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ABSTRACT

Recent advancements in generative models have sparked significant interest within
the machine learning community. Particularly, diffusion models have demonstrated
remarkable capabilities in synthesizing images and speech. Studies such as those
by Lee et al. (2023), Black et al. (2023), Wang et al. (2023b), and Fan et al. (2024)
illustrate that Reinforcement Learning with Human Feedback (RLHF) can enhance
diffusion models for image synthesis. However, due to architectural differences
between these models and those employed in speech synthesis, it remains uncertain
whether RLHF could similarly benefit speech synthesis models. In this paper,
we explore the practical application of RLHF to diffusion-based text-to-speech
with long-chain diffusion directly on waveform data, leveraging the mean opinion
score (MOS) as predicted by UTokyo-SaruLab MOS prediction system (Saeki
et al., 2022) as a proxy loss. We introduce diffusion model loss-guided RL policy
optimization (DLPO) and compare it against other RLHF approaches, employing
the NISQA speech quality and naturalness assessment model (Mittag et al., 2021)
and human preference experiments for further evaluation. Our results show that
RLHF can enhance diffusion-based text-to-speech synthesis models, and, moreover,
DLPO can better improve diffusion models in generating natural and high-quality
speech audio.

1 INTRODUCTION

Diffusion probabilistic models, initially introduced by Sohl-Dickstein et al. (2015), have rapidly
become the predominant method for generative modeling in continuous domains. Valued for their
capability to model complex, high-dimensional distributions, these models are widely used in fields
like image and video synthesis. Notable applications include Stable Diffusion (Rombach et al., 2022)
and DALL-E 3 (Shi et al., 2020), known for generating high-quality images from text descriptions.
Despite these advancements, significant challenges persist where large-scale text-to-image models
struggle to produce images that accurately correspond to text prompts. As highlighted by Lee et al.
(2023) and Fan et al. (2024), current text-to-image models face challenges in composing multiple
objects (Feng et al., 2022; Gokhale et al., 2022; Petsiuk et al., 2022) and in generating objects with
specific colors and quantities (Hu et al., 2023; Lee et al., 2023). Black et al. (2023); Fan et al. (2024);
Lee et al. (2021) propose reinforcement learning (RL) approaches for fine-tuning diffusion models
which can enhance their ability to align generated images with input texts.

In contrast, text-to-speech (TTS) models face different limitations. TTS models must handle a
sequence of sounds over time, which introduces complexity in terms of processing time-domain
data. Additionally, the size of audio files varies based on text length, quality, and compression—for
instance, an audio file encoding a few seconds of speech could range from a few hundred kilobytes
to several megabytes. These models must also capture subtle aspects of speech such as intonation,
pace, emotion, and consistency to produce natural and intelligible audio outputs (Wang et al., 2017;
Oord et al., 2016; Shen et al., 2018). These challenges are distinct from those faced by text-to-image
models. It thus remains uncertain whether similar techniques can deliver improvements comparable
to those seen in text-to-image models. We are keen to explore the potential of using RL approaches
to fine-tune TTS diffusion models.
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In this study, we explore the application of online RL to fine-tune TTS diffusion models (Appendix A),
especially whether RL techniques can similarly improve the naturalness and sound quality of diffusion
TTS models that are directly trained on waveforms and assess the impact of RL on waveform
generation in diffusion models. While basic policy gradient methods simply optimize the reward
function, these can severely disrupt the initial model due to over-optimization. Therefore, commonly
used RL methods control deviation from the original policy, often using estimates of the KL divergence
between the learned policy and the original. In particular, we compare the performance of TTS model
fine-tuning using reward-weighted regression (RWR) (Lee et al., 2023), denoising diffusion policy
optimization (DDPO) (Black et al., 2023), diffusion policy optimization with KL regularization
(DPOK) (Fan et al., 2024) and diffusion policy optimization with a KL-shaped reward (Ahmadian
et al., 2024), which we refer to as KLinR in this paper. Both DPOK and KLinR use a diffusion
gradient regularized KL. We also introduce and assess diffusion loss-guided policy optimization
(DLPO) where the reward is shaped by the diffusion model’s loss. In our experiments, we fine-tune
WaveGrad 2, a non-autoregressive generative model for TTS synthesis (Chen et al., 2021), using
reward predictions from the UTokyo-SaruLab mean opinion score (MOS) prediction system (Saeki
et al., 2022). We find that RWR and DDPO do not improve TTS models as they do for text-to-image
models, because they cannot successfully control the magnitude of deviations from the original
model. However, DPOK, KLinR, and DLPO do, improving the sound quality and naturalness of the
generated speech, and DLPO outperforms DPOK and KLinR. Demo audios are presented in this
website https://demopagea.github.io/DLPO_demo/

We can summarize our main contributions as follows:

• We are the first to apply reinforcement learning (RL) to improve the speech quality of TTS
diffusion models.

• We evaluate current RL methods for fine-tuning diffusion models in the TTS setting: RWR,
DDPO, DPOK, and KLinR.

• We introduce diffusion loss-guided policy optimization (DLPO). Unlike other RL methods,
DLPO aligns with the training procedure of TTS diffusion models by incorporating the
original diffusion model loss as a penalty in the reward function to effectively prevent model
deviation and fine-tune TTS models.

