in 73.8% in the top
layer. A mention corresponding to the predicted answer is for 99.7% of examples the target of some
retained edge. However, the chance that the predicted entity is connected to the query (72.1%) is
near-identical to that of the average candidate entity (69.2%). As such, the GNN is responsible not
only for propagating evidence to the predicted answer through the graph, but also for propagating
evidence to alternate candidates. The majority of paths take one of two forms – a COMPLEMENT
edge followed by either a MATCH or a DOC-BASED edge (22%), or a COMPLEMENT edge
followed by two MATCH or DOC-BASED edges (52%). MATCH and DOC-BASED edges in the
bottom layer tend to represent one-hop paths rather than being the first edge on a longer path.

Retained edges
Type Length GNN-only LSTM+GNN

0 1 2 0 1

V 1 (5755) 0.01 0.99 - 0.01 0.99
2 (1104) 0.07 0.74 0.19 0.10 0.90
≥ 3 (10904) 0.74 0.22 0.04 0.79 0.21

N 1 (3336) 0.02 0.98 - 0.01 0.99
2 (2935) 0.30 0.25 0.45 0.89 0.11
≥ 3 (3251) 0.56 0.32 0.12 0.73 0.27

Table 3: Percentages of paths with either 0, 1, or 2
edges retained, split by path length and predicate
type, for the two models. For the LSTM+GNN
model, at most one edge can be included per path
as only a single GNN layer is employed.

Relations used by De Cao et al. (2019) are sym-
metric (e.g., a coreference works in both di-
rections). A distinct feature of the subgraphs
retained by GRAPHMASK is that pairs of an
edge and its inverse are both judged to be either
superfluous or non-superfluous (individually in
each layer). In Figure 3, this can be seen for the
DOC-BASED edges in layer 2 between Japan
and Johnny & Associates. Indeed, 49%, 98%
and 79% of retained edges in, respectively, lay-
ers 0, 1 and 2 have their inverses also retained.
In other words, ‘undirected’ message exchange
between mentions, resulting in enriched men-
tion representations, appears crucial.

6 SEMANTIC ROLE LABELING

We now turn to the GNN-based SRL system of Marcheggiani & Titov (2017). The task here is
to identify arguments of a given predicate and assign them to semantic roles; see the labels below
the sentence in Figure 5. Their GNN relies on automatically predicted syntactic dependency trees,
allowing for information flow in both directions between syntactic dependents and their heads. We
investigate both their best-performing model, which includes a BiLSTM and one layer of a GNN,
and their GNN-only model.5 For LSTM+GNN, the masked model has a minuscule performance
change of−0.62% F1 and retains only 4% of messages. The GNN-only model has a similarly small
performance change of −0.79% F1 and retains 16% of messages. We again compute Fleiss’ Kappa
scores between GRAPHMASK with 5 different seeds, finding a substantial agreement of respectively
κ = 0.79 and κ = 0.74 for the full and GNN-only models.

5In Marcheggiani & Titov (2017), the best GNN-only model used three layers of GNN; with our reimple-
mentation, a two-layer GNN performed better. Our reimplementation performed on par with the original.
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The GNN, in this case, employs scalar, sigmoidal gates on every message. A naive method for inter-
pretability could be to inspect their values. However, gates do not necessarily reflect the importance
of individual messages; rather, they may provide scaling as a component in the model. On develop-
ment data, the mean gate takes the value 0.16, with a standard deviation of 0.07. We evaluate the
model with every message where the corresponding gate value is more than one σ below the mean
dropped, and find that performance decreases by 16.1% F1 score even though only 42% of edges are
removed. Thus, we see that these gates act as scaling rather than reflecting the contribution of each
edge to the prediction (see also Appendix L for soft gate values for the example in Figure 5). This
matches the intuition from Jain & Wallace (2019) that gates do not necessarily indicate attribution.

