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Abstract

Diffusion excels in controllable generation for continuous modalities, ideal for
continuous motion generation. However, its flexibility is limited, focusing solely
on text-to-motion generation and lacking motion editing capabilities. To address
these issues, we introduce UniTMGE, a uniform text-motion generation and editing
framework based on diffusion. UniTMGE overcomes single-modality limitations,
enabling efficient and effective performance across multiple tasks like text-driven
motion generation, motion captioning, motion completion, and multi-modal motion
editing. UniTMGE comprises three components: CTMV for mapping text and
motion into a shared latent space using contrastive learning, a controllable diffusion
model customized for the CTMV space, and MCRE for unifying multimodal
conditions into CLIP representations, enabling precise multimodal control and
flexible motion editing through simple linear operations. We conducted both closed-
world experiments and open-world experiments using the Motion-X dataset with
detailed text descriptions, with results demonstrating our model’s effectiveness and
generalizability across multiple tasks.

1 Introduction

Motion generation tasks are vital in virtual reality, gaming, and robotics, with natural language
facilitating intuitive interactions that underscore the significance of text-motion research; however,
while diffusion models have advanced to produce smoother animations and greater control than
token-based models, existing methods like MDM, MLD, and MotionDiffuse are restricted to single-
modal input-output and mainly text-to-motion tasks, revealing an urgent need to broaden diffusion
models for diverse text-motion applications. To address this issue, we introduce UniTMGE, a unified
text-motion generation and editing framework based on diffusion that employs the Contrastive Text-
Motion Variational Autoencoder (CTMV) as Figure 3 shows in the appendix to align text-motion pairs
in a shared latent space, along with the Multimodal Conditional Representation and Editing (MCRE)
to bridge semantic gaps using CLIP, demonstrating strong generalizability and effectiveness across
various tasks, including text-driven motion generation and editing, through extensive experiments on
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Figure 1: The CTMV module encodes text and motion sequences into latent distributions with
learnable tokens, samples latent representations Zt and Zm for reconstruction via respective decoders,
while applying alignment loss between encoders and reconstruction loss on both VAEs during training.

curated datasets such as Motion-X, while addressing the limitations of existing models that focus
primarily on single-modal input-output. To summarize, our contributions can be summarized into
three aspects:

• We propose UniTMGE, the first diffusion-based model to handle multiple text-motion tasks
simultaneously, demonstrating strong effectiveness and generalization across each task.

• Furthermore, we also propose CTMA module, which maps text and motion into a shared
latent representation for multimodal generation, and introduce MCRE, which unifies multi-
modal conditions into CLIP representations to facilitate control and editing.

• Closed-world and open-world experimental results demonstrate the advanced effectiveness
and generalizability of our approach across multiple tasks.

2 Method

To tackle text-motion generation tasks in a continuous space, we introduce the UniTMGE diffusion
model as Figure 1 shows, comprising three key components: the Contrastive Text-Motion Variational
Autoencoder (CTMV shown in Figure 3 in appendix), a controllable diffusion model, and Multimodal
Conditional Representation and Editing (MCRE) shown in Figure 2. CTMV uses contrastive learning
with two Variational AutoEncoders (VAEs) to create a unified representation of text and motion. Text
is encoded into representations It = E(t) using a pre-trained language encoder, while motion is
represented as Im = {Iim}lmi=1. The encoders convert these inputs into a shared latent space Zt and
Zm with length ls and dimension ds such that ls < min[lt, lm] and ds < min[dt, dm]. The decoder
reconstructs these representations back to their respective spaces. Training involves separate pre-
training of the VAEs, where contrastive learning aligns similar text-motion pairs in latent space. The
loss function consists of reconstruction losses Lrect and Lrecm , KL divergence LKL, and a cosine
loss Lcos, ensuring effective mapping and reconstruction. The controllable diffusion model operates
in the CTMV latent space, generating representations conditioned on input. It simulates a Markov
process, progressively adding noise and training a Transformer-based denoising network. The training
objective minimizes the difference between model predictions and ground truths, with a classifier-free
approach incorporating random masking. During sampling, latent representations are iteratively
refined. MCRE leverages CLIP representations for multimodal control, aligning text conditions using
the CLIP text encoder and adapting motion conditions through a transformer. Training optimizes a
cosine similarity loss to ensure close alignment between modalities. The approach allows for motion
editing via linear operations on CLIP embeddings, enhancing the model’s versatility in generating
and modifying motion based on user inputs. Due to page limit, please refer to appendix for more
details about the methods.
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Figure 2: Our model integrates CTMV, a diffusion model, and MCRE, where CTMV encoders unify
multimodal data into a common representation, the diffusion model performs generation, and MCRE
converts conditional inputs to CLIP representations for precise control, with final outputs decoded
back to their original spaces via CTMV decoders.

