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Abstract

As a research community, we are still lacking a systematic understanding of the1

progress on adversarial robustness which often makes it hard to identify the most2

promising ideas in training robust models. A key challenge in benchmarking3

robustness is that its evaluation is often error-prone leading to overestimation of4

the true robustness of models. While adaptive attacks designed for a particular5

defense are a potential solution, they have to be highly customized for particular6

models, which makes it difficult to compare different methods. Our goal is to7

instead establish a standardized benchmark of adversarial robustness, which as8

accurately as possible reflects the robustness of the considered models within9

a reasonable computational budget. To evaluate robustness of models for our10

benchmark, we consider AutoAttack, an ensemble of white- and black-box attacks11

which was recently shown in a large-scale study to improve almost all robustness12

evaluations compared to the original publications. We also impose some restrictions13

on the admitted models to rule out defenses that only make gradient-based attacks14

ineffective without improving actual robustness. Our leaderboard, hosted at http:15

//robustbench.github.io/, contains evaluations of 90+ models and aims at16

reflecting the current state of the art on a set of well-defined tasks in `∞- and `2-17

threat models and on common corruptions, with possible extensions in the future.18

Additionally, we open-source the library http://github.com/RobustBench/19

robustbench that provides unified access to 60+ robust models to facilitate their20

downstream applications. Finally, based on the collected models, we analyze the21

impact of robustness on the performance on distribution shifts, calibration, out-of-22

distribution detection, fairness, privacy leakage, smoothness, and transferability.23

1 Introduction24

Since the finding that state-of-the-art deep learning models are vulnerable to small input perturbations25

called adversarial examples [123], achieving adversarially robust models has become one of the most26

studied topics in the machine learning community. The main difficulty of robustness evaluation is27

that it is a computationally hard problem even for simple `p-bounded perturbations [64] and exact28

approaches [126] do not scale to large enough models. There are already more than 3000 papers on29

this topic [14], but it is often unclear which defenses against adversarial examples indeed improve30

robustness and which only make the typically used attacks overestimate the actual robustness. There31

is an important line of work on recommendations for how to perform adaptive attacks that are selected32

specifically for a particular defense [4, 16, 129] which have in turn shown that several seemingly33
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Figure 1: The top-3 entries of our CIFAR-10 leaderboard hosted at https://robustbench.github.
io/ for the `∞-perturbations of radius ε∞ = 8/255.

robust defenses fail to be robust. However, recently Tramèr et al. [129] observe that although several34

recently published defenses have tried to perform adaptive evaluations, many of them could still35

be broken by new adaptive attacks. We observe that there are repeating patterns in many of these36

defenses that prevent standard attacks from succeeding. This motivates us to impose restrictions on37

the defenses we consider in our proposed benchmark, RobustBench, which aims at standardized38

adversarial robustness evaluation. Specifically, we rule out (1) classifiers which have zero gradients39

with respect to the input [12, 48], (2) randomized classifiers [147, 91], and (3) classifiers that contain40

an optimization loop in their predictions [108, 76]. Often, non-certified defenses that violate these41

three principles only make gradient-based attacks harder but do not substantially improve adversarial42

robustness [16]. We start from benchmarking robustness with respect to the `∞- and `2-threat models,43

since they are the most studied settings in the literature. We use the recent AutoAttack [26] as44

our current standard evaluation which is an ensemble of diverse parameter-free attacks (white- and45

black-box) that has shown for various datasets reliable performance over a large set of models that46

satisfy our restrictions. Moreover, we accept evaluations based on adaptive attacks whenever they47

can improve our standard evaluation. Additionally, we collect models robust against common image48

corruptions [53] as these represent another type of perturbations which should not modify the decision49

of a classifier although they are not produced in an adversarial way.50

Contributions. We make the following contributions with our RobustBench benchmark:51

• Leaderboard https://robustbench.github.io/: a website with the leaderboard (see52

Fig. 1) based on more than 90 models where it is possible to track the progress and the53

current state of the art in adversarial robustness based on a standardized evaluation using54