We first investigate which dependency types the GNN relies on. We summarise our finding in Fig-
ure 8 in Appendix I. The behaviour differs strongly for nominal and verbal predicates – NMOD
dominates for nominals, whereas SBJ and OBJ play the largest roles for verbal predicates. This is
unsurprising, because these edges often directly connect the predicate to the predicted roles. Even
where this is not the case – see rebound in the example in Figure 5 – these edges connect predic-
tions to tokens close to the predicate, easily reachable via the LSTM. Interestingly, several frequent
relations (occurring in > 10% of examples) are entirely superfluous – these include P, NAME, CO-
ORD, CV, CONJ, HYPH, SUFFIX, and POSTHON. For the LSTM-GNN model, we find that 88%
of retained edges point to predicted roles (e.g. rebound), and the remaining 12% mostly point to
arguments of other predicates in the same sentence (e.g. which).6

Marcheggiani & Titov’s (2017) original findings suggest that the GNN is especially useful for pre-
dicting roles far removed from the predicate, where the LSTM struggles to propagate information.
This could be accomplished by using paths in the graph; either relying on the entire path, or par-
tially relying on the last several edges in the path. We plot in Figure 4 the percentage of paths from
predicate to a predicted argument, such that a subpath (i.e. at least one edge) ending in the predicted
argument was retained. For the LSTM+GNN model, we find that the reliance on paths decreases as
the distance to the predicate increases, but only for nominal predicates. For the GNN-only model,
we see the opposite: reliance on paths increases as the distance to the predicate increases. We inves-
tigate in Table 3 the proportion of edges retained on paths of varying length between the predicate
and predicted roles. Practically all direct connections between the predicate and the roles are kept
– this is unsurprising, as those edges are the most immediate indication of their syntactic relation-
ships. Longer paths are often useful in both models, although at a lower rate for nominal predicates
in the LSTM+GNN model. Our findings are consistent with the literature, where dependency paths
connecting predicate and argument represent strong features for SRL (Johansson & Nugues, 2008;
Roth & Lapata, 2016).

7 CONCLUSION

We introduced GRAPHMASK, a post-hoc interpretation method applicable to any GNN model. By
learning end-to-end differentiable hard gates for every message and amortising over the training
data, GRAPHMASK is faithful to the studied model, scalable to modern GNN models, and capable
of identifying both how edges and paths influence predictions. We applied our method to analyse
the predictions of two NLP models from the literature – an SRL model, and a QA model. GRAPH-
MASK uncovers which edge types these models rely on, and how they employ paths when making
predictions. While these findings may be interesting per se, they also illustrate the types of anal-
ysis enabled by GRAPHMASK. Here we have focused on applications to NLP, where there is a
strong demand for interpretability techniques applicable to graph-based models injecting linguistic
and structural priors – we leave the application of our method to other domains for future work.
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Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ. accepted as poster.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-hop read-
ing comprehension across documents. Transactions of the Association for Computational Lin-
guistics, 6:287–302, 2018.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Shangsheng Xie and Mingming Lu. Interpreting and understanding graph convolutional neural
network using gradient-based attribution method. arXiv preprint arXiv:1903.03768, 2019.

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? International Conference on Learning Representations (ICLR), 2019.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer:
Generating explanations for graph neural networks. In Advances in Neural Information Process-
ing Systems, pp. 9240–9251, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in neural information processing systems, pp. 3391–
3401, 2017.

Yuhao Zhang, Peng Qi, and Christopher D. Manning. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 2205–2215, Brussels, Belgium, October-November 2018.
Association for Computational Linguistics. doi: 10.18653/v1/D18-1244. URL https://www.
aclweb.org/anthology/D18-1244.

Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-Seng Chua, and Maosong Sun. Graph neural net-
works with generated parameters for relation extraction. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp. 1331–1339, 2019.

Luisa M Zintgraf, Taco S. Cohen, Tameem Adel, and Max Welling. Visualizing deep neural network
decisions: Prediction difference analysis. International Conference on Learning Representations
(ICLR), 2017.

