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ABSTRACT

Denoising diffusion probabilistic models (DDPMs) (Ho et al. (2020)) have re-
cently taken the field of generative modeling by storm, pioneering new state-
of-the-art results in disciplines such as computer vision and computational biol-
ogy for diverse tasks ranging from text-guided image generation (Ramesh et al.
(2022); Saharia et al. (2022); Rombach et al. (2022)) to structure-guided pro-
tein design (Ingraham et al. (2022); Watson et al. (2022)). Along this latter
line of research, methods such as those of Hoogeboom et al. (2022) have been
proposed for generating 3D molecules using equivariant graph neural networks
(GNNs) within a DDPM framework. Toward this end, we propose GCDM,
a geometry-complete diffusion model that achieves new state-of-the-art results
for 3D molecule diffusion generation by leveraging the representation learning
strengths offered by GNNs that perform geometry-complete message-passing.
Our results with GCDM also offer preliminary insights into how physical induc-
tive biases impact the generative dynamics of molecular DDPMs. The source
code, data, and instructions to train new models or reproduce our results are freely
available at https://github.com/BioinfoMachineLearning/Bio-Diffusion.

1 INTRODUCTION

Generative modeling has recently been experiencing a renaissance in modeling efforts driven largely
by denoising diffusion probabilistic models (DDPMs). At a high level, DDPMs are trained by
learning how to denoise a noisy version of an input example. For example, in the context of computer
vision, Gaussian noise may be successively added to an input image with the goals of a DDPM
in mind. We would then desire for a generative model of images to learn how to successfully
distinguish between the original input image’s feature signal and the noise signal added to the image
thereafter. If a model can achieve such outcomes, we can use the model to generate novel images
by first sampling multivariate Gaussian noise and then iteratively removing, from the current state
of the image, the noise predicted by our model. This classic formulation of DDPMs has achieved
significant results in the space of image generation (Rombach et al. (2022)), audio synthesis (Kong
et al. (2020)), and even meta-learning by learning how to conditionally generate neural network
checkpoints (Peebles et al. (2022)). Furthermore, such an approach to generative modeling has
expanded its reach to encompass scientific disciplines such as computational biology (Anand &
Achim (2022)), computational chemistry (Xu et al. (2022)), and even computational physics (Mudur
& Finkbeiner (2022)).

Concurrently, the field of geometric deep learning (GDL) (Bronstein et al. (2021)) has seen a size-
able increase in research interest lately, driven largely by theoretical advances within the discipline
(Joshi et al. (2023)) as well as by novel applications of such methodology (Stärk et al. (2022)). No-
tably, such applications even include what is considered by many researchers to be a solution to the
problem of predicting 3D protein structures from their corresponding amino acid sequences (Jumper
et al. (2021)). Such an outcome arose, in part, from recent advances in sequence-based language
modeling efforts (Vaswani et al. (2017)) as well as from innovations in equivariant neural network
modeling (Thomas et al. (2018)).
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With such diverse, successful use cases of DDPMs and GDL in mind, in this work, we explore
the intersection of geometric graph representation learning and DDPMs to answer the following
questions.

• What is the impact of geometric representation learning on DDPMs designed to generate
3D molecular data?

• What are the limitations of current equivariant graph neural networks empowering contem-
porary molecular DDPMs?

• What role do physical inductive biases play within the generative denoising of molecular
DDPMs?

2 RELATED WORK

Generative Modeling. The field of deep generative modeling (Ruthotto & Haber (2021)) has pio-
neered a variety of techniques by which to train deep neural networks to create new content similar
to that of an existing data repository (e.g., a text dataset of English sentences). Language models
such as GPT-3 and ChatGPT (Brown et al. (2020); Schulman et al. (2022)) have become known
as hallmark examples of successful generative modeling of text data. In the domains of computer
vision and computational biology, techniques such as latent diffusion (Rombach et al. (2022)) and
equivariant graph diffusion (Luo et al. (2022)) have established some of the latest state-of-the-art
results in generative modeling of images (Tang et al. (2022)) and biomolecules (Hoogeboom et al.
(2022)) such as proteins (Anand & Achim (2022); Yim et al. (2023)), respectively.

Geometric Deep Learning. Data residing in a geometric or physical space (e.g., R3) can be pro-
cessed by machine learning algorithms in a plethora of ways. Subsequently, in recent years, the field
of geometric deep learning has become known for its proficiency in introducing powerful new deep
learning methods designed specifically to process geometric data (Cao et al. (2020)). Examples of
popular GDL algorithms include convolutional neural networks designed for working with image
data (LeCun et al. (1995)), recurrent neural networks for processing sequence-based data (Medsker
& Jain (1999)), and graph neural networks for handling graph-structured model inputs (Zhou et al.
(2020)).