AutoAttack (potentially complemented by adaptive attacks). The goal is to clearly identify55

the most successful ideas in training robust models to accelerate the progress in the field.56

• Model Zoo https://github.com/RobustBench/robustbench: a collection of the57

most robust models that are easy to use for any downstream applications. For example, we58

expect that this will foster the development of better adversarial attacks by making it easier59

to perform evaluations on a large set of more than 60 models.60

• Analysis: based on the collected models from the Model Zoo, we provide an analysis of61

how robustness affects the performance on distribution shifts, calibration, out-of-distribution62

detection, fairness, privacy leakage, smoothness, and transferability. In particular, we find63

that robust models are significantly underconfident that leads to worse calibration, and that64

not all robust models have higher privacy leakage than standard models.65

We believe that our standardized benchmark and accompanied collection of models will accelerate66

progress on multiple fronts in the area of adversarial robustness.67

2 Background and related work68

Adversarial perturbations. Let x ∈ Rd be an input point and y ∈ {1, . . . , C} be its correct label.69

For a classifier f : Rd → RC , we define a successful adversarial perturbation with respect to the70

perturbation set ∆ ⊆ Rd as a vector δ ∈ Rd such that71

arg max
c∈{1,...,C}

f(x+ δ)c 6= y and δ ∈ ∆, (1)

where typically the perturbation set ∆ is chosen such that all points in x + δ have y as their true72

label. This motivates a typical robustness measure called robust accuracy, which is the fraction of73
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datapoints on which the classifier f predicts the correct class for all possible perturbations from the74

set ∆. Computing the exact robust accuracy is in general intractable and, when considering `p-balls75

as ∆, NP-hard even for single-layer neural networks [64, 136]. In practice, an upper bound on the76

robust accuracy is computed via some adversarial attacks which are mostly based on optimizing some77

differentiable loss (e.g., cross entropy) using local search algorithms like projected gradient descent78

(PGD) in order to find a successful adversarial perturbation. The tightness of the upper bound depends79

on the effectiveness of the attack: unsuitable techniques or suboptimal parameters (e.g., the step size80

and the number of iterations) can make the models appear more robust than they actually are [34, 86],81

especially in the presence of phenomena like gradient obfuscation [4]. Certified methods [138, 44]82

instead provide lower bounds on robust accuracy but often underestimate robustness significantly, in83

particular if the certification was not part of the training process. Thus, we do not consider lower84

bounds in our benchmark, and focus only on upper bounds which are typically much tighter [126].85

Threat models. We focus on the fully white-box setting, i.e. the model f is assumed to be fully86

known to the attacker. The threat model is defined by the set ∆ of the allowed perturbations: the most87

widely studied ones are the `p-perturbations, i.e. ∆p = {δ ∈ Rd, ‖δ‖p ≤ ε}, particularly for p =∞88

[123, 42, 79]. We rely on thresholds ε established in the literature which are chosen such that the true89

label should stay the same for each in-distribution input within the perturbation set. We note that90

robustness towards small `p-perturbations is a necessary but not sufficient notion of robustness which91

has been criticized in the literature [41]. It is an active area of research to develop threat models92

which are more aligned with the human perception such as spatial perturbations [39, 37], Wasserstein-93

bounded perturbations [139, 57], perturbations of the image colors [72] or `p-perturbations in the94

latent space of a neural network [73, 137]. However, despite the simplicity of the `p-perturbation95

model, it has numerous interesting applications that go beyond security considerations [128, 106]96

and span transfer learning [107, 132], interpretability [130, 65, 36], generalization [144, 158, 8],97

robustness to unseen perturbations [62, 144, 73, 67], stabilization of GAN training [157]. Thus,98

improvements in `p-robustness have the potential to improve many of these downstream applications.99

Common corruptions. Unlike adversarial perturbations, common corruptions [53] try to mimic100

modifications of the input images which can occur naturally: they are not imperceptible and evaluation101

on them is done in the average case fashion, i.e. there is no attacker who aims at changing the102

classifier’s decision. In this case, the robustness of a model is evaluated as classification accuracy on103

the corrupted images, averaged over types and severities of corruptions.104

Related libraries and benchmarks. There are many libraries that focus primarily on implemen-105

tations of popular adversarial attacks such as FoolBox [100], Cleverhans [95], AdverTorch [31],106

