LoRA-drop: Efficient LoORA Parameter Pruning based on Output
Evaluation

Anonymous submission

Abstract

Low-Rank Adaptation (LoRA) is currently the
most commonly used Parameter-efficient fine-
tuning (PEFT) method, it introduces auxil-
iary parameters for each layer to fine-tune the
pre-trained model under limited computing re-
sources. However, it still faces resource con-
sumption challenges during training when scal-
ing up to larger models. Most previous studies
have tackled this issue by using pruning tech-
niques, which involve removing LoRA param-
eters deemed unimportant. Nonetheless, these
efforts only analyze LoRA parameter features
to evaluate their importance, such as parame-
ter count, size, and gradient. In fact, the out-
put of LoRA (product of LoRA parameter and
hidden state), directly impacts the final results.
Preliminary experiments indicate that a frac-
tion of LoRA elements possesses significantly
high output values, substantially influencing
the layer output. Motivated by the observation,
we propose LoRA-drop. Concretely, LoRA-
drop evaluates the importance of LoRA based
on the LoRA output. Then we retain LoRA for
important layers and the other layers share the
same LoRA. We conduct abundant experiments
with models of different scales on NLU and
NLG tasks. Results demonstrate that LoRA-
drop can achieve performance comparable to
full fine-tuning and LoRA, while retaining 50%
of the LoRA parameters on average.

1 Introduction

Parameter-efficient fine-tuning methods have at-
tracted more and more attention with the devel-
opment of large language models (LLM) (Li and
Liang, 2021; Lester et al., 2021). Among vari-
ous PEFT methods, LoRA (Hu et al., 2021) has
been particularly prevalent in recent studies. LoORA
freezes the pre-trained parameters and introduces
auxiliary trainable parameters AW for each layer
as shown in Figure 1. LoRA significantly reduces
the training cost while achieving impressive results.

+A 1—> Our approach:
- _A-' Consider both A and
Frozen \ / I" ______ 3
Pretrained L A = 1
Model I

Previous work:
Analyze A for
pruning

TﬁH

Hidden state

Figure 1: The diagram of LoRA. LoRA influences the
pre-trained model through its output AW x. This pa-
per’s method measures the importance of LoRA based
on its output.

To further reduce the number of LoRA parame-
ters being trained during efficient fine-tuning, previ-
ous studies employ pruning techniques that remove
LoRA parameters deemed unimportant. The core
of these methods lies in how to evaluate the im-
portance of parameters. Sparse Adapter (He et al.,
2022) evaluates the importance of LoRA based
on different parameter features such as parame-
ter count, parameter size, and parameter gradient.
AdalLoRA (Zhang et al., 2022) designs importance
criteria based on the singular value decomposi-
tion (SVD) of AW to prune unimportant singular
values. SoRA (Ding et al., 2023) prunes down-
projection and up-projection matrices in LoRA by
employing gate units and proximal gradient meth-
ods. All of these efforts only focus on analyzing
LoRA parameter AW features to evaluate their im-
portance, thereby reducing the parameters required
for LoRA training.

In fact, the output of LoRA, which is related to
the parameters and data, directly impacts the final
results. As shown in Figure 1, the LoRA adds a
bias term AWz in each layer of the pre-trained
model. Thus, the frozen model is fine-tuned by the
bias term. Intuitively, if the norm of AW z is large,
the LoRA of this layer has an important impact on
the frozen model.

Layer O Layer 1
a a 80% A
> > 40% A
L o
w w
0% T T T 0% T T T
0 1 2 3 0 1 2 3
lawx|2 lawx|?
Layer 4 Layer 5
3 80% - 5
S S 40% 1
S 40% >
0 o
w w
0% T T T 0% T T T
0 1 2 3 0 1 2 3
lawx| lawx|?
Layer 8 Layer 9
g)
c 8.0% A c
“g’_ “g»’_S.O%
4.0% -
0.0% T T 0.0%
0 1 2 3 0 1 2 3
lawx| lawx|?

Layer 2 Layer 3
3 80% - 9
o c
03) g 40% A
o 40% o
o o
w w
0% T T T 0% r T T
0 1 2 3 0 1 2 3
lawx|? lawx|?
Layer 6 Layer 7
3402% >
c c 16.1%
3 20.1% 3
o o 8.0%
i g
0.0% 0.0%
1 2 3 0 1 2 3
lawx|? lawx|?
Layer 10 Layer 11
2 8.0% 3 8.0%
o e
9] 9]
3 4.0% 4 3 4.09
o o o 4.0%
i i
0.0% 0.0%
0 1 2 3 0 1 2 3
lawx|? lawx|?

Figure 2: The frequency distribution of the squared norm of query LoRA output AW;x; on the RTE task. Each
subplot represents the distribution of || AW;x; || for query LoRA from layers 0 to 11, where the x-axis denotes the
magnitude of || AW, x;||? for different inputs x;, and the y-axis represents the frequency of | AW, x;]|?.

We conducted an empirical study to analyze the
distribution of LoRA output in LLMs. The find-
ings derived from this study are presented in Sec-
tion 2, revealing that the distribution of outputs
from the LoRA of each layer is relatively concen-
trated. LoRA of some layers has little to no im-
pact on specific tasks, while other layers exhibit
more significant effects. Thus, we could prune
non-salient LORA parameters.

Motivated by the observation, we propose LoRA-
drop, which evaluates the importance of parameters
by analyzing the LoRA output for each layer. First,
we sample specific task datasets and then utilize
the sampled data to perform a limited number of
updates to LoRA. The importance of LoRA for
each layer is determined based on AW z. Then,
We retain the LoRA for layers with a large impor-
tance score, and the other layers share the same
LoRA. Finally, we fine-tune the model with fewer
trainable parameters under the new LoRA setting,
while minimizing performance degradation.