• We further investigate the impact of diffusion gradients on fine-tuning TTS diffusion models
and the effect of different denoising steps. We conduct a human experiment to evaluate the
speech quality of DLPO-generated audio.

2 RELATED WORKS

Text-to-speech diffusion model. Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015;
Song et al., 2020) have shown impressive capabilities in generative tasks like image (Saharia et al.,
2022; Ramesh et al., 2022; Hoogeboom et al., 2023) and audio production (Chen et al., 2020; 2021;
Kong et al., 2020). TTS systems using diffusion models generate high-fidelity speech comparable
to state-of-the-art systems (Chen et al., 2020; 2021; Kong et al., 2020; Liu et al., 2023). These
models use a Markov chain to transform noise into structured speech waveforms through a series of
probabilistic steps, which can be optimized with RL techniques.

However, unlike text-to-image diffusion models, TTS diffusion models face the challenge of high
temporal resolution. Audio input for TTS is a one-dimensional signal with a high sample rate; for
example, one second of audio at 24,600 Hz consists of 24,600 samples. This high dimensionality
requires managing thousands of data points, necessary to capture the nuances of human speech for
natural-sounding audio. In contrast, a typical 256x256 image has 65,536 pixels, fewer than the
samples in one second of high-fidelity audio. Handling and processing the large volume of audio
samples while maintaining both speed and high speech quality typically necessitates diffusion and
denoising steps in TTS models that are larger than those required for text-to-image diffusion models.
This demands effective memory optimization strategies during training. Most prior works in this
area try to address the problem of processing large volume of audio samples by preprocessing the
high-dimensional waveform into Mel-spectrograms—two-dimensional images of time and frequency
which simplify the problem to image synthesis, such as Grad-TTS (Popov et al., 2021; Ren et al.,
2019; Li et al., 2019; Elias et al., 2021; Kim et al., 2022; Tae et al., 2021; Guo et al., 2023). Other
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models like NaturalSpeech 2 (Shen et al., 2020), SimpleTTS (Lovelace et al., 2023), DiTTo-TTS
(Lee et al., 2024) and VALL-E (Wang et al., 2023a) employ neural audio codecs to convert high-
dimensional raw waveforms into quantized latent vectors. Then a vocoder is introduced to predict
the audio from these intermediate features. Appendix G shows the state of the art for recent TTS
models. WaveGrad2 performs comparably to GradTTS, which uses a vocoder, and outperforms E3
TTS and SimpleTTS. Other recent models are trained on massive proprietary datasets, which makes
it difficult to compare their performance with earlier work or to use them as a starting point for basic
research. While vocoder models are inherently more efficient and easier to tune than models based
on the raw waveform due to using lower-dimensional inputs, Gao (2023) argues that they can be less
domain-general due to the possibility of cascading errors from the preprocessor. Rather than trying to
reduce TTS to vision by changing the inputs, we therefore select WaveGrad2 as our baseline model
and try to modify RL techniques to optimize it.

RL fine-tuning of diffusion models. Recent studies have focused on fine-tuning diffusion text-to-
image models using alternative reward-weighted regression methods and reinforcement learning (RL)
to enhance their performance. Lee et al. (2023) demonstrate that developing a reward function based
on human feedback and using supervised learning techniques can improve specific attributes like
color, count, and background alignment in text-to-image models. While simple supervised fine-tuning
(SFT) based on reward-weighted regression loss improves reward scores and image-text alignment, it
often results in decreased image quality (e.g., over-saturation or non-photorealistic images).

Fan et al. (2024) suggest this issue likely arises from fine-tuning on a fixed dataset generated by a
pre-trained model. Black et al. (2023) argue that the reward-weighted regression lacks theoretical
grounding and only roughly approximates optimizing denoising diffusion with RL and they propose
denoising diffusion policy optimization (DDPO), a policy gradient algorithm that outperforms
reward-weighted regression methods. DDPO improves text-to-image diffusion models by targeting
objectives like image compressibility and aesthetic appeal, and it enhances prompt-image alignment
using feedback from a vision-language model, eliminating the need for additional data or human
annotations. Fan et al. (2024) also show that RL fine-tuning can surpass reward-weighted regression
in optimizing rewards for text-to-image diffusion models. Additionally, they demonstrate that using a
diffusion gradient regularized KL in RL methods helps address issues like image quality deterioration
in fine-tuned models.

For fine-tuning TTS diffusion model, Nagaram (2024) explores various RL techniques to improve
emotional expression in Grad-TTS (Popov et al., 2021), including Reward Weighted Regression
(RWR) and Proximal Policy Optimization (PPO). They demonstrate that Grad-TTS can convey
emotions more effectively by utilizing feedback from an emotion predictor model. However, the
speech quality and naturalness of their demo audio remain insufficient. We propose a diffusion policy
optimization method guided by the diffusion model objective, which surpasses RWR, DDPO, DPOK,
and KLinR. While RWR and DDPO have been shown to enhance text-to-image diffusion models, we
find they do not improve speech quality in TTS models. Both DPOK and KLinR utilize diffusion
gradient regularized KL, which has shown some improvements in speech quality, but our approach
DLPO, which directly use diffusion loss as reward, achieves the best results.

