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Abstract

Recent years have witnessed the emergence of a spectrum of foundation models,
covering a broad range of capabilities and costs. Often, we effectively use foun-
dation models as feature generators and train classifiers that use the outputs of
these models to make decisions. In this paper, we consider an increasingly relevant
setting where we have two classifier stages. The first stage has access to features
x and has the option to make a classification decision or defer, while incurring a
cost, to a second classifier that has access to features x and z. This is similar to
the “learning to defer” setting, with the important difference that we train both
classifiers jointly, and the second classifier has access to more information. The
natural loss for this setting is an ℓ01c loss, where a penalty is paid for incorrect
classification, as in ℓ01, but an additional penalty c is paid for consulting the second
classifier. The ℓ01c loss is unwieldy for training. Our primary contribution in this
paper is the derivation of a hinge-based surrogate loss ℓchinge that is much more
amenable to training but also satisfies the property that ℓchinge-consistency implies
ℓ01c-consistency.

1 Introduction

With the emergence of a spectrum of foundation models, covering a broad range of capabilities and
costs, we are increasingly faced with a decision as to which model to use. For example, can we
make a decision locally, on an edge device, or should we incur the additional communication and
computational cost of sending the query to a more powerful remote model? In many cases, we use
the pre-trained foundation model essentially as a feature generator, and strive to train a classifier that
uses the output of the foundation model as its input. In this setting, we then face a task of training
two classifiers, while simultaneously learning when to defer to the more powerful model.

One approach to solve this problem is to 1) train the more powerful classifier first; and 2) train the
decision module with the smaller classifier afterwards (either jointly or separately). This strategy
has proven successful and benefits from strong theoretical foundations [Keswani et al., 2021, Wilder
et al., 2021, Verma et al., 2022, Mao et al., 2023, 2024b], but intuitively, this appears inefficient.
Indeed, with this approach, both classifiers expend effort exploring regions of the input space where
their predictions will ultimately not be used. Because of this, it is important to consider and formalize
the problem where the classifiers and the module deciding which model to use are trained jointly.

While there has been a significant body of work establishing consistent losses for the related problem
of classification with learning to defer to experts or with reject [Verma et al., 2022, Herbei and
Wegkamp, 2006], these losses do not cover the case where we jointly train multiple inference
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classifiers along with the decision module. In these well-studied settings, the task is to learn one
classifier and to either defer to an oracle (learning to reject) [Chow, 1970], to an expert (learning to
defer) [Madras et al., 2018] or to multiple experts (learning to defer to multiple experts) [Verma et al.,
2022]. However, these frameworks assume that the experts are external to the problem setting. They
do not address how to train the experts alongside the base classifier.

In this work, we address the problem of jointly training two classifiers with a decision module. The
two classifiers incur different costs, with the implication that the more expensive classifier offers
better performance. We model this problem by introducing an additional information variable, Z,
which represents the extra information available to the more powerful classifier. The decision module
and the base classifier both have access to the same base input variable X . We refer to this setup as
the two-stage classification problem.

We provide the optimal solution to this problem, as well as a surrogate loss function that is more
suitable for training. The surrogate loss, which is based on the hinge loss, aligns with the standard
cost-aware 0− 1 loss formulation commonly used in classification tasks. We validate our theoretical
findings on synthetic datasets and demonstrate the practical relevance of the problem by presenting
results on a standard large language model (LLM) task, where two LLMs of varying sizes are used to
answer multi-question math problems. Additionally, we provide a proof that the cross-entropy loss,
which is sometimes used heuristically in existing literature, is not Bayes consistent with the natural
0− 1c loss, further justifying the need to explore this problem at a theoretical level.

Our main contributions are as follows:

1. We formulate a problem setting for learning a model that integrates two classifiers, where one
has access to additional information but comes with a cost c. The goal is to train the models and
simultaneously learn the decision function to determine whether to consult the more powerful
classifier for a given sample.

2. We present a surrogate loss function based on the hinge loss, which is suitable for training with
cost-aware classification tasks. We show that it is consistent with respect to the 0− 1c loss that is
natural for the considered problem.

3. We validate the theoretical findings, which are the primary contribution of the work, on synthetic
datasets and provide practical insights through experiments on a standard LLM task.

2 Related Work

Loss consistency is an important topic that has been widely explored, as it serves as the fundamental
link between the loss we optimize in practice and the actual loss we aim to minimize. Foundational
results have been established for classical risks [Steinwart, 2007, Tewari and Bartlett, 2007, Bartlett
et al., 2006], and the emergence of new target losses has prompted the development of new consistency
results. Learning to defer (L2D) is a wide category of settings in which the task is to learn a classifier
and a deferral rule, either to reject (learning to abstain) [Chow, 1957, 1970, Herbei and Wegkamp,
2006, Cao et al., 2022, Wiener and El-Yaniv, 2011, Geifman and El-Yaniv, 2019] or to defer to one
or more experts of varying costs [Madras et al., 2018, Keswani et al., 2021, Wilder et al., 2021].