Our contributions are as follows:

* We conducted empirical research, and the
analysis indicates that the distribution of out-
puts from the LoRA of each layer is relatively
concentrated. LoRA of some layers has lit-
tle to no impact on specific tasks, while other
layers exhibit more significant effects.

* We propose LoRA-drop, which evaluates the
importance of LoRA for different layers and
significantly reduces the parameter required
during LoRA training while maintaining per-
formance comparable to standard LoRA.

* We conduct comprehensive experiments on
multiple NLU and NLG tasks with various
sizes of pre-trained models. Numerous analy-
sis experiments demonstrate the effectiveness
of LoRA-drop.

2 Preliminary Experiment

LoRA utilizes the product of two low-rank matrices
to simulate incremental updates to a full-rank ma-
trix. The pre-trained parameters are frozen during
training and do not receive gradient updates, while
the two low-rank matrices are trained. Let W; de-
note the query/key/value matrix of ¢th Transformer
layer and x; denote the input of the ¢th Transformer.
The two low-rank matrices are A; and B;. Thus,
the query/key/value vector is as follows:

h; = W;x; + AW,x; = Wiz, + B;A;x; (1)

where AW;x; is the bias introduced by the LoRA
modules.

Obviously, the AW, x; is the factor that directly
influences the frozen pre-trained model. The larger

[

1
1 -

Importance : Samplg —_— - R ':II]:' Query 1
Evaluation , Subset LoRA . Value 1
. Pretrained 1
\ model LoRA Importance J
0y \\

[
YT T - I
Task : LqfLq|Lg _ @a@@ﬁ@ ':II]:' > 5 < Query:
Adaptation ' [LyJLy]Ly [Ee]L, [E7) L1 _ Value |
! - Pretrained |
' LoRA setting model [RretainLorA (] Share LoRA K

Figure 3: The overall workflow of LoRA-drop.

AW,x;, the greater the impact of LoRA on the
pre-trained model, and consequently, the more im-
portant LoRA is. In fact, the AW, x; is related to
the LoRA parameter and the hidden state, where
the hidden state is computed from downstream task
data through the preceding layers of the model.
However, previous work prunes LoRA by only an-
alyzing its parameter features, ignoring the hidden
state.

Preliminarily, we statistics the distribution of the
LoRA output in each layer. Specifically, we fine-
tune the RoBERTa-base model with LoRA sepa-
rately on the RTE and MRPC dataset, and analyze
the distribution of the squared norm of the LoRA
output AW;x; for each dataset. We evaluate the
impact of LoRA by computing the squared norm of
AW, x;. Following the setting of (Hu et al., 2021),
the LoRA is added to the query and value matrix.
The distribution of query and value LoRA for RTE
is shown in Figure 2 and Figure 6. The distribution
of query and value LoRA for MRPC is shown in
Figure 7 and Figure 8.

As observed, the squared norm distribution of
AW, x; for each layer is highly concentrated, show-
ing a peak Gaussian frequency distribution, which
suggests stability. Furthermore, Observations show
that the squared norm of AW;x; for certain layers
consistently remains close to zero, indicating that
LoRA for these layers has almost no impact on
the frozen model. Conversely, some layers show a
more significant impact on the frozen model.

Moreover, RTE and MRPC exhibit different dis-
tribution patterns. It indicates that different layers
play varying roles across different tasks.

This preliminary experiment demonstrates that
we can prune the LoRA to reduce the number of
trainable parameters. LoRA with small AW;x; is
insignificant, and can be pruned.

3 Methodology

In this section, we introduce LoRA-drop, a novel
parameter-efficient fine-tuning method that prunes
based on LoRA output. We have designed a process
to quantify the importance of LoRA for different
layers based on its output. Then, we retain the more
important LoRA and replace the less important
ones with a shared LoRA parameter, thereby reduc-
ing the number of parameters required for LoRA
training while maintaining performance compara-
ble to that of the standard LoRA.

Specifically, LoRA-drop consists of two parts:
Importance Evaluation and Task Adaptation.
The overall process of LoRA-drop is illustrated
in Figure 3.

3.1 Importance Evaluation

This step evaluates the importance of LoRA for dif-
ferent layers, providing a reference for its retention
strategy in the Task Adaptation step.

Since the A and B matrices of LoRA are initial-
ized with Kaiming and zero initialization, the initial
output is all zeros. The output of LoRA becomes
meaningful only after certain update steps.

So, we first perform stratified sampling on the
downstream task dataset to obtain a subset Dy of
training data D. The sampling ratio is set to a,
where O<a<1. After that, the LoRA parameters are
updated with several steps using this subset.

Next, we compute the sum of the squared norm
of the LoRA output for each layer, denoted as g,
the g of the i-th layer LoRA as expressed in Equa-
tion 2.

gi= Y AWz’ 2

xE€D;

From section 2, the magnitude of g reflects the
importance of LoRA. To better represent the rel-

ative importance of LoRA for each layer, we nor-
malized g, resulting in the importance I for each
layer of LoRA.

_ G
> G
Thus, the importance of each layer of LoRA is

bounded between 0 and 1, with a total sum of 1.
We find that sampling a small subset from the

training data is able to obtain a LoORA importance

distribution similar to that of the full dataset. This
was verified by experiments in Section 4.3. Our

experiments’ default value of « is set to 10%.

I;

3)

3.2 Task Adaptation

This step sets the LoRA-drop fine-tuning strat-
egy suitable for the downstream task based on the
LoRA importance distribution.

With the importance of LoRA for each layer,
we sort the layers according to I;. We select the
layers from most to least important until the sum
importance of the selected layer reaches a threshold
T'. In this paper, T is set to 0.9 by default, and the
value of T is discussed in section 4.3.

The LoRA of these selected layers will be re-
tained during training, while a shared LoRA pa-
rameter will replace the LoRA of the other layers.
The hyper-parameter 1" controls the number of the
selected layers. Finally, we fine-tune the model
using the training dataset under the new LoRA set-
ting.

