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Abstract

Many real-world domains require safe decision making in uncertain environments.
In this work, we introduce a deep reinforcement learning framework for approach-
ing this important problem. We consider a distribution over transition models,
and apply a risk-averse perspective towards model uncertainty through the use
of coherent distortion risk measures. We provide robustness guarantees for this
framework by showing it is equivalent to a specific class of distributionally robust
safe reinforcement learning problems. Unlike existing approaches to robustness in
deep reinforcement learning, however, our formulation does not involve minimax
optimization. This leads to an efficient, model-free implementation of our approach
that only requires standard data collection from a single training environment. In
experiments on continuous control tasks with safety constraints, we demonstrate
that our framework produces robust performance and safety at deployment time
across a range of perturbed test environments.

1 Introduction

In many real-world decision making applications, it is important to satisfy safety requirements while
achieving a desired goal. In addition, real-world environments often involve uncertain or changing
conditions. Therefore, in order to reliably deploy data-driven decision making methods such as deep
reinforcement learning (RL) in these settings, they must deliver robust performance and safety even
in the presence of uncertainty. Recently, techniques have been developed to handle safety constraints
within the deep RL framework [3, 27, 28, 41, 44, 47, 55], but these safe RL algorithms only focus on
performance and safety in the training environment. They do not consider uncertainty about the true
environment at deployment time due to unknown disturbances or irreducible modeling errors, which
we refer to as model uncertainty. In this work, we introduce a framework that incorporates model
uncertainty into safe RL. In order for our framework to be useful, we emphasize the importance of
(i) an efficient deep RL implementation during training and (ii) robustness guarantees on performance
and safety upon deployment.

Existing robust RL methods address the issue of model uncertainty, but they can be difficult to
implement and are not always suitable in real-world decision making settings. Robust RL focuses on
worst-case environments in an uncertainty set, which requires solving complex minimax optimization
problems throughout training. This is typically approximated in a deep RL setting through direct
interventions with a learned adversary [38, 46, 49], or through the use of parametric uncertainty with
multiple simulated training environments [31, 32, 39]. However, we do not always have access to
fast, high-fidelity simulators for training [10, 33, 54]. In these cases, we must be able to incorporate
robustness to model uncertainty without relying on multiple training environments or potentially
dangerous adversarial interventions, as real-world data collection may be necessary.
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A more informative way to represent model uncertainty is to instead consider a distribution over po-
tential environments. Domain randomization [37] collects training data from a range of environments
by randomizing across parameter values in a simulator, and optimizes for average performance. This
approach to model uncertainty avoids minimax formulations and works well in practice [5], but lacks
robustness guarantees. In addition, domain randomization focuses on parametric uncertainty, which
still requires detailed simulator access and domain knowledge to define the training distribution.

In this work, we introduce a general approach to safe RL in the presence of model uncertainty that
addresses the main shortcomings of existing methods. In particular, we consider a distribution over
potential environments, and apply a risk-averse perspective towards model uncertainty. Through the
use of coherent distortion risk measures, this leads to a safe RL framework with robustness guarantees
that does not involve difficult minimax formulations. Using this framework, we show how we can
learn safe policies that are robust to model uncertainty, without the need for detailed simulator access
or adversarial interventions during training. Our main contributions are as follows:

1. We reformulate the safe RL problem to incorporate a risk-averse perspective towards model
uncertainty through the use of coherent distortion risk measures, and we introduce the
corresponding Bellman operators.

2. From a theoretical standpoint, we provide robustness guarantees for our framework by
showing it is equivalent to a specific class of distributionally robust safe RL problems.

3. We propose an efficient deep RL implementation that avoids the difficult minimax formula-
tion present in robust RL and only uses data collected from a single training environment.

4. We demonstrate the robust performance and safety of our framework through experiments
on continuous control tasks with safety constraints in the Real-World RL Suite [18, 19].

2 Preliminaries

Safe reinforcement learning In this work, we consider RL in the presence of safety constraints.
We model this sequential decision making problem as an infinite-horizon, discounted Constrained
Markov Decision Process (CMDP) [4] defined by the tuple (S,A, p, r, c, d0, γ), where S is the set of
states, A is the set of actions, p : S ×A → P (S) is the transition model where P (S) represents the
space of probability measures over S, r, c : S × A → R are the reward function and cost function
used to define the objective and constraint, respectively, d0 ∈ P (S) is the initial state distribution,
and γ is the discount rate. We focus on the setting with a single constraint, but all results can be
extended to the case of multiple constraints.

We model the agent’s decisions as a stationary policy π : S → P (A). For a given CMDP and policy
π, we write the expected total discounted rewards and costs as Jp,r(π) = Eτ∼(π,p) [

∑∞
t=0 γ

tr(st, at)]

and Jp,c(π) = Eτ∼(π,p) [
∑∞

t=0 γ
tc(st, at)], respectively, where τ ∼ (π, p) represents a trajectory

sampled according to s0 ∼ d0, at ∼ π( · | st), and st+1 ∼ p( · | st, at). The goal of safe RL is to
find a policy π that maximizes the constrained optimization problem

max
π

Jp,r(π) s.t. Jp,c(π) ≤ B, (1)

where B is a safety budget on expected total discounted costs.

We write the corresponding state-action value functions (i.e., Q functions) for a given transition
model p and policy π as Qπ

p,r(s, a) and Qπ
p,c(s, a), respectively. Off-policy optimization techniques

[28, 55] find a policy that maximizes (1) by solving at each iteration the related optimization problem

max
π

E
s∼D

[
E

a∼π(·|s)

[
Qπk

p,r(s, a)
]]

s.t. E
s∼D

[
E

a∼π(·|s)

[
Qπk

p,c(s, a)
]]

≤ B, (2)

where πk is the current policy and D is a replay buffer containing data collected in the training
environment. Note that Qπ

p,r(s, a) and Qπ
p,c(s, a) are the respective fixed points of the Bellman

operators

T π
p,rQ(s, a) := r(s, a) + γ E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]
,

T π
p,cQ(s, a) := c(s, a) + γ E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]
.
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Model uncertainty in reinforcement learning Rather than focusing on a single CMDP with
transition model p, we incorporate uncertainty about the transition model by considering a distribution
µ over models. We focus on distributions of the form µ =

∏
(s,a)∈S×A µs,a, where µs,a represents

a distribution over transition models ps,a = p( · | s, a) ∈ P (S) at a given state-action pair and µ
is the product over all µs,a. This is known as rectangularity, and is a common assumption in the
literature [11, 15, 16, 53, 56]. Note that µs,a ∈ P (M), where we write M = P (S) to denote model
space. Compared to robust RL methods that apply uncertainty sets over transition models, the use of
a distribution µ over transition models is a more informative way to represent model uncertainty that
does not require solving for worst-case environments (i.e., does not introduce a minimax formulation).