3 MODELS

3.1 TEXT-TO-SPEECH DIFFUSION MODEL

In this study, we use the PyTorch implementation of WaveGrad2 provided by MINDs Lab (https:
//github.com/maum-ai/wavegrad2) as the pretrained TTS diffusion model. WaveGrad2 is
a non-autoregressive TTS model adapting the diffusion denoising probabilistic model (DDPM) from
Ho et al. (2020). WaveGrad2 models the conditional distribution pθ(y0|x) where y0 represents the
waveform and x the associated context. The distribution follows the reverse of a Markovian forward
process q(yt|yt−1), which iteratively introduces noise to the data.

Reversing the forward process can be accomplished by training a neural network µθ(xt, c, t) with the
following objective:

LDDPM (θ) = Ec∼p(c)Et∼U{0,T}Epθ(x0:T |c) [∥µ̃(xt, t)− µθ(xt, c, t)∥2] (1)
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where µ̃ is the posterior mean of the forward process and xt is the prediction at timestep t in the
denoising process. This objective is justified as maximizing a variational lower bound on the log-
likelihood of the data (Ho et al., 2020), which is trained to predict the scaled derivative by minimizing
the distance between ground truth added noise ϵ and the model prediction:

Ec∼p(c)Et∼U{0,T}Epθ(x0:T |c) [∥ϵ̃(xt, t)− ϵθ(xt, c, t)∥2] (2)

where ϵ̃(xt, t) is the ground truth added noise for step xt and ϵθ(xt, c, t) is the predicted noise for
step xt. More details are provided in Appendix B.

Sampling from a diffusion model begins with drawing a random xT ∼ N (0, I) and following the
reverse process pθ(xt−1|xt, c) to produce a trajectory {xT , xT−1, ..., x0} ending with a sample x0.
As discussed in Chen et al. (2020; 2021), the linear variance schedule used in Ho et al. (2020) is
adapted in the sampling process of WaveGrad2, where the variance of the noise added at each step
increases linearly over a fixed number of timesteps. The linear variance schedule is a predefined
function that dictates the variance of the noise added at each step of the forward diffusion process.
This schedule is crucial because it determines how much noise is added to the data at each timestep,
which in turn affects the quality of the generated samples during the reverse denoising process.

3.2 REWARD MODEL

We use the UTokyo-SaruLab mean opinion score (UTMOS) prediction system (Saeki et al., 2022)
to predict the speech quality of generated audios from Wavegrad2. Mean opinion score (MOS) is a
subjective scoring system that allows human evaluators to rate the perceived quality of synthesized
speech on a scale from 1 to 5, which is one of the most commonly employed evaluation methods
for TTS system (Streijl et al., 2016). UTMOS is trained to capture nuanced audio features that are
indicative of human judgments of speech quality, providing an accurate MOS prediction without
the need for extensive labeled data. Thus, we use UTMOS as the reward model for fine-tuning
Wavegrad2. UTMOS is trained on datasets from the VoiceMOS Challenge 2022 (Huang et al., 2022),
including 14 hours audio from male and female speakers with MOS ratings.

4 RL FOR FINE-TUNING TTS DIFFUSION MODELS

In this section, we present a Markov decision process (MDP) formulation for WaveGrad2’s denoising
phase, evaluate four RL algorithms for training diffusion models, and introduce a modified fine-tuning
method incorporating diffusion model loss, comparing it with other RL approaches.

4.1 DENOISING AS A MULTI-STEP MDP

We model denoising as a T -step finite horizon Markov decision process (MDP). Defined by the tuple
(S,A, ρ0, P,R), an MDP consists of a state space S, an action space A, an initial state distribution
ρ0, a transition kernel P , and a reward function R. At each timestep t, an agent observes a state
st from S, selects an action at from A, receives a reward R(st, at), and transitions to a new state
st+1 ∼ P (st+1|st, at). The agent follows a policy πθ(a|s), parameterized by θ, to make decisions.
As the agent operates within the MDP, it generates trajectories, sequences of states and actions
(s0, a0, s1, a1, ..., sT , aT ). The goal of reinforcement learning (RL) is to maximize JRL(θ), which
is the expected total reward across trajectories produced under its policy:

JRL(θ) = Eπθ

[
T∑

t=0

R(st, at)

]
(3)

Therefore, we can define a Markov decision process (MDP) formulation for the denoising phase of
WaveGrad2 as follows:

st ≜ (c, xT−t) P (st+1|st, at) ≜ (δc, δat
) at ≜ xT−t−1

ρ(s0) ≜ (p(c),N (0, I)) R(st, at) ≜

{
r(st+1) = r(x0, c) if t = T − 1
0 otherwise,

(4)

where δ is the Dirac delta distribution, c is the text prompt sampled from p(c), and r(x0, c) is the
reward model UTMOS introduced in subsection 3.2. st and at are the state and action at timestep
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t, ρ(s0) and P are the initial state distribution and the dynamics, and R is the reward function. We
let πθ(at|st) ≜ pθ(xT−t−1|xT−t, c) be the initial parameterized policy, where pθ(xT−t−1|xT−t, c)
is the WaveGrad2 model discussed in subsection 3.1. Trajectories consist of T timesteps, after
which P leads to a terminating state. The cumulative reward of each trajectory is equal to r(x0, c).
Maximizing r(x0, c) to optimize policy πθ in Equation 4 is equivalent to fine-tuning WaveGrad2
(LDDPM Equation 1), the denoising diffusion RL objective is presented as follows:

JDDRL(θ) = Ec∼p(c)Ex0∼pθ(x0|c) [r(x0, c)] (5)

4.2 REWARD-WEIGHTED REGRESSION

As discussed by Black et al. (2023), using the denoising loss LDDPM Equation 1 with training data
x0 ∼ pθ(x0|c) and an added weighting of reward r(x0, c), we can optimize JDDRL with minimal
changes to standard diffusion model training. This approach can be referred as reward-weighted
regression (RWR) (Peters & Schaal, 2007). Lee et al. (2023) use this approach to update the diffusion
models, their objective is presented as follow:

JDDRL(θ) = Ec∼p(c)Eppre(x0|c) [−r(x0, c) log pθ(x0|c)] (6)

However, Lee et al. (2023) note that fine-tuning the text-to-image diffusion model with reward-
weighted regression can lead to reduced image quality, such as over-saturation or non-photorealistic
images. Fan et al. (2024) suggest that this deterioration might be due to the model being fine-tuned
on a static dataset produced by a pre-trained model, meanwhile, Black et al. (2023) argue that reward-
weighted regression aims to approximately maximize JRL(π) subject to a KL divergence constraint
on π (Ashvin et al., 2020). Yet, the denoising loss LDDPM Equation 1 does not compute an exact log-
likelihood; it is instead a variational bound on log pθ(x0|c). As such, the RWR procedure approach
to training diffusion models lacks theoretical justification and only approximates optimization of
JDDRL (Equation 5).

4.3 DENOISING DIFFUSION POLICY OPTIMIZATION

RWR relies on an approximate log-likelihood by disregarding the sequential aspect of the denoising
process and only using the final samples x0. Black et al. (2023) propose the denoising diffusion
policy optimization to directly optimize JDDRL using the score function policy gradient estimator,
also known as REINFORCE (Williams, 1992; Mohamed et al., 2020). DDPO alternately collects
denoising trajectories xT , xT−1, ..., x0 via sampling and updates parameters via gradient descent:

∇θJDDRL(θ) = Ec∼p(c)Epθ(x0:T |c)

[
T∑

t=1

∇θ log pθ(xt−1|xt, c)r(x0, c)

]
(7)

where the expectation is calculated across denoising trajectories generated by the current parameters
θ. This estimator only allows for one step of optimization for each data collection round, since the
gradient needs to be calculated using data derived from the current parameters. In Black et al. (2023)’s
study, DDPO is shown to achieve better performance in fine-tuning the text-to-image diffusion model
compared to reward-weighted regression methods.

4.4 DIFFUSION POLICY OPTIMIZATION WITH A KL-SHAPED REWARD

Fan et al. (2024) demonstrate that adding KL between the fine-tuned and pre-trained models for
the final image as a regularizer KL(pθ(x0|z)∥ppre(x0|z) to the objective function helps to mitigate
overfitting of the diffusion models to the reward and prevents excessively diminishing the "skill"
of the original diffusion model. As discussed in subsection 3.1, pθ(x0|z) is calculated as a vari-
ational bound, Fan et al. (2024) propose to add an upper-bound of this KL-term to the objective
function JDDRL(θ), which they call DPOK. In their model implementation, this KL-term is com-
puted as [∥ϵθ(xt, c, t)− ϵpre(xt, c, t)∥2] following diffuson model objective. They find that DPOK
outperforms reward weighted regression in fine-tuning text-to-image diffusion models:

Ec∼p(c)

[
αEpθ(xt−1|xt,c) [−r(x0, c)] + β

T∑
t=1

Epθ(xt|c) [KL(pθ(xt−1|xt, c)∥ppre(xt−1|xt, c))]

]
(8)
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where α, β are the reward and KL weights, respectively. They use the following gradient to optimize
the objective:

E
c∼p(c)

pθ(x0:T |c)

[
−αr(x0, c)

T∑
t=1

∇θ log pθ(xt−1|xt, c)+β

T∑
t=1

∇θKL(pθ(xt−1|xt, c)∥ppre(xt−1|xt, c))

]

Another RL objective presented by Ahmadian et al. (2024) also involves a KL-penalty to prevent
degradation in the coherence of the model (KLinR). In contrast to DPOK, this objective function
JDDRL(θ) includes the KL penalty within the reward function:

JDDRL(θ) = Ec∼p(c)Epθ(x0:T |c)

[
−
(
αr(x0, c)− β log

pθ(x0|c)
ppre(x0|c)

) T∑
t=1

log pθ(xt−1|xt, c)

]
(9)

where β is the KL weight. We evaluate both approaches with KL for fine-tuning WaveGrad2; for
KLinR approach, we follow Fan et al. (2024) and calculate the KL upper-bound. The algorithms are
shown in Appendix C and Appendix D.