Mozannar and Sontag [2020] were the first to provide Bayes-consistency results for their proposed
generalized cross entropy loss for learning to defer, followed by Verma et al. [2022], who used
a one-vs-all loss. Awasthi et al. [2022] explored stronger guarantees than Bayes-consistency by
introducing H-consistency bounds [Long and Servedio, 2013]. Mozannar et al. [2023] prove that
earlier approaches, such as [Mozannar and Sontag, 2020, Verma et al., 2022], fall short of realizable
H-consistency, and propose a new algorithm without a Bayes-consistency proof. This shortcoming
is addressed by Mao et al. [2024a], who recently published a unifying work, introducing a new
family of surrogate losses for the learning to defer problem with a single expert, and providing Bayes-
consistency, realizable H-consistency, and H-consistency bounds. Verma et al. [2022] extended
the work of Mozannar and Sontag [2020], Verma et al. [2022] to the multi-expert setting with
Bayes-consistency guarantees. Mao et al. [2024b] introduced general cost functions and surrogate
losses, extending the results of Mozannar and Sontag [2020] with H-consistency bounds for joint
training, and offering stronger guarantees than Bayes-consistency. Mao et al. [2023] also provided
H-consistency bounds for a slightly different setting where training the classifier and the deferral rule
is done separately.
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It appears that consistency results have been thoroughly studied in the case where only a single
classifier is trained. However, the setting where multiple classifiers are trained jointly with a decision
module has been largely neglected. This type of architecture is used in adaptive computation or
dynamic networks [Han et al., 2022a], a branch of research focused on developing architectures that
adaptively allocate computation. Since the main objective is to improve average inference efficiency,
such dynamic network architectures have attracted significant interest in the development of scalable
LLM inference [Liu et al., 2023, Elbayad et al., 2020, Zeng et al., 2024, Xia et al., 2024, Leviathan
et al., 2023, Chen et al., 2024].

Although there is growing interest in these types of networks, the losses used to train such models
are mostly heuristic and lack strong theoretical foundations. In practice, these models typically train
the classifiers separately and rely on threshold-based decisions [Han et al., 2022a, Schuster et al.,
2022]. Some theoretical research has been conducted on this separated training approach: Jitkrittum
et al. [2023] explored the connection between threshold decisions and risk under a principled 0-1
loss, identifying conditions under which the two coincide. However, this separate training is not
guaranteed to be the best approach. In fact, the importance of jointly learning the classifiers and the
decision module has been empirically demonstrated [Han et al., 2022b, Yu et al., 2022, Regol et al.,
2024, Krzepkowski et al., 2024], motivating the development of joint learning approaches [Regol
et al., 2024] and classifier-deferral-aware training methods [Han et al., 2022b, Yu et al., 2022]. These
works lack a connection to surrogate losses and a well-defined risk framework, which is the gap we
aim to address in this work.

3 The two-stage classification problem

We consider a setting of two-stage classification where there are two classifiers: f1 and f2. The
second classifier, f2, has access to additional information z, but it also incurs an additional cost,
denoted as c. We therefore have the choice between using the prediction of the first classifier, or to
pay the additional cost and then use the more informed second classifier.

In practice, z can be explicitly modeled as an additional input signal or feature, which may come with
higher access costs. For instance, in recommendation systems, different types of user data queries
can vary significantly in terms of latency and infrastructure expense. A common approach is to first
run a lightweight model for initial inference, and then selectively identify instances that would benefit
from a more complex model with access to richer features. This tiered architecture is notably used by
Youtube’s recommendation system [Covington et al., 2016], for instance.

Alternatively, z can conceptually represent the augmented modeling capability of a larger model that
has more parameters and/or was trained on a larger data set.

Denote by X the feature space, Z the additional information space, and Y = {1, . . . ,K} the label
space. We are given instance-label-information triples {(xi, zi, yi)}ni=1 independently and identically
drawn from an underlying distribution D with probability function p(X,Z, Y ). We additionally
introduce the decision module r : X → 0, 1, which indicates whether we are using, for the final
decision, the first classifier f1 if r(x) = 0 or to defer to the second classifier f2 if r(x) = 1.