4 Experiments

4.1 Setup

Datasets. We evaluate our model on both Natu-
ral Language Understanding (NLU) and Natural
Language Generation (NLG) tasks.

For NLU, we evaluate our method on the GLUE
benchmark (Wang et al., 2018), which consists of
eight datasets: CoLA, SST-2, MRPC, QQP, STS-B,
MNLI, QNLI, and RTE. We use Matthew’s correla-
tion coefficient, Spearman’s correlation coefficient,
and overall accuracy (for both matched and mis-
matched sentences) to evaluate the CoLLA, STS-B,
and MNLI datasets. For the remaining datasets, we
apply accuracy as the evaluation metric.

The NLG tasks in our experiments include the
table-to-text datasets E2E (Dusek et al., 2020)
and DART (Nan et al., 2021), the summariza-
tion dataset DialogSum (Chen et al.,, 2021),
as well as the Mathematical Reasoning dataset

GSMSK (Cobbe et al., 2021). We use BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), and ac-
curacy to evaluate the E2E(&DART), DialogSum,
and GSMSK datasets.

Baselines. The following methods are chosen as
baselines: FULL-FT updates all model param-
eters which need a lot of computing resources.
LoRA (Hu et al., 2021) represents the original
LoRA method. Sparse Adapter (He et al., 2022)
applies typical pruning methods to LoRA and re-
duces the trainable parameters. VeRA (Kopiczko
et al., 2024) shares and freezes randomly initial-
ized LoRA and introduces trainable vectors for
each layer to reduce the parameters of LoRA.
Tied-LoRA (Renduchintala et al., 2023) makes
the frozen LoRA in VeRA trainable. SORA (Ding
et al., 2023)uses a gate unit with proximal gradient
methods to control LoRA’s sparsity.

Models & Implementation. To evaluate the ef-
fectiveness of our method on various models, we
conduct experiments on ROBERTa-base, RoOBERTa-
large(Liu et al., 2019), and Llama2-7b(Touvron
et al., 2023). We conduct NLU experiments on
the GLUE benchmark using all three models. We
performed 3 runs with different random seeds for
each dataset and recorded the best results for each
run. The average results and the standard deviation
are calculated.

To evaluate the effectiveness of our method on
generation tasks, we conduct NLG experiments us-
ing the Llama2-7b on the table2text datasets: E2E
and DART, the summarization dataset DialogSum,
as well as the Mathematical Reasoning dataset
GSMBS8K.

The hyperparameter settings for each baseline
and LoRA-drop can be found in Section A.1.

4.2 Main Results

The main results of RoBERTa-base with differ-
ent training methods on the GLUE benchmark are
shown in Table 1. It is noted that our motivation is
to reduce the number of trainable parameters while
ensuring that the performance does not degrade,
or even improve. As shown in Table 1, with an
approximately 50% reduction in standard LoRA
parameters, our proposed LoRA-drop achieves an
average score of 86.2, on par with Full-FT (86.4)
and LoRA (86.1). This indicates the effectiveness
of our proposed LoRA-drop, which outperforms
LoRA by 0.1 scores while reducing training param-
eters.

Model #Tr. RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP Ave
RoBERTa-base Params (Acc) (Acc) (Spea.) (Matt.) (Acc) (Acc) (Acc) (Acc) ’
Full-FT* 125M 78.7 90.2 91.2 63.6 94.8 92.8 87.6 91.9 86.4
LoRA 029M | 80.8415 89.1i06 912402 624407 9434103 93.0500 875400 903.,; 86.1
SoRA 02IM | 79.7407 89.7119 89.8401 638410 948104 924403 86.1401 889103 85.6
Sparse Adapter 0.15M 7847i1,1 88.0i0,5 89.5i0,4 60.1i0‘7 94~1i0.l 92.8;&).1 8741i0,2 89.6i0,1 85.0
VeRA 0.03M | 78.0411 884101 89.8402 609105 93.7T101 89.6401 83.74101 86.8101 83.9
Tied-LoRA 0.15M | 80.04099 89.1106 90.3101 62.0408 94.1103 91.6404 86.9401 89.7101 85.5
LoRA-drop (ours) | 0.15M | 8141095 89.5105 91.0.5; 629402 945,00 931101 873102 90.1101 86.2

Table 1: Results of the ROBERTa-base with different training strategies on the GLUE benchmark. The results are
averaged from three seeds to produce solid results. The subscript is the standard deviation. Bold and underlined
indicate the first and second best results in the corresponding regime. #Tr. refers to trainable. * refers to the results
directly from their original paper, in which Full-FT is derived from (Liu et al., 2019).

Model #Tr. E2E DART Dialogsum GSMS8K Av

Llama2 7b Params | (BLEU) (BLEU) (ROUGE) (Acc) &
Full-FT 6.6B 55.65 59.68 40.77 31.16 46.82
LoRA 0.13B 56.38 58.51 41.03 34.04 47.49
LoRA-drop (ours) | 0.09B 57.06 58.82 40.68 3450 47.77

Table 2: Results of Llama2-7b with different training strategies on two table2text datasets including E2E and DART,
the summarization dataset Dialogsum, and the mathematical reasoning dataset GSM8K. For all the scores, BLEU,

ROUGE, and Acc, higher is better.

Moreover, LoRA-drop achieves 0.6, 1.2, 2.3,
and 0.7 improvements in average scores com-
pared to the four baselines: SORA, Sparse Adapter,
VeRA, and Tied-LoRA respectively. Although all
four methods effectively reduce LoRA parameters,
their performance drops significantly. The results
demonstrate that LoRA-drop is a superior strategy
for evaluating the importance of trainable param-
eters and reducing less important ones, thereby
enhancing parameter efficiency.