4.5 DIFFUSION MODEL LOSS-GUIDED POLICY OPTIMIZATION

Ouyang et al. (2022) indicate that mixing the pretraining gradients into the RL gradient shows
improved performance on certain public NLP datasets compared to a reward-only approach. Therefore,
adding the diffusion model loss to the objective function can be another way to improve performance
and prevent degradation in the coherence of the model. We propose the following objective:

Ec∼p(c)Epθ(x0:T |c) [−αr(x0, c)− β∥ϵ̃(xt, t)− ϵθ(xt, c, t)∥2] (10)
where α, β are the reward and weights for diffusion model loss, respectively. We use the following
gradient to update the objective:

Ec∼p(c)Epθ(x1:T |c) [− (αr(x0, c)− β∇θ∥ϵ̃(xt, t)− ϵθ(xt, c, t)∥2)∇θ log pθ(xt−1|xt, c)] (11)
where we follow Ahmadian et al. (2024) and add the diffusion model objective to the reward function
as a penalty. The pseudocode of our algorithm, which we refer to as DLPO, is summarized in
Algorithm 1. This algorithm aligning with the training procedure of TTS diffusion models by
incorporating the original diffusion model objective β∥ϵ̃(xt, t) − ϵθ(xt, c, t)∥2 as a penalty in the
reward function effectively prevents model deviation. More details and an overview figure are
provided in Appendix A.

Algorithm 1 DLPO: Diffusion model loss-guided policy optimization
Input: reward model r, pre-trained model ppre, current model pθ, batch size m, text distribution
p(c)
initialize pθ = ppre
while θ not converged do

Obtain m i.i.d.samples by first sampling c ∼ p(c) and then x1:T ∼ pθ(xt−1|xt, c), r(x0, c)
Compute the gradient using Equation 10 and update θ:
(1) Sample xt given x0, t ∼ [0, T ]
(2) Compute ∥ϵ̃(xt, t)− ϵθ(xt, c, t)∥2 and log pθ(xt−1|xt, c)
(3) Update gradient using Equation 10 and update θ

Output: Fine-tuned diffusion model pθ

5 EXPERIMENTS

We now present a series of experiments designed to evaluate the efficacy of different RL fine-tuning
methods on TTS diffusion model.

5.1 EXPERIMENTAL DESIGN

Dataset WaveGrad 2 is pre-trained on the LJSpeech dataset (Ito & Johnson, 2017) which consists
of 13,100 short audio clips of a female speaker and the corresponding texts, totaling approximately 24
hours. We use WaveGrad 2’s training set and validation set to finetune Wavegrad 2 (12388 samples
for training, 512 samples for validation. 200 unseen samples are used as test set for evaluation.
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1 Reward UTMOS During Training

2 Evaluation NISQA MOS During Training

Figure 1: (fine-tuning effectiveness) The relative effectiveness of five RL algorithms. (Top) shows
the the change of reward UTMOS during initial 160 training episodes (training samples = episodes *
batch size) of each RL approach while (bottom) shows the change of evaluation NISQA MOS during
the same initial 160 training episodes. Left figures shows the different methods’ training performance
and right figures shows that DLPO increases UTMOS from 3.0 to 3.68 and increases NISQA from
3.85 to 4.12.

Evaluation Metrics For automatic evaluation of the fine-tuned models, we use another pretrained
speech quality and naturalness assessment model (NISQA) (Mittag et al., 2021), trained on the
NISQA Corpus including more than 14,000 speech samples produced by male and female speakers
along with samples’ MOS ratings. (This use of a separate MOS network is intended to guard against
overfitting the reward model.) We also conduct a human experiment to have people evaluate the
speech quality of the generated audios from fine-tuned WaveGrad2. To evaluate the intelligibility of
the synthesized audio, we transcribe the speech with a pre-trained ASR model, Whisper (Radford
et al., 2022), and compute the word error rate (WER) between the transcribed text and original
transcript.

RL Fine-tuning We follow Fan et al. (2024) and use online RL training for fine-tuning WaveGrad2
to evaluate the performance of RWR, DDPO, DLPO, KLinR, DPOK. In each episode (amount
of batch processed) during the training, we sample a new trajectory based on the current model

7
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distribution πθ and calculate the rewards of the new trajectory. Online RL training is claimed to be
better at maximizing the reward than the supervised approach which only uses the supervised dataset
based on the pre-trained distribution. We train WaveGrad2 with 8 A100-SXM-80GB GPU for 5.5
hours. We set the batch size as 64 and the denoising steps as 10.

During online RL fine-tuning, the model is updated using new samples from the previously trained
model. In every training episode, the UTMOS score is computed using the final state x0 of the
trajectory generated given sampled text c from the training dataset, where c ∼ p(c), meanwhile the
evaluation MOS score of x0 is also calculated using NISQA.