The goal of two-stage classification is to train a two-stage classifier f : X ×Z → Y that encompasses
both the classifiers f1 : X → Y , f2 : X × Z → Y , and the decision module r. The set H of
two-stage classifiers is therefore defined as follows:

H = {f : f(x, z) =

{
f1(x), r(x) = 0

f2(x, z), r(x) = 1.
(1)

The loss associated with such a setting is the zero-one-exit loss ℓ01c, which can be expressed as a
variant of the traditional zero-one loss ℓ01(f(·), y) = 1[f(·) ̸= y]:

ℓ01c(f(x, z), y) =

{
1[f1(x) ̸= y], r(x) = 0,

1[f2(x, z) ̸= y] + c, r(x) = 1 ,
(2)

where 1[·] is the indicator function. The cost c can be an instance-specific function, i.e., c(x),
provided it is known and deterministic. Since the additional information z is only accessible at a cost
c, the first classifier and the decision function do not have access to it; the classifiers f1(x) and r(x)
take only x as input.
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Our task is to train a two-stage classifier f ∈ H, as defined by (1), that can minimize the expectation
of ℓ01c over the data distribution. The risk is:

R01c(f) = Ep(x,z,y)[ℓ01c(f(x, z), y)], (3)

and its optimal value R∗
01c = R01c(f

∗) is obtained by the Bayes-optimal classifier:

f∗ = argmin
f∈H

R01c(f). (4)

The 01c loss is discrete, and thus difficult to work with. We would like to be able to identify a
surrogate loss ℓϕ such that ℓϕ-consistency implies ℓ01c-consistency. This is our main contribution
in this work. We specify a surrogate loss function that satisfies this property, and show that other
heuristic surrogate losses that are used in the literature for joint training [Regol et al., 2024, Ding
et al., 2024] do not. Taking a step beyond this, we specify how to construct and train a two-stage
classifier using the posited surrogate loss and present empirical results to validate our result.

3.1 The solution

We start by providing the solution to the optimization problem specified by (4). We first define a
compact notation for the posteriors:

ηy(x) ≜ p(Y = y|x) , ζy(x, z) ≜ p(Y = y|x, z). (5)

Lemma 3.1. The optimal solution f∗ = argminf∈H R01c(f) is the following:

f∗ =

{
argmaxy ηy(x) , if maxy ηy(x) ≥ Ep(Z|x)[maxy ζy(x, Z)]− c ,

argmaxy ζy(x, z) , else .
(6)

See Appendix A.4 for the proof of the lemma.

Using our previous definition of a two-stage classifier, this would correspond to:

f∗
1 (x) = argmax

y
ηy(x) if {x; r∗(x) = 0} (7)

f∗
2 (x, z) = argmax

y
ζy(x, z) if {x; r∗(x) = 1} (8)

r∗(x) =

{
0 if maxy ηy(x) ≥ Ep(Z|x)[maxy ζy(x, Z)]− c,

1 o.w.
(9)

The optimal solution is interesting. It hints towards a model that is slightly different from most
existing methods. Yes, the optimal decision should depend on pmax = max η(x), but the threshold for
pmax should be set based on the expected future gain: τ < Ep(Z|x)[max ζ(x, Z)]− c. In that setting,
r(x) should identify the set on which max η(x) ≥ Ep(z|x) max ζ(x, z)− c, and, for these elements
only, it should select the class with the largest probability according to the posterior η(x). This result
is similar to the solution for the decision rule given fixed classifiers first provided by Jitkrittum et al.
[2023], which would read as maxy ηy(x) ≥ maxy ζy(x, Z)− c. However, our explicit modeling of
the two-tiered information available to f1, r and f2 provides a more practical and detailed solution,
as it allows us to integrate the constraint that r cannot fully access the information available to f2.
This modeling choice leads to a decision based on the expected future gain.

Unsurprisingly, the first and second classifiers simply predict the class with the highest probability
according to their respective posteriors, but only for the samples assigned to them.

4 The proposed hinge-based surrogate loss

A common strategy to develop a consistent loss for more complex risk functions is to propose a
surrogate loss and verify its consistency. This strategy was employed by early work for the learning
to defer problem [Mozannar and Sontag, 2020, Verma and Nalisnick, 2022].