3 Experiments

3.1 Experiment Setup

3.1.1 Datasets

For motion generation tasks, we train our model on two standard 3D human motion-language datasets:
HumanML3D[1] and KIT[16]. HumanML3D is derived from the HumanAct12 and AMASS datasets
[12], comprising 14,616 motions and 44,970 descriptions. These motions span various domains
such as daily activities, exercise, and artistic performances, with an average duration of 7.1 seconds
per action. The descriptions contain 5,371 unique words, with an average description length of 12
words. Similarly, KIT is a dataset with 3,911 motions and 6,278 descriptions. Moreover, we process
a subset of Motion-X, which include 2.4k motions annotated by more detailed textual descriptions,
for the open-world experiment, to evaluate the model’s generalization. For text generation tasks,
we utilized two natural language datasets with rich corpora: ROCStories[13] and AG News Topic
Classification[21].

3.1.2 Evaluation Metrics

We evaluate generated motions using metrics like R-Precision, MM-Dist, Diversity, MultiModality,
FID, ADE, and FDE [27, 30], while motion-to-text tasks are evaluated with Length, Bleu [14], Rouge
[9], Cider [25], and BertScore [28] as in [3], and unconditional text generation tasks use MAUVE
[15], Perplexity, Diversity, and Memorization metrics as in [11].

3.1.3 Implementation Details

For the CTMV module, both the motion encoder and decoder adopt a nine-layer transformer ar-
chitecture with skip connections. Similarly, the text encoder and decoder also employ a nine-layer
transformer architecture and utilize the pre-trained BART model for text encoding and decoding.
The dimensionality of the projected latent space is Z ∈ R1×512. For the diffusion module, the
denoising network employs a nine-layer transformer network with 1000 denoising steps, and the
variance βt scales linearly from 0.0004 to 0.012. For the MCRE module, the text encoder utilizes the
CLIP-ViT-B/32 frozen model, while the motion adapter employs an eight-layer transformer network.
The dimensionality of the CLIP representation is c ∈ R1×512. We opt for the Adam optimizer [7]
with a learning rate of 0.0002 for model training and a batch size of 128. During the training process,
the VAE is trained for 100K epochs, and the diffusion module is trained for 100K epochs as well.
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3.2 Generation Task

Our model represents a pioneering diffusion-based approach in breaking modality constraints. It
can simultaneously handle various generation tasks, including text-to-motion, motion-to-text, text
generation, and motion completion. We compare our approach with state-of-the-art diffusion-based
methods for each task on various datasets and conduct open-world generation evaluation on Motion-X.

3.2.1 Text-to-Motion

This task involves generating corresponding motion sequences based on textual input. Table ??
in appendix summarizes the results, which indicate that our method achieves superior results in
R-Precision, FID, and MM-Dist, and also shows commendable diversity. The visual results are
illustrated in the Figure ?? in the appendix. Both qualitative and quantitative results confirm the high
quality and accuracy of our generated results.

3.2.2 Motion-to-Text

This task involves generating corresponding textual descriptions based on motion sequences. Cur-
rently, there are no diffusion-based methods capable of performing similar tasks. Therefore, we
compared our approach with MotionGPT [5] and TM2T [3], which have shown advanced performance.
The experimental results in Table ?? in appendix indicate that our method achieves state-of-the-art
performance in this task. Additionally, qualitative results provided in the appendix demonstrate that
our generated text can effectively describe the action sequences.

3.2.3 Text Generation

This task involves unconditional text generation. For ease of comparisons, we evaluate our approach
on ROCStories and AG News Topic Classification datasets. Apart from diffusion-based models
like Diffusion-LM [8] and LD4LG [11], we also employ a fine-tuned GPT-2-Medium as a robust
baseline, which is nearly twice the size of our model. As shown in Table ?? in appendix, our
method outperforms diffusion-based methods in most metrics, demonstrating advanced generative
capabilities.

3.2.4 Motion Completion

This work addresses motion prediction and inbetweening, using the first 20% of a motion sequence as
conditional input for prediction and randomly masking 50% for inbetweening. Our diffusion-based
approach achieves advanced performance in generation quality and diversity, as shown in Table ??
in appendix. It can handle various text-motion generation tasks simultaneously and shows strong
generalizability on the unseen Motion-X dataset, highlighting the potential of diffusion in multitask
scenarios.

3.3 Editing Task

Using the MCRE module, multimodal conditions are unified into the CLIP space, where desired
editing directions can be derived through linear operations. Our method supports both editing with
separate multimodal inputs and mixed-modal inputs. For unitary input (e.g., motion), body part
motions are decomposed and recombined for smooth output, while mixed-modal inputs allow for
text-guided editing in the latent space, enabling changes in attributes like mood, identity, and style, as
illustrated in Figures ?? and ?? in appendix.

