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Abstract

Graph parsers rely on scoring every subgraphs
for building a complete graph. In real syntac-
tic parsing or semantic parsing, every types
of subgraphs in terms of syntactic or seman-
tic roles may generate quite unbalanced dis-
tribution, which seems not well captured by
the current graph paring models. Thus we pro-
pose an enhanced model design to let the parser
explicitly capture such kind of unbalanced dis-
tribution. In detail, we introduce Accumula-
tive Operation-based Induction (AOI) attention
mechanism to assign accumulative scores for
words. AOI scorer successfully approximates
word-level unbalanced distribution. With con-
ceptually simple but general-purpose design,
our proposed AOI attention enhancement in-
deed leads to better parsing performance on a
wide range of datasets of different parsing tasks,
which verifies the scalability and robustness of
capturing diverse subgraph distribution.

1 Introduction

Graph parsing models have been successfully ap-
plied onto syntactic and semantic parsing tasks.
Generally, graph parser relies on training some
kind of subgraph scorers, and the parser itself just
simply searches for a complete graph in terms of
maximizing the score summing all subgraphs. In
practical applications, the computational complex-
ity of graph parsers depends on the order of the
model, namely, the number of edges in a subgraph.
For the sake of parsing efficiency, order-1 graph
parsing is mostly applied.

Thanks for the well-developed deep learning
techniques, it offers powerful representation learn-
ing ability to enable the subgraph scorer in graph
parsers can accurately capture really salient fea-
tures, and thus yields new high parsing perfor-
mance for years. However, we argue that the cur-
rent graph parsers still miss an important part in
subgraph scoring when they perform syntactic or
semantic parsing tasks. We take order-1 graph
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Figure 1: An example of semantic predicate-argument
dependency parsing graph.

parsing as example in Figure 1, in which every
subgraph consists of two words and one edge rep-
resenting their relationship. The corresponding
subgraph scorer may be as simple as just determin-
ing if such relationship exists for the two words.
When we take syntactic or semantic roles of the
words into consideration, we will find there comes
an unbalanced distribution from every subgraphs
for complete graph building.

For instance, a noun (NN as part-of-speech tag)
has nearly 3x higher probability than an adjec-
tive (JJ as part-of-speech tag) to be an augment
(79.3% v.s. 20.1%) in a semantic dependency
parsing dataset (Oepen et al., 2015) for predicate-
argument structures. There are also trivial labels in
the parsing graph, like edges with DT heads will
be of high probability (98.8%) to have a det4; la-
bel. Unbalanced distribution issue not only occurs
in word-level, but edge-level as well since 66.5%
edges point to augments right to predicates in this
dataset. Moreover, the appearance of second-order
structures in parsing graph (Wang et al., 2019) also
indicates that there should be even higher level
correlation between edges. Solving higher-level
unbalance requires complex inducting techniques
like the second-order parser (Wang et al., 2019).
But word-level unbalance, many of which are con-
strained by trivial rules, can be solved with rather
simple techniques like the attention mechanism.

In this paper, we evaluate and mitigate the word-
level unbalance in graph parsing. Our direct intu-
ition is to use the attention mechanism to approx-
imate the unbalanced distribution. The attention



layer is positioned before the pairwise scorer to se-
lect candidates in advance for certain relationships,
including edge existence and label type. After the
attention layer filters candidates that are unlikely
to be a head or dependent, the pairwise score can
concentrate on discerning more complex patterns
of remained candidates.

To select or filter candidates in practice, we pro-
pose an Accumulative Operation-based Induction
(AOI) attention scorer for parsing. AOI uses a one-
dimensional attention to select candidates for heads
and dependents. The attention scores are pooled
from global attention scores on multiple attention
heads. Compared to conventional global attention
mechanisms, accumulated attention enjoys a higher
capacity of capturing attention distribution in mul-
tiple dependency spans.

Results from our experiments on a wide variety
of graph parsing datasets have shown AOI to suc-
cessfully approximate the word-level unbalanced
distribution. Thus, AOI leads to prominent im-
provement on performance for these parsing tasks
compared to the BiAF scorer.

Our contributions are listed as follows:

* We analyze the unbalanced distributions of
heads and dependents in parsing graphs and
leverage it for improving performance.

* We propose a novel attention scorer, AOI, to
better approximate the distribution of candi-
dates for parsing graphs than previous scorers.

* Results from our experiments show that AOI
outperforms previous parsers significantly on
a wide range of tasks and datasets.