Our proposed surrogate loss is built on a multiclass version of the hinge loss [Tarigan and van de
Geer, 2008]. We chose this version because it is Bayes-consistent, unlike other multiclass hinge
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losses. We use a hinge loss rather than the more popular cross entropy is because of its linear
scaling, which allows to account for the cost in an additive way as in Eqn. 2. Following the definition
of the multiclass hinge loss from [Tarigan and van de Geer, 2008], the classifiers are based on
K-dimensional real valued outputs t(x),v(x, z) ∈ RK , with the constraints that

∑K
i=1 ti(x) = 0,

and
∑K

i=1 vi(x, z) = 0. The label prediction is obtained by returning the max element of the vector.
The decision function r̃(x) returns a real value bounded between 0 and 1. For brevity, we omit the
dependence on the inputs and only write t, v. We can therefore introduce the link function φ that
connects the real valued output and a soft decision function r̃(x) to a two-stage classifier function :

f = {f1, f2, r} = φ(t,v, r̃) = {max
y∈Y

ty(x),max
y∈Y

vy(x, z),1[r̃(x) ≥ 0.5]}. (10)

Letting [x]+ = max(x, 0), our proposed hinge-based surrogate loss is given by:

ℓchinge(t,v, r̃, x, z, y) = (1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K−1

]
+
+ r̃(x)

∑
y′ ̸=y

[vy′ +
1

K−1
]+ +

Kc

K−1

 .

(11)

The loss is composed of a sum of two terms: the first trains the first classifier, and the second trains
the second classifier. The balance or weight assigned to each term on a per-sample basis is intuitively
controlled by the learned soft decision r̃. If r̃(x) indicates that a sample should be inferred by f1,
then f1 will receive more weight during training at that point. In the second term, corresponding to
f2, we include an additional fixed term Kc

K−1 that encodes the penalty of using the second classifier.
This encourages r̃(·) to favor the first term unless the benefit of using f2 outweighs the cost. We can
then define the associated risk as:

Rhinge(t,v, r̃) = Ep(x,z,y)[ℓ
c
hinge(t,v, r̃, x, z, y)], (12)

and consider the triplet of minimizers t∗(x),v∗(x, z), r̃∗(x) of such a risk:

t∗,v∗, r∗ = argmin
t,v∈RK ,r∈[0,1]

Rhinge(t,v, r̃), (13)

f∗
hinge = φ(t∗,v∗, r∗). (14)

In the following theorem, we establish the consistency of our proposed surrogate loss w.r.t. ℓ01c,
meaning that if a learned two-stage classifier f converges to the optimal surrogate risk R∗

hinge, it also
converges to the optimal target risk R∗

01c.
Theorem 4.1. There exists a link function φ s.t. for any distribution p(x, z, y), we have that:

Rhinge(t,v, r̃) → R∗
hinge =⇒ R01c(φ(t,v, r̃)) → R∗

01c, (15)

i.e., the surrogate loss ℓchinge(v, t, r, x, z, y) 11 is consistent with respect to the loss of interest
ℓ01c(φ(t,v, r), x, z, y).

The proof is provided in Appendix A.5. The proof is built by showing that 1) the minimizers of both
risks are unique and coincide:

f∗
hinge = f∗ , (16)

(Lemma A.1, with proof provided in Appendix A.5.1); and 2) that for some increasing function Ψ
with Ψ(0) = 0 , the following holds:

R01c(φ(t,v, r̃))−R∗
01c ≤ Ψ

(
Rhinge(t,v, r̃)−R∗

hinge

)
, (17)

(Lemma A.2, with proof included in Appendix A.5.2). Taken together, these results guarantee
consistency. We can actually establish that

R01c(φ(t,v, r̃))−R∗
01c ≤

2(K − 1)

K

(
Rhinge(t,v, r̃)−R∗

hinge

)
. (18)

The bound on the risk gap provided by (18) allows us to further quantify the relationship between
the two optimization problems, showing that the consistency is not merely asymptotic. This upper
bound is tight and attainable for some cases of η and ζ. The K−1

K term comes from the scaling of
the multi-hinge loss, while the factor of 2 accounts for corner cases where the routing decision is
uncertain (r̃(x) = 0.5) and the model perfectly estimates the posteriors η and ζ.
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4.1 Cross entropy version

One might be tempted to build a similar formulation using the widely used cross-entropy loss
− log(py). Some heuristics in the literature for training two-stage or early exit models are built
around a similar version of this loss [Regol et al., 2024]. Interestingly, we can prove that such a loss
is in fact not Bayes consistent with the 0− 1c loss that we presented. To build a cross entropy version
of the proposed loss, we now need to assume that the model outputs predicted class probabilities
p1 ∈ ∆K for f1 and p2 ∈ ∆K for f2, where ∆K is the K−dimensional simplex and φ is the same
link function that was previously defined. The cross entropy version of the loss that we consider adds
an arbitrary function of the cost g(c) and is given by:

ℓg(c)ce (p1,p2, r̃, x, z, y) = −
(
(1− r̃(x)) log(p1

y) + r̃(x)(log(p2
y) + g(c))

)
. (19)

We again consider the associated risk:
Rce(p

1,p2, r̃) = Ep(x,z,y)[ℓ
g(c)
ce (p1,p2, r̃, x, z, y)] , (20)

and the minimizing function:
f∗
ce = argmin

p1,p2,r̃∈[0,1]

Rce(p
1,p2, r̃). (21)

The following lemma shows that this coss-entropy surrogate loss cannot be Bayes-consistent.
Lemma 4.2. There is no function g(·) for which the solution f∗

ce to the associated problem in Eqn. 21
is equal to the Bayes-classifier f∗ defined in Eqn. 6 for all distributions p(X,Z, Y ).