We plot both UTMOS and NISQA MOS scores obtained in each training episode in Figure 1 to
illustrate the fine-tuning progress of Wavegrad2. (Top) shows the UTMOS scores over 160 training
episodes for each RL method. DLPO, DPOK, and KLinR initially increase UTMOS greatly during
the first 40 episodes. DLPO then gradually rises above 3.6 and remains stable for the rest of the
training, while DPOK stays around 3.5. KLinR reaches a score of 3.5 by episode 120 but starts to
decline afterward. In contrast, both DDPO and RWR show a steady decrease in UTMOS from the
start. By episode 100, DDPO’s UTMOS falls below 1.5, with only a slight increase afterward, while
RWR’s UTMOS continues to drop, reaching below 1.5 by the end of the 160 episodes.

(Bottom) shows the evaluation NISQA MOS over 160 training episodes for each RL method. DLPO
increases NISQA greatly from 3.85 to 4.12 during the first 100 episodes, then maintain above 4.05.
KLinR also increases NISQA to above 4 but starts to decrease after 100 episodes. DPOK has NISQA
decrease from 4.0 to 3.65 during the initial 60 episodes then gradually rises above 4.0. Both RWR
and DDPO has steady decrease in NISQA from the start. Moreover, the x0 generated by DDPO and
RWR gradually becomes acoustically noisy as the number of seen samples grows. Due to randomness
in sampled text, different models receive different initial samples, resulting in varied UTMOS and
NISQA at the beginning.

Is diffusion loss alone effective? We conduct an experiment that finetunes the baseline Wave-
Grad2 with only the diffusion loss as reward, which we name OnlyDL. The loss function is
− log pθ(xt−1|xt, c) ∗ (−∥ϵ̃(xt, t) − ϵθ(xt, c, t)∥2). We train this model for 5.5 hours which is
the same training time as DLPO and we plot the total loss, diffusion loss, and change of UTMOS
during training in tensorboard, shown in Appendix E. Both total loss and diffusion loss has clearly
plateaued and shows minimal fluctuations during training. Moreover, the UTMOS maintains around
3 during the entire training, and DLPO has UTMOS increase from around 3 to above 3.65 during
training, which is reported in Figure 3 in our paper. This also indicates that DLPO can effectively
increase base model’s UTMOS during training.

One vs. ten sampled steps in diffusion loss guidance To further assess the influence of denoising
steps, we conducted an experiment where we fine-tuned the baseline WaveGrad2 model using DLPO
with only a single denoising step, in contrast to the previous experiment that used 10 denoising steps.
In this experiment, we randomly select one denoising step t ∼ U{0, 999}. Then we compute the
diffusion model loss ∥ϵ̃(xt, t) − ϵθ(xt, c, t)∥2 and log probability log pθ(xt−1|xt, c) based on xt,
update the gradient following Equation 10 and update θ. The results are shown in Table 2.

5.2 EXPERIMENT RESULTS

We save the top three checkpoints for each model during training and use them to generate audios
for 200 unseen texts. We then use UTMOS and NISQA to predict MOS score of these generated
audios and the real human speech audios, labeled as ground truth. The results are shown in Table 1
and Figure 2(a). Sample audios are presented on https://demopagea.github.io/DLPO_
demo/.
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RL Algorithms α β UTMOS↑ NISQA ↑ WER ↓
Ground Truth - - 4.20 4.37 -
Base Model - - 2.90 3.74 1.5

OnlyDL - - 3.16 3.45 1.4
RWR 1 - 2.18 3.00 8.9
DLPO 1 1 3.65 4.02 1.2
DDPO 1 1 2.69 2.96 2.1
KLinR 1 1 3.02 3.73 1.3
DPOK 1 1 3.18 3.76 1.1

Table 1: Mean UTMOS, NISQA MOS, and word error rate for generated audios. Ground Truth is the
audio of real human speech.

RL Algorithms Denoising Steps UTMOS ↑ NISQA ↑ WER ↓
DLPO 1 3.71 3.96 1.7
DLPO 10 3.65 4.02 1.2

Table 2: NISQA, UTMOS, and WER for DLPO with different denoising steps.

Figure 2: (a) shows the mean UTMOS and NISQA scores for generated audio based on 200 unseen
texts, the error bar shows the standard deviation of each result. (b) shows the proportion of raters who
prefer the audios generated from the DLPO fine-tuned model or baseline model and the proportion of
raters who think audios generated by DLPO fine-tuned model and baseline model are about the same
(Tie).

We observe that the audios generated by the DLPO fine-tuned WaveGrad2 achieve the highest
UTMOS score of 3.65 and the highest NISQA score of 4.02, both significantly better than those
produced by the baseline pretrained WaveGrad2 model. Additionally, the WER for DLPO-generated
audios is 1.2, lower than that of the baseline model. Two two-sample t-tests confirmed significant
differences (p < 10−20) between the baseline and DLPO for both UTMOS and NISQA scores.

Both DPOK and KLinR also show effectiveness in improving base model. Both of them improve
UTMOS, and DPOK also improves NISQA in this experiment; however, both DDPO and RWR fail
to improve the base model and their generated audios are noisy.
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When comparing DLPO with OnlyDL, DLPO outperforms OnlyDL in UTMOS, NISQA, and WER.
This suggests that while diffusion gradients can assist in model fine-tuning, our RL method, DLPO,
is much more effective in improving the base model performance, bringing it closer to ground truth
quality. Additionally, as shown in Table 2, DLPO with varying denoising steps achieves similar
UTMOS scores, whereas DLPO with 10 denoising steps exhibits improved performance in both
NISQA and WER.