2 Unbalanced Distribution Issue

We show the existence of the unbalanced distribu-
tion issue in a wide range of datasets in this sec-
tion. Specifically, we study the correlation between
heads and dependents and their part-of-speech.
Due to the length limitation, we only present re-
sults on semantic predicate-argument and syntactic
dependency graphs here.

Under ideal circumstances, edge distributions
are independent of heads or dependents’ part-of-
speech.

qe = p(Eij = 1|POS}") = p(Ey; = 1|POS})

% — p(Cy;|POS", Eyj = 1) = p(Ci;|[POSY, Eij = 1)

POS ¢r H(C) Chost Prop.
IN 1.00 1.74 prepaz (44.1%) 20.1%
DT 0.97 0.11 deta1 (98.8%) 8.73%
JJ 098 0.22 adja1 (97.3%) 6.54%
Head VBD 1.00 1.76 verb a1 (44.3%) 6.54%
, 1.00 1.67  puncta; (63.6%) 6.22%
VB 098 1.68 verbai (432%)  4.99%
Uni. 0.70 5.39 - (2.4%) -
NN 0.79 3.43 deta1 (22.3%) 32.3%
NNS 097 342 adja1 (20.7%) 16.7%
NNP 053 3.29 noungi (33.1%) 11.7%
Dep VB 090 3.42 compai (21.0%) 6.84%
VBD 0.69 3.00 punctai (29.6%) 5.19%
VBN 0.80 3.06 aux a2 (32.1%) 4.83%

Uni. 041 5.39 - (2.4%) -

Table 1: Word-level unbalance on semantic predicate-
argument dependency dataset SemEval2015 (Oepen
et al., 2015).

POS qE H(C) Chost Prop.
NN 0.72 3.48 det (27.7%) 22.8%
VBD 0.77 3.10 punct (28.6%) 10.3%
NNS 0.82 3.51 amod (23.9%) 10.1%
Head IN 0.86 0.84 pobj (88.6%) 9.46%
NNP 038 294 nn (40.4%) 8.84%
VB 0.83 3.34 aux (25.9%) 7.98%
Uni. 042 545 -(2.3%) -
NN 1.00 3.07 pobj(29.9%) 14.0%
IN 1.00 1.05 prep(82.8%) 10.4%
NNP 1.00 243 nn(47.5%) 9.77%
Dep DT 1.00 041 det(95.5%) 8.61%
1 1.00 1.48 amod(80.0%)  6.50%
NNS 1.00 2.55 pobj(39.3%) 6.33%
Uni. 1.00 545 -(2.3%) -

Table 2: Word-level unbalance on syntactic dependency
dataset Penn Treebank (Marcus et al., 1993).

where F;; € {0,1} refers to the existence of
an edge from i-th word to j-th word and Cj; €
{1,--- ,c} refers to the label of the edge. ¢gp
represents a fixed probability for an edge to ex-
ist. As the existence probabilities of edges are uni-
form, the information entropy of classes H (C') =
> (—piloga(p;)) will always be its maximum,

7
log, c. H(C') will drop when part-of-speech con-
tains information about the edge label.

Obviously, this is not the case for edge and label
distributions in parsing graphs. What makes things
even worse, the issue occurs in types of edges that
frequently appear in the parsing graph. We list the
top-6 most frequent part-of-speech at the head or
dependent in Tables 1 and 2 for syntactic and se-
mantic dependency treebanks. Uni. refers to every
part-of-speech under the ideal circumstance that
edges and labels appear with the same probability
in every position. gg of Uni. is estimated based



on the statistical property of existing graphs and
H(C') is maximized under Uni. circumstance. For
a direct understanding of the label unbalance, we
propose Ci,ost Which represents the most common
label on edges grouped by heads and dependents.
Proportion of Cyy,st 18 % under Uni. circumstance.

Semantic Dependency Graph In semantic de-
pendency graphs, the most prominent property is
the high density of edges with heads in a certain
part-of-speech. All 6 part-of-speeches are corre-
lated to at least one edge with extremely high prob-
ability (> 98%). IN, DT and COMMA (,) will be
the head of an edge with full confidence. 29 in 44
part-of-speeches have g > 0.95, showing a large
group of part-of-speeches to be decisive for the ex-
istence of edges. For labels, their distributions are
also uniform as H (C') for heads are less than % of
the maximum, indicating heads’ part-of-speeches
to carry much information about the edge labels.
Part-of-speeches like DT and JJ have extremely
low H(C), 0.11 and 0.22 respectively. They may
directly point to certain edge labels, which makes
the predictions trivial on these edges.