The results of RoOBERTa-large and Llama2-7b
with different training strategies on the GLUE
benchmark are presented in Table 6 and Table 7. It
is noted that we use Llama2-7b to obtain the token
representation rather than generate the answer. On
both models, our method utilizes about 52% of the
standard LoRA parameters and achieves average
scores of 89.1 and 89.3 for RoBERTa-large and
Llama2-7b respectively, outperforming LoRA and
Full-FT. This demonstrates the effectiveness of our
method across models of different scales.

The results of NLG tasks, including table2text,
summarization, and mathematical reasoning, are
shown in Table 2. On Llama2-7b, our method
achieves results on par with the Full-FT and LoRA
while using approximately 68% of the original
LoRA parameters for all three tasks. Additionally,
the average score of our method (47.77) exceeds
that of Full-FT (46.82) and LoRA (47.49). This

confirms the effectiveness of our method across
both NLU and NLG.

4.3 Analysis

The value of LoRA output indicated the impor-
tance. As described in Section 3.1, the impor-
tance evaluation step quantifies the importance of
LoRA based on its output. In this section, we ver-
ify the effectiveness of the output-based evaluation
method. Specifically, we first perform standard
LoRA fine-tuning and obtain the importance score.
Based on this score, we retain either the largest
or the smallest of the LoRA layers for inference,
the number of retained LoRA is consistent with
the number retained by LoRA-drop in Section 4.2.
We then evaluate these two settings, and the final
results are presented in Table 3.

It is evident that when only approximately half
of the LoRA modules are retained, the model’s per-
formance decreases significantly. When we retain
the LoRA modules with larger I, the performance
is substantially better than those with smaller I.
This indicates that the LoORA-drop method’s layer-
specific LoORA Importance Evaluation is effective.
LoRA with a larger squared norm output indeed
has a greater contribution to the model’s fine-tuning
performance.

Model RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP A

(RoBERTa-base) | (Acc) (Acc) (Spea.) (Matt.) (Acc) (Acc) (Acc) (Acc) Ve
LoRA 79.4 89.2 91.0 63.1 94.6 92.7 87.6 90.3 86.0
LoRA(large I) 72.2 77.5 85.9 58.9 92.9 73.6 71.2 82.6 76.9
LoRA(small I) 47.7 69.9 49.6 23.5 88.2 55.4 32.2 63.9 53.8

Table 3: Verification of Importance Evaluation Method. The data in the table represents the results from a single run
with the same random seed. LoRA (large I) retains the few LoRAs with the highest I values, while LoRA (small I)
retains the few with the lowest I values. The number retained is consistent with the LoRA-drop setting in Table 1.

Quer
Y 1.0
MRPC
RTE 0.8
L QNU
9 qop 0.6
8
8 CoLA 0.4
MNLI
SST2 0.2
STSB
1 2 3 4 7 8 9 10 11
Layers

Dataset

Value
1.0
MRPC
RTE 0.8
QNLI
Qap 0.6
CoLA 0.4
MNLI
SST2 0.2
STSB

1 2 3 4 5 6 7

Layers

8 9 10 11

Figure 4: LoRA Importance Distribution in Different Downstream Task Data. To unify the importance scales across
different datasets, we divide the importance of each dataset by its maximum value so that the importance of the

most important layer of LoRA in that dataset is 1.

Distribution of LoRA importance varies across
different tasks. The insight of our approach is
to derive LoRA importance adapted to the distri-
bution of different downstream task data, enabling
the simplification of LoRA parameters. To fur-
ther validate the rationality of this insight, we plot
heatmaps illustrating the distribution of LoRA im-
portance I for eight different datasets in GLUE on
RoBERTa-base and Llama?2.

The results are presented in Figure 4 and Fig-
ure 11. We observe that the importance distribu-
tions differ across datasets, indicating that the im-
portance assigned by LoRA is data-dependent.

The influence of LoRA share. In our method,
the layers with low importance are shared with the
same LoRA parameters. We investigate the influ-
ence after the LoORA parameters are shared. Fol-
lowing the LoRA share operation on the RoOBERTa-
base model trained on 20% of the RTE training set
data for 4 epochs, we plot the importance distribu-
tion for each layer of the model.

The results of query and value distribution are
shown in Figure 9 and Figure 10. It shows that
the importance distribution of LoRA for each layer
remains almost consistent with the original LoRA
after the LoRA parameters are shared. This sug-
gests that the sharing LoRA for layers with low

importance does not affect the importance distri-
bution of other layers, thereby maintaining good
performance.

Query

0.1 0.30
0.2
S 05 0.25
c O
L,
bl 4 0.20
o
Q 0.5
IS 0.15
2 0.6
()
S 07 0.10
5
n o8 0.05
0.9 ’
1.0
10 11
Layers

Figure 5: Importance distribution of LoRA for query in
RTE under different sample proportions. Each point on
the heatmap represents the importance I; of the query
LoRA in layer ¢ under o sample proportion.

The influence of sample proportion. We inves-
tigate the influence of the sample proportion when
calculating the importance of LoORA. We sample
ten different-sized datasets from the RTE dataset
with sampling ratios from 10% to 100%. We train
the RoBERTa-base model using LoRA for the same

Avg. layer num RTE CoLA QNLI QQP
Threshold | o hery - W_value | (ACC) (Mat) (ACC) (aCC) V&
1(LoRA) 12 12 823 619 931 904 82.0
0.95 6 9 83.0 626 931 902 822
0.9 5 7 819 631 932 902 8.1
0.8 5 5 80.9 631 932 896 817
0.7 4 4 783 621 925 893 806

Table 4: The influence of the threshold 7" and its equivalent average number of layers.

