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Abstract

Low-Rank Adaptation (LoRA) is currently the001
most commonly used Parameter-efficient fine-002
tuning (PEFT) method, it introduces auxil-003
iary parameters for each layer to fine-tune the004
pre-trained model under limited computing re-005
sources. However, it still faces resource con-006
sumption challenges during training when scal-007
ing up to larger models. Most previous studies008
have tackled this issue by using pruning tech-009
niques, which involve removing LoRA param-010
eters deemed unimportant. Nonetheless, these011
efforts only analyze LoRA parameter features012
to evaluate their importance, such as parame-013
ter count, size, and gradient. In fact, the out-014
put of LoRA (product of LoRA parameter and015
hidden state), directly impacts the final results.016
Preliminary experiments indicate that a frac-017
tion of LoRA elements possesses significantly018
high output values, substantially influencing019
the layer output. Motivated by the observation,020
we propose LoRA-drop. Concretely, LoRA-021
drop evaluates the importance of LoRA based022
on the LoRA output. Then we retain LoRA for023
important layers and the other layers share the024
same LoRA. We conduct abundant experiments025
with models of different scales on NLU and026
NLG tasks. Results demonstrate that LoRA-027
drop can achieve performance comparable to028
full fine-tuning and LoRA, while retaining 50%029
of the LoRA parameters on average.030

1 Introduction031

Parameter-efficient fine-tuning methods have at-032

tracted more and more attention with the devel-033

opment of large language models (LLM) (Li and034

Liang, 2021; Lester et al., 2021). Among vari-035

ous PEFT methods, LoRA (Hu et al., 2021) has036

been particularly prevalent in recent studies. LoRA037

freezes the pre-trained parameters and introduces038

auxiliary trainable parameters ∆W for each layer039

as shown in Figure 1. LoRA significantly reduces040

the training cost while achieving impressive results.041
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Figure 1: The diagram of LoRA. LoRA influences the
pre-trained model through its output ∆Wx. This pa-
per’s method measures the importance of LoRA based
on its output.

To further reduce the number of LoRA parame- 042

ters being trained during efficient fine-tuning, previ- 043

ous studies employ pruning techniques that remove 044

LoRA parameters deemed unimportant. The core 045

of these methods lies in how to evaluate the im- 046

portance of parameters. Sparse Adapter (He et al., 047

2022) evaluates the importance of LoRA based 048

on different parameter features such as parame- 049

ter count, parameter size, and parameter gradient. 050

AdaLoRA (Zhang et al., 2022) designs importance 051

criteria based on the singular value decomposi- 052

tion (SVD) of ∆W to prune unimportant singular 053

values. SoRA (Ding et al., 2023) prunes down- 054

projection and up-projection matrices in LoRA by 055

employing gate units and proximal gradient meth- 056

ods. All of these efforts only focus on analyzing 057

LoRA parameter ∆W features to evaluate their im- 058

portance, thereby reducing the parameters required 059

for LoRA training. 060

In fact, the output of LoRA, which is related to 061

the parameters and data, directly impacts the final 062

results. As shown in Figure 1, the LoRA adds a 063

bias term ∆Wx in each layer of the pre-trained 064

model. Thus, the frozen model is fine-tuned by the 065

bias term. Intuitively, if the norm of ∆Wx is large, 066

the LoRA of this layer has an important impact on 067

the frozen model. 068
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Figure 2: The frequency distribution of the squared norm of query LoRA output ∆Wixi on the RTE task. Each
subplot represents the distribution of ∥∆Wixi∥2 for query LoRA from layers 0 to 11, where the x-axis denotes the
magnitude of ∥∆Wixi∥2 for different inputs xi, and the y-axis represents the frequency of ∥∆Wixi∥2.