The proof is included in Appendix A.6.

5 Experiments

5.1 Synthetic Experiments

To validate our findings, we present a synthetic experiment in which the ground-truth posteriors are
known. We design a simple K-class classification task with one-dimensional inputs X and Z to
enable visualization of the learned functions. Our primary interest lies in visualizing the decision
boundary r̃(x) of a model f trained with the proposed surrogate loss. This boundary should closely
approximate the optimal decision rule r∗(x), as defined in Eqn. 9. For completeness, we additionally
include an experiment using the related learning-to-defer baselines, which we adapt to this particular
setting in Appendix A.3.

Task Description The inputs X and Z are drawn uniformly from the interval [−1, 1). The label Y
is sampled from a categorical distribution with parameter θ = [θ1, θ2, . . . , θK ]T ∈ [0, 1]K , where∑K

i=1 θi = 1 and p(Y = i) = θi. The function θ(x, z) is defined piecewise by partitioning the
domain of x, z into K − 1 slanted regions. Full details of the construction of the synthetic dataset are
provided in Appendix A.1.1. The random variables are distributed as:

X ∼ Uniform[−1, 1) = p(X) (22)
Z ∼ Uniform[−1, 1) = p(Z) (23)
Y ∼ Categorical(θ(x, z)) = p(Y |x, z) (24)

The constructed task can be visualized in Figure 1, where we show the class distribution in terms of
most likely class and the samples xi, yi, zi ∼ p(X,Z, Y ) for K = 5. For this example, we can see
that at x = 0, the value of z provides essentially no additional information to estimate the correct
posterior, which should translate into no deferral to f2 (r∗(x = 0) = 0). At x = 0.25, the variable z
becomes informative. Therefore, the optimal decision function r∗(x) will alternate as vertical strips
along the x-axis, with width of size that varies based on the cost parameter c.

Given this construction, the exact posterior probabilities can be computed in closed form, allowing us
to derive the optimal decision rule r∗(x). To approximate the expectations Ep(Z|x), we use Monte
Carlo estimation by sampling from p(Z|x):

r̂∗(x) ≈

{
0 if maxy∈Y [

1
M

∑M
i=1 ζy(x, zi)] ≥

1
M

∑M
j=1 maxy∈Y ζy(x, zj)− c

1 otherwise
(25)

where zi, zj ∼ Uniform[−1, 1) (26)
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Figure 1: Visualization of multi class synthetic dataset with k = 5. Left) Max probability labels
argmaxy p(Y = y|X,Z). The black shaded region indicates where the optimal decision rule is
to defer to f2 (r∗(x) = 1), given a cost of c = 0.03. Right) Samples x, z, y ∼ p(X,Z, Y ) of the
synthetic experiment.

In our experiments, we use M = 1000 samples to approximate the expectations.

Training details We build simple 3-layer neural networks (NN) for t, v, and r̃. Following the
requirements for r̃(x), the corresponding network takes x as input and ends with a sigmoid activation.
For t and v, the NNs take x and (x, z) as inputs, respectively, and output a real-valued vector of
dimension K−1. Appendix A.1.2 provides parameter size and layer details. We use the Adam
optimizer with learning rate lr = 0.001, a batch size of 512 and train for 50 epochs using our
surrogate loss defined in Eqn. 11. The training set size is Ntr = 10, 000 and the test set size is
Nte = 1, 000.

Result and discussion Figure 2 illustrates the ground truth and predicted decision boundaries for
cost values c = 0.03, 0.07 and number of classes K = 3, 5. We observe that the model trained with
the proposed surrogate loss successfully learns the correct decision boundary across different cost
values and numbers of classes K. The learned decision function r̃(x) perfectly tracks with the ground
truth r∗(x). Additionally, although the trained model can output any value in the range r̃(x) ∈ [0, 1]
due to the sigmoid activation, it learns to produce sharp values near 0 or 1, which is the optimal
behavior.