Equivariant Neural Networks. To process geometric data efficiently, however, recent GDL re-
search (Cohen & Welling (2016); Bronstein et al. (2021); Bulusu et al. (2021)) has specifically
shown that designing one’s machine learning algorithm to be equivariant to the symmetry groups
the input data points naturally respect (e.g., 3D rotation symmetries) often helps such an algorithm
generalize to datasets beyond those used for its cross-validation (e.g., training and testing datasets).
As a particularly relevant example of a neural network that is equivariant to several important and
common symmetry groups of geometric data, equivariant graph neural networks (Fuchs et al. (2020);
Satorras et al. (2021b); Kofinas et al. (2021); Morehead & Cheng (2022)) that are translation and
rotation equivariant to inputs residing in R3 have become known as hallmark examples of geometric
deep learning algorithms that generalize remarkably well to new inputs and require notably fewer
training iterations to converge.

Representation Learning of Scientific Data. Scientific data, in particular, requires careful con-
sideration in the context of representation learning. As much scientific data contains within it a
notion of geometry or latent structure, equivariance has become a key algorithmic component for
processing such inputs as well (Han et al. (2022)). Moreover, equivariant graph representation learn-
ing algorithms have recently become a de facto methodology for processing scientific data of many
shapes and origins Musaelian et al. (2022); Batzner et al. (2022).

Contributions. In this work, we connect ideas at the forefront of GDL and generative modeling to
advance the state-of-the-art (SOTA) for 3D molecule generation. In detail, we provide the following
contributions.

• We introduce the Geometry-Complete Diffusion Model (GCDM) which establishes new
SOTA results for unconditional and conditional 3D molecule generation on the QM9
dataset and for unconditional 3D molecule generation on the larger GEOM-Drugs dataset.

• We investigate the impact of geometric message-passing on the behavior and performance
of DDPMs trained to generate 3D molecular data.
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• Our experiments demonstrate the importance of incorporating physical inductive biases
such as molecular chirality within DDPM denoising neural networks when training them
on data from physical domains.

3 METHODS

3.1 PROBLEM SETTING

In the context of this work, our goal is to generate new 3D molecules either ab initio or to capture
a specific molecular property. We represent a molecular point cloud as a fully-connected 3D graph
G = (V, E) with V and E representing the graph’s set of nodes and set of edges, respectively,
and N = |V| and E = |E| representing the number of nodes and the number of edges in the
graph, respectively. In addition, X = (x1,x2, ...,xN ) ∈ RN×3 represents the respective Cartesian
coordinates for each node (i.e., atom). Each node in G is described by scalar features H ∈ RN×h

and m vector-valued features χ ∈ RN×(m×3). Likewise, each edge in G is described by scalar
features E ∈ RE×e and x vector-valued features ξ ∈ RE×(x×3). Then, let M = [X,H] represent
the molecules our method is to generate, where [·, ·] denotes the concatenation of two variables.
Important to note is that the input features H and E are invariant to 3D rotations, reflections, and
translations, whereas the input features X, χ, and ξ are equivariant to 3D rotations and reflections.
In particular, we describe a denoising neural network Φ as SE(3)-equivariant (i.e., 3D rotation and
translation-equivariant) if it satisfies the following constraint on its outputs (denoted by □′):

Definition 3.1. (SE(3) Equivariance).

Given (H′,E′,X′,χ′, ξ′) = Φ(H,E,X,χ, ξ),
we have (H′,E′,QX′T + g,Qχ′T ,Qξ′

T

) = Φ(H,E,QXT + g,QχT,QξT),
∀Q ∈ SO(3),∀g ∈ R3×1.

3.2 OVERVIEW OF GCDM

We will now introduce GCDM, a new Geometry-Complete SE(3)-Equivariant Diffusion Model.
In particular, we will describe how GCDM defines a joint noising process on equivariant atom
coordinates x and invariant atom types h to produce a noisy representation z = [z(x), z(h)] and
then learns a generative denoising process using GCPNET (Morehead & Cheng (2022)). As we
will show in subsequent sections, GCPNET is a desirable architecture for the task of denoising 3D
graph inputs in that it contains two distinct feature channels for scalar and vector features, respec-
tively, and supports geometry-complete and chirality-aware message-passing by embedding geome-
try information-complete local frames for each node (Barron (1986)). Moreover, in our subsequent
experiments, we demonstrate that this enables GCPNET to learn more useful SE(3)-equivariant
graph representations for generative modeling of 3D molecules.

As an extension of the DDPM framework (Ho et al. (2020)) outlined in Appendix A.1, GCDM is
designed to generate molecules in 3D while maintaining SE(3) equivariance, in contrast to previous
methods that generate molecules solely in 2D (Jin et al. (2018)) or other dimensionalities (Segler
et al. (2018)). GCDM generates molecules by directly placing atoms in continuous 3D space and
assigning them discrete types, which is accomplished by modeling forward and reverse diffusion
processes, respectively:

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1) (1) pΦ(z0:T−1|zT ) =
T∏

t=1

pΦ(zt−1|zt) (2)

Overall, these processes describe a latent variable model pΦ(z0) =
∫
pΦ(z0:T )dz1:T given a se-

quence of latent variables z0, z1, . . . , zT matching the dimensionality of the data M ∼ p(z0). As
illustrated in Figure 1, the forward process (directed from right to left) iteratively adds noise to an
input, and the learned reverse process (directed from left to right) iteratively denoises a noisy input
to generate new examples from the original data distribution. We will now proceed to formulate
GCDM’s joint diffusion process and its remaining practical details.
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Figure 1: A framework overview for our proposed Geometry-Complete Diffusion Model (GCDM).
Our framework consists of (i.) a graph (topology) definition process, (ii.) a GCPNET-based graph
neural network for 3D graph representation learning, (iii.) denoising of 3D input graphs using
GCPNET, and (iv.) application of a trained GCPNET denoising network for 3D molecule genera-
tion. Zoom in for the best viewing experience.