14

https://openreview.net/forum?id=rJXMpikCZ
https://www.aclweb.org/anthology/D18-1244
https://www.aclweb.org/anthology/D18-1244


Published as a conference paper at ICLR 2021

A ERASURE FUNCTION ARCHITECTURE

We compute the parameters π for the function erasure function gπ defined in Equation 6 through
a simple multilayer perceptron. We first derive a representation q(k)u,v of an edge at layer k simply
through concatenation:

q(k)u,v = [h(k)u , h(k)v ,m(k)
u,v] (6)

We then compute the scalar location parameters γ(k)u,v for the hard concrete distribution based on
q
(k)
u,v:

γ(k)u,v =W
(k)
2 ReLU(LN(W

(k)
1 q(k)u,v)) (7)

where LN represents Layer Normalization.

In addition to the formulation of GNN which we define in Equations 1 and 2, some implementa-
tions employ a faster – but less expressive – formulation, where aggregation is done through matrix
multiplication between the vertex embeddings matrix H(k) and a (normalized, relation-specific)
adjacency matrix Âr (Kipf & Welling, 2017; Schlichtkrull et al., 2018; De Cao et al., 2019):

H(k) = ÂrH
(k−1)W (k) (8)

Applying the computation of q(k)u,v from Equation 6 within that scheme would be prohibitively ex-
pensive, as q(k)u,v would need to be computed for every possible combination of u and v rather than
just those actually connected by edges. The complexity would as such rise to O(V 2) rather than
O(V + E), which for large graphs can be problematic. To apply our method in such cases, we also
develop a faster alternative computation of γ(k)u,v based on a bilinear product. In this case rather than
enumerating all possible messages, we rely purely on the source and target vertex embeddings h(k)u

and h(k)v . Taking inspiration from R-GCN (Schlichtkrull et al., 2018), we compute an alternative
matrix-form γ̂(k) as:

γ̂(k) = Ŵ (k)
r ReLU(LN(Ŵ

(k)
1 H(k)))H(k) > (9)

where Ŵ (k)
r is unique to the relation r. We sample relation-specific matrix-form gates Ẑ(k)

r , and
apply these using an alternate – but equivalent – version of Equation 3 to derive a representation
matrix H̃(k) for the vertices in the masked model:∑

r

(Ẑ(k)
r Âr)H

(k−1)W (k) + ((J − Ẑ(k)
r )Âr)B

(k) (10)

where J represents the all-one matrix. In our experiments, we rely on the adjacency-list formulation
for SRL in Section 6 and the adjacency-matrix formulation for QA in Section 5.

B THE HARD CONCRETE DISTRIBUTION

The Hard Concrete distribution assigns density to continuous outcomes in the open interval (0, 1)
and non-zero mass to exactly 0 and exactly 1. A particularly appealing property of this distribution
is that sampling can be done via a differentiable reparameterization (Rezende et al., 2014; Kingma
& Welling, 2014). In this way, the L0 loss in Equation 5 becomes an expectation:

L∑
k=1

∑
(u,v)∈E

1[R 6=0](z
(k)
u,v) =

L∑
k=1

∑
〈u,v〉∈E

E
pπ(z

(k)
u,v|G,X )

[
z(k)u,v 6= 0

]
, (11)

for which the gradient can be estimated via Monte Carlo sampling without the need for REINFORCE
and without introducing biases.

The distribution A stretched and rectified Binary Concrete (also known as Hard Concrete) distri-
bution is obtained applying an affine transformation to the Binary Concrete distribution (Maddison
et al., 2017; Jang et al., 2017) and rectifying its samples in the interval [0, 1] (see Figure 6). A Binary
Concrete is defined over the open interval (0, 1) (pC in Figure 6a) and it is parameterised by a loca-
tion parameter γ ∈ R and temperature parameter τ ∈ R>0. The location acts as a logit and controls
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Figure 6: Binary Concrete distributions: (a) a Concrete pC and its stretched version pSC ; (b) a
rectified and stretched (Hard) Concrete pHC .

the probability mass skewing the distribution towards 0 in case of negative location and towards 1 in
case of positive location. The temperature parameter controls the concentration of the distribution.
The Binary Concrete is then stretched with an affine transformation extending its support to (l, r)
with l ≤ 0 and r ≥ 1 (pSC in Figure 6a). Finally, we obtain a Hard Concrete distribution rectifying
samples in the interval [0, 1]. This corresponds to collapsing the probability mass over the interval
(l, 0] to 0, and the mass over the interval [1, r) to 1 (pHC in Figure 6b). This induces a distribution
over the close interval [0, 1] with non-zero mass at 0 and 1. Samples are obtained according to

s = σ ((log u− log(1− u) + γ) /τ)

z = min (1,max (0, s · (l − r) + r))
(12)

where σ is the Sigmoid function σ(x) = (1 + e−x)−1 and u ∼ U(0, 1). We point to the Appendix
B of Louizos et al. (2018) for more information about the density of the resulting distribution and
its cumulative density function.

