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Abstract

Graph parsers rely on scoring every subgraphs001
for building a complete graph. In real syntac-002
tic parsing or semantic parsing, every types003
of subgraphs in terms of syntactic or seman-004
tic roles may generate quite unbalanced dis-005
tribution, which seems not well captured by006
the current graph paring models. Thus we pro-007
pose an enhanced model design to let the parser008
explicitly capture such kind of unbalanced dis-009
tribution. In detail, we introduce Accumula-010
tive Operation-based Induction (AOI) attention011
mechanism to assign accumulative scores for012
words. AOI scorer successfully approximates013
word-level unbalanced distribution. With con-014
ceptually simple but general-purpose design,015
our proposed AOI attention enhancement in-016
deed leads to better parsing performance on a017
wide range of datasets of different parsing tasks,018
which verifies the scalability and robustness of019
capturing diverse subgraph distribution.020

1 Introduction021

Graph parsing models have been successfully ap-022

plied onto syntactic and semantic parsing tasks.023

Generally, graph parser relies on training some024

kind of subgraph scorers, and the parser itself just025

simply searches for a complete graph in terms of026

maximizing the score summing all subgraphs. In027

practical applications, the computational complex-028

ity of graph parsers depends on the order of the029

model, namely, the number of edges in a subgraph.030

For the sake of parsing efficiency, order-1 graph031

parsing is mostly applied.032

Thanks for the well-developed deep learning033

techniques, it offers powerful representation learn-034

ing ability to enable the subgraph scorer in graph035

parsers can accurately capture really salient fea-036

tures, and thus yields new high parsing perfor-037

mance for years. However, we argue that the cur-038

rent graph parsers still miss an important part in039

subgraph scoring when they perform syntactic or040

semantic parsing tasks. We take order-1 graph041
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Figure 1: An example of semantic predicate-argument
dependency parsing graph.

parsing as example in Figure 1, in which every 042

subgraph consists of two words and one edge rep- 043

resenting their relationship. The corresponding 044

subgraph scorer may be as simple as just determin- 045

ing if such relationship exists for the two words. 046

When we take syntactic or semantic roles of the 047

words into consideration, we will find there comes 048

an unbalanced distribution from every subgraphs 049

for complete graph building. 050

For instance, a noun (NN as part-of-speech tag) 051

has nearly 3× higher probability than an adjec- 052

tive (JJ as part-of-speech tag) to be an augment 053

(79.3% v.s. 20.1%) in a semantic dependency 054

parsing dataset (Oepen et al., 2015) for predicate- 055

argument structures. There are also trivial labels in 056

the parsing graph, like edges with DT heads will 057

be of high probability (98.8%) to have a detA1 la- 058

bel. Unbalanced distribution issue not only occurs 059

in word-level, but edge-level as well since 66.5% 060

edges point to augments right to predicates in this 061

dataset. Moreover, the appearance of second-order 062

structures in parsing graph (Wang et al., 2019) also 063

indicates that there should be even higher level 064

correlation between edges. Solving higher-level 065

unbalance requires complex inducting techniques 066

like the second-order parser (Wang et al., 2019). 067

But word-level unbalance, many of which are con- 068

strained by trivial rules, can be solved with rather 069

simple techniques like the attention mechanism. 070

In this paper, we evaluate and mitigate the word- 071

level unbalance in graph parsing. Our direct intu- 072

ition is to use the attention mechanism to approx- 073

imate the unbalanced distribution. The attention 074
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layer is positioned before the pairwise scorer to se-075