3.3 JOINT MOLECULAR DIFFUSION

Recall that our model’s molecular graph inputs, G, associate with each node a 3D position xi ∈ R3

and a feature vector hi ∈ Rh. By way of adding random noise to these model inputs at each time step
t and using a fixed, Markov chain variance schedule σ2

1 , σ
2
2 , . . . , σ

2
T , we can define a joint molecular

diffusion process for equivariant atom coordinates x and invariant atom types h as the product of
two distributions (Hoogeboom et al. (2022)):

q(zt|zt−1) = Nx(z
(x)
t |αtz

(x)
t−1, σ

2
t I) · Nh(z

(h)
t |αtz

(h)
t−1, σ

2
t I). (3)

where the first distribution, Nx, represents the noised node coordinates, the second distribution, Nh,
represents the noised node features, and αt =

√
1− σ2

t following the variance preserving process
of Ho et al. (2020). Using Nxh as concise notation to denote the product of two normal distributions,
we can further simplify Eq. 3 as:

q(zt|zt−1) = Nxh(zt|αtzt−1, σ
2
t I). (4)

With αt|s = αt/αs and σ2
t|s = σ2

t − αt|sσ
2
s for any t > s, we can directly obtain the noisy data

distribution q(zt|z0) at any time step t:

q(zt|z0) = Nxh(zt|αt|0z0, σ
2
t|0I). (5)

Bayes Theorem then tells us that if we then define µt→s(zt, z0) and σt→s as

µt→s(zt, z0) =
αsσ

2
t|s

σ2
t

z0 +
αt|sσ

2
s

σ2
t

zt and σt→s =
σt|sσs

σt
,

we have that the inverse of the noising process, the true denoising process, is given by the posterior
of the transitions conditioned on M ∼ z0, a process that is also Gaussian (Hoogeboom et al. (2022)):

q(zs|zt, z0) = N (zs|µt→s(zt, z0), σ
2
t→sI). (6)
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3.4 GEOMETRY-COMPLETE PARAMETRIZATION OF THE EQUIVARIANT REVERSE PROCESS

Noise parametrization. We now need to define our learned generative reverse process that denoises
pure noise into realistic examples from the original data distribution. Towards this end, we can
directly use the noise posteriors q(zs|zt, z0) of Eq. 16 with z0 ∼ (M = [x,h]). However, to do
so, we must replace the input variables x and h with the approximations x̂ and ĥ predicted by our
denoising neural network Φ:

pΦ(zs|zt) = Nxh(zs|µΦt→s(zt, z̃0), σ
2
t→sI), (7)

where the values for z̃0 = [x̂, ĥ] depend on zt, t, and our denoising neural network Φ.

In the context of diffusion models, many different parametrizations of µΦt→s
(zt, z̃0) are possible.

Prior works have found that it is often easier to optimize a diffusion model using a noise parametriza-
tion to predict the noise ϵ̂. In this work, we use such a parametrization to predict ϵ̂ = [ϵ̂(x), ϵ̂(h)],
which represents the noise individually added to x̂ and ĥ. We can then use the predicted ϵ̂ to derive:

z̃0 = [x̂, ĥ] = zt/αt − ϵ̂t · σt/αt. (8)

Invariant likelihood. Ideally, we desire for a 3D molecular diffusion model to assign the same
likelihood to a generated molecule even after arbitrarily rotating or translating it in 3D space. To
ensure our model achieves this desirable property for pΦ(z0), we can leverage the insight that an
invariant distribution composed of an equivariant transition function yields an invariant distribution
(Satorras et al. (2021a); Xu et al. (2022); Hoogeboom et al. (2022)). Moreover, to address the
translation invariance issue raised by Satorras et al. (2021a) in the context of handling a distribution
over 3D coordinates, we adopt the zero center of gravity trick proposed by Xu et al. (2022) to define
Nx as a normal distribution on the subspace defined by

∑
i xi = 0. In contrast, to handle node

features hi that are rotation and translation-invariant, we can instead use a conventional normal
distribution N . As such, if we parametrize our transition function pΦ using an SE(3)-equivariant
neural network after using the zero center of gravity trick of Xu et al. (2022), our model will have
achieved the desired likelihood invariance property.

Geometry-completeness. Furthermore, in this work, we postulate that certain types of geometric
neural networks serve as more effective 3D graph denoising functions for molecular DDPMs. We
formalize this notion as follows.
Proposition 3.2. (Geometry-Complete Denoising).

Geometric neural networks that achieve geometry-completeness are principally more capable
of denoising noisy 3D molecular graph inputs, in that geometry-complete methods encode local
reference frames under which the directions of arbitrary global forces can be mapped.