AdvBox [43], ART [89], SecML [83]. Some of them also provide implementations of several basic107

defenses, but they do not include up-to-date state-of-the-art models.108

The two challenges [71, 9] hosted at NeurIPS 2017 and 2018 aimed at finding the most robust models109

for specific attacks, but they had a predefined deadline, so they could capture the best defenses only110

at the time of the competition. Ling et al. [77] proposed DEEPSEC, a benchmark that tests many111

combinations of attacks and defenses, but suffers from a few shortcomings as suggested by Carlini112

[15], in particular: (1) reporting average-case performance over multiple attacks instead of worst-case113

performance, (2) evaluating robustness in threat models different from the one used for training, (3)114

using excessively large perturbations.115

Recently, Dong et al. [33] have provided an evaluation of a few defenses (in particular, 3 for `∞-116

and 2 for `2-norm on CIFAR-10) against multiple commonly used attacks. However, they did117

not include some of the best performing defenses [55, 18, 46, 101] and attacks [45, 25], and in a118

few cases, their evaluation suggests robustness higher than what was reported in the original papers.119

Moreover, they do not impose any restrictions on the models they accept to the benchmark. RobustML120

(https://www.robust-ml.org/) aims at collecting robustness claims for defenses together with121

external evaluations. Their format does not assume running any baseline attack, so it relies entirely122

on evaluations submitted by the community, which however do not occur often enough. Thus even123

though RobustML has been a valuable contribution to the community, now it does not provide a124

comprehensive overview of the recent state of the art in adversarial robustness.125

Finally, it has become common practice to test new attacks wrt `∞ on the publicly available models126

from Madry et al. [79] and Zhang et al. [154], since those represent widely accepted defenses which127

have stood many thorough evaluations. However, having only two models per dataset (MNIST and128
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CIFAR-10) does not constitute a sufficiently large testbed, and, because of the repetitive evaluations,129

some attacks may already overfit to those defenses.130

What is different in RobustBench. Learning from these previous attempts, RobustBench presents131

a few different features compared to the aforementioned benchmarks: (1) a baseline worst-case132

evaluation with an ensemble of strong, standardized attacks [26] which includes both white- and133

black-box attacks that can be optionally extended by adaptive evaluations, (2) clearly defined threat134

models that correspond to the ones used during training for submitted defenses, (3) evaluation of not135

only standard defenses [79] but also of more recent improvements such as [18, 46, 101], (4) the Model136

Zoo that provides convenient access to the 60+ most robust models from the literature which can be137

used for downstream tasks and facilitate the development of new standardized attacks. Moreover,138

RobustBench is designed as an open-ended benchmark that keeps an up-to-date leaderboard, and139

we welcome contributions of new defenses and evaluations of adaptive attacks for particular models.140

3 Description of RobustBench141

In this section, we start by providing a detailed layout of our proposed leaderboard for `∞, `2, and142

the common corruptions threat models. Next, we present the Model Zoo, which provides unified143

access to most networks from our leaderboards.144

3.1 Leaderboard145

Restrictions. We argue that benchmarking adversarial robustness in a standardized way requires146

some restrictions on the type of considered models. The goal of these restrictions is to prevent147

submissions of defenses that cause some standard attacks to fail without actually improving robustness.148

Specifically, we consider only classifiers f : Rd → RC that149

• have in general non-zero gradients with respect to the inputs. Models with zero gradients,150

e.g., that rely on quantization of inputs [12, 48], make gradient-based methods ineffective151

thus requiring zeroth-order attacks, which do not perform as well as gradient-based attacks.152

Alternatively, specific adaptive evaluations, e.g. with Backward Pass Differentiable Approx-153

imation [4], can be used which, however, can hardly be standardized. Moreover, we are not154

aware of existing defenses solely based on having zero gradients for large parts of the input155

space which would achieve competitive robustness.156

• have a fully deterministic forward pass. To evaluate defenses with stochastic components,157

it is a common practice to combine standard gradient-based attacks with Expectation over158