lect candidates in advance for certain relationships,076

including edge existence and label type. After the077

attention layer filters candidates that are unlikely078

to be a head or dependent, the pairwise score can079

concentrate on discerning more complex patterns080

of remained candidates.081

To select or filter candidates in practice, we pro-082

pose an Accumulative Operation-based Induction083

(AOI) attention scorer for parsing. AOI uses a one-084

dimensional attention to select candidates for heads085

and dependents. The attention scores are pooled086

from global attention scores on multiple attention087

heads. Compared to conventional global attention088

mechanisms, accumulated attention enjoys a higher089

capacity of capturing attention distribution in mul-090

tiple dependency spans.091

Results from our experiments on a wide variety092

of graph parsing datasets have shown AOI to suc-093

cessfully approximate the word-level unbalanced094

distribution. Thus, AOI leads to prominent im-095

provement on performance for these parsing tasks096

compared to the BiAF scorer.097

Our contributions are listed as follows:098

• We analyze the unbalanced distributions of099

heads and dependents in parsing graphs and100

leverage it for improving performance.101

• We propose a novel attention scorer, AOI, to102

better approximate the distribution of candi-103

dates for parsing graphs than previous scorers.104

• Results from our experiments show that AOI105

outperforms previous parsers significantly on106

a wide range of tasks and datasets.107

2 Unbalanced Distribution Issue108

We show the existence of the unbalanced distribu-109

tion issue in a wide range of datasets in this sec-110

tion. Specifically, we study the correlation between111

heads and dependents and their part-of-speech.112

Due to the length limitation, we only present re-113

sults on semantic predicate-argument and syntactic114

dependency graphs here.115

Under ideal circumstances, edge distributions116

are independent of heads or dependents’ part-of-117

speech.118

qE = p(Eij = 1|POSh
i ) = p(Eij = 1|POSd

j )

1

c
= p(Cij |POSh

i , Eij = 1) = p(Cij |POSd
j , Eij = 1)

119

POS qE H(C) Cmost Prop.

Head

IN 1.00 1.74 prepA2 (44.1%) 20.1%
DT 0.97 0.11 detA1 (98.8%) 8.73%
JJ 0.98 0.22 adjA1 (97.3%) 6.54%
VBD 1.00 1.76 verbA1 (44.3%) 6.54%
, 1.00 1.67 punctA1 (63.6%) 6.22%
VB 0.98 1.68 verbA1 (43.2%) 4.99%
Uni. 0.70 5.39 - (2.4%) -

Dep

NN 0.79 3.43 detA1 (22.3%) 32.3%
NNS 0.97 3.42 adjA1 (20.7%) 16.7%
NNP 0.53 3.29 nounA1 (33.1%) 11.7%
VB 0.90 3.42 compA1 (21.0%) 6.84%
VBD 0.69 3.00 punctA1 (29.6%) 5.19%
VBN 0.80 3.06 auxA2 (32.1%) 4.83%
Uni. 0.41 5.39 - (2.4%) -

Table 1: Word-level unbalance on semantic predicate-
argument dependency dataset SemEval2015 (Oepen
et al., 2015).

POS qE H(C) Cmost Prop.

Head

NN 0.72 3.48 det (27.7%) 22.8%
VBD 0.77 3.10 punct (28.6%) 10.3%
NNS 0.82 3.51 amod (23.9%) 10.1%
IN 0.86 0.84 pobj (88.6%) 9.46%
NNP 0.38 2.94 nn (40.4%) 8.84%
VB 0.83 3.34 aux (25.9%) 7.98%
Uni. 0.42 5.45 - (2.3%) -

Dep

NN 1.00 3.07 pobj(29.9%) 14.0%
IN 1.00 1.05 prep(82.8%) 10.4%
NNP 1.00 2.43 nn(47.5%) 9.77%
DT 1.00 0.41 det(95.5%) 8.61%
JJ 1.00 1.48 amod(80.0%) 6.50%
NNS 1.00 2.55 pobj(39.3%) 6.33%
Uni. 1.00 5.45 - (2.3%) -

Table 2: Word-level unbalance on syntactic dependency
dataset Penn Treebank (Marcus et al., 1993).

where Eij ∈ {0, 1} refers to the existence of 120

an edge from i-th word to j-th word and Cij ∈ 121

{1, · · · , c} refers to the label of the edge. qE 122

represents a fixed probability for an edge to ex- 123

ist. As the existence probabilities of edges are uni- 124

form, the information entropy of classes H(C) = 125∑
i
(−pilog2(pi)) will always be its maximum, 126

log2 c. H(C) will drop when part-of-speech con- 127

tains information about the edge label. 128

Obviously, this is not the case for edge and label 129

distributions in parsing graphs. What makes things 130

even worse, the issue occurs in types of edges that 131

frequently appear in the parsing graph. We list the 132

top-6 most frequent part-of-speech at the head or 133

dependent in Tables 1 and 2 for syntactic and se- 134

mantic dependency treebanks. Uni. refers to every 135

part-of-speech under the ideal circumstance that 136

edges and labels appear with the same probability 137

in every position. qE of Uni. is estimated based 138
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on the statistical property of existing graphs and139