Model RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP Ave
(RoBERTa-base) (Acc) (Acc) (Spea.) (Matt) (Acc) (Acc) (Acc) (Acc) ’
LoRA-drop* 81.9 90.0 91.1 63.1 94.7 93.2 87.5 90.2 86.5
LoRA-drop(w/o share) | 80.4 88.9 90.7 62.8 94.1 92.9 86.9 89.7 85.8
LoRA-drop(AWx inv) | 79.1 89.7 90.4 60.5 94.3 92.9 87.3 89.9 85.5
LoRA-drop(random) 79.1 89.2 90.2 62.0 94.6 92.7 86.9 89.8 85.6
LoRA-drop(top k) 81.9 89.2 90.7 62.3 94.5 93.0 86.8 89.8 86.0

Table 5: Ablation experiments.

number of steps and obtain the LoRA importance
for each sample proportion.

The results of LoRA for Query and Value are
shown in Figure 5 and Figure 12. As the training
data increases, the importance order of each layer
remains consistent. For LoRA applied to the query
matrices, the 10th layer has always been the most
important, while the importance of layers 7, 8, and
9 maintains a consistently high level of importance.
Indicating that this operation is insensitive to the
size of the sampled data and exhibits robustness.

Selection of threshold 7. LoRA-drop introduces
a hyper-parameter 7" to control the number of se-
lected layers. We select four datasets from GLUE
to analyze the impact of threshold 7.

The results are shown in Table 4. When T is
set to 1, all layers are preserved, representing the
standard LoRA method. When 7' is less than 0.9,
the model performance increases with 7', at this
time, LORA modules with higher importance are
selected. When T' equals 0.9, approximately half
of the layers’ LoRA are selected on average. If
T continues to increase, the newly added LoRA
modules have lower importance, and the model per-
formance no longer significantly improves. Hence
in our experiments, we default to setting 71" as 0.9.

4.4 Ablation Study
In this subsection, we conduct ablation experiments

to verify the following two questions:

* QI: Is replacing LoRA for layers with small
I with shared parameters better than directly

removing them in the task adaptation step?

* Q2: Is retaining LoRA with large I in the task
adaptation step reasonable?

To answer these two questions, we compare
LoRA-drop with the following variants on the
RoBERTa-base model, where k refers to the num-
ber of LoRA retained by LoRA-drop.

LoRA-drop (w/o share) directly removes the
low-importance layers of LoRA without using
additional shared parameters in the Task Adap-
tation step. As opposed to LoRA-drop, LoRA-
drop (AW« inv) replace high-importance layers
of LoRA with shared LoRA and retain the other
LoRA. LoRA-drop (random) randomly selects k
layers that retain LORA parameters. Houlsby et al.
(2019) found that lower layers often have a small
impact on performances, so LoORA-drop (top k)
selects the top k layers of the 12-layer model. We
experiment with these four settings on the valida-
tion set of the GLUE benchmark.

The results are shown in Table 5.

Regarding Q1, directly removing less important
LoRA parameters, i.e., the LoRA-drop (w/o share)
setting, performs worse across all tasks than LoRA-
drop, with an average reduction of 0.7 scores.

This indicates that sharing a LoRA among the
layers with low importance is necessary to achieve
better fine-tuning results compared to directly re-
moving them.

Regarding Q2, the AW« inv setting achieved
the worst average performance, slightly worse than
the random setting. This indicates that LoRA with

smaller I contributes less to model performance
improvement. The top k setting, which empirically
retains the top k layers, performed well but had an
average performance gap of 0.5 scores compared
to the LoRA-drop.

LoRA-drop yields better performance compared
to all the other three variants. It confirms the rea-
sonableness of retaining the LoRA of layers with
significant importance and further validates the ef-
fectiveness of the method proposed in this paper
for evaluating the importance of LoRA.

5 Related Work

Parameter Efficient Fine-Tuning (PEFT) is the
mainstream method for the current fine-tuning of
pre-trained models, which can be broadly catego-
rized into additive methods, selective methods, and
reparameterized (Han et al., 2024).

5.1 Additive Methods

Additive methods inject new trainable modules or
parameters into pre-trained models. During fine-
tuning for a specific downstream task, only the
weights of these newly added modules are updated.
Adapter (Houlsby et al., 2019) involves inserting
small adapter layers within Transformer blocks.
There are two ways to inject adapters into pre-
trained models: Serial Adapter (Houlsby et al.,
2019) adds two adapter modules in each Trans-
former block. Parallel Adapter (He et al., 2021)
transforms the serial adapter layers into parallel
side networks. Adapter Drop (Riicklé et al., 2021)
empirically removes lower-layer Adapters consid-
ered to have a small impact on task performance.
Soft Prompt uses continuous embedding of soft
prompts instead of optimizing discrete token rep-
resentations through in-context learning. Prefix-
tuning (Li and Liang, 2021) inserts trainable vec-
tors prepended to keys and values at all Trans-
former layers. P-tuning (Liu et al., 2021) and
Prompt-tuning (Lester et al., 2021) only insert train-
able vectors at the initial word embedding layer.

5.2 Selective Methods

Selective methods make a small subset of parame-
ters in the pre-trained model trainable while keep-
ing the rest frozen. Diff pruning (Guo et al., 2021)
employs a learnable binary mask on model weights.
BitFit (Zaken et al., 2022) only fine-tunes the bias
parameters of each FFN, achieving competitive re-
sults for small models. Lee et al. (2019) fine-tunes

only the last quarter of BERT and RoBERTa’s fi-
nal layer, achieving 90% of the performance of
full fine-tuning. HiFi (Gui and Xiao, 2023) fine-
tunes attention heads that are highly informative
and strongly correlated for a specific task.

5.3 Reparameterized Methods

In the context of PEFT, reparameterization often
involves constructing a low-rank parameterization
to enhance parameter efficiency during training.