Now if we turn to a model trained with the additive version of the cross-entropy-based surrogate
loss introduced in Eqn 19, using the identity function g(c) = c with K = 5, we observe in Figure 3
that the behavior of the learned decision function r̃(x) differs significantly. First, we note that since
consistency cannot be established for this surrogate loss, it is not possible to precisely target a desired
cost level in the ℓ01c loss, unlike with the hinge-based surrogate. Looking at the results, the learned
decision boundaries are generally unstable and uneven. The correct pattern of deferral for K = 5
can be observed in the top-right plot of Figure 2, where we see that four regions should be evenly
spaced out and deferred to f2 (regardless of c). This pattern is not adequately learned in Figure 3. For
instance, we see that the right-most region of x that should be deferred is slowly erased as the cost
increases.

Lastly, we visualize the behavior of the learned model fhinge during training in Figure 4. We track the
empirical target risk estimated from sampling R̂01c(f) =

1
N

∑N
i=1 ℓ01c(f(xi, zi), yi) and observe

that it converges to the (empirical) optimal risk R̂∗
01c as expected.

5.2 Large Language Model Experiment

To illustrate a practical setting of the problem we consider, we present an experiment based on large
language models (LLMs). In this experiment, we use two LLMs of different sizes, which correspond
to different inference costs. The additional inference cost used by the larger model corresponds to c
in our setup. The task involves solving multi-answer math questions. The intuition behind this setting
is that some test questions should be more difficult than others. Therefore, it would be desirable to
efficiently dispatch simpler questions to the smaller LLM and more challenging ones to the larger
LLM. This allows us to achieve strong performance at a reasonable inference cost.
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Figure 2: Top) Ground truth decision boundary r̂∗(x) with 2 costs values c = 0.03, 0.07 and number
of classes K = 3, 5. Bottom) Learned r̃(x) of the model that was trained with our surrogate loss.
In all cases, the two decision boundaries are perfectly aligned, confirming our result that the model
trained with the proposed surrogate loss successfully learns the optimal decision function. As the
cost increases, the black region which represents points deferred to f2 shrinks.
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Figure 3: Top) Ground truth decision boundary r̂∗(x) with 4 costs values and number of classes
K = 5. Bottom) Learned r̃(x) of a model trained with the additive cross-entropy surrogate loss with
g(c) = c, for varying c values. Unlike the model trained with the hinge-based surrogate, the learned
decision patterns are generally wrong and not consistent.

Task description We use the Instruction-Tuned Pre-trained models LLaMA 3 8B and LLaMA 3
70B [Grattafiori et al., 2024] to solve multi-answer math questions from the AQUA dataset [Zhong
et al., 2024]. The AQUA dataset is composed of multiple-choice math reasoning questions, each with
5 choices. We frame the task as a 5-class classification problem, where the model must select the
correct option from a fixed set. The inputs x and z are formed by extracting the hidden-states from
the final tokens of the 8B LLM and the 70B LLM, respectively. We use the first 1000 AQUA [Zhong
et al., 2024] datapoints from the test split as our dataset, and use a 80/10/10 train/val/test split.

Training details We use a similar architecture to the one previously presented. The model is trained
for 1000 epochs using a learning rate of 0.001, a batch size of 32, and early stopping with a patience
of 20 epochs. Additional details are provided in Appendix A.1.3.
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Figure 4: Empirical 0 − 1c risks of the learned function trained with the surrogate loss and of the
optimal solution for K = 5. We can see that for varying cost values, function trained with the
surrogate loss converges to the optimal solution.

Results and discussion Although we do not have access to the ground truth decision function
in this setting, we can examine the accuracy evaluated on the selected samples vs. all samples of
the model trained with the surrogate loss. The selected samples of f1 or f2 are the samples routed
to these functions by r̃(x). Ideally, the two-stage classifier model f should learn to route “hard”
examples to f2, and “easier” examples to f1. In practice, the surrogate loss can have two effects: 1)
f1 and f2 are additionally trained on their respective selected samples; and 2) f1 and f2 may receive
smaller gradient updates depending on the average deferral rates.

These two effects can be observed in Figure 5. In the left figure tracking f1, we see that the average
accuracy slightly increases as the cost increases (and consequently the deferral rate decreases), and
the inverse behavior can be seen for f2 in the right figure. f1 should, in principle, be given an
easier task, so we can expect its selected accuracy to be higher than the average accuracy, which we
observe in the left panel of Figure 5. The two values are closest when the selected samples comprise
almost all the data (i.e., a deferral rate of 90%). For f2, the selected accuracy is closer to the average
accuracy. This could suggest that training only on the samples deferred to f2 does not result in better
performance—possibly because these consist of “harder” instances.
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Figure 5: Deferral rate and average accuracy on all samples and on selected samples by left) LLaMA
3 8B f1 and by right) LLaMA 3 70B f2. The confidence intervals are computed on 10 trials.