We conducted an empirical study to analyze the069

distribution of LoRA output in LLMs. The find-070

ings derived from this study are presented in Sec-071

tion 2, revealing that the distribution of outputs072

from the LoRA of each layer is relatively concen-073

trated. LoRA of some layers has little to no im-074

pact on specific tasks, while other layers exhibit075

more significant effects. Thus, we could prune076

non-salient LoRA parameters.077

Motivated by the observation, we propose LoRA-078

drop, which evaluates the importance of parameters079

by analyzing the LoRA output for each layer. First,080

we sample specific task datasets and then utilize081

the sampled data to perform a limited number of082

updates to LoRA. The importance of LoRA for083

each layer is determined based on ∆Wx. Then,084

We retain the LoRA for layers with a large impor-085

tance score, and the other layers share the same086

LoRA. Finally, we fine-tune the model with fewer087

trainable parameters under the new LoRA setting,088

while minimizing performance degradation.089

Our contributions are as follows:090

• We conducted empirical research, and the091

analysis indicates that the distribution of out-092

puts from the LoRA of each layer is relatively093

concentrated. LoRA of some layers has lit-094

tle to no impact on specific tasks, while other095

layers exhibit more significant effects.096

• We propose LoRA-drop, which evaluates the 097

importance of LoRA for different layers and 098

significantly reduces the parameter required 099

during LoRA training while maintaining per- 100

formance comparable to standard LoRA. 101

• We conduct comprehensive experiments on 102

multiple NLU and NLG tasks with various 103

sizes of pre-trained models. Numerous analy- 104

sis experiments demonstrate the effectiveness 105

of LoRA-drop. 106

2 Preliminary Experiment 107

LoRA utilizes the product of two low-rank matrices 108

to simulate incremental updates to a full-rank ma- 109

trix. The pre-trained parameters are frozen during 110

training and do not receive gradient updates, while 111

the two low-rank matrices are trained. Let Wi de- 112

note the query/key/value matrix of ith Transformer 113

layer and xi denote the input of the ith Transformer. 114

The two low-rank matrices are Ai and Bi. Thus, 115

the query/key/value vector is as follows: 116

hi = Wixi +∆Wixi = Wixi +BiAixi (1) 117

where ∆Wixi is the bias introduced by the LoRA 118

modules. 119

Obviously, the ∆Wixi is the factor that directly 120

influences the frozen pre-trained model. The larger 121
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Figure 3: The overall workflow of LoRA-drop.

∆Wixi, the greater the impact of LoRA on the122

pre-trained model, and consequently, the more im-123

portant LoRA is. In fact, the ∆Wixi is related to124

the LoRA parameter and the hidden state, where125

the hidden state is computed from downstream task126

data through the preceding layers of the model.127

However, previous work prunes LoRA by only an-128

alyzing its parameter features, ignoring the hidden129

state.130

Preliminarily, we statistics the distribution of the131

LoRA output in each layer. Specifically, we fine-132

tune the RoBERTa-base model with LoRA sepa-133

rately on the RTE and MRPC dataset, and analyze134

the distribution of the squared norm of the LoRA135

output ∆Wixi for each dataset. We evaluate the136

impact of LoRA by computing the squared norm of137

∆Wixi. Following the setting of (Hu et al., 2021),138

the LoRA is added to the query and value matrix.139

The distribution of query and value LoRA for RTE140

is shown in Figure 2 and Figure 6. The distribution141

of query and value LoRA for MRPC is shown in142

Figure 7 and Figure 8.143

As observed, the squared norm distribution of144

∆Wixi for each layer is highly concentrated, show-145

ing a peak Gaussian frequency distribution, which146

suggests stability. Furthermore, Observations show147

that the squared norm of ∆Wixi for certain layers148

consistently remains close to zero, indicating that149

LoRA for these layers has almost no impact on150

the frozen model. Conversely, some layers show a151

more significant impact on the frozen model.152

Moreover, RTE and MRPC exhibit different dis-153

tribution patterns. It indicates that different layers154

play varying roles across different tasks.155

This preliminary experiment demonstrates that156

we can prune the LoRA to reduce the number of157

trainable parameters. LoRA with small ∆Wixi is158

insignificant, and can be pruned.159

3 Methodology 160

In this section, we introduce LoRA-drop, a novel 161

parameter-efficient fine-tuning method that prunes 162

based on LoRA output. We have designed a process 163

to quantify the importance of LoRA for different 164

layers based on its output. Then, we retain the more 165

important LoRA and replace the less important 166

ones with a shared LoRA parameter, thereby reduc- 167

ing the number of parameters required for LoRA 168

training while maintaining performance compara- 169

ble to that of the standard LoRA. 170

Specifically, LoRA-drop consists of two parts: 171

Importance Evaluation and Task Adaptation. 172

The overall process of LoRA-drop is illustrated 173

in Figure 3. 174

3.1 Importance Evaluation 175

This step evaluates the importance of LoRA for dif- 176

ferent layers, providing a reference for its retention 177

strategy in the Task Adaptation step. 178

Since the A and B matrices of LoRA are initial- 179

ized with Kaiming and zero initialization, the initial 180

output is all zeros. The output of LoRA becomes 181

meaningful only after certain update steps. 182

So, we first perform stratified sampling on the 183

downstream task dataset to obtain a subset Ds of 184

training data D. The sampling ratio is set to α, 185

where 0<α<1. After that, the LoRA parameters are 186

updated with several steps using this subset. 187

Next, we compute the sum of the squared norm 188

of the LoRA output for each layer, denoted as g, 189

the g of the i-th layer LoRA as expressed in Equa- 190

tion 2. 191

gi =
∑
x∈Ds

∥∆Wixi∥2 (2) 192

From section 2, the magnitude of g reflects the 193

importance of LoRA. To better represent the rel- 194
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ative importance of LoRA for each layer, we nor-195