Transformations [4]. While often effective, it might be not sufficient, as shown by Tramèr159

et al. [129]. Moreover, the classification decision of randomized models may vary over160

different runs for the same input, hence even the definition of robust accuracy differs from161

that of deterministic networks. We also note that randomization can be useful for improving162

robustness and deriving robustness certificates [74, 23], but it also introduces variance in the163

gradient estimators (both white- and black-box) which can make attacks much less effective.164

• do not have an optimization loop in the forward pass. This makes backpropagation through165

the classifier very difficult or extremely expensive. Usually, such defenses [108, 76] need to166

be evaluated adaptively with attacks considering jointly the loss of the inner loop and the167

standard classification task.168

Some of these restrictions were also discussed by [11] for the warm-up phase of their challenge. We169

refer the reader to Appendix E therein for an illustrative example of a trivial defense that bypasses170

gradient-based and some of the black-box attacks they consider.171

Overall setup. We set up leaderboards for the `∞, `2 and common corruption threat models on172

CIFAR-10 and CIFAR-100 [69] datasets (see Table 1 for details). We use the fixed budgets of173

ε∞ = 8/255 and ε2 = 0.5 for the `∞ and `2 leaderboards. Most of the models shown there are taken174

from papers published at top-tier machine learning and computer vision conferences as shown in175

Fig. 2 (left). For each entry we report the reference to the original paper, standard and robust accuracy176

under the specific threat model (see the next paragraph for details), network architecture, venue177

where the paper appeared and possibly notes regarding the model. We also highlight when extra data178

(usually, the dataset introduced by Carmon et al. [18]) is used since it gives a clear advantage for both179
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Figure 2: Visualization of the robustness and accuracy of 54 CIFAR-10 models from the
RobustBench `∞-leaderboard. Robustness is evaluated using `∞-perturbations with ε∞ = 8/255.

clean and robust accuracy. Moreover, the leaderboard allows to search the entries by their metadata180

(such as title, architecture, venue) which can be useful to compare different methods that use the181

same architecture or to search for papers published at some recent conference.182

Evaluation of defenses. The evaluation of robust accuracy on common corruptions [53] involves183

simply computing the average accuracy on corrupted images over different corruption types and184

severity levels.1 To evaluate robustness of `∞ and `2 defenses, we currently use AutoAttack [26].185

It is an ensemble of four attacks: a variation of PGD attack with automatically adjusted step sizes,186

with (1) the cross entropy loss and (2) the difference of logits ratio loss, which is a rescaling-invariant187

margin-based loss function, (3) the targeted version of the FAB attack [25], which minimizes the188

`p-norm of the perturbations, and (4) the black-box Square Attack [3]. We choose AutoAttack as it189

includes both black-box and white-box attacks, does not require hyperparameter tuning (in particular,190

the step size), and consistently improves the results reported in the original papers for almost all the191

models (see Fig. 2 (middle)). If in the future some new standardized and parameter-free attack is192

shown to consistently outperform AutoAttack on a wide set of models given a similar computational193

cost, we will adopt it as standard evaluation. In order to verify the reproducibility of the results, we194

perform the standardized evaluation independently of the authors of the submitted models. Below we195

show an example of how one can use our library to easily benchmark a model (either external one or196

taken from the Model Zoo):197

from robustbench.eval import benchmark
clean_acc, robust_acc = benchmark(model, dataset='cifar10', threat_model='Linf')

Moreover, in Appendix C we also show the variability of the robust accuracy given by AutoAttack over198

random seeds and report its runtime for a few models from different threat models. We also accept199

evaluations of the individual models on the leaderboard based on adaptive or external attacks to reflect200

the best available upper bound on the true robust accuracy. For example, Gowal et al. [46] and Rebuffi201

et al. [101] evaluate their models with a hybrid of AutoAttack and MultiTargeted attack [45], that in202

some cases report slightly lower robust accuracy than AutoAttack alone. We reflect all such additional203

evaluations in our leaderboard. The submission of adaptive evaluations is facilitated by a pre-formatted204

issue template in our repository https://github.com/RobustBench/robustbench.205

Adding new defenses. We believe that the leaderboard is only useful if it reflects the latest advances206

in the field, so it needs to be constantly updated with new defenses. We intend to include evaluations207

of new techniques and we welcome contributions from the community which can help to keep the208

benchmark up-to-date. We require new entries to (1) satisfy the three restrictions stated above, (2)209

to be accompanied by a publicly available paper (e.g., an arXiv preprint) describing the technique210

used to achieve the reported results, and (3) share the model checkpoints (not necessarily publicly).211