H(C) is maximized under Uni. circumstance. For140

a direct understanding of the label unbalance, we141

propose Cmost which represents the most common142

label on edges grouped by heads and dependents.143

Proportion of Cmost is 1
c under Uni. circumstance.144

Semantic Dependency Graph In semantic de-145

pendency graphs, the most prominent property is146

the high density of edges with heads in a certain147

part-of-speech. All 6 part-of-speeches are corre-148

lated to at least one edge with extremely high prob-149

ability (> 98%). IN, DT and COMMA (,) will be150

the head of an edge with full confidence. 29 in 44151

part-of-speeches have qE > 0.95, showing a large152

group of part-of-speeches to be decisive for the ex-153

istence of edges. For labels, their distributions are154

also uniform as H(C) for heads are less than 1
3 of155

the maximum, indicating heads’ part-of-speeches156

to carry much information about the edge labels.157

Part-of-speeches like DT and JJ have extremely158

low H(C), 0.11 and 0.22 respectively. They may159

directly point to certain edge labels, which makes160

the predictions trivial on these edges.161

Syntactic Dependency Graph Distributions in162

syntactic dependency graphs are similar to seman-163

tic ones except that each word in the sentence acts164

as a dependent due to the property of the depen-165

dency tree. Trivial labels also exist on edges with166

IN head part-of-speech and DT, JJ dependent part-167

of-speech.168

3 Model and Method169

3.1 Background170

We first give a general description about the171

BiAF model as the basis for further discussion.172

For a sentence W = [w1, w2, . . . , wn] with n173

words, BiAF embeds those words and their fea-174

tures (lemma, part-of-speech, character) to repre-175

sentations Xword and Xfeat with dword and dfeat176

dimensions respectively and concatenate them to177

X ∈ Rn×(dword+dfeat).178

X = Embed(W ) = [Xword||Xfeat].179

The embedding is contextualized through bidi-180

rectional long short term memory (BiLSTM)181

(Hochreiter and Schmidhuber, 1997) network. Two182

Multi-layer Perceptrons (MLPs) then project out-183

put from BiLSTM to two different latent spaces184

Xh, Xd for head and dependent representations in185

a pair. 186

X = BiLSTM(X),

Xh, Xd = MLPh(X),MLPd(X).
187

Above is the procedure of the BiAF encoder 188

to encode sentence W . We then describe how the 189

BiAF scorer uses the representations to produce the 190

final score. The BiAF edge scorer contains a weight 191

tensor U edge ∈ Rd×2×d and the BiAF label scorer 192

contains a weight tensor of shape U label ∈ Rd×c×d, 193

where d refers to the encoding dimension in the 194

encoder and c refers to the number of classes for 195

classification. The BiAF scorer uses those weight 196

tensors and biases bedge and blabel to score as fol- 197

lows: 198

BiAF(x, y) = xTUy + b,

Sedge
ij = BiAFedge(Xi

d;edge, Xj
d;edge),

Slabel
ij = BiAFlabel(Xi

h;label, Xj
d;label).