LoRA (Hu et al., 2021) introduces low-rank
matrices during fine-tuning and can merge with
pre-trained weights before inference. There
are many derivative works based on LoRA.
QLoRA (Dettmers et al., 2023) quantifies the pa-
rameters of large models doubly, significantly re-
ducing memory usage. AdalLoRA (Zhang et al.,
2022) transforms the low-rank matrices in LoRA
into SVD matrices PAQ. During training, the sin-
gular values are iteratively pruned. SoRA (Ding
et al., 2023) eliminates the matrix orthogonal-
ity premise of P and () in AdaLoRA and in-
stead applies a gating unit between them. Sparse
Adapter (He et al., 2022) enhances the parame-
ter efficiency of LoRA and other Adapters using
network pruning methods. S2-LoRA (Liu et al.,
2023) shares the LoRA parameters, and introduces
trainable scaling vectors with inter-layer variations.
VeRA (Kopiczko et al., 2024) and Tied-LoRA (Ren-
duchintala et al., 2023), further reduce the parame-
ter count by sharing parameters for all layers and
modules of LoRA. DoRA (Liu et al., 2024) uses
LoRA for directional updates, enhancing learning
capacity and training stability.

6 Conclusion

In this paper, we propose a new parameter-efficient
fine-tuning method LoRA-drop based on LoRA.
our motivation is to reduce the number of train-
able parameters during fine-tuning while ensuring
that the performance does not degrade, or even im-
prove. Concretely, we calculate the importance
of LoRA for each layer based on the output. The
LoRA parameters of layers with large importance
are retained and the other layers share the same
parameter, resulting in a significant reduction in
the number of parameters that need to be trained
compared to the original LoRA. Abundant exper-
iments on multiple NLU and NLG datasets show
that LoRA-drop can achieve comparable results
with origin LoORA with 50% of LoRA parameters.

Limitations

Currently, our method operates on the LoRA struc-
ture as a whole, with a relatively coarse granularity.
Future work will refine this method to a finer gran-
ularity. While this technique reduces the number of
training parameters during LoRA training, it does
not decrease the inference cost. Pruning increases
the model’s complexity, making it more difficult
to identify the sources of issues when performance
falls short of expectations. This, in turn, compli-
cates the processes of debugging and error analysis.

References

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association for
Computational Linguistics, pages 5062-5074.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized LLMs. In Proceedings of the Con-
ference on Neural Information Processing Systems.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.
Sparse low-rank adaptation of pre-trained language
models. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Ondrej Dusek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the State-of-the-Art of End-to-End
Natural Language Generation: The E2E NLG Chal-
lenge. Computer Speech & Language, pages 123—
156.

Anchun Gui and Han Xiao. 2023. HiFi: High-
information attention heads hold for parameter-
efficient model adaptation. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics, pages 8521-8537.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the annual Meeting of the
Association for Computational Linguistics.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,
et al. 2024. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint
arXiv:2403.14608.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a

unified view of parameter-efficient transfer learning.
In Proceedings of the International Conference on
Learning Representations.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026—1034.

Shwai He, Liang Ding, Daize Dong, Jeremy Zhang,
and Dacheng Tao. 2022. Sparseadapter: An easy
approach for improving the parameter-efficiency of
adapters. In Findings of the Association for Compu-
tational Linguistics, pages 2184-2190.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Pro-
ceedings of the International Conference on Machine

Learning, pages 2790-2799.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
etal. 2021. Lora: Low-rank adaptation of large lan-
guage models. In Proceedings of the International
Conference on Learning Representations.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. 2024. VeRA: Vector-based random matrix
adaptation. In Proceedings of the Annual Meeting of
the International Conference on Learning Represen-
tations.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What
would elsa do? freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
H. S Torr. 2018. Snip: Single-shot network prun-
ing based on connection sensitivity. arXiv preprint
arXiv:1810.02340.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the Conference on Empiri-

cal Methods in Natural Language Processing, pages
3045-3059.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics and the International
Joint Conference on Natural Language Processing,

pages 4582—-4597.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74-81.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Wei Liu, Ying Qin, Zhiyuan Peng, and Tan Lee. 2023.
Sparsely shared lora on whisper for child speech
recognition. arXiv preprint arXiv:2309.11756.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi-
angru Tang, Aadit Vyas, Neha Verma, Pranav Kr-
ishna, Yangxiaokang Liu, Nadia Irwanto, Jessica
Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma,
Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan,
Xi Victoria Lin, Caiming Xiong, Richard Socher,
and Nazneen Fatema Rajani. 2021. DART: Open-
domain structured data record to text generation. In
Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 432-447.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
annual meeting of the Association for Computational
Linguistics, pages 311-318.

Adithya Renduchintala, Tugrul Konuk, and Oleksii
Kuchaiev. 2023. Tied-lora: Enhacing parameter ef-
ficiency of lora with weight tying. arXiv preprint
arXiv:2311.09578.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency
of adapters in transformers. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7930-7946.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In Proceedings
of the International Conference on Learning Repre-
sentations.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pages 1-9.

10

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2022. Adaptive budget allocation for
parameter-efficient fine-tuning. In Proceedings of
the International Conference on Learning Represen-
tations.

A Appendix

A.1 Implementation Details

Our LoRA configuration aligns with the experi-
mental setup of (Hu et al., 2021), where LoRA is
applied to the query and value matrices in each
self-attention module. We each use a shared LoRA
in place of the low-importance query LoRA and
value LoRA.

The low-rank matrix A of the LoRA architecture
is initialized using Kaiming initialization (He et al.,
2015), while matrix B is initialized with zeros.
Unless specified otherwise, the default rank for
LoRA is set to 8.

We conducted NLU experiments on the GLUE
benchmark using RoOBERTa-base (Liu et al., 2019).
The data sampling ratio « is set to 0.1, the number
of training epochs 7 is set to 3, and the threshold T’
for LoRA-drop is set to 0.9. To ensure consistency
in the trainable parameter count between the base-
line and our method, we set the sparsity rate of the
Sparse Adapter to 0.5. We set the pruning method
of the Sparse Adapter to the performance-optimal
SNIP (Lee et al., 2018). The rank of Tied-LoRA is
set to 56. The design characteristics of the VeRA
method determine that its trainable parameter count
cannot reach the same order of magnitude as LoRA;
otherwise, VeRA would no longer be a low-rank
matrix. Therefore, we set the rank of VeRA to 512
based on the best hyperparameters provided in the
original paper.