We further conduct an experiment recruiting human participants to evaluate the speech quality of
the audios generated by the previous version of DLPO. We randomly select 20 audios pair from the
generated audios (among audios of 200 unseen texts). Each pair includes one generated audio from
DLPO and one from the baseline pretrained WaveGrad2 model, both audios based on the same text.
11 listeners are recruited for the experiment. They are asked to assess which audio is better regarding
to speech naturalness and quality. We show the results in Figure 2. In 67% of comparisons, audios
generated from DLPO fine-tuned Wavegrad2 is rated as better than audios generated by the baseline
Wavegrad2 model, while 14% of comparisons have audios generated by the baseline Wavegrad2
model rated as better. 19% of comparisons are rated as about the same (Tie). The experiment question
is shown in Appendix F.

6 DISCUSSION

In our experiments, we found that RWR and DDPO do not enhance TTS models as they do for
text-to-image models, largely because they fail to effectively control the magnitude of deviations
from the original model. Only methods that incorporate diffusion model gradients as a penalty are
able to prevent such deviations. Both DPOK and KLinR, which apply diffusion model gradients
as a regularized KL, succeed in reducing model deviation while improving the sound quality and
naturalness of the generated speech. However, DLPO surpasses DPOK and KLinR, likely because
it aligns more closely with the training process of TTS diffusion models by directly integrating the
original diffusion model loss as a penalty in the reward function, thereby preventing model deviation
in fine-tuned TTS models more effectively.

Additionally, the experiment comparing DLPO, which uses both human feedback and diffusion model
gradients as rewards, with OnlyDL, which relies solely on diffusion model gradients to fine-tune
the base diffusion model, reveals important insights. The results show that OnlyDL offers minimal
improvement to the base diffusion model, while DLPO leads to significant enhancements. This
suggests that diffusion model gradients alone may not be sufficient for substantial improvement
in speech quality, perhaps because they fail to capture the complexities necessary for improving
speech quality in TTS models. Human feedback, on the other hand, introduces an additional layer
of guidance, steering the model toward more desirable outputs and effectively complementing the
diffusion gradients. The success of DLPO demonstrates that integrating both human feedback and
diffusion model loss as reward enables a more robust and efficient fine-tuning process, significantly
enhancing the speech quality and naturalness of the generated output.

Comparing the performance of the WaveGrad2 model fine-tuned with a single denoising step to that
of previous experiments using 10 denoising steps reveals that using more denoising steps improves
speech quality and reduces word error rates. This enhancement is likely due to the fact that sampling
additional denoising steps decreases variance and increases the chances of capturing more important
denoising effects. The results suggest that employing multiple denoising steps enables a more
thorough refinement of the generated audio, leading to clearer and more natural speech outputs. These
findings underscore the significance of selecting appropriate denoising steps during the fine-tuning
process, as they can greatly influence the model’s overall performance.
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A DLPO IMPLEMENTATION DETAILS

Pretrained Reward Model: we use UTMOS (Saeki et al., 2022), a pretrained speech quality and
naturalness assessment model to predict reward. The training dataset of UTMOS is provided by
VoiceMOS Challenge 2022, which are collected by a large-scale MOS listening test from 288 human
raters. UTMOS is trained to predict the human evaluation of the speech quality and naturalness
(MOS).

Finetune WaveGrad2 with online learning RL: The implementation of online Reinforcement Learning
(RL) involves several key components and steps that enable an agent to learn and adapt dynamically
as it interacts with its environment. At its core, online RL requires a mechanism for real-time data
collection, where the agent continuously observes the state of the environment, takes actions, and
receives feedback in the form of rewards. In DLPO implementation, WaveGrad2 is updated based on
the rewards and state transitions observed from the most recent updated WaveGrad2.

As shown in 3. More details for DLPO implementation, the most recent updated WaveGrad2
is WaveGrad2 θ, we implement inference step of WaveGrad2 θ to generate Audio x0 and the
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Figure 3: Detail steps for fine-tuning text-to-speech diffusion models with online RL learning

corresponding denoising trajectory of Audio x0. Reward is calculated by using pretrained UTMOS
to predict a MOS score for Audio x0. Then we use the reward and denosing trajectory to update
WaveGrad2 θ following DLPO algorithm.
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B WAVEGRAD2 MODEL

WaveGrad2 models the conditional distribution pθ(y0|x) where y0 is the clean waveform and x is the
conditioning features corresponding to y0, such as linguistic features derived from the corresponding
text:

pθ(y0|x) :=
∫

pθ(y0:N |x)dy1:N (12)

where y1, ..., yN is a series of latent variables, each of which are of the same dimension as the data
y0, and N is the number of latent variables (iterations). The generative distribution pθ(y0:N |x) is
called the denoising process (or reverse process), and is defined through the Markov chain, which is
shown in Figure 4:

pθ(y0:N |x) := p(yN ))