199

3.2 AOI Scorer 200

AOI shares the same encoder as in BiAF, and 201

thus we only describe the AOI scorer in this sec- 202

tion. For predicting scores for edges and differ- 203

ent labels, we first use different MLPs to project 204

them to separate latent scores. In MLPt, t ∈ 205

{edge, label1, label2, . . . , labelk} where k refers 206

to the number of labels. These MLPs are specific 207

MLPs as they project representations for a specific 208

type of scoring. Correspondingly, MLPs in the 209

encoder are general MLPs. 210

Xh, Xd = MLPt(Xh),MLPt(Xd). 211

Here, superfix t is omitted for output as we pro- 212

vide a unified procedure for inference on represen- 213

tations of different types. 214

Our AOI scorer consists of two attentional sub- 215

scorers, SelfAttn scorer and Multi-head Gathering 216

Attention (MHGAttn) scorer. In SelfAttn Scorer, 217

we use a single-headed self-attention mechanism, 218

where we obtain dot product scores SSA
i,j for edge 219

or label. 220

SSA
i,j =Xh

i · Xd
j . 221

MHGAttn is responsible for assigning candi- 222

date attention scores. For Xh
i , X

d
j ∈ Rt where 223

t = p × q, we split them into p attention 224

heads with dimension q: Xh
i,1, X

h
i,2, . . . , X

h
i,p and 225

Xd
j,1, X

d
j,2, . . . , X

d
j,p. For t-th attention head of 226

each representations, we get the timestep-averaged 227

representations as global representations. 228

Gh
t , G

d
t =

1

n

n∑
m=1

Xh
m,t,

1

n

n∑
m=1

Xd
m,t. 229
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Figure 2: Overall architecture of our proposed graph parser and illustration of subscorers.

Those global representations are then concate-230

nated with each attention head are projected to one-231

dimension energy scores E and passed through232

softmax function for attention distribution on this233

head.234

Eh
i,t, E

d
j,t = MLP([Xh

i,t||Gh
t ]),MLP([Xd

j,t||Gd
t ]),

Eh
i,t, E

d
j,t =

exp(Eh
i,t)∑n

m=1 exp(E
h
m,t)

,
exp(Ed

j,t)∑n
m=1 exp(E

d
m,t)

.
235

The attention scores for head and dependent are236

max pooled attention scores on different attention237

heads. Mutual product between those scores pro-238

duces the final MHG attention scores for candidates239

in the sentence. For the balance of attention on sen-240

tences with different lengths, candidate attention is241

multiple by the sentence length n which acts as a242

modifier for attention density.243

Eh
i =max(Eh

i,1, E
h
i,2, . . . , E

h
i,p),

Ed
j =max(Ed

j,1, E
d
j,2, . . . , E

d
j,q),

SMHG
i,j = Eh

i × Ed
j × n

244

The SelfAttn subscorer focuses on the general245

assessment of the relation of head-dependent pairs,246

while the MHGAttn subscorer considers this from247

a more global view. In order to integrate the ad-248

vantages of the two subscorers, we adopt a direct249

product operation on the attention scores from Self-250

Attn and MHGAttn subscorers to obtain the final251

attention scores for AOI scorer.252

Si,j =SSA
i,j × SMHG

i,j .253

Difference between candidate attention and bias254

in BiAF BiAF contains two bias scorers in word-255

level. However, scores from these scorers are used256

to directly modify the logits for prediction. Thus, it257

still attends to each word equally since adding extra 258

bias will not modify the scale of backward gradi- 259

ents for parameter updating. In contrast, candidate 260

attention in AOI does not change the predicting 261

results from pairwise scorers but instead scales the 262

prediction. The gradient flow of backward propa- 263

gation will be weakened from predictions that are 264

considered to be trivial by the attention. Thus, AOI 265

attends on non-trivial parts of training, which im- 266

proves the resulting performance by scaling the 267

weight of training data. 268

4 Experiment 269

4.1 Dataset 270

Our main experiments are conducted on multiple 271

graph parsing dataset. 272

• SemDP We choose SemEval-2015 dataset 273

(Oepen et al., 2015) with three subtasks DM, 274

PAS, PSD, each contains in-domain (ID) and 275

out-of-domain (OOD) test data. 276

• Multilingual SemDP We also conduct exper- 277

iments on multilingual semantic dependency 278

parsing datasets including Chinese (CZ) and 279

Czech (CS) to verify the cross-language gen- 280

eralization of our method. 281

• SynDP Traditional Penn Treebank (PTB) and 282

Chinese Peen Treebank (CTB) (Marcus et al., 283

1993) benchmarks are used for model evalua- 284

tion and performance comparison. 285

• SynCP Like in SynDP, PTB and CTB bench- 286

marks are used for evaluation and comparison. 287
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POS BiAF AOI

KLE KLC KLE KLC

Head

IN 0.011 0.004 0.001 0.001
DT 0.000 0.006 0.000 0.000
JJ 0.004 0.011 0.000 0.002
VBD 0.001 0.032 0.000 0.030
, 0.078 0.001 0.028 0.000
VB 0.003 0.014 0.000 0.012

Dep

NN 0.000 0.011 0.000 0.008
NNS 0.000 0.014 0.000 0.012
NNP 0.000 0.001 0.000 0.001
VB 0.000 0.040 0.000 0.025
VBD 0.001 0.025 0.000 0.015
VBN 0.001 0.073 0.000 0.059

Table 3: Distance (relative entropy) between predicted
and real distributions on semantic predicate-argument
parsing .