Syntactic Dependency Graph Distributions in
syntactic dependency graphs are similar to seman-
tic ones except that each word in the sentence acts
as a dependent due to the property of the depen-
dency tree. Trivial labels also exist on edges with
IN head part-of-speech and DT, JJ dependent part-
of-speech.

3 Model and Method

3.1 Background

We first give a general description about the
BiAF model as the basis for further discussion.
For a sentence W = [wq,ws,...,w,] with n
words, BiAF embeds those words and their fea-
tures (lemma, part-of-speech, character) to repre-
sentations Xy,orq and X feqp With dyyorg and dyeqs

dimensions respectively and concatenate them to
X = R’VLX (dword+dfeat) .

X = Embed(W) = [Xword||Xfeat]-

The embedding is contextualized through bidi-
rectional long short term memory (BiLSTM)
(Hochreiter and Schmidhuber, 1997) network. Two
Multi-layer Perceptrons (MLPs) then project out-
put from BiLSTM to two different latent spaces
X" X for head and dependent representations in

a pair.
X = BiLSTM(X),
X" X% =MLP"(X),MLP?(X).

Above is the procedure of the BiAF encoder
to encode sentence W. We then describe how the
BiAF scorer uses the representations to produce the
final score. The BiAF edge scorer contains a weight
tensor U¢%9¢ ¢ R¥*2*4 and the BiAF label scorer
contains a weight tensor of shape U'@b¢l ¢ Rdxexd,
where d refers to the encoding dimension in the
encoder and c refers to the number of classes for
classification. The BiAF scorer uses those weight
tensors and biases b°%9¢ and b'?! to score as fol-
lows:

BiAF(z,y) = Uy +b,
Siejdge _ BiAFedge (Xid;edge’ de;edgE)’
Sé?bel _ BiAFlabel ()(Z_h,;label7 de;label).

3.2 AOI Scorer

AOI shares the same encoder as in BiAF, and
thus we only describe the AOI scorer in this sec-
tion. For predicting scores for edges and differ-
ent labels, we first use different MLPs to project
them to separate latent scores. In MLP!, ¢ €
{edge, labely,labely, . . . labely} where k refers
to the number of labels. These MLPs are specific
MLPs as they project representations for a specific
type of scoring. Correspondingly, MLPs in the
encoder are general MLPs.

X" Xx*=MLP'(X"), MLP'(X?).

Here, superfix ¢ is omitted for output as we pro-
vide a unified procedure for inference on represen-
tations of different types.

Our AOI scorer consists of two attentional sub-
scorers, SelfAttn scorer and Multi-head Gathering
Attention (MHGAT(ttn) scorer. In SelfAttn Scorer,
we use a single-headed self-attention mechanism,
where we obtain dot product scores SEJA for edge
or label.

Sot =Xl XY,

MHGALttn is responsible for assigning candi-
date attention scores. For X{L,X;l € R! where
t = p X q, we split them into p attention
heads with dimension ¢: X[fl, XZ-}7L2, . ,X{fp and
X4, Xy, ..., X4, For t-th attention head of
each representations, we get the timestep-averaged
representations as global representations.

1 Z" 1 Z”
h d _ -+ h - d
Gt 7Gt - n X’m,t7 n X’m,t'
m=1 m=1
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Figure 2: Overall architecture of our proposed graph parser and illustration of subscorers.

Those global representations are then concate-
nated with each attention head are projected to one-
dimension energy scores E and passed through
softmax function for attention distribution on this
head.

Ei}fn E;‘i,t = MLP([X;QHG,’Z]), MLP([XJ%tHG?D?
6$P(Ei}ft) 637P(E§'i,t)
Z:m:1 emp(Efn,t) ’ Z::z:l ea:p(Efmt)

h d
Ei,t7 Ej,t =

The attention scores for head and dependent are
max pooled attention scores on different attention
heads. Mutual product between those scores pro-
duces the final MHG attention scores for candidates
in the sentence. For the balance of attention on sen-
tences with different lengths, candidate attention is
multiple by the sentence length n which acts as a
modifier for attention density.