In order to incorporate robustness to the choice of µ, distributionally robust MDPs [53, 56] consider
an ambiguity set U =

⊗
(s,a)∈S×A Us,a of distributions over transition models, where µs,a ∈ Us,a ⊆

P (M). The goal of distributionally robust RL is to optimize the worst-case average performance
across all distributions contained in U . In this work, we will show that a risk-averse perspective
towards model uncertainty defined by µ is equivalent to distributionally robust RL for appropriate
choices of ambiguity sets in the objective and constraint of a CMDP. However, our use of risk
measures avoids the need to solve for worst-case distributions in U throughout training.

Risk measures Consider the probability space (M,F , µs,a), where F is a σ-algebra on M and
µs,a ∈ P (M) defines a probability measure over M. Let Z be a space of random variables
defined on this probability space, and let Z∗ be its corresponding dual space. A real-valued risk
measure ρ : Z → R summarizes a random variable as a value on the real line. In this section,
we consider cost random variables Z ∈ Z where a lower value of ρ(Z) is better. We can define a
corresponding risk measure ρ+ for reward random variables through an appropriate change in sign,
where ρ+(Z) = −ρ(−Z). Risk-sensitive methods typically focus on classes of risk measures with
desirable properties [30], such as coherent risk measures [6] and distortion risk measures [17, 50].

Definition 1 (Coherent risk measure). A risk measure ρ is a coherent risk measure if it satisfies
monotonicity, translation invariance, positive homogeneity, and convexity.

Definition 2 (Distortion risk measure). Let g : [0, 1] → [0, 1] be a non-decreasing, left-continuous
function with g(0) = 0 and g(1) = 1. A distortion risk measure with respect to g is defined as

ρ(Z) =

∫ 1

0

F−1
Z (u)dg̃(u),

where F−1
Z is the inverse cumulative distribution function of Z and g̃(u) = 1− g(1− u).

A distortion risk measure is coherent if and only if g is concave [52]. In this work, we focus on the
class of coherent distortion risk measures. We will leverage properties of coherent risk measures
to provide robustness guarantees for our framework, and we will leverage properties of distortion
risk measures to propose an efficient, model-free implementation that does not involve minimax
optimization. See the Appendix for additional details on the properties of coherent distortion risk
measures. Many commonly used risk measures belong to this class, including expectation, conditional
value-at-risk (CVaR), and the Wang transform [51] for η ≥ 0 which is defined by the distortion
function gη(u) = Φ(Φ−1(u) + η), where Φ is the standard Normal cumulative distribution function.

3 Related work

Safe reinforcement learning The CMDP framework is the most popular approach to safety in RL,
and several deep RL algorithms have been developed to solve the constrained optimization problem
in (1). These include primal-dual methods that consider the Lagrangian relaxation of (1) [41, 44, 47],
algorithms that compute closed-form solutions to related or approximate versions of (1) [3, 28], and
direct methods for constraint satisfaction such as the use of barriers [27] or immediate switching
between the objective and constraint [55]. All of these approaches are designed to satisfy expected
cost constraints for a single CMDP observed during training. In our work, on the other hand, we
consider a distribution over possible transition models.

Uncertainty in reinforcement learning Our work focuses on irreducible uncertainty about the
true environment at deployment time, which we refer to as model uncertainty and represent using a
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distribution µ over transition models. The most popular approach that incorporates model uncertainty
in this way is domain randomization [37, 48], which randomizes across parameter values in a
simulator and trains a policy to maximize average performance over this training distribution. This
represents a risk-neutral attitude towards model uncertainty, which has been referred to as a soft-
robust approach [16]. Distributionally robust MDPs incorporate robustness to the choice of µ by
instead considering a set of distributions [11, 15, 53, 56], but application of this distributionally
robust framework has remained limited in deep RL as it leads to a difficult minimax formulation that
requires solving for worst-case distributions over transition models.

Robust RL represents an alternative approach to model uncertainty that considers uncertainty sets
of transition models [21, 34]. A major drawback of robust RL is the need to calculate worst-
case environments during training, which is typically approximated through the use of parametric
uncertainty with multiple training environments [31, 32, 39] or a trained adversary that directly
intervenes during trajectory rollouts [38, 46, 49]. Unlike these methods, we propose a robust
approach to model uncertainty based on a distribution µ over models, which does not require access
to a range of simulated training environments, does not impact data collection during training, and
does not involve minimax optimization problems.

In contrast to irreducible model uncertainty, epistemic uncertainty captures estimation error that can
be reduced during training through data collection. Epistemic uncertainty has been considered in
the estimation of Q functions [9, 35, 36] and learned transition models [7, 13, 22, 25, 40], and has
been applied to promote both exploration and safety in a fixed MDP. Finally, risk-sensitive methods
typically focus on the aleatoric uncertainty in RL, which refers to the range of stochastic outcomes
within a single MDP. Rather than considering the standard expected value objective, they learn
risk-sensitive policies over this distribution of possible outcomes in a fixed MDP [12, 24, 26, 43, 45].
Distributional RL [8] trains critics that estimate the full distribution of future returns due to aleatoric
uncertainty, and risk measures can be applied to these distributional critics for risk-sensitive learning
[14, 29]. We also consider the use of risk measures in our work, but different from standard risk-
sensitive RL methods we apply a risk measure over model uncertainty instead of aleatoric uncertainty.

4 Risk-averse model uncertainty for safe reinforcement learning

The standard safe RL problem in (1) focuses on performance and safety in a single environment
with fixed transition model p. In this work, however, we are interested in a distribution of possible
transition models p ∼ µ rather than a fixed transition model. The distribution µ provides a natural
way to capture our uncertainty about the unknown transition model at deployment time. Next, we
must incorporate this model uncertainty into our problem formulation. Prior methods have done this
by applying the expectation operator over µs,a at every transition [16]. Instead, we adopt a risk-averse
view towards model uncertainty in order to learn policies with robust performance and safety. We
accomplish this by applying a coherent distortion risk measure ρ with respect to model uncertainty at
every transition.

We consider the risk-averse model uncertainty (RAMU) safe RL problem

max
π

Jρ+,r(π) s.t. Jρ,c(π) ≤ B, (3)

where we use ρ+ and ρ to account for reward and cost random variables, respectively, and we apply
these coherent distortion risk measures over ps,a ∼ µs,a at every transition to define

Jρ+,r(π) := E
s∼d0

[
E

a∼π(·|s)

[
r(s, a) + γ ρ+

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)
[r(s′, a′) + . . . ]

])]]
,

Jρ,c(π) := E
s∼d0

[
E

a∼π(·|s)

[
c(s, a) + γ ρ

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)
[c(s′, a′) + . . . ]

])]]
.