This proposition comes as an extension of the definition of geometry-completeness from Morehead
& Cheng (2022). An intuition for its implications on molecular diffusion models is that geometry-
complete networks should be able to more effectively learn data distributions in which a global force
field is present, as is typically the case with 3D molecules (Du et al. (2022)). As a complement to
understanding the theoretical benefits offered to geometry-complete networks, we support this claim
through specific ablation studies in Section 4.1.

GCPNETS. Inspired by their recent success in modeling 3D molecular structures with geometry-
complete message-passing, as mentioned previously, we will parametrize pΦ using Geometry-
Complete Perceptron Networks (GCPNETS) as introduced by Morehead & Cheng (2022). GCP-
NET is a geometry-complete graph neural network that is equivariant to SE(3) transformations of its
graph inputs and, as such, satisfies our SE(3) equivariance constraint (3.1) and maps nicely to the
context of Proposition 3.2.

In this setting, with (hi ∈ H, χi ∈ χ, eij ∈ E, ξij ∈ ξ), GCPNET consists of
a composition of Geometry-Complete Graph Convolution (GCPConv) layers (hl

i, χ
l
i), x

l
i =

GCPConv[(hl−1
i , χl−1

i ), (el−1
ij , ξl−1

ij ), xl−1
i ,Fij ] which are defined as:

nl
i = ϕl(nl−1

i ,A∀j∈N (i)Ω
l
ω(n

l−1
i , nl−1

j , el−1
ij , ξl−1

ij ,Fij)), (9)

where nl
i = (hl

i, χ
l
i); ϕ

l is a trainable function; l signifies the representation depth of the network;
A is a permutation-invariant aggregation function; Ωω represents a message-passing function cor-
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responding to the ω-th GCP message-passing layer; and node i’s geometry-complete local frames

are F t
ij = (atij , b

t
ij , c

t
ij), with atij =

xt
i−xt

j

∥xt
i−xt

j∥
, btij =

xt
i×xt

j

∥xt
i×xt

j∥
, and ctij = atij × btij , respectively.

Lastly, if one desires to update the coordinate representations of each node in G, as we do in the
context of 3D molecule generation, GCPConv provides a simple, SE(3)-equivariant method to do
so using a dedicated GCP module as follows:

(hl
pi
, χl

pi
) = GCPl

p(n
l
i,Fij) (10)

xl
i = xl−1

i + χl
pi
,where χl

pi
∈ R1×3, (11)

where GCPl
·(·,Fij) is defined as in (Morehead & Cheng (2022)) to provide chirality-aware rotation

and translation-invariant updates to hi and rotation equivariant updates to χi following centralization
of the input point cloud’s coordinates X (Du et al. (2022)). The effect of using feature updates to
χi to update xi is, after decentralizing X following the final GCPConv layer, that updates to xi

then become SE(3)-equivariant. As such, all the transformations described above collectively satisfy
the required equivariance constraint in Def. 3.1. Therefore, in adopting GCPNET as its 3D graph
denoiser, GCDM achieves SE(3) equivariance, geometry-completeness, and likelihood invariance
altogether.

3.5 OPTIMIZATION OBJECTIVE

Following previous works on diffusion models (Ho et al. (2020); Hoogeboom et al. (2022); Wu et al.
(2022)), our noise parametrization chosen for GCDM yields the following model training objective:

Lt = Eϵt∼Nxh(0,1)

[
1

2
w(t)∥ϵt − ϵ̂t∥2

]
, (12)

where ϵ̂t is our network’s noise prediction as described above and where we empirically choose to
set w(t) = 1 for the best possible generation results compared to w(t) = (1−SNR(t−1) / SNR(t))
with SNR(t) = α2

t /σ
2
t . Additionally, GCDM permits a negative log-likelihood computation using

the same optimization terms as Hoogeboom et al. (2022), for which we refer interested readers
to Appendices A.1 and A.2 for further details. Lastly, for remaining technical details regarding
GCDM’s training and sampling procedures, we refer readers to Appendix A.4.

4 EXPERIMENTS

4.1 UNCONDITIONAL 3D MOLECULE GENERATION - QM9

The QM9 dataset (Ramakrishnan et al. (2014)) contains molecular property descriptions and 3D
atom coordinates for 130k small molecules. Each molecule in QM9 can contain up to 9 heavy
atoms, that is, 29 atoms when including hydrogens. For the task of 3D molecule generation, we
train GCDM to unconditionally generate molecules by producing atom types (H, C, N, O, and
F), integer-valued atom charges, and 3D coordinates for each of the molecules’ atoms. Following
Anderson et al. (2019), we split QM9 into training, validation, and test partitions consisting of 100k,
18k, and 13k molecule examples, respectively.

Metrics. We adopt the scoring conventions of Satorras et al. (2021a) by using the distance between
atom pairs and their respective atom types to predict bond types (single, double, triple, or none)
for all but one baseline method (i.e., E-NF). Subsequently, we measure the proportion of generated
atoms that have the right valency (atom stability) and the proportion of generated molecules for
which all atoms are stable (molecule stability). To offer additional insights into each method’s be-
havior for 3D molecule generation, we also report the validity of a generated molecule as determined
by RDKit (Landrum et al. (2013)) and the uniqueness of the generated molecules overall.