4.2 Training Configuration288

The full configuration is omitted here and can be289

found in Appendix A. For embedding, we use pre-290

trained GloVe embedding (Pennington et al., 2014)291

for fine-tuning. Features, including char, lemma,292

and POS, are incorporated through concatenation.293

BERT embedding is projected to lower dimensions294

and concatenated as a feature. Representation di-295

mensions of edges and labels in the AOI scorer are296

the same as the output of the encoder. As DM and297

PAS dependency edges are more concentrated to298

several words than PSD edges, we use 2 attention299

heads in AOI for DM/PAS and 4 attention heads300

for PSD. For constituent parsing, we set attention301

heads in AOI scorer to 2. Dropout (Srivastava et al.,302

2014) is added to Embedding Layers, MLPs and303

LSTMs to prevent overfitting.304

To be more detailed in training process, we use305

Adam optimizer (Kingma and Ba, 2015) for param-306

eter updating. Cross entropy loss is calculated for307

optimization, and only labels on exist edges involve308

in loss calculation for the label scorer. For BERT,309

we apply bert-large-cased for English datasets,310

bert-base-chinese for Chinese datasets, and bert-311

base-multilingual-cased for multilingual datasets.312

4.3 Unbalanced Distribution Approximation313

The results for unbalanced distribution approxi-314

mation are presented in Table 3 and 4. Relative315

entropy is applied to evaluate the distance between316

distributions of predictions and real data. The edge317

distribution is 2-dimension and the label distribu-318

tion is c-dimension. AOI approximates the real319

distribution prominently better as the distance is320

POS BiAF AOI

KLE KLC KLE KLC

Head

NN 0.000 0.052 0.000 0.046
VBD 0.001 0.040 0.000 0.034
NNS 0.000 0.053 0.000 0.049
IN 0.000 0.050 0.000 0.040
NNP 0.000 0.026 0.000 0.021
VB 0.001 0.044 0.000 0.040

Dep

NN 0.000 0.022 0.000 0.021
IN 0.000 0.014 0.000 0.010
NNP 0.000 0.042 0.000 0.039
DT 0.000 0.030 0.000 0.027
JJ 0.000 0.086 0.000 0.056
NNS 0.000 0.095 0.000 0.087

Table 4: Distance (relative entropy) between predicted
and real distributions on syntactic dependency parsing.

reduced for all part-of-speeches on both syntactic 321

and semantic dependency graphs, except for some 322

cases that relative entropy is lower than 0.001. 323

As semantic dependency graph is in rather an 324

irregular pattern compared to the syntactic depen- 325

dency graph, AOI reduces more distribution dis- 326

tance of edge existence on semantic dependency 327

graphs. For label distribution, the distance reduc- 328

tion is significant and can be attributed to MH- 329

GAttn’s label-wise candidate attention assigning, 330

which modifies the label distributions by attention 331

scores. 332

4.4 Semantic Parsing Results 333

English SemDP Results from our experiments 334

on English SemDP datasets are shown in Table 5. 335

We re-implement the BiAF parser and find its per- 336

formance close to previously reported results. We 337

then run our AOI parser on these datasets and find 338

a salient performance improvement, especially on 339

the PSD dataset, where the AOI parser results in 340

nearly 1.0 F1 score improvement. On average, the 341

AOI parser leads to about 0.6 F1 score improve- 342

ment on both ID and OOD datasets from the pre- 343

vious baseline BiAF parser. Remarkably, AOI has 344

reached a new SOTA with no extra auxiliary mech- 345

anism by defeating the BiAF model with second- 346

order method incorporated as auxiliary mechanism 347

(Wang et al., 2019). We also compare the perfor- 348

mance of BiAF and AOI with the incorporation 349

of second-order refining and BERT. Experiment 350

results have shown AOI still results in more sig- 351

nificant improvement, which is strong proof of the 352

efficiency of our AOI parser. 353
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Model DM PAS PSD Avg