The notation ρ+ps,a∼µs,a
( · ) and ρ ps,a∼µs,a

( · ) emphasize that the stochasticity of the random vari-
ables are with respect to the transition models sampled from µs,a. Note that we still apply expectations
over the aleatoric uncertainty of the CMDP (i.e., the randomness associated with a stochastic transi-
tion model and stochastic policy), while being risk-averse with respect to model uncertainty. Because
we are interested in learning policies that achieve robust performance and robust safety at deployment
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time, we apply this risk-averse perspective to model uncertainty in both the objective and constraint
of (3).

We write the corresponding RAMU reward and cost Q functions as Qπ
ρ+,r(s, a) and Qπ

ρ,c(s, a),
respectively. Similar to the standard safe RL setting, we can apply off-policy techniques to solve the
RAMU safe RL problem in (3) by iteratively optimizing

max
π

E
s∼D

[
E

a∼π(·|s)

[
Qπk

ρ+,r(s, a)
]]

s.t. E
s∼D

[
E

a∼π(·|s)

[
Qπk

ρ,c(s, a)
]]

≤ B. (4)

Therefore, we have replaced the standard Q functions for a fixed transition model p in (2) with our
RAMU Q functions in (4).

We can write the RAMU Q functions recursively as

Qπ
ρ+,r(s, a) = r(s, a) + γ ρ+

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)

[
Qπ

ρ+,r(s
′, a′)

]])
,

Qπ
ρ,c(s, a) = c(s, a) + γ ρ

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)

[
Qπ

ρ,c(s
′, a′)

]])
.

These recursive definitions motivate corresponding RAMU Bellman operators.
Definition 3 (RAMU Bellman operators). For a given policy π, the RAMU Bellman operators are
defined as

T π
ρ+,rQ(s, a) := r(s, a) + γ ρ+

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

])
,

T π
ρ,cQ(s, a) := c(s, a) + γ ρ

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

])
.

Note that the RAMU Bellman operators can also be interpreted as applying a coherent distortion risk
measure over standard Bellman targets, which are random variables with respect to the transition
model ps,a ∼ µs,a for a given state-action pair.
Lemma 1. The RAMU Bellman operators can be written in terms of standard Bellman operators as

T π
ρ+,rQ(s, a) = ρ+

ps,a∼µs,a

(
T π
p,rQ(s, a)

)
, T π

ρ,cQ(s, a) = ρ
ps,a∼µs,a

(
T π
p,cQ(s, a)

)
. (5)

Proof. The results follow from the definitions of T π
p,r and T π

p,c, along with the translation invariance
and positive homogeneity of coherent distortion risk measures. See the Appendix for details.

In the next section, we show that T π
ρ+,r and T π

ρ,c are contraction operators, so we can apply standard
temporal difference learning techniques to learn the RAMU Q functions Qπ

ρ+,r(s, a) and Qπ
ρ,c(s, a)

that are needed for our RAMU policy update in (4).

5 Robustness guarantees

Intuitively, our risk-averse perspective places more emphasis on potential transition models that result
in higher costs or lower rewards under the current policy, which should result in learning safe policies
that are robust to model uncertainty. Next, we formalize the robustness guarantees of our RAMU
framework by showing it is equivalent to a distributionally robust safe RL problem for appropriate
choices of ambiguity sets.
Theorem 1. The RAMU safe RL problem in (3) is equivalent to the distributionally robust safe RL
problem

max
π

inf
β∈U+

E
p∼β

[Jp,r(π)] s.t. sup
β∈U

E
p∼β

[Jp,c(π)] ≤ B (6)

with ambiguity sets U+ =
⊗

(s,a)∈S×A U+
s,a and U =

⊗
(s,a)∈S×A Us,a, where

U+
s,a, Us,a ⊆ {βs,a ∈ P (M) | βs,a = ξs,aµs,a, ξs,a ∈ Z∗}

are sets of feasible reweightings of µs,a with ξs,a that depend on the choice of ρ+ and ρ, respectively.
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Proof. Using duality results for coherent risk measures [42], we show that the RAMU Bellman
operators T π

ρ+,r and T π
ρ,c are equivalent to distributionally robust Bellman operators [53, 56] with

ambiguity sets of distributions U+ and U , respectively. The RAMU Q functions are the respective
fixed points of these Bellman operators, so they can be written as distributionally robust Q functions.
Finally, by averaging over initial states and actions, we see that (3) is equivalent to (6). See the
Appendix for details.

Theorem 1 shows that the application of ρ+ and ρ at every timestep are equivalent to solving
distributionally robust optimization problems over the ambiguity sets of distributions U+ and U ,
respectively. This can be interpreted as adversarially reweighting µs,a with ξs,a at every state-action
pair. Note that worst-case distributions appear in both the objective and constraint of (6), so any
policy trained with our RAMU framework is guaranteed to deliver robust performance and robust
safety. The level of robustness depends on the choice of ρ+ and ρ, which determine the structure and
size of the corresponding ambiguity sets based on their dual representations [42].

In addition, because (3) is equivalent to a distributionally robust safe RL problem according to
Theorem 1, we can leverage existing results for distributionally robust MDPs [53, 56] to show that
T π
ρ+,r and T π

ρ,c are contraction operators.

Corollary 1. The RAMU Bellman operators T π
ρ+,r and T π

ρ,c are γ-contractions in the sup-norm.

Proof. Apply results from Xu and Mannor [53] and Yu and Xu [56]. See the Appendix for details.

Therefore, we have that Qπ
ρ+,r(s, a) and Qπ

ρ,c(s, a) can be interpreted as distributionally robust Q
functions by Theorem 1, and we can apply standard temporal difference methods to learn these RAMU
Q functions as a result of Corollary 1. Importantly, Theorem 1 demonstrates the robustness properties
of our RAMU framework, but it is not used to implement our approach. Directly implementing (6)
would require solving for adversarial distributions over transition models throughout training. Instead,
our framework provides the same robustness, but the use of risk measures leads to an efficient deep
RL implementation as we describe in the following section.

6 Model-free implementation with a single training environment

The RAMU policy update in (4) takes the same form as the standard safe RL update in (2), except
for the use of Qπ

ρ+,r(s, a) and Qπ
ρ,c(s, a). Because our RAMU Bellman operators are contractions,

we can learn these RAMU Q functions by applying standard temporal difference loss functions that
are used throughout deep RL. In particular, we consider parameterized critics Qθr and Qθc , and we
optimize their parameters during training to minimize the loss functions

L+(θr) = E
(s,a)∼D

[(
Qθr (s, a)− T̂ π

ρ+,rQ̄θr (s, a)
)2]

,

L(θc) = E
(s,a)∼D

[(
Qθc(s, a)− T̂ π

ρ,cQ̄θc(s, a)
)2]

,

where T̂ π
ρ+,r and T̂ π

ρ,c represent sample-based estimates of the RAMU Bellman operators applied
to target Q functions denoted by Q̄. Therefore, we must be able to efficiently estimate the RAMU
Bellman targets, which involve calculating coherent distortion risk measures that depend on the
distribution µs,a.