malized g, resulting in the importance I for each196

layer of LoRA.197

Ii =
gi∑
i gi

(3)198

Thus, the importance of each layer of LoRA is199

bounded between 0 and 1, with a total sum of 1.200

We find that sampling a small subset from the201

training data is able to obtain a LoRA importance202

distribution similar to that of the full dataset. This203

was verified by experiments in Section 4.3. Our204

experiments’ default value of α is set to 10%.205

3.2 Task Adaptation206

This step sets the LoRA-drop fine-tuning strat-207

egy suitable for the downstream task based on the208

LoRA importance distribution.209

With the importance of LoRA for each layer,210

we sort the layers according to Ii. We select the211

layers from most to least important until the sum212

importance of the selected layer reaches a threshold213

T . In this paper, T is set to 0.9 by default, and the214

value of T is discussed in section 4.3.215

The LoRA of these selected layers will be re-216

tained during training, while a shared LoRA pa-217

rameter will replace the LoRA of the other layers.218

The hyper-parameter T controls the number of the219

selected layers. Finally, we fine-tune the model220

using the training dataset under the new LoRA set-221

ting.222

4 Experiments223

4.1 Setup224

Datasets. We evaluate our model on both Natu-225

ral Language Understanding (NLU) and Natural226

Language Generation (NLG) tasks.227

For NLU, we evaluate our method on the GLUE228

benchmark (Wang et al., 2018), which consists of229

eight datasets: CoLA, SST-2, MRPC, QQP, STS-B,230

MNLI, QNLI, and RTE. We use Matthew’s correla-231

tion coefficient, Spearman’s correlation coefficient,232

and overall accuracy (for both matched and mis-233

matched sentences) to evaluate the CoLA, STS-B,234

and MNLI datasets. For the remaining datasets, we235

apply accuracy as the evaluation metric.236

The NLG tasks in our experiments include the237

table-to-text datasets E2E (Dušek et al., 2020)238

and DART (Nan et al., 2021), the summariza-239

tion dataset DialogSum (Chen et al., 2021),240

as well as the Mathematical Reasoning dataset241

GSM8K (Cobbe et al., 2021). We use BLEU (Pa- 242

pineni et al., 2002), ROUGE (Lin, 2004), and ac- 243

curacy to evaluate the E2E(&DART), DialogSum, 244

and GSM8K datasets. 245

Baselines. The following methods are chosen as 246

baselines: FULL-FT updates all model param- 247

eters which need a lot of computing resources. 248

LoRA (Hu et al., 2021) represents the original 249

LoRA method. Sparse Adapter (He et al., 2022) 250

applies typical pruning methods to LoRA and re- 251

duces the trainable parameters. VeRA (Kopiczko 252

et al., 2024) shares and freezes randomly initial- 253

ized LoRA and introduces trainable vectors for 254

each layer to reduce the parameters of LoRA. 255

Tied-LoRA (Renduchintala et al., 2023) makes 256

the frozen LoRA in VeRA trainable. SoRA (Ding 257

et al., 2023)uses a gate unit with proximal gradient 258

methods to control LoRA’s sparsity. 259

Models & Implementation. To evaluate the ef- 260

fectiveness of our method on various models, we 261