Baselines. Besides including a reference point for molecule quality metrics using QM9 itself (i.e.,
Data), we compare GCDM to three existing E(3)-equivariant models: G-Schnet (Gebauer et al.
(2019)), Equivariant Normalizing Flows (E-NF) (Satorras et al. (2021a)), and Equivariant Diffusion
Models (EDM) (Hoogeboom et al. (2022)). For each of these three models, we report their results as
reported in Hoogeboom et al. (2022). For comparison with models for this task that are not equiv-
ariant, we also report results from Hoogeboom et al. (2022) for Graph Diffusion Models (GDM)
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Table 1: Comparison of GCPNET with baseline methods for 3D molecule generation. The results
are reported in terms of the negative log-likelihood (NLL) - log p(x,h, N), atom stability, molecule
stability, validity, and uniqueness of 10,000 samples drawn from each model, with standard devia-
tions for each model across three runs on QM9. The top-1 (best) results for this task are in bold, and
the second-best results are underlined.

Type Method NLL ↓ Atoms Stable (%) ↑ Mol Stable (%) ↑ Valid (%) ↑ Valid and Unique (%) ↑

Normalizing Flow E-NF -59.7 85.0 4.9 40.2 39.4

Graph Autoregression G-Schnet N/A 95.7 68.1 85.5 80.3

DDPM GDM -94.7 97.0 63.2 N/A N/A
GDM-aug -92.5 97.6 71.6 90.4 89.5
EDM -110.7 ± 1.5 98.7 ± 0.1 82.0 ± 0.4 91.9 ± 0.5 90.7 ± 0.6
Bridge N/A 98.7 ± 0.1 81.8 ± 0.2 N/A 90.2
Bridge + Force N/A 98.8 ± 0.1 84.6 ± 0.3 N/A 90.7

DDPM - Ours GCDM w/o Frames -162.3 ± 0.3 98.4 ± 0.0 81.7 ± 0.5 93.9 ± 0.1 92.7 ± 0.1
GCDM w/o SMA -131.3 ± 0.8 95.7 ± 0.1 51.7 ± 1.4 83.1 ± 1.7 82.8 ± 1.7
GCDM -171.0 ± 0.2 98.7 ± 0.0 85.7 ± 0.4 94.8 ± 0.2 93.3 ± 0.0

Data 99.0 95.2 97.7 97.7

Figure 2: 3D molecules generated by GCDM for the QM9 dataset.

trained with random data rotations (GDM-aug) and without them (GDM). To the best of our knowl-
edge, the force-guided molecule generation methods of Wu et al. (2022) (i.e., Bridge and Bridge
+ Force) are the most recent and performant state-of-the-art open-source methods for 3D molecule
generation, so we include their results for this experiment as well.

We further include two GCDM ablation models to more closely analyze the impact of certain key
model components within GCDM. These two ablation models include GCDM without geometry-
complete local frames Fij (i.e., GCDM w/o Frames) and GCDM without scalar message attention
(SMA) applied to each edge message (i.e., GCDM w/o SMA). For SMA, mij = eijmij , where mij

represents the scalar messages learned by GCPNET during message-passing and eij represents a 1
if an edge exists between nodes i and j (and a 0 otherwise) via eij ≈ ϕinf (mij). Here, ϕinf : Re →
[0, 1]1 resembles a linear layer followed by a sigmoid function Satorras et al. (2021b). All GCDM
models train on QM9 for approximately 1,000 epochs using 9 GCPConv layers; SiLU activations
(Elfwing et al. (2018)); 256 and 64 scalar node and edge hidden features, respectively; and 32 and
16 vector-valued node and edge features, respectively. All GCDM models are also trained using the
AdamW optimizer (Loshchilov & Hutter (2017)) with a batch size of 64, a learning rate of 10−4,
and a weight decay rate of 10−12.

Results. In Table 1, we see that GCDM matches or outperforms all previous methods (E-NF, G-
Schnet, EDM, Bridge, and Bridge + Force) as well as their non-equivariant counterparts (GDM
and GDM-aug) for all metrics, with generated samples shown in Figure 2. In particular, GCDM
generates the highest percentage of valid and unique molecules compared to all other methods, im-
proving upon previous SOTA results in such measures by 3%. GCDM also advances the SOTA
results in terms of negative log-likelihood (NLL) and molecule stability by 54% and 1%, respec-
tively. Moreover, our ablation of SMA within GCDM demonstrates that GCDM heavily relies on
being able to perform a lightweight version of self-attention (Vaswani et al. (2017)) in the form of
fully-connected attentive message-passing to generate stable 3D molecules. This finding suggests
interesting avenues for future research into the impact of different kinds of attention-based geomet-
ric message-passing (e.g., type-2 tensor message-passing) on the performance of diffusion models
for 3D molecular generation tasks.