Sample-based estimation of risk measures Using the formulation of our RAMU Bellman oper-
ators from Lemma 1, we can leverage properties of distortion risk measures to efficiently estimate
the results in (5) using sample-based weighted averages of standard Bellman targets. For n tran-
sition models p

(i)
s,a, i = 1, . . . , n, sampled independently from µs,a and sorted according to their

corresponding Bellman targets, consider the weights

w(i)
ρ = g

(
i

n

)
− g

(
i− 1

n

)
,
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Figure 1: Coherent distortion risk measures used in RAMU experiments. Left: Distortion function g.
Right: Weights for sample-based estimates in (7) when n = 5.

where g defines the distortion risk measure ρ according to Definition 2. See Figure 1 for the distortion
functions and weights associated with the risk measures used in our experiments. Then, from Jones
and Zitikis [23] we have that

n∑
i=1

w
(i)
ρ+T π

p(i),rQ(s, a),
n∑

i=1

w(i)
ρ T π

p(i),cQ(s, a),

are consistent estimators of the results in (5), where T π
p(i),r

Q(s, a) are sorted in ascending order and
T π
p(i),c

Q(s, a) are sorted in descending order. Finally, we can replace T π
p(i),r

Q(s, a) and T π
p(i),c

Q(s, a)

with the standard unbiased sample-based estimates

T̂ π
p(i),rQ(s, a) = r(s, a) + γQ(s′, a′), T̂ π

p(i),cQ(s, a) = c(s, a) + γQ(s′, a′),

where s′ ∼ p
(i)
s,a and a′ ∼ π( · | s′). This leads to the sample-based estimates

T̂ π
ρ+,rQ(s, a) =

n∑
i=1

w
(i)
ρ+ T̂ π

p(i),rQ(s, a), T̂ π
ρ,cQ(s, a) =

n∑
i=1

w(i)
ρ T̂ π

p(i),cQ(s, a), (7)

which we use to train our RAMU Q functions. Note that the estimates in (7) can be computed very
efficiently, which is a major benefit of our RAMU framework compared to robust RL methods. Next,
we describe how we can sample models p(i)s,a, i = 1, . . . , n, from µs,a, and generate state transitions
from these models to use in the calculation of our sample-based Bellman targets in (7).

Generative distribution of transition models Note that our RAMU framework can be applied
using any choice of distribution µ, provided we can sample transition models p

(i)
s,a ∼ µs,a and

corresponding next states s′ ∼ p
(i)
s,a. In this work, we define the distribution µ over perturbed versions

of a single training environment ptrain, and we propose a generative approach to sampling transition
models and corresponding next states that only requires data collected from ptrain. By doing so, our
RAMU framework achieves robust performance and safety with minimal assumptions on the training
process, and can even be applied to settings that require real-world data collection for training.

We consider a latent variable x ∼ X , and we define a transition model ps,a(x) for every x ∼ X that
shifts the probability of s′ under ptrain

s,a according to a perturbation function fx : S × S → S. This
perturbation function takes as input a state transition (s, s′), and outputs a perturbed next state s̃′ that
depends on the latent variable x ∼ X . Therefore, a distribution over latent space implicitly defines a
distribution µs,a over perturbed versions of ptrain

s,a . In order to obtain the next state samples needed to
compute the Bellman target estimates in (7), we sample latent variables x ∼ X and apply fx to the
state transition observed in the training environment. We have that s′ ∼ ptrain

s,a for data collected in
the training environment, so s̃′ = fx(s, s

′) represents the corresponding sample from the perturbed
transition model ps,a(x).

In our experiments, we consider a simple implementation for the common case where S = Rd. We
use uniformly distributed latent variables x ∼ U([−2ϵ, 2ϵ]d), and we define the perturbation function
as

fx(s, s
′) = s+ (s′ − s)(1 + x),
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Algorithm 1 Risk-Averse Model Uncertainty for Safe RL
Input: policy π0, critics Qθr , Qθc , risk measures ρ+, ρ, latent random variable X

for k = 0, 1, 2, . . . do
Collect data τ ∼ (πk, p

train) and store it in D
for K updates do

Sample batch of data (s, a, r, c, s′) ∼ D
Sample n latent variables xi ∼ X per data point, and compute next state samples fxi(s, s

′)

Calculate Bellman targets in (7), and update critics Qθr , Qθc to minimize L+(θr),L(θc)
Update policy π according to (4)

end for
end for

where all operations are performed per-coordinate. Therefore, the latent variable x ∼ U([−2ϵ, 2ϵ]d)
can be interpreted as the percentage change in each dimension of a state transition observed in the
training environment, where the average magnitude of the percentage change is ϵ. The hyperparameter
ϵ determines the distribution µs,a over transition models, where a larger value of ϵ leads to transition
models that vary more significantly from the training environment. The structure of fx provides an
intuitive, scale-invariant meaning for the hyperparameter ϵ, which makes it easy to tune in practice.
This choice of distribution µs,a captures general uncertainty in the training environment, without
requiring specific domain knowledge of potential disturbances.

Algorithm We summarize the implementation of our RAMU framework in Algorithm 1. Given
data collected in a single training environment, we can efficiently calculate the sample-based RAMU
Bellman targets in (7) by (i) sampling from a latent variable x ∼ X , (ii) computing the corresponding
next state samples fx(s, s′), and (iii) sorting the standard Bellman estimates that correspond to these
sampled transition models. Given the sample-based RAMU Bellman targets, updates of the critics and
policy have the same form as in standard deep safe RL algorithms. Therefore, our RAMU framework
can be easily combined with many popular safe RL algorithms to incorporate model uncertainty with
robustness guarantees, using only a minor change to the estimation of Bellman targets that is efficient
to implement in practice.

7 Experiments

In order to evaluate the performance and safety of our RAMU framework, we conduct experiments on
5 continuous control tasks with safety constraints from the Real-World RL Suite [18, 19]: Cartpole
Swingup, Walker Walk, Walker Run, Quadruped Walk, and Quadruped Run. Each task has a horizon
length of 1,000 with r(s, a) ∈ [0, 1] and c(s, a) ∈ {0, 1}, and we consider a safety budget of
B = 100. Unless noted otherwise, we train these tasks on a single training environment for 1 million
steps across 5 random seeds, and we evaluate performance of the learned policies across a range of
perturbed test environments via 10 trajectory rollouts. See the Appendix for information on the safety
constraints and environment perturbations that we consider.