conduct experiments on RoBERTa-base, RoBERTa- 262

large(Liu et al., 2019), and Llama2-7b(Touvron 263

et al., 2023). We conduct NLU experiments on 264

the GLUE benchmark using all three models. We 265

performed 3 runs with different random seeds for 266

each dataset and recorded the best results for each 267

run. The average results and the standard deviation 268

are calculated. 269

To evaluate the effectiveness of our method on 270

generation tasks, we conduct NLG experiments us- 271

ing the Llama2-7b on the table2text datasets: E2E 272

and DART, the summarization dataset DialogSum, 273

as well as the Mathematical Reasoning dataset 274

GSM8K. 275

The hyperparameter settings for each baseline 276

and LoRA-drop can be found in Section A.1. 277

4.2 Main Results 278

The main results of RoBERTa-base with differ- 279

ent training methods on the GLUE benchmark are 280

shown in Table 1. It is noted that our motivation is 281

to reduce the number of trainable parameters while 282

ensuring that the performance does not degrade, 283

or even improve. As shown in Table 1, with an 284

approximately 50% reduction in standard LoRA 285

parameters, our proposed LoRA-drop achieves an 286

average score of 86.2, on par with Full-FT (86.4) 287

and LoRA (86.1). This indicates the effectiveness 288

of our proposed LoRA-drop, which outperforms 289

LoRA by 0.1 scores while reducing training param- 290

eters. 291
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Model
RoBERTa-base

#Tr.
Params

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

Full-FT* 125M 78.7 90.2 91.2 63.6 94.8 92.8 87.6 91.9 86.4
LoRA 0.29M 80.8±1.5 89.1±0.6 91.2±0.2 62.4±0.7 94.3±0.3 93.0±0.2 87.5±0.2 90.3±0.1 86.1
SoRA 0.21M 79.7±0.7 89.7±1.0 89.8±0.1 63.8±1.0 94.8±0.4 92.4±0.3 86.1±0.1 88.9±0.3 85.6
Sparse Adapter 0.15M 78.7±1.1 88.0±0.5 89.5±0.4 60.1±0.7 94.1±0.1 92.8±0.1 87.1±0.2 89.6±0.1 85.0
VeRA 0.03M 78.0±1.1 88.4±0.1 89.8±0.2 60.9±0.5 93.7±0.1 89.6±0.1 83.7±0.1 86.8±0.1 83.9
Tied-LoRA 0.15M 80.0±0.9 89.1±0.6 90.3±0.1 62.0±0.8 94.1±0.3 91.6±0.4 86.9±0.1 89.7±0.1 85.5
LoRA-drop (ours) 0.15M 81.4±0.5 89.5±0.5 91.0±0.1 62.9±0.2 94.5±0.2 93.1±0.1 87.3±0.2 90.1±0.1 86.2

Table 1: Results of the RoBERTa-base with different training strategies on the GLUE benchmark. The results are
averaged from three seeds to produce solid results. The subscript is the standard deviation. Bold and underlined
indicate the first and second best results in the corresponding regime. #Tr. refers to trainable. * refers to the results
directly from their original paper, in which Full-FT is derived from (Liu et al., 2019).

Model #Tr. E2E DART Dialogsum GSM8K
Avg.

Llama2 7b Params (BLEU) (BLEU) (ROUGE) (Acc)

Full-FT 6.6B 55.65 59.68 40.77 31.16 46.82
LoRA 0.13B 56.38 58.51 41.03 34.04 47.49
LoRA-drop (ours) 0.09B 57.06 58.82 40.68 34.50 47.77

Table 2: Results of Llama2-7b with different training strategies on two table2text datasets including E2E and DART,
the summarization dataset Dialogsum, and the mathematical reasoning dataset GSM8K. For all the scores, BLEU,
ROUGE, and Acc, higher is better.