ID OOD ID OOD ID OOD ID OOD

(Du et al., 2015) 89.09 81.84 91.26 87.23 75.66 73.28 85.34 80.78
(Almeida and Martins, 2015) 88.21 81.75 90.88 86.88 76.36 74.82 85.15 81.15
(Peng et al., 2017) 90.40 85.30 92.70 89.00 78.50 76.40 87.20 83.60
(Wang et al., 2018) 90.30 84.90 91.70 87.60 78.60 75.90 86.90 82.80

BiAF (Dozat and Manning, 2018) 93.70 88.90 93.90 90.60 81.00 79.40 89.50 86.30
BiAF 93.52 88.92 93.87 90.78 81.30 79.27 89.56 86.32
AOI 93.92 89.32 94.18 91.15 82.27 79.78 90.12 86.75

BiAF2o (Wang et al., 2019) 93.90 89.50 94.20 91.30 81.40 79.50 89.80 86.80
AOI2o 94.21 89.78 94.33 91.50 82.61 80.12 90.38 87.14

BiAF (w/ BERT) 94.61 91.59 95.04 93.04 82.98 80.10 90.87 88.24
AOI (w/ BERT) 95.08 91.80 95.31 93.64 83.96 81.05 91.45 88.83

Table 5: Comparison of results on SemEval-2015 SemDP datasets. Underline: significant improvement (p < 0.05).

Model CS-PSD CZ-PAS Avg
ID OOD ID

BiAF 86.12 71.05 86.70 81.29
AOI 86.67 71.61 87.60 81.96

BiAF (w/ BERT) 87.04 72.98 88.90 82.97
AOI (w/ BERT) 87.68 73.44 89.29 83.47

Table 6: Comparison of results on multilingual SemDP
datasets.

Multilingual SemDP As Table 6, AOI still354

shows salient performance improvement on multi-355

lingual SemDP as it outperforms the baseline BiAF356

model by 0.9 F1 score on the Chinese PAS-ID357

dataset. On average, AOI remarkably leads to 0.67358

F1 score improvement from the baseline. With359

the incorporation of multilingual BERT, the per-360

formance of parsers gets improved, and AOI still361

outperforms the baseline by keeping a gap of 0.50362

F1 score on average.363

4.5 Syntactic Parsing Result364

To illustrate the cross-task effectiveness of our pro-365

posed AOI scorer, we also conducted experiments366

on syntactic parsing. Due to the difference in367

task between syntactic parsing and semantic depen-368

dency parsing, the advantages of AOI over BiAF369

will no longer be obvious. Therefore, the compari-370

son of other tasks mainly illustrates the lower limit371

of the performance of our scorer under the situation372

without special data features.373

Syntactic Dependency Parsing SynDP is a task374

that is similar to SemDP, but it is relatively simpler.375

Since in the task definition, a dependent has only376

one head, therefore does not require as much rea-377

soning as in SemDP. In the evaluation of SynDP,378

Model PTB CTB

UAS LAS UAS LAS

BiAF 95.88 94.25 85.43 82.79
AOI 96.07 94.42 85.76 83.08

BiAF (w/ BERT) 96.62 94.97 90.62 88.62
AOI (w/ BERT) 96.79 95.15 90.75 88.81

Table 7: Comparison of results on syntactic dependency
parsing datasets.

the results of each model are shown in Table 7. 379

The comparison shows that our AOI scorer still 380

outperforms the BiAF baseline on the SynDP task, 381

while the improvement is not as significant as on 382

the SemDP task. Because the task is relatively sim- 383

ple and BiAF is strong enough for it, the baseline 384

performs exceptionally well. As a result, compared 385

to BiAF, our AOI method is not only comparable 386

but also outperforms it in PTB and CTB, demon- 387

strating that our AOI is a general parsing scorer. 388

Syntactic Constituency Parsing Although 389

SynCP is not a head-dependent pair classification 390

task in a narrow sense, and its span division 391

scoring can be modeled as a pair classification 392

task on the left and right boundaries of the span. 393

Therefore the BiAF and AOI pair scorers can be 394

employed as well. In the SynCP task, our AOI 395

produced fairly similar results as BiAF, confirming 396

that our AOI and BiAF scorers perform similarly 397

in general parsing tasks. When parsing tasks like 398

SemDP require more global reasoning, AOI can 399

provide a significant performance boost. 400

Generally speaking, AOI boosts performance 401

more on SemDP tasks. This can be explained by 402

comparison between Table 3 and 4 in which more 403

unbalance exists in edge distributions of semantic 404
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Model PTB CTB