To evaluate the effectiveness of our method on
generation tasks, we conducted NLG experiments
using the Llama2 7b on the table2text datasets:
E2E and DART, the summarization dataset Dialog-
Sum, as well as the mathematical reasoning dataset
GSMS8K. For all three tasks, we set the rank of
LoRA to 64. It is worth noting that, in the NLG ex-
periment we applied LoRA to the query, key, value,
and output matrices in Attention, and up and down
matrices in MLP, as we found that only fine-tuning
the query and value matrices with LoRA would
cause significant performance degradation.

11

Layer O
?40%—
()]
> 20% -
£
0% T T T
0.00 0.05 0.10 0.15
lawx]?
Layer 4
16.1%
9
c
S 8.0%
g
e
0.0%
0.00 0.05 0.10 0.15
lawx|?
Layer 8
>
19
C
g4.0%
[on
(0]
fre
0.0%
0.00 0.05 0.10 0.15
lawx|?

20.1%

Frequency

0.0%
0.00

40.2%

20.1%

Frequency

0.0%
0.00

4.0% A

Frequency

0.0% -
0.00

Layer 1

0.05 010
lawx|?

Layer 5

005 0.10
lawx|?

Layer 9

005 0.10
lawx|?

0.15

0.15

16.1%

8.0%

Frequency

0.0%
0.00

8.0%

Frequency

0.0%
0.00

16.1%

8.0%

Frequency

0.0%
0.00

Layer 2

0.05 010
lawx|?

Layer 6

0.05 010
lawx|?

Layer 10

005 010
lawx|?

Frequency

0.15

Frequency

0.15

Frequency

0.15

Layer 3

16.1%
8.0%
0.0%
0.00 0.05 010 0.15
lawx|?
Layer 7
16.1%
8.0%
0.0%
0.00 0.05 010 0.15
lawx|?
Layer 11
40.2%
20.1%
0.0%
0.00 0.05 010 0.15
lawx|?

Figure 6: The frequency distribution of the squared norm of value LoRA output AW;x; after fine-tuning on the

RTE task.
Layer O
>
[}
o
8 55% -
o
[
i
0% : :
0 200 400
lawx|?
Layer 4
>
[}
o
8 55% -
o
[
i
0% . :
0 200 400
lawx]?
Layer 8
>
1%}
S 13.6%
>
o
9]
i
0.0% :
0 200 400
lawx]?

Layer 1
>
1o}
C
Y 55% -
o
[
P
0% . T
0 200 400
lawx|?
Layer 5
>
1o
C
Y 55% -
o
(9]
P
0% T T
0 200 400
lawx|?
Layer 9
>
2
o 5.5% A
>
o
[
i
0.0% -
0 200 400
lawx|?

Layer 2 Layer 3
> >
2 g
Y 55% A Y 55% A
o o
(9 [
i e
0% T T 0% T T
0 200 400 0 200 400
lawx|? lawx|?
Layer 6 Layer 7
5. 55% -
1) o
5 & 5.59
S5 27% 3 5:5%1
o o
(9 ()
i i
0% 0.0%
0 200 400 0 200 400
lawx|? lawx?
Layer 10 Layer 11
9 9
o
2 13.6% g 10.9%
> >
o o 55%
0.0% 0.0%
0 200 400 200 400
lawx|? lavx|?

Figure 7: The frequency distribution of the squared norm of query LoRA output AW;x; after fine-tuning on the

MRPC task.
Model #Tr. RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP v
RoB-large Params (Acc) (Acc) (Spea.) (Matt.) (Acc) (Acc) (Acc) (Acc) &
Full-FT* 355M 86.6 90.9 924 68.0 96.4 94.7 90.2 92.2 8.9
LoRA 0.79M | 88.5, 07 90.1,55 924.01 678413 96.0101 948,01 90.6,90 91.4.,; 889
LORA—dI‘Op (OUI'S) 0.41M 88.8i0,7 89.9i0,3 92.2:‘:0‘1 68.5i1,7 96.2:‘:0'1 94~9i0.1 90-7i0,1 91~3i0.5 89.1

Table 6: The performance of the RoOBERTa-large on GLUE benchmark. * refers to the results directly from their
original paper, in which Full-FT is derived from (Liu et al., 2019).

12

Layer O
>
o
e
Y 55% A
o
o
w
0% T T T
0 20 40 60
lawx|?
Layer 4
>
o
j
Y 55% A
o
o
w
0% T T T
0 20 40 60
lawx|?
Layer 8
- 55%
o
o
S 27%
o
o
w
0%
0 20 40 60
lawx|?

Layer 1
>
o
e
8 55% A
o
£
0% T r T
0 20 40 60
lawx?
Layer 5
> 55%
o
o
9]
3 27%
o
£
0%
0 20 40 60
lawx?
Layer 9
> 10.9%
c
9]
3 55%
£
0.0%
0 20 40 60
lawx?

Layer 2
>
o
S 55%
>
o
o
w
0% : . .
0 20 40 60
lawx|
Layer 6
>
2 27.3%
(]
& 13.6%
. 0
o
w
0.0%
0 20 40 60
lawx|
Layer 10
3 10.9%
o
s
o 5.5%
o
w
0.0%
0 20 40 60
lawx|

Layer 3

>
2
@ 55%
=
o
o
w
0% T T
0 20 40 60
lawx|
Layer 7
g
c 27.3%
[
g’ 13.6%
. 0
o
w
0.0%
20 40 60
lawx|?
Layer 11
>
o
G 5.5% 1
>
o
o
w
0.0% -
0 20 40 60
lawx|?