Moreover, LoRA-drop achieves 0.6, 1.2, 2.3,292

and 0.7 improvements in average scores com-293

pared to the four baselines: SoRA, Sparse Adapter,294

VeRA, and Tied-LoRA respectively. Although all295

four methods effectively reduce LoRA parameters,296

their performance drops significantly. The results297

demonstrate that LoRA-drop is a superior strategy298

for evaluating the importance of trainable param-299

eters and reducing less important ones, thereby300

enhancing parameter efficiency.301

The results of RoBERTa-large and Llama2-7b302

with different training strategies on the GLUE303

benchmark are presented in Table 6 and Table 7. It304

is noted that we use Llama2-7b to obtain the token305

representation rather than generate the answer. On306

both models, our method utilizes about 52% of the307

standard LoRA parameters and achieves average308

scores of 89.1 and 89.3 for RoBERTa-large and309

Llama2-7b respectively, outperforming LoRA and310

Full-FT. This demonstrates the effectiveness of our311

method across models of different scales.312

The results of NLG tasks, including table2text,313

summarization, and mathematical reasoning, are314

shown in Table 2. On Llama2-7b, our method315

achieves results on par with the Full-FT and LoRA316

while using approximately 68% of the original317

LoRA parameters for all three tasks. Additionally,318

the average score of our method (47.77) exceeds319

that of Full-FT (46.82) and LoRA (47.49). This320

confirms the effectiveness of our method across 321

both NLU and NLG. 322

4.3 Analysis 323

The value of LoRA output indicated the impor- 324

tance. As described in Section 3.1, the impor- 325

tance evaluation step quantifies the importance of 326

LoRA based on its output. In this section, we ver- 327

ify the effectiveness of the output-based evaluation 328

method. Specifically, we first perform standard 329

LoRA fine-tuning and obtain the importance score. 330

Based on this score, we retain either the largest 331

or the smallest of the LoRA layers for inference, 332

the number of retained LoRA is consistent with 333

the number retained by LoRA-drop in Section 4.2. 334

We then evaluate these two settings, and the final 335

results are presented in Table 3. 336

It is evident that when only approximately half 337

of the LoRA modules are retained, the model’s per- 338

formance decreases significantly. When we retain 339

the LoRA modules with larger I , the performance 340

is substantially better than those with smaller I . 341

This indicates that the LoRA-drop method’s layer- 342

specific LoRA Importance Evaluation is effective. 343

LoRA with a larger squared norm output indeed 344

has a greater contribution to the model’s fine-tuning 345

performance. 346
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Model
(RoBERTa-base)

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

LoRA 79.4 89.2 91.0 63.1 94.6 92.7 87.6 90.3 86.0
LoRA(large I) 72.2 77.5 85.9 58.9 92.9 73.6 71.2 82.6 76.9
LoRA(small I) 47.7 69.9 49.6 23.5 88.2 55.4 32.2 63.9 53.8

Table 3: Verification of Importance Evaluation Method. The data in the table represents the results from a single run
with the same random seed. LoRA (large I) retains the few LoRAs with the highest I values, while LoRA (small I)
retains the few with the lowest I values. The number retained is consistent with the LoRA-drop setting in Table 1.
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Figure 4: LoRA Importance Distribution in Different Downstream Task Data. To unify the importance scales across
different datasets, we divide the importance of each dataset by its maximum value so that the importance of the
most important layer of LoRA in that dataset is 1.

Distribution of LoRA importance varies across347

different tasks. The insight of our approach is348

to derive LoRA importance adapted to the distri-349

bution of different downstream task data, enabling350

the simplification of LoRA parameters. To fur-351

ther validate the rationality of this insight, we plot352

heatmaps illustrating the distribution of LoRA im-353

portance I for eight different datasets in GLUE on354

RoBERTa-base and Llama2.355

The results are presented in Figure 4 and Fig-356

ure 11. We observe that the importance distribu-357

tions differ across datasets, indicating that the im-358

portance assigned by LoRA is data-dependent.359

The influence of LoRA share. In our method,360

the layers with low importance are shared with the361

same LoRA parameters. We investigate the influ-362

ence after the LoRA parameters are shared. Fol-363

lowing the LoRA share operation on the RoBERTa-364

base model trained on 20% of the RTE training set365

data for 4 epochs, we plot the importance distribu-366

tion for each layer of the model.367

The results of query and value distribution are368

shown in Figure 9 and Figure 10. It shows that369

the importance distribution of LoRA for each layer370

remains almost consistent with the original LoRA371

after the LoRA parameters are shared. This sug-372

gests that the sharing LoRA for layers with low373

importance does not affect the importance distri- 374

bution of other layers, thereby maintaining good 375

performance. 376
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Figure 5: Importance distribution of LoRA for query in
RTE under different sample proportions. Each point on
the heatmap represents the importance Ii of the query
LoRA in layer i under α sample proportion.

The influence of sample proportion. We inves- 377

tigate the influence of the sample proportion when 378

calculating the importance of LoRA. We sample 379

ten different-sized datasets from the RTE dataset 380

with sampling ratios from 10% to 100%. We train 381

the RoBERTa-base model using LoRA for the same 382
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Threshold
Avg. layer num RTE

(ACC)
CoLA
(Matt.)

QNLI
(ACC)

QQP
(ACC)

Avg.
W_query W_value

1(LoRA) 12 12 82.3 61.9 93.1 90.4 82.0
0.95 6 9 83.0 62.6 93.1 90.2 82.2
0.9 5 7 81.9 63.1 93.2 90.2 82.1
0.8 5 5 80.9 63.1 93.2 89.6 81.7
0.7 4 4 78.3 62.1 92.5 89.3 80.6

Table 4: The influence of the threshold T and its equivalent average number of layers.