E! =max(E!'y, El'y, ..., El),
E} =max(E¢ 1, Efs, ..., EL),
MHG h d
Si,j = Ez X Eg Xn
The SelfAttn subscorer focuses on the general
assessment of the relation of head-dependent pairs,
while the MHGALtn subscorer considers this from
a more global view. In order to integrate the ad-
vantages of the two subscorers, we adopt a direct
product operation on the attention scores from Self-
Attn and MHGALtn subscorers to obtain the final
attention scores for AOI scorer.

SA MHG
Si7j :Si,j X Si,j .

Difference between candidate attention and bias
in BiAF BiAF contains two bias scorers in word-
level. However, scores from these scorers are used
to directly modify the logits for prediction. Thus, it

still attends to each word equally since adding extra
bias will not modify the scale of backward gradi-
ents for parameter updating. In contrast, candidate
attention in AOI does not change the predicting
results from pairwise scorers but instead scales the
prediction. The gradient flow of backward propa-
gation will be weakened from predictions that are
considered to be trivial by the attention. Thus, AOI
attends on non-trivial parts of training, which im-
proves the resulting performance by scaling the
weight of training data.

4 Experiment

4.1 Dataset

Our main experiments are conducted on multiple
graph parsing dataset.

e SemDP We choose SemEval-2015 dataset
(Oepen et al., 2015) with three subtasks DM,
PAS, PSD, each contains in-domain (ID) and
out-of-domain (OOD) test data.

* Multilingual SemDP We also conduct exper-
iments on multilingual semantic dependency
parsing datasets including Chinese (CZ) and
Czech (CS) to verify the cross-language gen-
eralization of our method.

* SynDP Traditional Penn Treebank (PTB) and
Chinese Peen Treebank (CTB) (Marcus et al.,
1993) benchmarks are used for model evalua-
tion and performance comparison.

* SynCP Like in SynDP, PTB and CTB bench-
marks are used for evaluation and comparison.



POS BiAF AOI
KL¥ KL KL¥ KIL®

IN 0.011 0.004 0.001 0.001

DT  0.000 0.006 0.000 0.000

1 0.004 0.011 0.000 0.002

Head VBD 0001 0.032 0.000 0.030
, 0.078 0.001 0.028 0.000

VB 0.003 0.014 0.000 0.012

NN 0000 0.011 0.000 0.008

NNS 0.000 0014 0.000 0.012

NNP 0.000 0.001 0.000 0.001

Dep VB  0.000 0.040 0.000 0.025
VBD 0.001 0.025 0.000 0.015

VBN 0.001 0.073 0.000 0.059

Table 3: Distance (relative entropy) between predicted
and real distributions on semantic predicate-argument
parsing .

4.2 Training Configuration

The full configuration is omitted here and can be
found in Appendix A. For embedding, we use pre-
trained GloVe embedding (Pennington et al., 2014)
for fine-tuning. Features, including char, lemma,
and POS, are incorporated through concatenation.
BERT embedding is projected to lower dimensions
and concatenated as a feature. Representation di-
mensions of edges and labels in the AOI scorer are
the same as the output of the encoder. As DM and
PAS dependency edges are more concentrated to
several words than PSD edges, we use 2 attention
heads in AOI for DM/PAS and 4 attention heads
for PSD. For constituent parsing, we set attention
heads in AOI scorer to 2. Dropout (Srivastava et al.,
2014) is added to Embedding Layers, MLPs and
LSTMs to prevent overfitting.

To be more detailed in training process, we use
Adam optimizer (Kingma and Ba, 2015) for param-
eter updating. Cross entropy loss is calculated for
optimization, and only labels on exist edges involve
in loss calculation for the label scorer. For BERT,
we apply bert-large-cased for English datasets,
bert-base-chinese for Chinese datasets, and bert-
base-multilingual-cased for multilingual datasets.

4.3 Unbalanced Distribution Approximation

The results for unbalanced distribution approxi-
mation are presented in Table 3 and 4. Relative
entropy is applied to evaluate the distance between
distributions of predictions and real data. The edge
distribution is 2-dimension and the label distribu-
tion is c-dimension. AOI approximates the real
distribution prominently better as the distance is

POS BiAF AOI

KL KL KL¥ KIL¢

NN 0000 0.052 0.000 0.046

VBD 0.001 0.040 0.000 0.034

NNS 0.000 0.053 0.000 0.049

Head IN 0.000 0.050 0.000 0.040
NNP 0.000 0.026 0.000 0.021

VB  0.001 0.044 0.000 0.040

NN  0.000 0.022 0.000 0.021

IN 0.000 0.014 0.000 0.010

NNP 0.000 0.042 0.000 0.039

Dep DT  0.000 0.030 0.000 0.027
1 0.000 0.086 0.000 0.056

NNS 0.000 0.095 0.000 0.087

Table 4: Distance (relative entropy) between predicted
and real distributions on syntactic dependency parsing.

reduced for all part-of-speeches on both syntactic
and semantic dependency graphs, except for some
cases that relative entropy is lower than 0.001.