LP LR LF1 LP LR LF1

BiAF 94.18 93.96 94.07 88.77 88.92 88.85
AOI 94.25 94.16 94.20 89.44 89.16 89.29

BiAF (w/ BERT) 95.67 95.29 95.48 92.13 91.94 92.03
AOI (w/ BERT) 95.75 95.47 95.61 92.46 92.27 92.36

Table 8: Comparison of results on constituency parsing
datasets.

parsing graphs. Thus, there are more edges for the405

rectification of the MHGAttn on candidates, which406

results in a better parsing graph produced.407

4.6 How about directly using POS for scaling?408

Other than AOI, another choice is to learn part-409

of-speech-based weights to scale the attention on410

different positions of the parsing graph. We add411

such an attention scorer to BiAF and find the re-412

sults not comparable to AOI’s (81.84 v.s. 82.27413

F1 on PSD-ID and 94.31 v.s. 94.42 LAS on PTB).414

This can be attributed to the fact that unbalance is415

more complex than just POS-to-label and should416

be learned by more carefully designed structures.417

Still, adding such a modifier will benefit the train-418

ing of the parser as the results are higher than the419

initial BiAF.420

5 Further Analysis421

5.1 Ablation Study422

We conduct the ablation study on PSD-ID dataset423

for the SemDP task. Removing the MHGAttn424

Scorer results in a drop of 0.55 F1 score (81.72)425

and using only one attention head leads to a drop426

of 0.18 F1 score (82.09). These results verify the427

contributions of attention on candidates and the428

multi-head implementation of it.429

5.2 Performance v.s. Complexity430

Sentence Length We explore the robustness of431

our model by comparing its performance with432

the baseline BiAF model on sentences of differ-433

ent lengths. Intuitively, a longer sentence impli-434

cates higher complexity and makes it harder for435

the parser to parse. AOI shows strong robustness436

when parsing sentences with ordinary length, that437

is, fewer than 30 words. Also, AOI outperforms438

BiAF on both extremely long and rather short sen-439

tences, verifying the general performance improve-440

ment from our proposed AOI scorer.441

BiAF; AOI

15 20 25 30 35 40 45

78

80

82

84

2 4 6 8 10 12 14 16 18
78

80

82

84

Figure 3: Model Performance vs. Sentence Length
(Upper) & Dependency Head (Lower) on SemEval 2015
PSD-ID dataset.

Number of Dependency Head Our AOI model 442

shows high robustness when dependency heads in 443

the sentence increase. AOI keeps a gap with the 444

baseline BiAF on performance when parsing sen- 445

tences of the different number of dependency heads. 446

Moreover, while BiAF will degrade on sentences 447

with more than 18 heads, our AOI still keeps a 448

strong performance on those sentences. 449

5.3 Case Study 450

Here we use a case study to show how our AOI 451

scorer produces a better result than BiAF by taking 452

advantage of unbalanced dependency distribution. 453

We take edge building as an example, as shown in 454

Table 4. In the left figure, the BiAF parses each 455

component in the sentence equally. Thus it has 456

missed the dependency edge from deny to that. 457

AOI instead assigns global attention to compo- 458

nents. With multiple head attention, AOI chooses 459

Brokers, do and deny as candidates for heads and 460

Brokers, n’t and that for dependents. Thereby, 461

the AOI scorer can be more focused on assigning 462

scores to the edges with a higher existing probabil- 463

ity between those candidates. As a result, the AOI 464

scorer is more capable of building edges between 465

components and has built all dependency edges 466

correctly as in the case above. Also, we can see 467

the global attention for heads is concentrated on 468

nouns (Broker) and verbs (do, deny), which proves 469
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Brokers

Brokers

<ROOT>

<ROOT>

.

.
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that

Brokers

<ROOT>

.
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n't
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that

that Brokers<ROOT> .