Our RAMU framework can be combined with several choices of safe RL algorithms. We consider
the safe RL algorithm Constraint-Rectified Policy Optimization (CRPO) [55], and we use Maximum
a Posteriori Policy Optimization (MPO) [1] as the unconstrained policy optimization algorithm in
CRPO. For a fair comparison, we apply this choice of safe RL policy update in every method we
consider in our experiments. We use a multivariate Gaussian policy with learned mean and diagonal
covariance at each state, along with separate reward and cost critics. We parameterize our policy and
critics using neural networks. See the Appendix for implementation details.1

We summarize the performance and safety of our RAMU framework in Table 1 and Figure 2,
compared to several baseline algorithms that we discuss next. We include detailed experimental
results across all perturbed test environments in the Appendix. We apply our RAMU framework using
the Wang transform with η = 0.75 as the risk measure in both the objective and constraint. In order

1Code is publicly available at https://github.com/jqueeney/robust-safe-rl.

8

https://github.com/jqueeney/robust-safe-rl


Table 1: Aggregate performance summary

Normalized Ave.‡ Rollouts Require∗

Algorithm % Safe† Reward Cost Adversary Simulator

Safe RL 51% 1.00 1.00 No No
RAMU (Wang 0.75) 80% 1.08 0.51 No No
RAMU (Expectation) 74% 1.05 0.67 No No
Domain Randomization 76% 1.14 0.72 No Yes
Domain Randomization (OOD) 55% 1.02 1.02 No Yes
Adversarial RL 82% 1.05 0.48 Yes No
† Percentage of policies that satisfy the safety constraint across all tasks and test environments.
‡ Normalized relative to the average performance of standard safe RL for each task and test environment.
∗ Denotes need for adversary or simulator during data collection (i.e., trajectory rollouts) for training.
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Figure 2: Performance summary by task, aggregated across perturbed test environments. Performance
of adversarial RL is evaluated without adversarial interventions. Top: Total rewards averaged across
test environments. Bottom: Percentage of policies across test environments that satisfy the safety
constraint.

to understand the impact of being risk-averse to model uncertainty, we also consider the risk-neutral
special case of our framework where expectations are applied to the objective and constraint. For
our RAMU results in Table 1 and Figure 2, we specify the risk measure in parentheses. Finally, we
consider n = 5 samples of transition models with latent variable hyperparameter ϵ = 0.10 in order to
calculate Bellman targets in our RAMU framework.

Comparison to safe reinforcement learning First, we analyze the impact of our RAMU framework
compared to standard safe RL. In both cases, we train policies using data collected from a single
training environment, so the only difference comes from our use of risk-averse model uncertainty to
learn RAMU Q functions. By evaluating the learned policies in perturbed test environments different
from the training environment, we see that our RAMU framework provides robustness in terms of
both total rewards and safety. In particular, the risk-averse implementation of our algorithm leads
to safety constraint satisfaction in 80% of test environments, compared to only 51% with standard
safe RL. In addition, this implementation results in higher total rewards (1.08x) and lower total costs
(0.51x), on average. We see in Table 1 that the use of expectations over model uncertainty (i.e., a
risk-neutral approach) also improves robustness in both the objective and constraint, on average,
compared to standard safe RL. However, we further improve upon the benefits observed in the
risk-neutral case by instead applying a risk-averse perspective.

Comparison to domain randomization Next, we compare our RAMU framework to domain
randomization, a popular approach that also represents model uncertainty using a distribution µ over
models. Note that domain randomization considers parametric uncertainty and has the benefit of
training on a range of simulated environments, while our method only collects data from a single
training environment. In order to evaluate the importance of domain knowledge for defining the
training distribution in domain randomization, we consider two different cases: an in-distribution
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version that trains on a subset of the perturbed test environments, and an out-of-distribution (OOD)
version that randomizes over a different perturbation parameter than the one varied at test time.

The results in Table 1 and Figure 2 show the importance of domain knowledge: in-distribution domain
randomization leads to improved robustness compared to standard safe RL and the highest normalized
average rewards (1.14x), while the out-of-distribution version provides little benefit. In both cases,
however, domain randomization achieves lower levels of safety, on average, than our risk-averse
formulation. In fact, we see in Figure 2 that the safety constraint satisfaction of our risk-averse
formulation is at least as strong as both versions of domain randomization in 4 out of 5 tasks, despite
only training on a single environment with no specific knowledge about the disturbances at test time.
This demonstrates the key benefit of our risk-averse approach to model uncertainty.

Comparison to adversarial reinforcement learning Finally, we compare our approach to ad-
versarial RL using the action-robust PR-MDP framework [46], which randomly applies worst-case
actions a percentage of the time during data collection. Although adversarial RL only collects data
from a single training environment, it requires potentially dangerous adversarial interventions during
training in order to provide robustness at test time. In order to apply this method to the safe RL
setting, we train an adversary to maximize costs and consider a 5% probability of intervention during
training. The performance of adversarial RL is typically evaluated without adversarial interventions,
which requires a clear distinction between training and testing.

We see in Figure 2 that adversarial RL learns policies that achieve robust safety constraint satisfaction
at test time in the Quadruped tasks. Our risk-averse formulation, on the other hand, achieves higher
levels of safety in the remaining 3 out of 5 tasks, and similar levels of safety on average. Unlike
adversarial RL, our RAMU framework achieves robust safety in a way that (i) does not alter the
data collection process, (ii) does not require training an adversary in a minimax formulation, and
(iii) does not require different implementations during training and testing. In addition, our use of a
distribution over models represents a less conservative approach than adversarial RL, resulting in
higher normalized average rewards as shown in Table 1.

8 Conclusion

We have presented a framework for safe RL in the presence of model uncertainty, an important
setting for many real-world decision making applications. Compared to existing approaches to model
uncertainty in deep RL, our formulation applies a risk-averse perspective through the use of coherent
distortion risk measures. We show that this results in robustness guarantees, while still leading to an
efficient deep RL implementation that does not involve minimax optimization problems. Importantly,
our method only requires data collected from a single training environment, so it can be applied to
real-world domains where high-fidelity simulators are not readily available or are computationally
expensive. Therefore, our framework represents an attractive approach to safe decision making under
model uncertainty that can be deployed across a range of applications.