Specifically, it is interesting to note how much lower the NLL of GCDM is compared to that of
EDM, the previous NLL-based SOTA method for 3D molecule generation, indicating the generative
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Table 2: Comparison of GCPNET with baseline methods for property-conditional 3D molecule
generation. The results are reported in terms of the mean absolute error for molecular property
prediction by an EGNN classifier ϕc on a QM9 subset, GCDM-generated samples, and two different
baselines ”Naive (Upper-bound)” and ”# Atoms”. The top-1 (best) results for this task are in bold,
and the second-best results are underlined.

Task α ∆ϵ ϵHOMO ϵLUMO µ Cv

Units Bohr3 meV meV meV D cal
molK

Naive (Upper-bound) 9.01 1470 645 1457 1.616 6.857
# Atoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
GCDM 1.97 602 344 479 0.844 0.689
QM9 (Lower-bound) 0.10 64 39 36 0.043 0.040

(a) α = 77.1 (b) α = 82.4 (c) α = 84.8 (d) α = 88.9 (e) α = 93.1 (f) α = 98.1

Figure 3: 3D molecules generated by GCDM using increasing values of α for the QM9 dataset.

distribution that GCDM learns from QM9 likely contains much sharper peaks compared to EDM
even within the context of similar diffusion modeling frameworks. A possible explanation for why
GCDM can achieve such results over other equivariant methods such as EDM and Bridge is that
GCDM performs geometric (and geometry-complete) message-passing over each 3D input graph
to remove the noise present therein, whereas other methods learn solely using scalar features (Joshi
et al. (2023)). Our ablation of geometry-complete local frames within GCDM supports this claim
in that, compared to EDM, message-passing with type-1 tensor (i.e., vectors) appears to improve
GCDM’s NLL over that of EDM by 47%, whereas with geometry-complete frames GCDM’s NLL
improves by another 7%. In fact, with geometry-complete and chirality-sensitive frame embeddings,
all of GCDM’s sample quality metrics improve to SOTA levels, providing support for Proposition
3.2.

4.2 CONDITIONAL 3D MOLECULE GENERATION - QM9

Baselines. Towards conditional generation of 3D molecules, we compare GCDM to an existing
E(3)-equivariant model, EDM (Hoogeboom et al. (2022)), as well as to two naive baselines: ”Naive
(Upper-bound)” where a property classifier ϕc predicts molecular properties given a method’s gen-
erated 3D molecules and shuffled (i.e., random) property labels; and ”# Atoms” where one uses the
numbers of atoms in a method’s generated 3D molecules to predict their molecular properties. For
each baseline method, we report its mean absolute error in terms of molecular property prediction by
an EGNN classifier ϕc Satorras et al. (2021b) as reported in Hoogeboom et al. (2022). For GCDM,
we train each conditional model by conditioning it on one of six distinct molecular properties - α,
gap, homo, lumo, µ, and Cv - for approximately 1,500 epochs using the QM9 validation split of
Hoogeboom et al. (2022) as the model’s training dataset and the QM9 training split of Hoogeboom
et al. (2022) as the corresponding EGNN classifier’s training dataset. Consequently, one can ex-
pect the gap between a method’s performance and that of ”QM9 (Lower-bound)” to decrease as the
method generates molecules that more accurately model a given molecular property.

Results. We see in Table 2 that GCDM outperforms all other methods in conditioning on a given
molecular property, with conditionally-generated samples shown in Figure 3. In particular, GCDM
improves upon the mean absolute error of the SOTA EDM method for all six molecular properties -
α, gap, homo, lumo, µ, and Cv - by 29%, 8%, 3%, 18%, 24%, and 37%, respectively, demonstrat-
ing that, using geometry-complete message-passing, GCDM can more accurately model important
molecular properties for 3D molecule generation.
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Table 3: Comparison of GCPNET with baseline methods for 3D molecule generation. The results
are reported in terms of each method’s atom stability and molecule stability with standard deviations
across three runs on GEOM-Drugs, each drawing 10,000 samples from the model. The top-1 (best)
results for this task are in bold, and the second-best results are underlined.

Type Method Atoms Stable (%) ↑ Mol Stable (%) ↑

Normalizing Flow E-NF 75.0 0.0

DDPM GDM 75.0 0.0
GDM-aug 77.7 0.0
EDM 81.3 0.0
Bridge 81.0 ± 0.7 0.0
Bridge + Force 82.4 ± 0.8 0.0

DDPM - Ours GCDM 86.4 ± 0.2 3.7 ± 0.3

Data 86.5 2.8

Figure 4: 3D molecules generated by GCDM for the GEOM-Drugs dataset.

4.3 UNCONDITIONAL 3D MOLECULE GENERATION - GEOM-DRUGS

The GEOM-Drugs dataset is a well-known source of large, 3D molecular conformers for down-
stream machine learning tasks. It contains 430k molecules, each with 44 atoms on average and
with up to as many as 181 atoms. For this experiment, we collect the 30 lowest-energy conformers
corresponding to a molecule and task each baseline method with generating new molecules with 3D
positions and types for each constituent atom. Here, we also adopt the atom stability and molecule
stability metrics as defined in Section 4.1 and train GCDM using the same hyperparameters as listed
in Section 4.1 with the exception of training for approximately 50 epochs on GEOM-Drugs.