1.0

0.0

w/ edge w/o edge

0.2

0.4

0.6

0.8

do n't deny that

ACT-arg

RHEM
PAT-argACT-arg

RHEM

Figure 4: A case study. Left is the parsing result of BiAF and right is the parsing result of AOI. Deeper color refers
to higher global attention (AMH attention) score.

the ability of our scorer to be concerned about and470

leverage the unbalanced dependency distribution471

of data.472

6 Related Work473

Dependency parsers aim to build directional depen-474

dency edges between components in a sentence.475

Transition-based parsers (Wang et al., 2016, 2018;476

Fernández-González and Gómez-Rodríguez, 2020)477

maintained a stack and relied on the stack and con-478

text to choose actions like edge building to com-479

plete parsing. Graph-based parsers do this by scor-480

ing edge and label graphs of the sentence. Early481

graph-based parsers (Kiperwasser and Goldberg,482

2016; Hashimoto et al., 2016) simply applies feed483

forward and recurrent neural network to score de-484

pendencies for building and labeling edges. The485

introduction of BiAF (Dozat and Manning, 2017,486

2018; Zhang et al., 2020) significantly boosts the ef-487

ficiency and performance of graph parsers on a vari-488

ety of graph parsing tasks. High efficiency and per-489

formance of graph-based parsers even make some490

transition-based parsers (Fernández-González and491

Gómez-Rodríguez, 2020) use graph scorers to im-492

prove the prediction of transition actions.493

Unbalance exists in parsing graphs at word-level494

and edge-level. To leverage these unbalance, CRFs495

(Jia et al., 2020a) and second-order mechanisms496

(Jia et al., 2020b; Wang et al., 2019) have been497

proposed to improve parsing performance. These498

works concentrate on relationships among edges499

while we aim to exploit word-edge correlations.500

We study unbalanced distributions related to part-501

of-speeches and build a parser with better perfor-502

mance.503

The attention mechanism is widely used in the 504

deep learning field. In computer vision, attention 505

scoring is commonly used for models like SENet 506

(Hu et al., 2017) and CBAM (Woo et al., 2018). 507

The attention mechanism has also been success- 508

fully applied to NLP models including sequence- 509

to-sequence with attention (Bahdanau et al., 2015) 510

and self-attention mechanism-based models like 511

Transformer (Vaswani et al., 2017). 512

First proposed in the transformer structure 513

(Vaswani et al., 2017) for neural machine trans- 514

lation, multi-head attention has drawn much at- 515

tention from the whole NLP community so far. 516

Multi-head attention can be applied for better gen- 517

erative models for language models (Guo et al., 518

2019; Sarkhel et al., 2020), and more precise under- 519

standing (Cheng et al., 2021; Jin et al., 2020; Ku- 520

mar et al., 2020). Moreover, the contribution from 521

multi-head attention has been carefully researched 522

(Ampomah et al., 2020; Voita et al., 2019). For 523

parsing, Li et al. (2019) used Transformer as an en- 524

coder for dependency parsing. Though multi-head 525

attention is introduced initially as the self-attention 526

between words, we develop this mechanism into 527

global attention for scoring dependency edges. 528

7 Conclusion 529

In this paper, we elaborate on the unbalanced sub- 530

graph distribution issue in graph parsing. To miti- 531

gate the word-level unbalance, we propose a novel 532

attention scorer AOI which applies accumulative at- 533

tention to approximate the unbalance. Parsing on a 534

wide variety of graph parsing tasks verifies the per- 535

formance of AOI enriched parsers to be generally 536

higher than conventional graph parsers. 537
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A Configuration725

Embed Embedding Dimension

Word Embed 100
Char 50
POS 100
Lemma 100
BERT 100

MLPs&BiLSTMs Embedding Dimension

BiLSTMs 400× 2
Edge MLPs 500
Label MLPs 160

AOI Value

Edge Dimension 500
Label Dimension 160
Edge Head 2/4
Label Head 2/4

Dropout Probability

Embed 0.33
MLPs 0.33
LSTMs 0.33

Optimizer Value

Learning Rate 0.002
Adam µ 0.9
Adam ν 0.9
Batch Size 5000
Decay Rate 0.75
Decay Step 5000

Table 9: Full configuration of the AOI model

11