Prior to potential deployment, it is important to understand the limitations of our proposed methodol-
ogy. The robustness and safety of our RAMU framework depend on the user-defined choices of model
distribution µ and risk measure ρ. The distribution µ defines the uncertainty over transition models,
and the risk measure ρ defines the level of robustness to this choice of µ. In addition, our approach
only considers robustness with respect to model uncertainty and safety as defined by expected total
cost constraints. It would be interesting to extend our techniques to address other forms of uncertainty
and other definitions of safety, including epistemic uncertainty in model-based RL, observational
uncertainty, and safety-critical formulations based on sets of unsafe states.
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A Properties of coherent distortion risk measures

Majumdar and Pavone [30] proposed a set of six axioms to characterize desirable properties of risk
measures in the context of robotics.

A1. Monotonicity: If Z,Z ′ ∈ Z and Z ≤ Z ′ almost everywhere, then ρ(Z) ≤ ρ(Z ′).

A2. Translation invariance: If α ∈ R and Z ∈ Z , then ρ(Z + α) = ρ(Z) + α.

A3. Positive homogeneity: If τ ≥ 0 and Z ∈ Z , then ρ(τZ) = τρ(Z).

A4. Convexity: If λ ∈ [0, 1] and Z,Z ′ ∈ Z , then ρ(λZ + (1− λ)Z ′) ≤ λρ(Z) + (1− λ)ρ(Z ′).

A5. Comonotonic additivity: If Z,Z ′ ∈ Z are comonotonic, then ρ(Z + Z ′) = ρ(Z) + ρ(Z ′).

A6. Law invariance: If Z,Z ′ ∈ Z are identically distributed, then ρ(Z) = ρ(Z ′).

See Majumdar and Pavone [30] for a discussion on the intuition behind these axioms. Note that coher-
ent risk measures [6] satisfy Axioms A1–A4, distortion risk measures [17, 50] satisfy Axioms A1–A3
and Axioms A5–A6, and coherent distortion risk measures satisfy all six axioms.

The properties of coherent risk measures also lead to a useful dual representation.

Lemma 2 (Shapiro et al. [42]). Let ρ be a proper, real-valued coherent risk measure. Then, for any
Z ∈ Z we have that

ρ(Z) = sup
βs,a∈Us,a

Eβs,a
[Z] ,

where Eβs,a [ · ] represents expectation with respect to the probability measure βs,a ∈ P (M), and

Us,a ⊆ {βs,a ∈ P (M) | βs,a = ξs,aµs,a, ξs,a ∈ Z∗}

is a convex, bounded, and weakly* closed set that depends on ρ.

See Shapiro et al. [42] for a general treatment of this result.

B Proofs

In this section, we prove all results related to the RAMU cost Bellman operator T π
ρ,c. Using the fact

that ρ+(Z) = −ρ(−Z) for a coherent distortion risk measure ρ on a cost random variable, all results
related to the RAMU reward Bellman operator follow by an appropriate change in sign.

B.1 Proof of Lemma 1

Proof. Starting from the definition of T π
ρ,c in Definition 3, we have that

T π
ρ,cQ(s, a) = c(s, a) + γ ρ

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

])
= c(s, a) + ρ

ps,a∼µs,a

(
γ E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

])
= ρ

ps,a∼µs,a

(
c(s, a) + γ E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

])
= ρ

ps,a∼µs,a

(
T π
p,cQ(s, a)

)
,

which proves the result. Note that the second equality follows from the positive homogeneity of ρ
(Axiom A3), the third equality follows from the translation invariance of ρ (Axiom A2), and the
fourth equality follows from the definition of the standard cost Bellman operator T π

p,c.

B.2 Proof of Theorem 1

Proof. First, we show that T π
ρ,c is equivalent to a distributionally robust Bellman operator. For a

given state-action pair, we apply Lemma 2 to the risk measure that appears in the formulation of T π
ρ,c
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given by Lemma 1. By doing so, we have that

T π
ρ,cQ(s, a) = ρ

ps,a∼µs,a

(
T π
p,cQ(s, a)

)
= sup

βs,a∈Us,a

E
ps,a∼βs,a

[
T π
p,cQ(s, a)

]
= c(s, a) + γ sup

βs,a∈Us,a

E
ps,a∼βs,a

[
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]]
,

where Us,a is defined in Lemma 2. Therefore, T π
ρ,c has the same form as a distributionally robust

Bellman operator [53, 56] with the ambiguity set U =
⊗

(s,a)∈S×A Us,a. The RAMU cost Q function
Qπ

ρ,c(s, a) is the fixed point of T π
ρ,c, so it is equivalent to a distributionally robust Q function with

ambiguity set U . Using the rectangularity of U , we can write this succinctly as

Qπ
ρ,c(s, a) = sup

β∈U
E

p∼β

[
Qπ

p,c(s, a)
]
.

Then, using the definition of Jρ,c(π) we have that

Jρ,c(π) = E
s∼d0

[
E

a∼π(·|s)

[
Qπ

ρ,c(s, a)
]]

= E
s∼d0

[
E

a∼π(·|s)

[
sup
β∈U

E
p∼β

[
Qπ

p,c(s, a)
]]]

= sup
β∈U

E
p∼β

[
E

s∼d0

[
E

a∼π(·|s)

[
Qπ

p,c(s, a)
]]]

= sup
β∈U

E
p∼β

[Jp,c(π)] ,

where we can move the optimization over U outside of the expectation operators due to rectangularity.

We can use similar techniques to show that T π
ρ+,r has the same form as a distributionally robust

Bellman operator with the ambiguity set U+ =
⊗

(s,a)∈S×A U+
s,a, and

Jρ+,r(π) = inf
β∈U+

E
p∼β

[Jp,r(π)] .

Therefore, we have that the RAMU safe RL problem in (3) is equivalent to (6).

B.3 Proof of Corollary 1

Given the equivalence of T π
ρ+,r and T π

ρ,c to distributionally robust Bellman operators as shown in
Theorem 1, Corollary 1 follows from results in Xu and Mannor [53] and Yu and Xu [56]. We include
a proof for completeness.

Proof. Due to the linearity of the expectation operator, for a given βs,a ∈ Us,a we have that

E
ps,a∼βs,a

[
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]]
= E

s′∼p̄β
s,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]
,

where p̄βs,a = Eps,a∼βs,a [ps,a] ∈ P (S) represents a mixture transition model determined by βs,a.
Therefore, starting from the result in Theorem 1, we can write

T π
ρ,cQ(s, a) = c(s, a) + γ sup

βs,a∈Us,a

E
ps,a∼βs,a

[
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]]
= c(s, a) + γ sup

p̄β
s,a∈Ps,a

E
s′∼p̄β

s,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]
,

where

Ps,a =

{
p̄βs,a ∈ P (S) | p̄βs,a = E

ps,a∼βs,a

[ps,a] , βs,a ∈ Us,a

}
.
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Figure 3: Hyperparameter sweep of safety coefficient. Value in parentheses represents safety
coefficient used for training in safe RL. Shading denotes half of one standard error across policies.