N∏
n=1

pθ(yn−1|yn, x) (13)

where each iteration is modelled as a Gaussian transition:

pθ(yn−1|yn, x) := N (yn−1;µθ(yn, n, x),
∑

θ(yn, n, x)) (14)

starting from Gaussian white noise p(yN ) = N (yN ; 0, I). The approximate posterior q(y1:N |y0) is
called the diffusion process (or forward process), and is defined through the Markov chain:

q(y1:N |y0) :=
N∏

n=1

q(yn|yn−1) (15)

where each iteration adds Gaussian noise:

q(yn|yn−1) := N
(
yn;

√
(1− βn)yn−1, βnI

)
(16)

under some (fixed constant) noise schedule β1, ..., βN . During training, we can optimize for the
variational lower-bound on the log-likelihood (upper-bound on the negative log-likelihood):

−logpθ(y0|x) ≤ Eq

[
− log

pθ(y0|x
q(y1:N |y0)

]
= Eq

[
− log p(yN )−

N∑
n=1

log
pθ(yn−1|yn, x)
q(yn|yn−1)

]
(17)

According to Equation 17, a straightforward approach would be to parameterize a neural network to
model the mean µθ and variance Σθ of the Gaussian distribution described in Equation 7, allowing
for direct optimization of the KL-divergence using Monte Carlo estimates. However, Ho et al. (2020)
found it more effective to set Σθ as a constant following the βn schedule and reparameterize the neural
network to model ϵθ, predicting the noise ϵ ∼ N (0, I) instead of µθ. With this reparameterization,
the loss function can be expressed as:

Ec∼p(c)Et∼U{0,T}Epθ(x0:T |c) [∥ϵ̃(xt, t)− ϵθ(xt, c, t)∥2] (18)
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Figure 4: WaveGrad2 follows a Markov process where forward diffusion q(yn+1|yn, x) iteratively
adds Gaussian noise to the signal starting from the waveform y0. q(yt+1|y0) is the noise distribution
used for training. The inference denoising process progressively removes noise, starting from
Gaussian noise xT . This figure is adapted from Chen et al. (2020); Ho et al. (2020).

C ALGORITHM FOR FINE-TUNING WAVEGRAD2 WITH DPOK

Algorithm 2 WaveGrad2 with DPOK: Diffusion Policy Optimization with a KL-shaped Reward
Input: reward model r, pre-trained model ppre, current model pθ, batch size m, text distribution
p(c)
initialize pθ = ppre
while θ not converged do

Obtain m i.i.d.samples by first sampling c ∼ p(c) and then x0:T ∼ pθ(xt−1|xt, c), r(x0, c)

Sample xt given x0, t ∼ [0, T ], compute log pθ(xt−1|xt, c) and log pθ(xt−1|xt,c)
ppre(xt−1|xt,c)

Update gradient using Equation 9 and update θ

Output: Fine-tuned diffusion model pθ

D ALGORITHM FOR FINE-TUNING WAVEGRAD2 WITH KLINR

Algorithm 3 WaveGrad2 with Diffusion Policy Optimization with KLinR
Input: reward model r, pre-trained model ppre, current model pθ, batch size m, text distribution
p(c)
initialize pθ = ppre
while θ not converged do

Obtain m i.i.d.samples by first sampling c ∼ p(c) and then x0:T ∼ pθ(xt−1|xt, c), r(x0, c)

Sample xt given x0, t ∼ [0, T ], compute log pθ(xt−1|xt, c) and log pθ(xt−1|xt,c)
ppre(xt−1|xt,c)

Update gradient using Equation 9 and update θ

Output: Fine-tuned diffusion model pθ

E TENSORBOARD PLOT DIFFUSION LOSS ONLY MODEL

In this figure, diffusion model loss is labeled as l1loss (left), the loss function is − log pθ(xt−1|xt, c)∗
(−∥ϵ̃(xt, t)− ϵθ(xt, c, t)∥2) (middle). UTMOS is labelled as mosscore (right).
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F HUMAN EXPERIMENT EXAMPLE

The following figure shows one example question of our human experiment. We ask participants to
listen to two audios and choose the audios that sounds better, regarding the quality of the speech
(clear or noisy, intelligibility)

G RECENT DIFFUSION TTS MODELS

Model Year Structure Training Data Reported MOS Has Official Code
Wavegrad 2 2021 Train with

raw waveform
Proprietary Data
385 hours

4.43 No

Grad-TTS 2021 Train with
mel-spectrogram

LJSpeech
24 hours

4.44 Yes

DiffGAN-TTS 2022 Diffusion and
GAN

Chinese speech
200 hours

4.22 No

E3 TTS 2023 Train with
raw waveform

Proprietary Data
385 hours

4.24 No

Naturalspeech2 2023 Train with
Codec encoder

Proprietary Data
44K hours

0.65
better than
SOTA

No

NaturalSpeech3 2024 Train with
Codec encoder

Proprietary Data
60K hours

0.08
lower than
ground truth

No

DiTTo-TTS 2024 Train with
Codec encoder

Proprietary Data
82K hours

0.13
lower than
ground truth

No

SimpleTTS 2024 Train with
Codec encoder

LibriSpeech
44.5K hours

2.77 Yes

Table 3: Recent TTS models trained with Diffusion
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