In addition to aggregate performance, we can also inspect which types of queries are routed to each
model. Figure 6 shows examples of math questions that were consistently routed to the smaller model
(f1) and the larger model (f2) across various cost settings. From the presented examples, it appears
that the “easy” questions that were consistently routed to the small LLM (f1) generally involve basic
arithmetic or proportions. In contrast, the labeled “hard” questions that were consistently routed to the
large LLM (f2) seem to require more comprehensive knowledge (such as motion or number theory).
This suggests that the routing function aligns with our perceived notion of complexity and the type of
reasoning required. See Appendix A.2 for the complete list of questions that were consistently routed
to f1 and f2.
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Example questions routed to the small LLM (f1)
Question 1: The cost of 10 kg of mangos is equal to the cost of 24 kg of rice. The cost of 6 kg of flour equals
the cost of 2 kg of rice. The cost of each kg of flour is $22. Find the total cost of 4 kg of mangos, 3 kg of rice
and 5 kg of flour?
Question 2: A man buys an article and sells it at a profit of 20%. If he had bought it at 20% less and sold it
for Rs.75 less, he could have gained 25%. What is the cost price?

Example questions routed to the larger LLM (f2)
Question 1: Two trains 140 m and 160 m long run at the speed of 60 km/hr and 40 km/hr respectively in
opposite directions on parallel tracks. The time which they take to cross each other is?
Question 2: If the product of two numbers is 17820 and their H.C.F. is 12, find their L.C.M.

Figure 6: Sampled questions that are consistently being routed to f1 or f2 across different costs.

6 Conclusion and Limitations

In conclusion, this work aims to solidify the theoretical foundation behind the design and use of loss
functions for the increasingly relevant problem of training multiple models with different costs, while
also learning which model to use. We formalized this problem using a principled 0− 1 cost-based
loss formulation and proposed a surrogate loss based on the hinge loss, showing its consistency.

Limitations A clear limitation of our work is that we only consider two models in our setup,
whereas dynamic networks often require more than two. Extending our approach to the multi-stage
setting would be a valuable direction for future research. Appendix A.7 provides a sketch of how
our method can be generalized to the multi-stage setting with L classifiers. Moreover, although the
theoretical results guarantee loss consistency, the hinge loss is less commonly used in practice. While
we have presented a simple proposal of a cross-entropy surrogate loss and shown that it is insufficient
for this setting, exploring alternative, more stable losses would be an important next step to ensure
the development of practical and principled methods.

7 Social Impact

Although we believe that this theoretical paper poses minimal direct societal impact, the broader
problem of cost-sensitive deferral systems may raise concerns related to fairness and access. In
such systems, the model determines whether a query is “simple” and can be handled by a smaller
model, or “difficult” and should be deferred to a more powerful model, which may involve higher
computational cost or latency. This can introduce bias in how different users’ queries are treated. For
instance, if a particular user or group systematically submits queries that the system deems “hard”,
they may consistently experience greater latency, potentially leading to unfair treatment or limited
access. Additionally, this introduces new potential pathways for bias to enter the system, as the
deferral rule itself can be biased. This could further exacerbate disparities in user experience and
overall system fairness.
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A Appendix

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions are stated in the introduction are supported by theoritical
results and experiments.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include a discussion on the limitation of our work in the conclusion.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Proofs are included in the Appendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details are included in the main text and in the Appendix.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: n/a

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details are included in the main text and in the Appendix.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical significance on our real data experiment. res or tables in
the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
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Justification: The required computational resources were minimal.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research is inline with NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
answerNA

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
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A.1 Additional experimental details

A.1.1 Synthetic task

In this section, we provide additional details of the synthetic task. We model Y by a categorical
distribution with parameter θ = [θ1, θ2, . . . , θk]

T ∈ [0, 1]k satisfying
∑k

i=1 θi = 1 and p(Y =
i) = θi. θ is modeled as a piecewise function by partitioning the range of X into k − 1 equally
sized bins {B1, B2, . . . , Bk−1}. Assuming the range of X is [a, b), a, b ∈ R, we define Bi =[
a+ (i−1)(b−a)

k−1 , a+ (i)(b−a)
k−1

)
. Within every bin Bi, only θi and θi+1 take on non-zero values,

following a scaled and shifted sigmoid:

X ∼ Uni[−1, 1) (27)
Z ∼ Uni[−1, 1) (28)
Y ∼ Categorical(θ) (29)

θ = [θ1, θ2, . . . , θk]
T ∈ [0, 1]k (30)

Bi =

[
−1 +

2(i− 1)

k − 1
,−1 +

2i

k − 1

)
∀i ∈ [1, 2, . . . , k − 1] (31)

θi =


σ(sX + ci + Z) if X ∈ Bi

σ(−1× (sX + ci−1 + Z)) if i > 1 and X ∈ Bi−1

0 else
(32)

s = k − 1 (33)
ci = k − 2i (34)