As semantic dependency graph is in rather an
irregular pattern compared to the syntactic depen-
dency graph, AOI reduces more distribution dis-
tance of edge existence on semantic dependency
graphs. For label distribution, the distance reduc-
tion is significant and can be attributed to MH-
GAttn’s label-wise candidate attention assigning,
which modifies the label distributions by attention
scores.

4.4 Semantic Parsing Results

English SemDP Results from our experiments
on English SemDP datasets are shown in Table 5.
We re-implement the BiAF parser and find its per-
formance close to previously reported results. We
then run our AOI parser on these datasets and find
a salient performance improvement, especially on
the PSD dataset, where the AOI parser results in
nearly 1.0 F1 score improvement. On average, the
AOI parser leads to about 0.6 F1 score improve-
ment on both ID and OOD datasets from the pre-
vious baseline BiAF parser. Remarkably, AOI has
reached a new SOTA with no extra auxiliary mech-
anism by defeating the BiAF model with second-
order method incorporated as auxiliary mechanism
(Wang et al., 2019). We also compare the perfor-
mance of BiAF and AOI with the incorporation
of second-order refining and BERT. Experiment
results have shown AOI still results in more sig-
nificant improvement, which is strong proof of the
efficiency of our AOI parser.



Model DM PAS PSD Avg

ID OOD ID OOD ID OOD ID OOD
(Du et al., 2015) 89.09 81.84 9126 8723 7566 7328 8534 80.78
(Almeida and Martins, 2015) 8821 8175 90.88 86.88 7636 7482 8515 8l.15
(Peng et al., 2017) 90.40 8530 9270 89.00 78.50 7640 87.20 83.60
(Wang et al., 2018) 90.30 8490 91.70 87.60 78.60 7590 86.90 82.80
BiAF (Dozat and Manning, 2018)  93.70  88.90 93.90 90.60 81.00 79.40 89.50 86.30
BiAF 9352 88.92 9387 9078 8130 79.27 89.56 86.32
AOI 93.92 89.32 94.18 91.15 8227 7978 90.12 86.75
BiAF20 (Wang et al., 2019) 93.90 89.50 9420 9130 8140 79.50 89.80 86.80
AOI20 94.21 89.78 9433 9150 82.61 80.12 90.38 87.14
BiAF (w/ BERT) 9461 9159 9504 93.04 8298 80.10 90.87 88.24
AOI (w/ BERT) 95.08 91.80 9531 93.64 83.96 81.05 9145 88.83

Table 5: Comparison of results on SemEval-2015 SemDP datasets. Underline: significant improvement (p < 0.05).

CS-PSD CZ-PAS

Model Avg
1D 00D D

BiAF 86.12  71.05 86.70 81.29

AOI 86.67 71.61 87.60 81.96

BiAF (w/ BERT) 87.04 72.98 88.90 82.97

AOI (w/ BERT)  87.68 73.44 89.29 83.47

Table 6: Comparison of results on multilingual SemDP
datasets.

Multilingual SemDP As Table 6, AOI still
shows salient performance improvement on multi-
lingual SemDP as it outperforms the baseline BiAF
model by 0.9 F1 score on the Chinese PAS-ID
dataset. On average, AOI remarkably leads to 0.67
F1 score improvement from the baseline. With
the incorporation of multilingual BERT, the per-
formance of parsers gets improved, and AOI still
outperforms the baseline by keeping a gap of 0.50
F1 score on average.

4.5 Syntactic Parsing Result

To illustrate the cross-task effectiveness of our pro-
posed AOI scorer, we also conducted experiments
on syntactic parsing. Due to the difference in
task between syntactic parsing and semantic depen-
dency parsing, the advantages of AOI over BiAF
will no longer be obvious. Therefore, the compari-
son of other tasks mainly illustrates the lower limit
of the performance of our scorer under the situation
without special data features.