As a result, T π
ρ,c has the same form as a robust Bellman operator [21, 34] with the uncertainty set

P =
⊗

(s,a)∈S×A Ps,a.

Consider Q functions Q(1) and Q(2), and denote the sup-norm by

∥Q(1) −Q(2)∥∞ = sup
(s,a)∈S×A

∣∣∣Q(1)(s, a)−Q(2)(s, a)
∣∣∣ .

Fix ϵ > 0 and consider (s, a) ∈ S ×A. Then, there exists p̄(1)s,a ∈ Ps,a such that

E
s′∼p̄

(1)
s,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)

]]
≥ sup

p̄β
s,a∈Ps,a

E
s′∼p̄β

s,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)

]]
− ϵ.

We have that

T π
ρ,cQ

(1)(s, a)− T π
ρ,cQ

(2)(s, a)

= γ

(
sup

p̄β
s,a∈Ps,a

E
s′∼p̄β

s,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)

]]
− sup

p̄β
s,a∈Ps,a

E
s′∼p̄β

s,a

[
E

a′∼π(·|s′)

[
Q(2)(s′, a′)

]])

≤ γ

(
E

s′∼p̄
(1)
s,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)

]]
+ ϵ− E

s′∼p̄
(1)
s,a

[
E

a′∼π(·|s′)

[
Q(2)(s′, a′)

]])

= γ E
s′∼p̄

(1)
s,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)−Q(2)(s′, a′)

]]
+ γϵ

≤ γ∥Q(1) −Q(2)∥∞ + γϵ.

A similar argument can be used to show that

−γ∥Q(1) −Q(2)∥∞ − γϵ ≤ T π
ρ,cQ

(1)(s, a)− T π
ρ,cQ

(2)(s, a),

so we have that ∣∣∣T π
ρ,cQ

(1)(s, a)− T π
ρ,cQ

(2)(s, a)
∣∣∣ ≤ γ∥Q(1) −Q(2)∥∞ + γϵ.

By applying a supremum over state-action pairs on the left-hand side, we obtain

∥T π
ρ,cQ

(1) − T π
ρ,cQ

(2)∥∞ ≤ γ∥Q(1) −Q(2)∥∞ + γϵ.

Finally, since ϵ > 0 was arbitrary, we have shown that T π
ρ,c is a γ-contraction in the sup-norm.

C Implementation details and additional experimental results

Safety constraints and environment perturbations In all of our experiments, we consider the
problem of optimizing a task objective while satisfying a safety constraint. We focus on a single
safety constraint corresponding to a cost function defined in the Real-World RL Suite for each task,
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Table 2: Safety constraints for all tasks

Safety
Task Safety Constraint Coefficient

Cartpole Swingup Slider Position 0.30
Walker Walk Joint Velocity 0.25
Walker Run Joint Velocity 0.30
Quadruped Walk Joint Angle 0.15
Quadruped Run Joint Angle 0.30

Table 3: Perturbation ranges for test environments across domains

Perturbation Nominal
Domain Parameter Value Test Range

Cartpole Pole Length 1.00 [0.75, 1.25]
Walker Torso Length 0.30 [0.10, 0.50]
Quadruped Torso Density 1,000 [500, 1,500]

and we consider a safety budget of B = 100. The safety constraints used for each task are described
in Table 2. In the Cartpole domain, costs are applied when the slider is outside of a specified range.
In the Walker domain, costs are applied for large joint velocities. In the Quadruped domain, costs
are applied for large joint angles. See Dulac-Arnold et al. [19] for detailed definitions of each safety
constraint.

The definitions of these cost functions depend on a safety coefficient in [0, 1], which determines the
range of outcomes that lead to constraint violations and therefore controls how difficult it will be to
satisfy safety constraints corresponding to these cost functions. As the safety coefficient decreases,
the range of safe outcomes also decreases and the safety constraint becomes more difficult to satisfy.
In order to consider safe RL tasks with difficult safety constraints where strong performance is
still possible, we selected the value of this safety constraint in the range of [0.15, 0.20, 0.25, 0.30]
for each task based on the performance of the baseline safe RL algorithm CRPO compared to the
unconstrained algorithm MPO. Figure 3 shows total rewards throughout training for each task across
this range of safety coefficients. We selected the most difficult cost definition in this range (i.e., lowest
safety coefficient value) where CRPO is still able to achieve the same total rewards as MPO (or the
value that leads to the smallest gap between the two in the case of Walker Run and Quadruped Run).
The resulting safety coefficients used for our experiments are listed in Table 2.

In order to evaluate the robustness of our learned policies, we generate a range of test environments
for each task based on perturbing a simulator parameter in the Real-World RL Suite. See Table 3
for the perturbation parameters and corresponding ranges considered in our experiments. The test
range for each domain is centered around the nominal parameter value that defines the single training
environment used for all experiments except domain randomization. See Figure 4 for detailed results
of the risk-averse and risk-neutral versions of our RAMU framework across all tasks and environment
perturbations.

Domain randomization Domain randomization requires a training distribution over a range of
environments, which is typically defined by considering a range of simulator parameters. For the
in-distribution version of domain randomization considered in our experiments, we apply a uniform
distribution over a subset of the test environments defined in Table 3. In particular, we consider
the middle 50% of test environment parameter values centered around the nominal environment
value for training. In the out-of-distribution version of domain randomization, on the other hand,
we consider a different perturbation parameter from the one varied at test time. We apply a uniform
distribution over a range of values for this alternate parameter centered around the value in the
nominal environment. Therefore, the only environment shared between the set of test environments
and the set of training environments used for out-of-distribution domain randomization is the nominal
environment. See Table 4 for details on the parameters and corresponding ranges used for training in
domain randomization.

18



700

800

To
ta

l R
ew

ar
d

Cartpole Swingup

400

600

800

1000
Walker Walk

200

400

600

Walker Run

600

800

1000
Quadruped Walk

800

850

Quadruped Run

0.8 1.0 1.2
Pole Length

0

100

200

To
ta

l C
os

t

0.1 0.2 0.3 0.4 0.5
Torso Length

0

100

200

0.1 0.2 0.3 0.4 0.5
Torso Length

0

100

200

Safe RL RAMU (Wang 0.75) RAMU (Expectation)

500 750 1000 1250 1500
Torso Density

0

100

200

500 750 1000 1250 1500
Torso Density

0

100

200

Figure 4: Comparison with standard safe RL across tasks and test environments. RAMU algorithms
use the risk measure in parentheses applied to both the objective and constraint. Shading denotes half
of one standard error across policies. Vertical dotted lines represent nominal training environment.
Top: Total reward. Bottom: Total cost, where horizontal dotted lines represent safety budget.