4 Conclusion

Our approach introduces the first unified diffusion-based framework for text-motion generation and
editing, capable of handling multiple tasks simultaneously. Experimental results show its superior and
versatile performance—an advantage lacking in current diffusion methods. Leveraging pre-trained
CLIP models for multimodal semantic understanding, we aim to deepen integration with large-scale
language models [19, 18, 17, 24] to enhance continuous generation, context comprehension, task
decomposition, motion planning [10], and commonsense reasoning [4, 22, 23, 26]. We ultimately
aim to unify tasks using language as a universal interface to improve user-friendliness.
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A Appendix

A.1 Methods

To address text-motion generation tasks in a continuous space using a unified framework, we propose
constructing a diffusion model called UniTMGE. The model consists of three main components,
as illustrated in Figure 2. The first component is Contrastive Text-Motion Variational Autoen-
coder(CTMV). In CTMV, using contrastive learning, two Variational AutoEncoder (VAE) [6] are
employed to map text and motion to a unified representation and reconstruct them back into their
respective spaces. Secondly, a controllable diffusion model is constructed based on the CTMV repre-
sentation to perform generation tasks. The third component is Multimodal Conditional Representation
and Editing(MCRE). In MCRE, multimodal conditions are aligned with the CLIP representation to
achieve precise control over the generation and editing processes.
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A.2 Contrastive Text-Motion Variational Autoencoder
For the same semantic information, the text consists of a sequence of tokens t ∈ N l

t . We first employ
a pre-trained language encoder E() to encode the input text tokens, obtaining a sequence of text
representations It = E(t) = {Iit}

lt
i=1 ∈ Rdt , where lt denotes the length of the text representations,

and dt denotes the dimension of the text features. The motion representation consists of a sequence of
frame-wise vectors Im = {Iim}lmi=1 ∈ Rdm , where lm denotes the length of the motion representations,
and dm denotes the dimension of the motion representations[2]. The representations of text and
motion exhibit different lengths and dimensions, posing challenges for the diffusion generation
process. Therefore, we propose the CTMV, and the overall workflow of the module is illustrated in
Figure 3.

Figure 3: CTMV encoder network using multi-head attention (MHA) and feed-forward (FF) layers.

A.2.1 Encoder

The text encoder aims to unify both text inputs It and motion inputs Im into a shared latent repre-
sentation. This is achieved through two separate transformer-based encoders, one for text and one
for motion, as illustrated in Figure 3. Each encoder is composed of a multi-head attention (MHA)
module and a feed-forward network (FFN). These modules take as input variable-length sequences
(whether text or motion) alongside two learnable distribution tokens that represent the mean and
variance of a Gaussian distribution in the latent space. Utilizing the reparameterization trick [6], a
latent representation Z is sampled from this Gaussian distribution. Both text and motion inputs are
projected through this transformation, ensuring they are mapped into the same latent space with equal
lengths and dimensions. The resulting representations are denoted as Zt = f(It) = {Zi

t}
ls
i=1 ∈ Rds

and Zm = f(Im) = {Zi
m}lsi=1 ∈ Rds , where ls and ds refer to the length and dimension of the latent

representation, respectively, ensuring ls < min[lt, lm] and ds < min[dt, dm]. These constraints
guarantee that both the text and motion representations share a common space. The text encoder
serves as a compression network, mapping both text and motion inputs into a unified latent space via
transformer-based modules, allowing for consistent representations across modalities.

A.2.2 Decoder

The decoder g() also adopts a transformer-based architecture. Its input consists of the generated
latent space Z and a sequence of learnable tokens, while the output is the reconstructed text or motion
sequence Ît = g(f(It)), Îm = g(f(Im)). Then, Ît is further mapped back to the text tokens through
a pre-trained language decoder t̂ = D(Ît).

A.2.3 Training Strategy

Training the VAE and the diffusion model jointly often leads to unstable training and is prone to
collapse. Therefore, we opt to pre-train the VAE networks separately. To unify text and motion
into the same representation, we employ a contrastive learning strategy, where similar text-motion
pairs are embedded into nearby latent representations, while dissimilar pairs are embedded into
distant latent representations. The training data consists of text-motion pairs and the training loss is
composed of reconstruction and alignment losses. For text, the reconstruction loss is the cross-entropy
loss between the input and the generated text pairs. For motion, the reconstruction loss is the L2 loss
between the input and the generated motion pairs.