Syntactic Dependency Parsing SynDP is a task
that is similar to SemDP, but it is relatively simpler.
Since in the task definition, a dependent has only
one head, therefore does not require as much rea-
soning as in SemDP. In the evaluation of SynDP,

Model PTB CTB
UAS LAS UAS LAS
BiAF 95.88 9425 8543 8279
AOI 96.07 94.42 85.76 83.08
BiAF (w/ BERT) 96.62 9497 90.62 88.62
AOI (w/ BERT) 96.79 9515 90.75 88.81

Table 7: Comparison of results on syntactic dependency
parsing datasets.

the results of each model are shown in Table 7.
The comparison shows that our AOI scorer still
outperforms the BiAF baseline on the SynDP task,
while the improvement is not as significant as on
the SemDP task. Because the task is relatively sim-
ple and BiAF is strong enough for it, the baseline
performs exceptionally well. As a result, compared
to BiAF, our AOI method is not only comparable
but also outperforms it in PTB and CTB, demon-
strating that our AOI is a general parsing scorer.

Syntactic Constituency Parsing Although
SynCP is not a head-dependent pair classification
task in a narrow sense, and its span division
scoring can be modeled as a pair classification
task on the left and right boundaries of the span.
Therefore the BiAF and AOI pair scorers can be
employed as well. In the SynCP task, our AOI
produced fairly similar results as BiAF, confirming
that our AOI and BiAF scorers perform similarly
in general parsing tasks. When parsing tasks like
SemDP require more global reasoning, AOI can
provide a significant performance boost.
Generally speaking, AOI boosts performance
more on SemDP tasks. This can be explained by
comparison between Table 3 and 4 in which more
unbalance exists in edge distributions of semantic



PTB CTB
LP LR LFI LP LR LFl

BiAF 94.18 93.96 94.07 88.77 88.92 88.85
AOI 9425 94.16 94.20 89.44 89.16 89.29

BiAF (w/ BERT) 95.67 95.29 95.48 92.13 91.94 92.03
AOI (w/ BERT) 95.75 95.47 95.61 92.46 92.27 92.36

Model

Table 8: Comparison of results on constituency parsing
datasets.

parsing graphs. Thus, there are more edges for the
rectification of the MHGALtn on candidates, which
results in a better parsing graph produced.

4.6 How about directly using POS for scaling?

Other than AOI, another choice is to learn part-
of-speech-based weights to scale the attention on
different positions of the parsing graph. We add
such an attention scorer to BiAF and find the re-
sults not comparable to AOI’s (81.84 v.s. 82.27
F1 on PSD-ID and 94.31 v.s. 94.42 LAS on PTB).
This can be attributed to the fact that unbalance is
more complex than just POS-to-label and should
be learned by more carefully designed structures.
Still, adding such a modifier will benefit the train-
ing of the parser as the results are higher than the
initial BiAF.

5 Further Analysis

5.1 Ablation Study

We conduct the ablation study on PSD-ID dataset
for the SemDP task. Removing the MHGAttn
Scorer results in a drop of 0.55 F1 score (81.72)
and using only one attention head leads to a drop
of 0.18 F1 score (82.09). These results verify the
contributions of attention on candidates and the
multi-head implementation of it.

5.2 Performance v.s. Complexity

Sentence Length We explore the robustness of
our model by comparing its performance with
the baseline BiAF model on sentences of differ-
ent lengths. Intuitively, a longer sentence impli-
cates higher complexity and makes it harder for
the parser to parse. AOI shows strong robustness
when parsing sentences with ordinary length, that
is, fewer than 30 words. Also, AOI outperforms
BiAF on both extremely long and rather short sen-
tences, verifying the general performance improve-
ment from our proposed AOI scorer.
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Figure 3: Model Performance vs. Sentence Length
(Upper) & Dependency Head (Lower) on SemEval 2015
PSD-ID dataset.

Number of Dependency Head Our AOI model
shows high robustness when dependency heads in
the sentence increase. AOI keeps a gap with the
baseline BiAF on performance when parsing sen-
tences of the different number of dependency heads.
Moreover, while BiAF will degrade on sentences
with more than 18 heads, our AOI still keeps a
strong performance on those sentences.