Table 4: Perturbation parameters and ranges for domain randomization across domains

Perturbation Nominal Training
Domain Parameter Value Range

In-Distribution

Cartpole Pole Length 1.00 [0.875, 1.125]
Walker Torso Length 0.30 [0.20, 0.40]
Quadruped Torso Density 1,000 [750, 1,250]

Out-of-Distribution

Cartpole Pole Mass 0.10 [0.05, 0.15]
Walker Contact Friction 0.70 [0.40, 1.00]
Quadruped Contact Friction 1.50 [1.00, 2.00]

We include the results for domain randomization across all tasks and environment perturbations in
Figure 5. Across all tasks, we observe that our RAMU framework leads to similar or improved
constraint satisfaction compared to in-distribution domain randomization, while only using one
training environment. In addition, our framework consistently outperforms out-of-distribution domain
randomization, which provides little benefit compared to standard safe RL due to its misspecified
training distribution.

Adversarial reinforcement learning In order to implement the action-robust PR-MDP framework,
we must train an adversarial policy. We represent the adversarial policy using the same structure and
neural network architecture as our main policy, and we train the adversarial policy to maximize total
costs using MPO. Using the default setting in Tessler et al. [46], we apply one adversary update for
every 10 policy updates.

We include the results for adversarial RL across all tasks and environment perturbations in Figure 6,
where adversarial RL is evaluated without adversarial interventions. We see that adversarial RL leads
to robust safety in some cases, such as the two Quadruped tasks. However, in other tasks such as
Cartpole Swingup, safety constraint satisfaction is not as robust. Safety also comes at the cost of
conservative performance in some tasks, as evidenced by the total rewards achieved by adversarial RL
in Walker Run and Quadruped Run. Overall, our RAMU framework achieves similar performance to
adversarial RL, without the drawbacks associated with adversarial methods that preclude their use in
some real-world settings.
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Figure 5: Comparison with domain randomization across tasks and test environments. Grey shaded
area denotes the training range for in-distribution domain randomization. Shading denotes half of
one standard error across policies. Vertical dotted lines represent nominal training environment. Top:
Total reward. Bottom: Total cost, where horizontal dotted lines represent safety budget.
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adversarial RL is evaluated without adversarial interventions. Shading denotes half of one standard
error across policies. Vertical dotted lines represent nominal training environment. Top: Total reward.
Bottom: Total cost, where horizontal dotted lines represent safety budget.

Network architectures and algorithm hyperparameters In our experiments, we consider neural
network representations of the policy and critics. Each of these neural networks contains 3 hidden
layers of 256 units with ELU activations. In addition, we apply layer normalization followed by
a tanh activation after the first layer of these networks as proposed in Abdolmaleki et al. [2]. We
consider a multivariate Gaussian policy, where at a given state we have π(a | s) = N (µ(s),Σ(s))
where µ(s) and Σ(s) represent outputs of the policy network. Σ(s) is a diagonal covariance matrix,
whose diagonal elements are calculated by applying the softplus operator to the outputs of the neural
network. We parameterize the reward and cost critics with separate neural networks. In addition, we
consider target networks that are updated as an exponential moving average with parameter τ = 5e-3.

We consider CRPO [55] as the baseline safe RL algorithm in all of our experiments, which immedi-
ately switches between maximizing rewards and minimizing costs at every update based on the value
of the safety constraint. If the sample-average estimate of the safety constraint for the current batch
of data satisfies the safety budget, we update the policy to maximize rewards. Otherwise, we update
the policy to minimize costs.

After CRPO determines the appropriate objective for the current batch of data, we apply MPO [1] to
calculate policy updates. MPO calculates a non-parametric policy update based on the KL divergence
parameter ϵKL, and then takes a step towards this non-parametric policy while constraining the KL
divergence from updating the mean by βµ and the KL divergence from updating the covariance matrix
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Table 5: Network architectures and algorithm hyperparameters used in experiments

General

Batch size per update 256
Updates per environment step 1
Discount rate (γ) 0.99
Target network exponential moving average (τ ) 5e-3

Policy

Layer sizes 256, 256, 256
Layer activations ELU
Layer norm + tanh on first layer Yes
Initial standard deviation 0.3
Learning rate 1e-4
Non-parametric KL (ϵKL) 0.10
Action penalty KL 1e-3
Action samples per update 20
Parametric mean KL (βµ) 0.01
Parametric covariance KL (βΣ) 1e-5
Parametric KL dual learning rate 0.01

Critics

Layer sizes 256, 256, 256
Layer activations ELU
Layer norm + tanh on first layer Yes
Learning rate 1e-4

RAMU

Transition model samples per data point (n) 5
Latent variable hyperparameter (ϵ) 0.10

by βΣ. We consider per-dimension KL divergence constraints by dividing these parameter values
by the number of action dimensions, and we penalize actions outside of the feasible action limits
using the multi-objective MPO framework [2] as suggested in Hoffman et al. [20]. In order to avoid
potential issues related to the immediate switching between reward and cost objectives throughout
training, we completely solve for the temperature parameter of the non-parametric target policy in
MPO at every update as done in Liu et al. [28]. See Table 5 for the default hyperparameter values
used in our experiments, which are based on default values considered in Hoffman et al. [20].

For our RAMU framework, the latent variable hyperparameter ϵ controls the definition of the
distribution µs,a over transition models. Figure 7 shows the performance of our RAMU framework
in Walker Run and Quadruped Run for ϵ ∈ [0.05, 0.10, 0.15, 0.20]. A larger value of ϵ leads to a
distribution over a wider range of transition models, which results in a more robust approach when
combined with a risk-averse perspective on model uncertainty. We see in Figure 7 that our algorithm
more robustly satisfies safety constraints as ϵ increases, but this robustness also leads to a decrease in
total rewards. We consider ϵ = 0.10 in our experiments, as it achieves strong constraint satisfaction
without a meaningful decrease in rewards. Finally, for computational efficiency we consider n = 5
samples of transition models per data point to calculate sample-based Bellman targets in our RAMU
framework, as we did not observe meaningful improvements in performance from considering a
larger number of samples.

Computational resources All experiments were run on a Linux cluster with 2.9 GHz Intel Gold
processors and NVIDIA A40 and A100 GPUs. The Real-World RL Suite is available under the
Apache License 2.0. We trained policies for 1 million steps across 5 random seeds, which required
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Figure 7: Hyperparameter sweep of latent variable hyperparameter ϵ on Walker Run and Quadruped
Run. RAMU algorithms use the Wang transform with η = 0.75 applied to both the objective and
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approximately one day of wall-clock time on a single GPU for each combination of algorithm and
task using code that has not been optimized for execution speed.
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