Lrect(It, Ît) =
1

lt

lt∑
i=1

CELoss(Iit , Î
i
t) (1)
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Lrecm(Im, Îm) =
1

lm

lm∑
i=1

||Iim − Îim||2 (2)

The alignment loss consists of the KL loss and the cosine loss. To align the distributions of text
and motion latent spaces, we opt to minimize the KL divergence between the two distributions
ϕt(Z|It) = N (µt, σ

2
t ), ϕm(Z|Im) = N (µm, σ

2
m). Additionally, to regularize the latent space,

we utilize KL divergence to bring the distribution of each latent space closer to a standard normal
distribution ψ = N (0, 1). Therefore, the overall KL loss can be represented as:

LKL = KL(ϕt, ϕm) +KL(ϕt, ψ) +KL(ϕm, ψ) (3)

After sampling from the distribution of the latent space , we use cosine loss to bring obtained latent
representations of text and motion Zt , Zm closer together.

Li
cos = 1− cos(Zi

t , Z
i
m) (4)

Lcos =
1

ls

ls∑
i=1

Li
cos (5)

Overall, the loss for CTMV can be formulated as follows:
L = Lrect + Lrecm + LKL + Lcos (6)

By minimizing the reconstruction and alignment losses, we ensure that the CTMV maps text and
motion to a unified semantic representation and effectively reconstructs them back to their respective
spaces.

A.3 Controllable Diffusion Model

Targeting the unified CTMV latent space, we construct a controllable generation model based on the
diffusion model. The objective of the model is to generate a set of latent representations based on the
given condition. Diffusion model simulates a Markov process {Zt}Tt=0, where t denotes each time
step. Z0 ∈ Rls×dsrepresents data sampled from the latent space, while Zt is obtained by adding
noise to Z0.

q(Zt|Zt−1) = N (
√
αtZt−1, (1− αt)I), (7)

where αt ∈ (0, 1) is the hyperparameter. We need to train a Transformer-based denoising network εθ
incorporating long skip connections[31] to gradually recover the original semantic information from
the noisy data based on the conditional information. The training objective of the network is:

Eε,t,c[||ε− εθ(Z
t, t, c)||22], (8)

where c denotes the condition representation, which can be either text or motion. The denoising
network is trained in a classifie-free manner, where the network learns the distributions of the CTMV
latent space both conditioned and unconditioned by randomly masking 10% of the conditional
information in the samples c = ϕ [20, 29]. During sampling, we start with random noise sampled
f(ZT ) ∈ Rls×ds N (0, 1) and then iteratively denoise it using the trained network.

ε̂ = (1− w)εθ(Z
t, t, ϕ) + wεθ(Z

t, t, c) (9)

After multiple sampling iterations, the desired result is generated. This generated result is then
reconstructed back to the text or motion space through their decoders. A new training module
iteratively builds an edited dataset to fine-tune the diffusion model based on user feedback, using
the editing loss Ledit to capture deviations between outputs and desired user-driven improvements,
enhancing variations like text-to-motion alignment or motion dynamics.

Ledit = E(Ic
t ,I

c
m)

[
∥εθ(Zt, t, c)− εtarget(Z

t, t, c)∥22
]

(10)

εθ(Z
t, t, c) is the model’s prediction, and εtarget(Z

t, t, c) is the target reflecting user improvements.
This L2-norm loss ensures the model aligns with user preferences while maintaining generalization.
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A.4 Multimodal Conditional Representation and Editing

To achieve multimodal control over the generation, we need to attain precise understanding of
multimodal semantic information in both text and motion spaces. Therefore, we propose MCRE,
which opts to unify the multimodal conditions into the CLIP representation, utilizing its strong
semantic understanding and generalization capabilities.

A.4.1 Multimodal Conditional Representation in CLIP

For text conditions Ict , we use the pre-trained CLIP text encoder to obtain condition representations
in the CLIP space, defined as c = CLIPt(I

c
t ). For action conditions Icm, we train an adapter W (·)

with a transformer encoder to align these representations with the CLIP space, where the first token
of the adapter’s output is the final result c =W (Icm). The adapter is trained on paired text and motion
sequences, and the training objective minimizes the following cosine similarity loss:

L = 1− cos(CLIPt(I
c
t ),W (Icm)) (11)

We employ a contrastive learning strategy, similar to CLIP, incorporating both positive and negative
samples. The final loss is:

L = 1− cos(cpos, cmotion) + max(0, cos(cneg, cmotion)− ϵ) (12)

This ensures positive samples are brought closer, while negative samples are pushed apart. The
margin ϵ controls the minimum distance between negative and positive samples, improving the
model’s discrimination ability.

A.4.2 Motion Editing via Multimodal Conditional Editing

The CLIP space exhibits highly disentangled characteristics, allowing us to perform various motion
editing tasks by simple linear operations on the conditional CLIP representations. Specifically, to
obtain the edited conditional representation cedit , we add the desired editing direction vector ∆cedit
to the original motion representation.

cedit = c+∆cedit (13)

The edited conditional representation obtained in this way enables us to control the diffusion to
achieve the desired editing result. The editing direction is derived from the difference between CLIP
embeddings of the original and target conditions, which can be based on either text or motion.
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