Baselines. In this experiment, we compare GCDM to several state-of-the-art baseline methods
for 3D molecule generation on GEOM-Drugs. Similar to our experiments on QM9, in addition to
including a reference point for molecule quality metrics using GEOM-Drugs itself (i.e., Data), here
we also compare against E-NF, GDM, GDM-aug, EDM, and Bridge with its variant Bridge + Force.

Results. To start, Table 3 displays an interesting phenomenon: Due to the size of GEOM-Drugs’
molecules and the subsequent errors accumulated when estimating bond types based on inter-atom
distances, the baseline results for the molecule stability metrics measured here (i.e., Data) are much
lower than those collected for the QM9 dataset. Nonetheless, for GEOM-Drugs, GCDM improves
upon SOTA atom stability results by 5%, with generated samples shown in Figure 4. Remarkably, to
our best knowledge, GCDM is also the first deep learning model that can generate any stable large
molecules according to the definitions of atomic and molecular stability in Section 4.1, demonstrat-
ing that GCDM can not only effectively generate large molecules but can also closely model the
true distribution of stable molecules within GEOM-Drugs.

5 CONCLUSION

In this work, we introduced GCDM, an SE(3)-equivariant geometry-complete denoising diffusion
probabilistic model for 3D molecule generation. While previous equivariant methods for this task
have had difficulty establishing sizeable performance gains over non-equivariant methods for this
task, GCDM establishes a clear performance advantage over all other methods, generating more
realistic, stable, valid, unique, and property-specific 3D molecules compared to existing approaches.
Although GCDM’s results here are promising, since the method falls into the traditional DDPM
framework for generative modeling, using it to generate several thousands of large 3D molecules

9
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takes a notable amount of time (e.g., 15 minutes to generate 100 new molecules). As such, future
work in improving GCDM could involve introducing new time-efficient sampling algorithms for
diffusion models (Song et al. (2020)) or even exploring other uses of GCDM in optimizing existing
molecule’s geometry or chemical properties.
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A APPENDIX

A.1 DIFFUSION MODELS

Key to understanding our contributions in this work are denoising diffusion probabilistic models.
As alluded to previously, once trained, DDPMs can generate new data of arbitrary shapes, sizes,
formats, and geometries by learning to reverse a noising process acting on each model input. More
precisely, for a given data point x, a diffusion process adds noise to x for time step t = 0, 1, ..., T
to yield zt, a noisy representation of the input x at time step t. Such a process is defined by a
multivariate Gaussian distribution:

q(zt|x) = N (zt|αtxt, σ
2
t I), (13)

where αt ∈ R+ regulates how much feature signal is retained and σ2
t modulates how much fea-

ture noise is added to input x. Note that we typically model α as a function defined with smooth
transitions from α0 = 1 to αT = 0, where a special case of such a noising process, the variance
preserving process (Sohl-Dickstein et al. (2015); Ho et al. (2020)), is defined by αt =

√
1− σ2

t .
To simplify notation, in this work, we define the feature signal-to-noise ratio as SNR(t) = α2

t /σ
2
t .

Also interesting to note is that this diffusion process is Markovian in nature, indicating that we have
transition distributions as follows:

q(zt|zs) = N (zt|αt|szs, σ
2
t|sI), (14)

for all t > s with αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ

2
s . In total, then, we can write the noising

process as:

q(z0, z1, ..., zT |x) = q(z0|x)
T∏

t=1

q(zt|zt−1). (15)

If we then define µt→s(x, zt) and σt→s as

µt→s(x, zt) =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x and σt→s =
σt|sσs

σt
,

we have that the inverse of the noising process, the true denoising process, is given by the posterior
of the transitions conditioned on x, a process that is also Gaussian:

q(zs|x, zt) = N (zs|µt→s(x, zt), σt→sI). (16)

The Generative Denoising Process. In diffusion models, we define the generative process accord-
ing to the true denoising process. However, for such a denoising process, we do not know the value
of x a priori, so we typically approximate it as x̂ = ϕ(zt, t) using a neural network ϕ. Doing so
then lets us express the generative transition distribution p(zs|zt) as q(zs|x̂(zt, t), zt). As a practical
alternative to Eq. 16, we can represent this expression using our approximation for x̂:

p(zs|zt) = N (zs|µt→s(x̂, zt), σ
2
t→sI). (17)
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If we choose to define s as s = t − 1, then we can derive the variational lower bound on the
log-likelihood of x given our generative model as:

log p(x) ≥ L0 + Lbase +

T∑
t=1

Lt, (18)

where we note that L0 = log p(x|z0) models the likelihood of the data given its noisy representation
z0, Lbase = −KL(q(zT |x)|p(zT )) models the difference between a standard normal distribution
and the final latent variable q(zT |x), and

Lt = −KL(q(zs|x, zt)|p(zs|zt)) for t = 1, 2, ..., T.