Model
(RoBERTa-base)

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

LoRA-drop* 81.9 90.0 91.1 63.1 94.7 93.2 87.5 90.2 86.5
LoRA-drop(w/o share) 80.4 88.9 90.7 62.8 94.1 92.9 86.9 89.7 85.8
LoRA-drop(∆Wx inv) 79.1 89.7 90.4 60.5 94.3 92.9 87.3 89.9 85.5
LoRA-drop(random) 79.1 89.2 90.2 62.0 94.6 92.7 86.9 89.8 85.6
LoRA-drop(top k) 81.9 89.2 90.7 62.3 94.5 93.0 86.8 89.8 86.0

Table 5: Ablation experiments.

number of steps and obtain the LoRA importance383

for each sample proportion.384

The results of LoRA for Query and Value are385

shown in Figure 5 and Figure 12. As the training386

data increases, the importance order of each layer387

remains consistent. For LoRA applied to the query388

matrices, the 10th layer has always been the most389

important, while the importance of layers 7, 8, and390

9 maintains a consistently high level of importance.391

Indicating that this operation is insensitive to the392

size of the sampled data and exhibits robustness.393

Selection of threshold T . LoRA-drop introduces394

a hyper-parameter T to control the number of se-395

lected layers. We select four datasets from GLUE396

to analyze the impact of threshold T .397

The results are shown in Table 4. When T is398

set to 1, all layers are preserved, representing the399

standard LoRA method. When T is less than 0.9,400

the model performance increases with T , at this401

time, LoRA modules with higher importance are402

selected. When T equals 0.9, approximately half403

of the layers’ LoRA are selected on average. If404

T continues to increase, the newly added LoRA405

modules have lower importance, and the model per-406

formance no longer significantly improves. Hence407

in our experiments, we default to setting T as 0.9.408

4.4 Ablation Study409

In this subsection, we conduct ablation experiments410

to verify the following two questions:411

• Q1: Is replacing LoRA for layers with small412

I with shared parameters better than directly413

removing them in the task adaptation step? 414

• Q2: Is retaining LoRA with large I in the task 415

adaptation step reasonable? 416

To answer these two questions, we compare 417

LoRA-drop with the following variants on the 418

RoBERTa-base model, where k refers to the num- 419

ber of LoRA retained by LoRA-drop. 420

LoRA-drop (w/o share) directly removes the 421

low-importance layers of LoRA without using 422

additional shared parameters in the Task Adap- 423

tation step. As opposed to LoRA-drop, LoRA- 424

drop (∆Wx inv) replace high-importance layers 425

of LoRA with shared LoRA and retain the other 426

LoRA. LoRA-drop (random) randomly selects k 427

layers that retain LoRA parameters. Houlsby et al. 428

(2019) found that lower layers often have a small 429

impact on performances, so LoRA-drop (top k) 430

selects the top k layers of the 12-layer model. We 431

experiment with these four settings on the valida- 432

tion set of the GLUE benchmark. 433

The results are shown in Table 5. 434

Regarding Q1, directly removing less important 435

LoRA parameters, i.e., the LoRA-drop (w/o share) 436

setting, performs worse across all tasks than LoRA- 437

drop, with an average reduction of 0.7 scores. 438

This indicates that sharing a LoRA among the 439

layers with low importance is necessary to achieve 440

better fine-tuning results compared to directly re- 441

moving them. 442

Regarding Q2, the ∆Wx inv setting achieved 443

the worst average performance, slightly worse than 444

the random setting. This indicates that LoRA with 445
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smaller I contributes less to model performance446