Figure 8: The frequency distribution of the squared norm of value LoRA output AW;x; after fine-tuning on the

MRPC task.
Model #Tr. RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP A
vg.
Llama2 7b Params (Acc) (Acc) (Spea.) (Matt.) (Acc) (Acc) (Acc) (Acc) &
Full-FT 6.6B 88.4 88.7 89.8 67.9 92.3 93.6 86.3 91.7 87.3
LoRA 42M | 89.2,05 89.7.05 899,91 70.64107 968102 94.7.00 909102 91.6,,; 89.2
LORA—dI‘Op (ours) 2.2M 91'0:t0.5 90'2i0.3 90.110,1 69.0:&1'2 96.8i0,2 94.8;&),2 90.6:‘:0‘1 91.6:‘:0'3 89.3
Table 7: The performance of the Llama2-7b on GLUE benchmark.
Layer O Layer 1 Layer 2 Layer 3
> == LoRA > = LoRA > = LoRA > | = LoRA
g 40% - LoRA-drop E 80% LoRA-drop E 80% 1 LoRA-drop g LoRA-drop
()] ()] ()] U 40% -
> 2 40% o 40% >
o v v o
[[[w
0% T T T 0% T T T 0% T T T 0% T T T
1 2 3 1 2 3 1 2 3 1 2 3
lawx|? lawx|? lawx|? lawx|?
Layer 4 Layer 5 Layer 6 Layer 7
P —— = LoRA > === LoRA >] = LoRA > === LoRA
g 80% LoRA-drop E LoRA-drop E 40.2% LoRA-drop g 16.1% LoRA-drop
0] @ 40% 1 0] 7]
;3-40%— g 520.1%— g- 8.0% 4
[[[w
0% T T T 0% T T T 0.0% T T T 0.0% T T T
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
lawx| lawx|? lawx|? lawx|?
Layer 8 Layer 9 Layer 10 Layer 11
- L = LoRA > ! mm LoRA > = LoRA 5 161% T == LoRA
g 8.0% A ! LoRA-drop g 8.0% - 1 LoRA-drop E 8.0% A LoRA-drop g II LoRA-drop
0] ,I o 0] o o |
>4.0%4 ¢ = > 4.0% - g 80%1
g 4.0% | o o . g I
[y / [C C X
0.0% = T T 0.0% T T T 0.0% T T T 0.0% += T T T
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
lawx|2 lawx|? lawx|? lawx|?

Figure 9: The query LoRA output AW, x; squared norm frequency distribution of LoRA and LoRA-drop.

13

Model #Tr. Dialogsum

Llama?2 7b Params | ROUGE-1 ROUGE-2 ROUGE-L Avg.
Full-FT 6.6B 49.86 29.37 43.07 40.77
LoRA 0.13B 50.15 29.28 43.65 41.03
LoRA-drop (ours) | 0.09B 49.84 28.99 43.22 40.68

Table 8: Results of Llama2-7b with different training strategies on the summarization dataset Dialogsum.

Layer O Layer 1 Layer 2 Layer 3
>] = LoRA > 40.2% A = LoRA > = LoRA > 16.1% 1 = LORA
I 40% LoRA-drop 2 | LoRA-drop ©20.1% 1 LoRA-drop I LoRA-drop
s L 019 g S 8.0% J
2 20% A o 20-1% 1 & 10.0% - o 7
19} 1} 9] 9]
fre e e | e |
o T T 0.0% T T T 0.0% T T T 0.0% + = T T
0.00 0.05 0.10 0.15 0.00 0.05 010 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
lawx|? llawx|? lavx? lavx|?
Layer 4 Layer 5 Layer 6 Layer 7
> == LoRA > 0% == LoRA > A mm LoRA > | == LoRA
g b LoRA-drop 2 ° | LoRA-drop £ 8.0% 4] LoRA-drop 2 16.1% A h [LoRA-drop
g 8.0% 1 g g g |
20% JJ o
: P : el
[L w] [[
0.0% T T T 0.0% 4= T T 0.0% +——" T T
0.00 0.05 0.10 0.15 0.00 0.05 010 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
lawx|? lawx||? lavx? lavx|?
Layer 8 Layer 9 Layer 10 Layer 11
> |, mmm LoRA > = LoRA 1 >, 16.1% 1 = LoRA > 50.1% - | . LoRA
@) I @) u o €] -L70
c ¥ \L LoRA-drop c £.0% I LoRA-drop w c LoRA-drop c ‘ I LoRA-drop
Y 4.0% - 1 o 4.0% A el [[
= P o]l ‘ 3 80% 3 10.0% A
o F o PN o o
I i b - r L ['n | [
0.0% = T T T 0.0% e T — 0.0% T T T 0.0% -
0.00 0.05 0.10 0.15 0.00 005 010 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
X X X X
AWx||? AWx||? AWx||? AWx||?

Figure 10: The value LoRA output AWz, squared norm frequency distribution of LoRA and LoRA-drop.

MRPC

QNLI
QQP
CoLA
MNLI
SST2
STSB

Dataset

Query

MRPC
RTE
QNLI
QQr
ColA
MNLI
SST2
STSB.

Dataset

Value

012345678 910111213141516171819202122232425262728293031

01234567 8910111213141516171819202122232425262728293031
Layers

Layers

Figure 11: The relative magnitudes of LoRA outputs across different layers of Llama2-7b on various datasets. The
left subplot shows the LoRA outputs corresponding to each layer’s query matrix, and the right subplot shows the
LoRA outputs corresponding to each layer’s value matrix. For display, the value of the largest layer’s LoORA output
is normalized to 1 for each dataset.

14

Value

0.1

0.25
0.2
0.3

0.20
0.4
05 0.15
0.6
0.7 0.10
0.8
0.9 0.05
1.0

0 1 2 3 4 5 6 7 8 9 10 11
Layers

Sample proportion a

Figure 12: Importance distribution of LoRA for value in
RTE under different sample proportions. Each point on
the heatmap represents the importance I; of the query
value in layer ¢ under o sample proportion.

15