We also allow temporarily adding entries without providing checkpoints given that the authors212

evaluate their models with AutoAttack. However, we will mark such evaluations as unverified, and to213

encourage reproducibility, we reserve the right to remove an entry later on if the corresponding model214

checkpoint is not provided. It is possible to add a new defense to the leaderboard and (optionally)215

the Model Zoo by opening an issue with a predefined template in our repository https://github.216

com/RobustBench/robustbench, where more details about new additions can be found.217

1A breakdown over corruptions and severities is also available, e.g. for CIFAR-10 models see: https:
//github.com/RobustBench/robustbench/blob/master/model_info/cifar10/corruptions/unaggregated_results.csv
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Table 1: The total number of models in the Model Zoo and leaderboards per dataset and threat model.

CIFAR-10 CIFAR-100

Threat model Model Zoo Leaderboard Model Zoo Leaderboard

`∞ with ε∞ = 8/255 33 55 12 12
`2 with ε2 = 0.5 14 14 - -

Common corruptions [53] 7 12 2 4

3.2 Model Zoo218

We collect the checkpoints of many networks from the leaderboard in a single repository hosted at219

https://github.com/RobustBench/robustbench after obtaining the permission of the authors220

(see Appendix A for the information on the licenses). The goal of this repository, the Model Zoo, is to221

make the usage of robust models as simple as possible to facilitate various downstream applications222

and analyses of general trends in the field. In fact, even when the checkpoints of the proposed method223

are made available by the authors, it is often time-consuming and not straightforward to integrate them224

in the same framework because of many factors such as small variations in the architectures, custom225

input normalizations, etc. For simplicity of implementation, at the moment we include only models226

implemented in PyTorch [96]. Below we illustrate how a model can be automatically downloaded227

and loaded via its identifier and threat model within two lines of code:228

from robustbench.utils import load_model
model = load_model(model_name='Carmon2019Unlabeled',

dataset='cifar10', threat_model='Linf')

At the moment, all models (see Table 1 and Appendix E for details) are variations of ResNet [50] and229

WideResNet architectures [150] of different depth and width. We include the most robust models, e.g.230

those from Rebuffi et al. [101], but there are also defenses which pursue additional goals alongside231

adversarial robustness at the fixed threshold we use: e.g., Sehwag et al. [112] consider networks232

which are robust and compact, Wong et al. [140] focus on computationally efficient adversarial233

training, Ding et al. [32] aim at input-adaptive robustness as opposed to robustness within a single234

`p-radius. All these factors have to be taken into account when comparing different techniques, as235

they have a strong influence on the final performance.236

A testbed for new attacks. Another important use case of the Model Zoo is to simplify comparisons237

between different adversarial attacks on a wide range of models. First, the leaderboard already serves238

as a strong baseline for new attacks. Second, as mentioned above, new attacks are often evaluated on239

the models from Madry et al. [79] and Zhang et al. [154], but this may not provide a representative240

picture of their effectiveness. For example, currently the difference in robust accuracy between the241

first and second-best attacks in the CIFAR-10 leaderboard of Madry et al. [79] is only 0.03%, and242

between the second and third is 0.04%. Thus, we believe that a more thorough comparison should243

involve multiple models to prevent overfitting of the attack to one or two standard robust defenses.244