improvement. The top k setting, which empirically447

retains the top k layers, performed well but had an448

average performance gap of 0.5 scores compared449

to the LoRA-drop.450

LoRA-drop yields better performance compared451

to all the other three variants. It confirms the rea-452

sonableness of retaining the LoRA of layers with453

significant importance and further validates the ef-454

fectiveness of the method proposed in this paper455

for evaluating the importance of LoRA.456

5 Related Work457

Parameter Efficient Fine-Tuning (PEFT) is the458

mainstream method for the current fine-tuning of459

pre-trained models, which can be broadly catego-460

rized into additive methods, selective methods, and461

reparameterized (Han et al., 2024).462

5.1 Additive Methods463

Additive methods inject new trainable modules or464

parameters into pre-trained models. During fine-465

tuning for a specific downstream task, only the466

weights of these newly added modules are updated.467

Adapter (Houlsby et al., 2019) involves inserting468

small adapter layers within Transformer blocks.469

There are two ways to inject adapters into pre-470

trained models: Serial Adapter (Houlsby et al.,471

2019) adds two adapter modules in each Trans-472

former block. Parallel Adapter (He et al., 2021)473

transforms the serial adapter layers into parallel474

side networks. Adapter Drop (Rücklé et al., 2021)475

empirically removes lower-layer Adapters consid-476

ered to have a small impact on task performance.477

Soft Prompt uses continuous embedding of soft478

prompts instead of optimizing discrete token rep-479

resentations through in-context learning. Prefix-480

tuning (Li and Liang, 2021) inserts trainable vec-481

tors prepended to keys and values at all Trans-482

former layers. P-tuning (Liu et al., 2021) and483

Prompt-tuning (Lester et al., 2021) only insert train-484

able vectors at the initial word embedding layer.485

5.2 Selective Methods486

Selective methods make a small subset of parame-487

ters in the pre-trained model trainable while keep-488

ing the rest frozen. Diff pruning (Guo et al., 2021)489

employs a learnable binary mask on model weights.490

BitFit (Zaken et al., 2022) only fine-tunes the bias491

parameters of each FFN, achieving competitive re-492

sults for small models. Lee et al. (2019) fine-tunes493

only the last quarter of BERT and RoBERTa’s fi- 494

nal layer, achieving 90% of the performance of 495

full fine-tuning. HiFi (Gui and Xiao, 2023) fine- 496

tunes attention heads that are highly informative 497

and strongly correlated for a specific task. 498

5.3 Reparameterized Methods 499

In the context of PEFT, reparameterization often 500

involves constructing a low-rank parameterization 501

to enhance parameter efficiency during training. 502

LoRA (Hu et al., 2021) introduces low-rank 503

matrices during fine-tuning and can merge with 504

pre-trained weights before inference. There 505

are many derivative works based on LoRA. 506

QLoRA (Dettmers et al., 2023) quantifies the pa- 507

rameters of large models doubly, significantly re- 508

ducing memory usage. AdaLoRA (Zhang et al., 509

2022) transforms the low-rank matrices in LoRA 510

into SVD matrices PΛQ. During training, the sin- 511

gular values are iteratively pruned. SoRA (Ding 512

et al., 2023) eliminates the matrix orthogonal- 513

ity premise of P and Q in AdaLoRA and in- 514

stead applies a gating unit between them. Sparse 515

Adapter (He et al., 2022) enhances the parame- 516

ter efficiency of LoRA and other Adapters using 517

network pruning methods. S2-LoRA (Liu et al., 518

2023) shares the LoRA parameters, and introduces 519

trainable scaling vectors with inter-layer variations. 520

VeRA (Kopiczko et al., 2024) and Tied-LoRA (Ren- 521

duchintala et al., 2023), further reduce the parame- 522

ter count by sharing parameters for all layers and 523

modules of LoRA. DoRA (Liu et al., 2024) uses 524

LoRA for directional updates, enhancing learning 525

capacity and training stability. 526

6 Conclusion 527

In this paper, we propose a new parameter-efficient 528

fine-tuning method LoRA-drop based on LoRA. 529

our motivation is to reduce the number of train- 530

able parameters during fine-tuning while ensuring 531

that the performance does not degrade, or even im- 532

prove. Concretely, we calculate the importance 533

of LoRA for each layer based on the output. The 534

LoRA parameters of layers with large importance 535

are retained and the other layers share the same 536

parameter, resulting in a significant reduction in 537

the number of parameters that need to be trained 538

compared to the original LoRA. Abundant exper- 539

iments on multiple NLU and NLG datasets show 540

that LoRA-drop can achieve comparable results 541

with origin LoRA with 50% of LoRA parameters. 542
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Limitations543

Currently, our method operates on the LoRA struc-544

ture as a whole, with a relatively coarse granularity.545

Future work will refine this method to a finer gran-546

ularity. While this technique reduces the number of547

training parameters during LoRA training, it does548

not decrease the inference cost. Pruning increases549

the model’s complexity, making it more difficult550

to identify the sources of issues when performance551

falls short of expectations. This, in turn, compli-552

cates the processes of debugging and error analysis.553
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A Appendix710