In our experiments, we found a constant temperature τ = 1/3 to work well. Message specific
location parameters γ(k)u,v are computed as specified in the previous section. We found it practical
to shift the initial location using a bias c = 2, e.g. rather than directly using γ(k)u,v in Equation 12
we substitute γ(k)u,v + c. This places the model in an initial state where all gates are open, which is
essential for learning.

C TRAINING DETAILS

When training GRAPHMASK, we found it helpful to employ a regime wherein gates are progres-
sively added to layers, starting from the top. For a model with K layers, we begin by adding gates
only for layer k, and train the parameters for these gates for δ iterations. We then add gates for
the next layer k − 1, train all sets of gates for another δ iterations, and continue downwards in this
manner. Optimising for sparsity under the performance constraint using the development set, we
found the method to perform best with δ = 1 for SRL, while the optimal setting for QA was δ = 3.

We found it necessary to use separate optimizers and learning for the Lagrangian λ parameter and
for the parameters of GRAPHMASK. Thus, we employ Adam (Kingma & Ba, 2015) with initial
learning rate 1e− 4 for GRAPHMASK, and RMSProp (Tieleman & Hinton, 2012) with learning rate
1e− 2 for λ. For the tolerance parameter β, we found β = 0.03 to perform well for all tasks.

We carried out all experiments on a single Titan X-GPU. As GRAPHMASK executes the model
which it analyses, training- and run-time depends on the complexity of that model. At training time,
GRAPHMASK requires a single forward pass to compute gate values, followed by a backward pass
through the sparsified model. Thus, every iteration requires at most twice the computation time of
an equivalent iteration using the investigated model.
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D DATASETS

SRL We used the English CoNLL-2009 shared task dataset (Hajič et al., 2009). This dataset
contains 179.014 training predicates, 6390 validation predicates, and 10498 test predicates. The
dataset can be accessed at https://ufal.mff.cuni.cz/conll2009-st/.

QA For question answering, we used the WikiHop dataset (Welbl et al., 2018), and the prepro-
cessing script from De Cao et al. (2019). See Table 4 for details. The dataset can be accessed at
https://qangaroo.cs.ucl.ac.uk/.

Min Max Avg. Med.
# candidates 2 9 19.8 14
# documents 3 63 13.7 11
# tokens/doc. 4 2,046 100.4 91

Table 4: WIKIHOP dataset statistics from Welbl et al. (2018): number of candidates and documents
per sample and document length. Table taken from De Cao et al. (2019).

E SYNTHETIC TASK MODEL

For the synthetic task discussed in Section 4, we employ a model consisting of a one-layer R-
GCN (Schlichtkrull et al., 2018). Vertex embeddings are initialized with the concatenation of a
one-hot-encoding of x and a one-hot-encoding of y. These are fed into an initial MLP with one
hidden layer to construct zeroth-layer vertex embeddings h(0)u . For every leaf, messages are then
computed as:

m(1)
u,v = ReLU(Wcu,vh

(0)
u + bcu,v ) (13)

Aggregation of messages is implemented as sum-pooling, and predictions are made from an MLP
with one hidden layer computed from the embedding h(1)v0 of the centroid. We use a dimensionality
of 50 for R-GCN states, and a dimensionality of 100 for the MLP hidden states. The model is trained
with Adam (Kingma & Ba, 2015), with an initial learning rate of 1e− 4.