4 Analysis245

With unified access to multiple models from the Model Zoo, one can easily compute various perfor-246

mance metrics to see general trends. In the following we analyze various aspects of robust classifiers,247

reporting results mostly for `∞-robust models on CIFAR-10 while the results for other threat models248

and datasets can be found in Appendix D.249

Progress on adversarial defenses. In Fig. 2, we plot a breakdown over conferences, the amount250

of robustness overestimation reported in the original papers, and we also visualize the robustness-251

accuracy trade-off for the `∞-models from the Model Zoo. First, we observe that for multiple252

published defenses, the reported robust accuracy is highly overestimated. We also find that the use of253

extra data is able to alleviate the robustness-accuracy trade-off as suggested in previous works [98].254

However, so far all models with high robustness to perturbations of `∞-norm up to ε = 8/255 still255

suffer from noticeable degradation in clean accuracy compared to standardly trained models. Finally,256

it is interesting to note that the best entries of the `p-leaderboards are still variants of PGD adversarial257

training [79, 154] but with various enhancements (extra data, early stopping, weight averaging).258
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Performance across various distribution shifts. Here we test the performance of the models from259

the Model Zoo on different distribution shifts ranging from common image corruptions (CIFAR-10-C,260

[53]) to dataset resampling bias (CIFAR-10.1, [102]) and image source shift (CINIC-10, [29]). For261

each of these datasets, we measure standard accuracy, and Fig. 3 shows that improvement in the262

robust accuracy (which often comes with an improvement in standard accuracy) on CIFAR-10 also263

correlates with an improvement in standard accuracy across distributional shifts. On CIFAR-10-C,264

we observe that robust models (particularly with respect to the `2-norm) tend to give a significant265

improvement which agrees with the findings from the previous literature [40]. Concurrently with our266

work, Taori et al. [125] also study the robustness to different distribution shifts of many models trained267

on ImageNet, including some `p-robust models. Our conclusions qualitatively agree with theirs, and268

we hope that our collected set of models will help to provide a more complete picture. Moreover,269

we measure robust accuracy, in the same threat model used on CIFAR-10, using AutoAttack [26]270

(see Fig. 10 in Appendix D), and notice how `p adversarial robustness generalizes across different271

datasets, and a clear positive correlation between robust accuracy on CIFAR-10 and its variations.
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Figure 3: Standard accuracy of classifiers trained against `∞ (left), `2 (middle), and common
corruption (right) threat model respectively, from our Model Zoo on various distribution shifts.

272

Calibration. A classifier is calibrated if its predicted probabilities correctly reflect the actual accuracy273

[47]. In the context of adversarial training, calibration was considered in Hendrycks et al. [56] who274

focus on improving accuracy on common corruptions and in Augustin et al. [6] who focus mostly on275

preventing overconfident predictions on out-of-distribution inputs. We instead focus on in-distribution276

calibration, and in Fig. 4 plot the expected calibration error (ECE) without and with temperature277

rescaling [49] to minimize the ECE (which is a simple but effective post-hoc calibration method,278

see Appendix D for details) together with the optimal temperature for a large set of `∞ models.279

We observe that most of the `∞ robust models are significantly underconfident since the optimal280

calibration temperature is less than one for most models. The only two models in Fig. 4 which are281

overconfident are the standard model and the model of Ding et al. [32] that aims to maximize the282

margin. We see that temperature rescaling is even more important for robust models since without283

any rescaling the ECE is as high as 70% for the model of Pang et al. [92] (and 21% on average)284

compared to 4% for the standard model. Temperature rescaling significantly reduces the ECE gap285

between robust and standard models but it does not fix the problem completely which suggests that it286

is worth incorporating calibration techniques also during training of robust models. For `2 robust287

models, the models can be on the contrary more calibrated by default, although the improvement288

vanishes if temperature rescaling is applied (see Appendix D).
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Figure 4: Expected calibration error (ECE) before (left) and after (middle) temperature rescaling,
and the optimal rescaling temperature (right) for the `∞-robust models.