5.3 Case Study

Here we use a case study to show how our AOI
scorer produces a better result than BiAF by taking
advantage of unbalanced dependency distribution.
We take edge building as an example, as shown in
Table 4. In the left figure, the BiAF parses each
component in the sentence equally. Thus it has
missed the dependency edge from deny to that.
AOI instead assigns global attention to compo-
nents. With multiple head attention, AOI chooses
Brokers, do and deny as candidates for heads and
Brokers, n’t and that for dependents. Thereby,
the AOI scorer can be more focused on assigning
scores to the edges with a higher existing probabil-
ity between those candidates. As a result, the AOI
scorer is more capable of building edges between
components and has built all dependency edges
correctly as in the case above. Also, we can see
the global attention for heads is concentrated on
nouns (Broker) and verbs (do, deny), which proves
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Figure 4: A case study. Left is the parsing result of BiAF and right is the parsing result of AOI Deeper color refers

to higher global attention (AMH attention) score.

the ability of our scorer to be concerned about and
leverage the unbalanced dependency distribution
of data.

6 Related Work

Dependency parsers aim to build directional depen-
dency edges between components in a sentence.
Transition-based parsers (Wang et al., 2016, 2018;
Ferndandez-Gonzdlez and Gémez-Rodriguez, 2020)
maintained a stack and relied on the stack and con-
text to choose actions like edge building to com-
plete parsing. Graph-based parsers do this by scor-
ing edge and label graphs of the sentence. Early
graph-based parsers (Kiperwasser and Goldberg,
2016; Hashimoto et al., 2016) simply applies feed
forward and recurrent neural network to score de-
pendencies for building and labeling edges. The
introduction of BiAF (Dozat and Manning, 2017,
2018; Zhang et al., 2020) significantly boosts the ef-
ficiency and performance of graph parsers on a vari-
ety of graph parsing tasks. High efficiency and per-
formance of graph-based parsers even make some
transition-based parsers (Fernandez-Gonzalez and
Go6mez-Rodriguez, 2020) use graph scorers to im-
prove the prediction of transition actions.

Unbalance exists in parsing graphs at word-level
and edge-level. To leverage these unbalance, CRFs
(Jia et al., 2020a) and second-order mechanisms
(Jia et al., 2020b; Wang et al., 2019) have been
proposed to improve parsing performance. These
works concentrate on relationships among edges
while we aim to exploit word-edge correlations.
We study unbalanced distributions related to part-
of-speeches and build a parser with better perfor-
mance.

The attention mechanism is widely used in the
deep learning field. In computer vision, attention
scoring is commonly used for models like SENet
(Hu et al., 2017) and CBAM (Woo et al., 2018).
The attention mechanism has also been success-
fully applied to NLP models including sequence-
to-sequence with attention (Bahdanau et al., 2015)
and self-attention mechanism-based models like
Transformer (Vaswani et al., 2017).

First proposed in the transformer structure
(Vaswani et al., 2017) for neural machine trans-
lation, multi-head attention has drawn much at-
tention from the whole NLP community so far.
Multi-head attention can be applied for better gen-
erative models for language models (Guo et al.,
2019; Sarkhel et al., 2020), and more precise under-
standing (Cheng et al., 2021; Jin et al., 2020; Ku-
mar et al., 2020). Moreover, the contribution from
multi-head attention has been carefully researched
(Ampomah et al., 2020; Voita et al., 2019). For
parsing, Li et al. (2019) used Transformer as an en-
coder for dependency parsing. Though multi-head
attention is introduced initially as the self-attention
between words, we develop this mechanism into
global attention for scoring dependency edges.

7 Conclusion

In this paper, we elaborate on the unbalanced sub-
graph distribution issue in graph parsing. To miti-
gate the word-level unbalance, we propose a novel
attention scorer AOI which applies accumulative at-
tention to approximate the unbalance. Parsing on a
wide variety of graph parsing tasks verifies the per-
formance of AOI enriched parsers to be generally
higher than conventional graph parsers.
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A Configuration

Embed Embedding Dimension
Word Embed 100
Char 50
POS 100
Lemma 100
BERT 100
MLPs&BIiLSTMs Embedding Dimension
BiLSTMs 400 x 2
Edge MLPs 500
Label MLPs 160
AOI Value
Edge Dimension 500
Label Dimension 160
Edge Head 2/4
Label Head 2/4
Dropout Probability
Embed 0.33
MLPs 0.33
LSTMs 0.33
Optimizer Value
Learning Rate 0.002
Adam p 0.9
Adam v 0.9
Batch Size 5000
Decay Rate 0.75
Decay Step 5000

Table 9: Full configuration of the AOI model
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