F INTEGRATED GRADIENTS FOR GRAPHS

To apply integrated gradients to assign attributions to edges, we take the simplistic approach of
defining a scalar variable ẑku,v by which the message from u to v at layer k is multiplied, and
interpolate between ẑku,v = 1 and ẑku,v = 0. We then compute the relative attribution of ẑku,v ,
using 0 as a baseline; that is, we assume that the problem can be modelled as interpolating between
edges being ”fully present” and ”fully absent” through ”partially present” states. We note that it
is nontrivial to extend this approach to multi-layer GNNs, since ”partially present” edges in upper
layers affect gradient flow and thus attribution to lower layers during interpolation. For this reason,
information that has to travel through many edges – e.g., long-distance paths – is systematically
underestimated in terms of importance. For the synthetic task where we rely on a single-layer
GNN, we do not encounter this problem as no long-distance connections are possible; for real-world
problems, this may not be the case (see e.g. our findings for QA in Appendix K). Furthermore, as
we have noted in Section 3.2, the zero-vector may not be an appropriate baseline for general GNNs
as it changes the degree statistics of the graph. This could harm the performance of integrated
gradients (Sturmfels et al., 2020); however, as we have constructed our synthetic task such that the
number of leaves and thus the degree of the centroid changes, a GNN which achieves a perfect score
for this task must be robust with respect to changing degree statistics. To make binary predictions,
we normalise attributions to the interval [−1; 1], take the absolute value, and again apply a threshold
t ∈ {0.1, ..., 0.9} to determine useful and superfluous edges.
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G INFORMATION BOTTLENECK FOR GRAPHS

A related attribution technique to ours is the information bottleneck approach proposed by Schulz
et al. (2020). Their technique involves computing individual soft sigmoidal gates ξhi for each di-
mension i of the hidden state h of a CNN to attribute importance. Instead of a learned baseline,
gated vectors are replaced with samples from a Gaussian distribution. The mean and variance for
this Gaussian are computed over all examples in the training dataset. To promote sparsity, the KL
divergence between the dataset distribution and the distribution obtained by interpolating between
that distribution and the observed value through the gate is used as regularisation.

In Section 4, we also include results for an adaptation of Schulz et al. (2020) to the problem of
attributing importance to messages in a graph neural network. To apply the information bottleneck
approach for our setting, we do the following. First, instead of individual gates ξmi for each dimen-
sion of the message m, we use a single gate ξm. We use their Readout Bottleneck approach, which
can be seen as a parallel to our amortisation strategy. We predict logits for each gate by conditioning
on the source and target embeddings, as well as on the message itself, similar to how we compute
parameters for GRAPHMASK (see Appendix A). This contrasts with the original approach of using
1x1-convolutions over the depth dimension – conditioning on ”downstream” messages in the GNN
could cause hindsight bias. Training is done with the KL-divergence based loss introduced in Schulz
et al. (2020). Finally, we compute the mean and variance of the Gaussian noise used as a baseline
(and for the loss) in their approach using all messages in the same layer over the entire training
dataset. We found using the entire training data to collect statistics to work better than collecting
statistics individually per example.

H IMPLEMENTATION INVARIANCE FOR GNNS

Initial State GNN Layer 1

MLP version 2

MLP version 1

LRP with f

LRP with gLRP with g

LRP with f

GNN

MLP

Figure 7: Attributions for two functionally equivalent networks. We give a graph as an input to a
GNN (on the left) where x is the edge from the top-right node to the central right node. The GNN
update rule is simply aggregation with a sum over the neighbour nodes and no activation function.
After one GNN layer we apply a MLP (on the right) which is implemented with for two functionally
equivalent networks f(t1, t2) and g(t1, t2) (exactly the same as in the counterexample provided in
Figure 7 in Sundararajan et al., 2017). Since LRP is not implementation invariant, it will produce
two different attributions for the node t (i.e., t′ and t′′), and as a consequence of the propagation
rule (Schwarzenberg et al., 2019), the attribution to x will also be affected (i.e., x′ and x′′).
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I SRL DISTRIBUTION OVER EDGE TYPES FOR RETAINED EDGES

Figure 8: Distribution over edge types for retained edges (left) and probability of keeping each
edge type (right); in both cases split by nominal (N) and verbal (V) predicates; edge types are a
dependency function including computation directionality: flow from the head, (–>) or flow to the
head (<–). Excludes edges that occur in less than 10 % cases, and edges judged superfluous in more
than 99 % cases.