289

Out-of-distribution detection. Ideally, a classifier should exhibit high uncertainty in its predictions290

when evaluated on out-of-distribution (OOD) inputs. One of the most straightforward ways to extract291

this uncertainty information is to use some threshold on the predicted confidence where OOD inputs292
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are expected to have low confidence from the model [54]. An emerging line of research aims at293

developing OOD detection methods in conjunction with adversarial robustness [52, 110, 6]. In294

particular, Song et al. [122] demonstrated that adversarial training [79] leads to degradation in the295

robustness against OOD data. We further test this observation on all `∞-models trained on CIFAR-10296

from the Model Zoo on three OOD datasets: CIFAR-100 [69], SVHN [88], and Describable Textures297

Dataset [22]. We use the area under the ROC curve (AUROC) to measure the success in the detection298

of OOD data, and show the results in Fig. 5. With `∞ robust models, we find that compared to299

standard training, various robust training methods indeed lead to degradation of the OOD detection300

quality. While extra data in standard training can improve robustness against OOD inputs, it fails301

to provide similar improvements with robust training. We further find that `2 robust models have in302

general comparable OOD detection performance to standard models (see Fig. 12 in Appendix), while303

the model of Augustin et al. [6] achieves even better performance since their approach explicitly304

optimizes both robust accuracy and worst-case OOD detection performance.
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Figure 5: Visualization of the OOD detection quality (higher AUROC is better) for the `∞-robust
models trained on CIFAR-10 on three OOD datasets: CIFAR-100 (left), SVHN (middle), Describable
Textures (right). We detect OOD inputs based on the maximum predicted confidence [54].

305

Fairness in robustness. Recent works [7, 146] have noticed that robust training [79, 154] can lead306

to models whose performance varies significantly across subgroups, e.g. defined by classes. We will307

refer to this performance difference as fairness, and here we study the influence of robust training308

methods on fairness. In Fig. 6 we show the breakdown of standard and robust accuracy for the `∞309

robust models, where one can see how the achieved robustness largely varies over classes. While in310

general the classwise standard and robust accuracy correlate well, the class “deer” in `∞-threat model311

suffers a significant degradation, unlike what happens for `2 (see Appendix D), which might indicate312

that the features of such class are particularly sensitive to `∞-bounded attacks. Moreover, we measure313

fairness with the relative standard deviation (RSD), defined as the standard deviation divided over the314

average, of robust accuracy over classes for which lower values mean more uniform distribution and315

higher robustness. We observe that better robust accuracy generally leads to lower RSD values which316

implies that the disparity among classes is reduced. However, some training techniques like MART317

[135] can noticeably increase the RSD and thus increase the disparity compared to other methods318

which achieve similar robustness (around 57%).319
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Figure 6: Fairness of `∞-robust models. Left: classwise standard (dotted lines) and robust (solid)
accuracy. Right: relative standard deviation (RSD) of robust accuracy over classes vs its average.

Privacy leakage. Deep neural networks are prone to memorizing training data [117, 17]. Recent320

works have highlighted that robust training exacerbates this problem [121]. Here we benchmark321

privacy leakage of training data across robust networks (Fig. 7). We calculate membership inference322

accuracy using output confidence of adversarial images from the training and test sets (see Appendix D323

for more details). It measures how accurately we can infer whether a sample was present in the324

training dataset. Our analysis reveals mixed trends. First, our results show that not all robust models325

have a significantly higher privacy leakage than a standard model. We find that the inference accuracy326

8



across robust models has a large variation, where some models even have lower privacy leakage than327

a standard model. It also does not have a strong correlation with the robust accuracy. In contrast, it328

is largely determined by the generalization gap, as using classification confidence information does329

not lead to a much higher inference accuracy than the baseline determined by the generalization330

gap (as shown in Fig. 7 (right)). Thus one can expect lower privacy leakage in robust networks as331

multiple previous works have explicitly aimed to reduce the generalization gap in robust training using332

techniques such as early stopping [103, 154, 46]. It further suggests that reducing the generalization333

gap in robust networks can further reduce privacy leakage.334
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Figure 7: Privacy leakage of `∞-robust models. We measure privacy leakage of training data in
robust networks and compare it with robust accuracy (left) and generalization gap (right).