A.1 Implementation Details711

Our LoRA configuration aligns with the experi-712

mental setup of (Hu et al., 2021), where LoRA is713

applied to the query and value matrices in each714

self-attention module. We each use a shared LoRA715

in place of the low-importance query LoRA and716

value LoRA.717

The low-rank matrix A of the LoRA architecture718

is initialized using Kaiming initialization (He et al.,719

2015), while matrix B is initialized with zeros.720

Unless specified otherwise, the default rank for721

LoRA is set to 8.722

We conducted NLU experiments on the GLUE723

benchmark using RoBERTa-base (Liu et al., 2019).724

The data sampling ratio α is set to 0.1, the number725

of training epochs n is set to 3, and the threshold T726

for LoRA-drop is set to 0.9. To ensure consistency727

in the trainable parameter count between the base-728

line and our method, we set the sparsity rate of the729

Sparse Adapter to 0.5. We set the pruning method730

of the Sparse Adapter to the performance-optimal731

SNIP (Lee et al., 2018). The rank of Tied-LoRA is732

set to 56. The design characteristics of the VeRA733

method determine that its trainable parameter count734

cannot reach the same order of magnitude as LoRA;735

otherwise, VeRA would no longer be a low-rank736

matrix. Therefore, we set the rank of VeRA to 512737

based on the best hyperparameters provided in the738

original paper.739

To evaluate the effectiveness of our method on740

generation tasks, we conducted NLG experiments741

using the Llama2 7b on the table2text datasets:742

E2E and DART, the summarization dataset Dialog-743

Sum, as well as the mathematical reasoning dataset744

GSM8K. For all three tasks, we set the rank of745

LoRA to 64. It is worth noting that, in the NLG ex-746

periment we applied LoRA to the query, key, value,747

and output matrices in Attention, and up and down748

matrices in MLP, as we found that only fine-tuning749

the query and value matrices with LoRA would750

cause significant performance degradation.751
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Figure 6: The frequency distribution of the squared norm of value LoRA output ∆Wixi after fine-tuning on the
RTE task.

Figure 7: The frequency distribution of the squared norm of query LoRA output ∆Wixi after fine-tuning on the
MRPC task.

Model
RoB-large

#Tr.
Params

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

Full-FT* 355M 86.6 90.9 92.4 68.0 96.4 94.7 90.2 92.2 88.9
LoRA 0.79M 88.5±0.7 90.1±0.8 92.4±0.1 67.8±1.3 96.0±0.1 94.8±0.1 90.6±0.0 91.4±0.1 88.9
LoRA-drop (ours) 0.41M 88.8±0.7 89.9±0.3 92.2±0.1 68.5±1.7 96.2±0.1 94.9±0.1 90.7±0.1 91.3±0.5 89.1

Table 6: The performance of the RoBERTa-large on GLUE benchmark. * refers to the results directly from their
original paper, in which Full-FT is derived from (Liu et al., 2019).
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Figure 8: The frequency distribution of the squared norm of value LoRA output ∆Wixi after fine-tuning on the
MRPC task.

Model
Llama2 7b

#Tr.
Params

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

Full-FT 6.6B 88.4 88.7 89.8 67.9 92.3 93.6 86.3 91.7 87.3
LoRA 4.2M 89.2±0.5 89.7±0.5 89.9±0.1 70.6±0.7 96.8±0.2 94.7±0.2 90.9±0.2 91.6±0.1 89.2
LoRA-drop (ours) 2.2M 91.0±0.5 90.2±0.3 90.1±0.1 69.0±1.2 96.8±0.2 94.8±0.2 90.6±0.1 91.6±0.3 89.3

Table 7: The performance of the Llama2-7b on GLUE benchmark.

Figure 9: The query LoRA output ∆Wixi squared norm frequency distribution of LoRA and LoRA-drop.

13



Model #Tr. Dialogsum
Llama2 7b Params ROUGE-1 ROUGE-2 ROUGE-L Avg.

Full-FT 6.6B 49.86 29.37 43.07 40.77
LoRA 0.13B 50.15 29.28 43.65 41.03
LoRA-drop (ours) 0.09B 49.84 28.99 43.22 40.68

Table 8: Results of Llama2-7b with different training strategies on the summarization dataset Dialogsum.

Figure 10: The value LoRA output ∆Wixi squared norm frequency distribution of LoRA and LoRA-drop.
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Figure 11: The relative magnitudes of LoRA outputs across different layers of Llama2-7b on various datasets. The
left subplot shows the LoRA outputs corresponding to each layer’s query matrix, and the right subplot shows the
LoRA outputs corresponding to each layer’s value matrix. For display, the value of the largest layer’s LoRA output
is normalized to 1 for each dataset.
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Figure 12: Importance distribution of LoRA for value in
RTE under different sample proportions. Each point on
the heatmap represents the importance Ii of the query
value in layer i under α sample proportion.
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