J GRADUALLY DROPPING RETAINED EDGES

Retained edges Acc.

100% (Orig. model) 59.0
27% (GRAPHMASK) 58.6
20.25% 55.2
13.5% 52.8
6.25% 47.7
0% 45.2

(a) Question Answering

Retained edges F1

100% (Orig. model) 87.1
4% (GRAPHMASK) 86.6
3% 83.1
2% 74.3
1% 68.9
0% 63.8

(b) SRL: LSTM+GNN

Retained edges F1

100% (Orig. model) 83.8
16% (GRAPHMASK) 83.1
12% 74.4
8% 66.1
4% 58.9
0% 56.5

(c) SRL: GNN-Only

Table 5: Performance of the three real-world models using the original input graphs, using
the subgraphs retained after masking with GRAPHMASK, and using only a randomly selected
0/25/50/75/100% of the edges retained after masking with GRAPHMASK. Dropping the edges
marked superfluous by our technique does not impact performance; dropping the remaining edges,
even if only a randomly selected 25% of them, significantly hurts the model.

K BASELINE PERFORMANCE ON QUESTION ANSWERING

Although we cannot directly measure and compare the faithfulness of different techniques on real
tasks through a human-produced gold standard (Jacovi & Goldberg, 2020), we can identify clear
pathologies in the attributions provided by both GNNExplorer and Integrated Gradients. An impor-
tant clue is the level of attribution assigned by each technique to the individual layers of the GNN.
In Figure 9, we plot for each layer of the Question Answering model the mean percentage of edges
assigned specific attribution levels by each technique.

GNNExplainer and Integrated Gradients both assign low levels of attribution to the first two layers,
relying primarily on the top layer. However, as we see in Table 6, dropping the bottom layer yields
a much larger performance decrease (-26%) than dropping the top layer (-7%). This is at odds
with the predicted attributions. For GNNExplainer, manual inspection reveals this to be a product
of hindsight bias. Very specific configurations of top-layer edges adjacent to the predicted answer
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Figure 9: Mean percentage of messages assigned attribution scores above a certain level in the
QA model of Section 5, separated by layer. We report scores for GNNExplainer ( ), Integrated
Gradients ( ), and GRAPHMASK ( ).

(in most cases, retaining only edges where the predicted answer is the target) generates the same
predictions as the original model. This mirrors a common pathology of erasure search on QA for
textual data, where the answer span and nothing else is selected as an explanation (Feng et al., 2018).

For Integrated Gradients, the low scoring of the bottom layer is a result of long-distance information
(e.g. information from edges and vertices far from the predicted answer, which must travel through
half-open pseudo-gates in the other layers to reach the predicted answer) being systematically under-
estimated as we discuss in Appendix F. This prevents meaningful comparisons of attribution scores
between layers.

Layers discarded Accuracy

Full model 59.0
- layer 0 33.1
- layer 1 41.6
- layer 2 52.0

Table 6: Performance of the question an-
swering model with all edges in each in-
dividual GNN layer dropped.

Model k = 0 k = 1 k = 2

GNNExplainer 4.3 11.9 83.8
Integrated Gradients 11.3 33.0 55.7
GRAPHMASK 51.6 28.8 19.6

Table 7: Mean percentage of the total attribution score
allocated to each layer for the question answering
model, according to GNNExplainer, Integrated Gra-
dients, and GRAPHMASK.

Another approach is to compare the proportion of the total attribution score that different techniques
assign to each layer; ideally, this should reflect the importance of that layer. In Table 7, we compute
the mean percentage of the total score assigned to messages in each layer. As in Figure 9, we see
GNNExplainer and Integrated Gradients assign low levels of attribution to the bottom layer, at odds
with the empirical performance loss from excluding that layer. This again indicates that the baselines
are unlikely to be faithful.
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L SRL EXAMPLE WITH SOFT GATES
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Figure 10: The example analysis from Figure 5, using the analysis heuristic where edges with soft
gate values more than one standard deviation below the mean are discarded. Directions are combined
into one arc.
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