Note that, in this formation of diffusion models, our neural network ϕ directly predicts x̂. However,
Ho et al. (2020) and others have found optimization of ϕ to be made much easier when instead
predicting the Gaussian noise added to x to create x̂. An intuition for how this changes the neural
network’s learning dynamics is that, when predicting back the noise added to the model’s input, the
network is being trained to more directly differentiate which part of zt corresponds to the input’s
feature signal (i.e., the underlying data point x) and which part corresponds to added feature noise.
In doing so, if we let zt = αtx+ σtϵ, our neural network can then predict ϵ̂ = ϕ(zt, t) such that:

x̂ = (1/αt) zt − (σt/αt) ϵ̂. (19)

Kingma et al. (2021) and others have since shown that, when parametrizing our denoising neural
network in this way, the loss term Lt reduces to:

Lt = Eϵ∼N (0,I)

[
1

2
(1− SNR(t− 1)/SNR(t))∥ϵ− ϵ̂∥2

]
(20)

Note that, in practice, the loss term Lbase should be close to zero when using a noising schedule
defined such that αT ≈ 0. Moreover, if and when α0 ≈ 1 and x is a discrete value, we will find L0

to be close to zero as well.

A.2 ZEROTH LIKELIHOOD TERMS FOR GCDM OPTIMIZATION OBJECTIVE

For the zeroth likelihood terms corresponding to each type of input feature, we directly adopt the
respective terms previously derived by Hoogeboom et al. (2022). Doing so enables a negative log-
likelihood calculation for GCDM’s predictions. In particular, for integer node features, we adopt
the zeroth likelihood term:

p(h|z(h)0 ) =

∫ h+ 1
2

h− 1
2

N (u|z(h)0 , σ0)du, (21)

where we use the CDF of a standard normal distribution, Φ, to compute Eq. 21 as Φ((h + 1
2 −

z
(h)
0 )/σ0) − Φ((h − 1

2 − z
(h)
0 )/σ0) ≈ 1 for reasonable noise parameters α0 and σ0 (Hoogeboom

et al. (2022)). For categorical node features, we instead use the zeroth likelihood term:

p(h|z(h)0 ) = C(h|p),p ∝
∫ 1+ 1

2

1− 1
2

N (u|z(h)0 , σ0)du, (22)

where we normalize p to sum to one and where C is a categorical distribution (Hoogeboom et al.
(2022)). Lastly, for continuous node positions, we adopt the zeroth likelihood term:

p(x|z(x)0 ) = N
(
x|z(x)0 /α0 − σ0/α0ϵ̂0, σ

2
0/α

2
0I
)

(23)

which gives rise to the log-likelihood component L(x)
0 as:

L(x)
0 = Eϵ(x)∼Nx(0,I)

[
logZ−1 − 1

2
∥ϵx − ϕ(x)(z0, 0)∥2

]
, (24)

where d = 3 and the normalization constant Z = (
√
2π ·σ0/α0)

(N−1)·d - in particular, its (N−1)·d
term - arises from the zero center of gravity trick mentioned in Section 3.4 (Hoogeboom et al.
(2022)).
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A.3 DIFFUSION MODELS AND EQUIVARIANT DISTRIBUTIONS

In the context of diffusion generative models of 3D data, one often desires for the marginal distri-
bution p(x) of their denoising neural network to be an invariant distribution. Towards this end, we
observe that a conditional distribution p(y|x) is equivariant to the action of 3D rotations by meeting
the criterion:

p(y|x) = p(Ry|Rx) for all orthogonal R. (25)
Moreover, a distribution is invariant to rotation transformations R when

p(y) = p(Ry) for all orthogonal R. (26)

As Köhler et al. (2020) and Xu et al. (2022) have collectively demonstrated, we know that if p(zT )
is invariant and the neural network we use to parametrize p(zt−1|zt) is equivariant, we have, as
desired, that the marginal distribution p(x) of the denoising model is an invariant distribution.

A.4 TRAINING AND SAMPLING PROCEDURES FOR GCDM

Equivariant Dynamics. In this work, we use our previous definition of GCPNET in Section 3.4 to
learn an SE(3)-equivariant dynamics function [ϵ̂(x), ϵ̂(h)] = ϕ(z

(x)
t , z

(h)
t , t) as:

ϵ̂
(x)
t , ϵ̂

(h)
t = GCPNET(z

(x)
t , [z

(h)
t , t/T ])− [z

(x)
t ,0], (27)

where we inform our denoising model of the current time step by concatenating t/T as an additional
node feature and where we subtract the coordinate representation outputs of GCPNET from its co-
ordinate representation inputs after subtracting from the coordinate representation outputs their col-
lective center of gravity. With the parametrization in Eq. 8, GCDM subsequently achieves rotation
equivariance on x̂i, thereby achieving a 3D translation and rotation-invariant marginal distribution
p(x) as described in Appendix A.3.

Scaling Node Features. In line with Hoogeboom et al. (2022), to improve the log-likelihood of
our model’s generated samples, we find it useful to train and perform sampling with GCDM using
scaled node feature inputs as [x, 1

4h
(categorical), 1

10h
(integer)].

Deriving The Number of Atoms. Finally, to determine the number of atoms with which GCDM
will generate a 3D molecule, we first sample N ∼ p(N), where p(N) denotes the categorical
distribution of molecule sizes over GCDM’s training dataset. Then, we conclude by sampling
x,h ∼ p(x,h|N).
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