Extra experiments. In Appendix D, we show extra experiments related to the points analyzed above335

and describe some of the implementation details. Also, we study how adversarial perturbations336

transfer between different models. We find that adversarial examples strongly transfer from robust337

to robust, non-robust to robust, and non-robust to non-robust networks. However, we observe poor338

transferability of adversarial examples from robust to non-robust networks. Moreover, since prior339

works [51, 148] connected higher smoothness with better robustness, we analyze the smoothness340

of the models both at intermediate and output layers. This confirms that, for a fixed architecture,341

standard training yields classifiers that are significantly less smooth than robust ones. This illustrates342

that one can use the collected models to study the internal properties of robust networks as well.343

5 Outlook344

Conclusions. We believe that a standardized benchmark with clearly defined threat models, restric-345

tions on submitted models, and tight upper bounds on robust accuracy can be useful to show which346

ideas in training robust models are the most successful. Recent works have already referred to our347

leaderboards [68, 149, 80, 124, 145], in particular as reflecting the current state of the art [101, 75, 94],348

and used the networks of our Model Zoo to test new adversarial attacks [83, 105, 38, 109], to evaluate349

test-time defenses [133] or to evaluate perceptual distances derived from them [61]. Additionally,350

we have shown that unified access to a large and up-to-date set of robust models can be useful to351

analyze multiple aspects related to robustness. First, one can easily analyze the progress of adversarial352

defenses over time including the amount of robustness overestimation and the robustness-accuracy353

tradeoff. Second, one can conveniently study the impact of robustness on other performance metrics354

such as accuracy under distribution shifts, calibration, out-of-distribution detection, fairness, privacy355

leakage, smoothness, and transferability. Overall, we think that the community has to develop a better356

understanding of how different types of robustness affect other aspects of the model performance and357

RobustBench can help to achieve this goal.358

Broader impact. In our work, we do not only perform a standardized benchmarking of adversarial359

robustness but also analyze multiple other properties of robust models such as calibration, privacy360

leakage, fairness, etc. Such analyses are important, in our opinion, since they allow us to assess the361

broader impact of improving robustness on other crucial performance metrics of neural networks. Ad-362

ditionally, in motivating higher robustness against adversarial examples, our work leaves an unwanted363

side effect on tasks where adversarial attacks can actually be used for beneficial purposes [115, 99].364

Finally, we note that a good performance on our benchmark does not guarantee the safety of the365

benchmarked model in a real-world deployment since `p- and corruption robustness may not be366

necessarily a realistic threat model (although it is a insightful problem to work on) and the real-world367

robustness is likely to require more domain-specific threat models.368
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Future plans. Our intention in the future is to keep the current leaderboards up-to-date (see the369

maintenance plan in Appendix B) and add new leaderboards for other datasets (in particular, for370

ImageNet [30]) and other threat models which become widely accepted in the community. We see371

as potential candidates (1) sparse perturbations, e.g. bounded by `0, `1-norm or adversarial patches372

[10, 24, 84, 27], (2) multiple `p-norm perturbations [127, 81], (3) adversarially optimized common373

corruptions [62, 63], (4) a broad set of perturbations unseen during training [73]. Another possible374

direction of development of the benchmark is including defenses based on some form of test-time375

adaptation [116, 133], which do not fulfill the third restriction (no optimization loop). However, since376

those are showing promising results and drawing attention from the community, one can introduce a377

separate leaderboard with specific rules and evaluation protocol for them.378
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Sec. 3, Sec. 4 and in the Appendix.701

(b) Did you describe the limitations of your work? [Yes] We discuss that we only perform702

a standardized evaluation and do not evaluate models against adaptive attacks, although703

we accept third-party evaluations based on adaptive attacks as mentioned in Sec. 3.1.704

Also, our current set of leaderboards can be seen as a limitation, so in Sec. 5 we describe705

how we plan to expand the benchmark to new threat models and datasets.706
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(d) Did you include the total amount of compute and the type of resources used (e.g., type721
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(a) Did you include the full text of instructions given to participants and screenshots, if737

applicable? [N/A]738

(b) Did you describe any potential participant risks, with links to Institutional Review739

Board (IRB) approvals, if applicable? [N/A]740

(c) Did you include the estimated hourly wage paid to participants and the total amount741

spent on participant compensation? [N/A]742

16