(35)

Using this model, we arrive at the closed form for the posteriors:

ηy=i(x) =

∫
p(Y = i|x, Z)p(Z|x)dZ = Ep(Z)[θi] (36)

= Ep(Z)


σ(sx+ ci + Z) if x ∈ Bi

σ(−1× (sx+ ci−1 + Z)) if i > 1 and x ∈ Bi−1

0 else

 , (37)

ζy=i(x, z) = θi =


σ(sx+ ci + z) if x ∈ Bi

σ(−1× (sx+ ci−1 + z)) if i > 1 and x ∈ Bi−1

0 else

 , (38)

and we can derive the optimal decision function r∗(x):

r∗(x) =

{
0 if maxi Ep(Z)[θi] ≥ Ep(Z)[maxi θi]− c,

1 o.w..
(39)

A.1.2 Synthetic Model details

We describe the architecture of the model used in the synthetic experiment. The hidden size of all
networks is 64. Each neural network is defined as:

rθ(x) = sigmoid (BatchNorm (ΘReLU(BatchNorm(θx)))) (40)
tθ(x) = ΘReLU(BatchNorm(ΘReLU(BatchNorm(θx)))))) (41)

vθ(x, z) = ΘReLU(BatchNorm(ΘReLU(BatchNorm(Θ[x, z]))))). (42)

A.1.3 LLM Model details

We describe the architecture of the model used in the LLM experiment. The hidden size of all
networks is 128. We performed a grid search for the hidden size across the values {32, 64, 128, 256}
and for the learning rate across the values {0.01, 0.001, 0.0001}.
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Each neural network is defined as:

rθ(x) = sigmoid (BatchNorm (ΘReLU(BatchNorm(Θx)))) (43)
tθ(x) = ΘReLU(BatchNorm(ΘReLU(BatchNorm(Θx)))))) (44)

vθ(x, z) = ΘReLU(BatchNorm(ΘReLU(BatchNorm(Θ[x, z]))))). (45)

A.2 Complete list of deferred questions (LLM experiments)

In this section, we provide a comprehensive list of the questions that were consistently deferred to f2
or sent to f1 in the LLM experiment.

Example questions sent to the small LLM (f1):

1. A man buys an article and sells it at a profit of 20%. If he had bought it at 20% less and sold
it for Rs. 75 less, he could have gained 25%. What is the cost price?

2. The cost of 10 kg of mangos is equal to the cost of 24 kg of rice. The cost of 6 kg of flour
equals the cost of 2 kg of rice. The cost of each kg of flour is $22. Find the total cost of 4 kg
of mangos, 3 kg of rice and 5 kg of flour?

3. The speed of a boat in upstream is 100 kmph and the speed of the boat downstream is 180
kmph. Find the speed of the boat in still water and the speed of the stream.

4. A and B working together could mow a field in 28 days and with the help of C they could
have mowed it in 21 days. How long would C take by himself?

5. Evaluate the expression:
22 + 42 + 62 + . . .+ 222

6. In an examination, 60% failed in Math and 40% failed in French. If 15% failed in both
subjects, what percentage of students passed in both?

7. One train crosses a bridge of length 340 m in 42 seconds, and the same train crosses another
bridge of length 500 m in 50 seconds. What is the approximate speed of the train in km/hr?

8. Eshan and Mary each wrote two or three poems every day over a period of time. Eshan
wrote 43 poems while Mary wrote 61. What is the number of days in this period?

9. Find the value of x in the sequence of numbers 5, 1, 6, 0, 4, 8, x, 2 if the sum of the first 7
numbers is 30 and the average is 4.

10. Roja and Pooja start moving in opposite directions from a pole. They are moving at speeds
of 7 km/hr and 3 km/hr respectively. After 4 hours, what will be the distance between them?

Example questions deferred to the larger LLM (f2):

1. If the product of two numbers is 17820 and their H.C.F. is 12, find their L.C.M.

2. Two passenger trains start at the same hour in the day from two different stations and move
towards each other at the rate of 14 kmph and 21 kmph respectively. When they meet, it
is found that one train has traveled 60 km more than the other one. What is the distance
between the two stations?

3. Which is the odd one: 10, 25, 45, 54, 60, 75, 80?

4. Two trains 140 m and 160 m long run at the speed of 60 km/hr and 40 km/hr respectively in
opposite directions on parallel tracks. The time which they take to cross each other is?

5. A ladder 100 feet long is leaning against a vertical wall. Its lower end is 60 feet from the
bottom of the wall. The side of the largest cubical box that can be placed between the wall
and the ladder without disturbing the ladder is (to the nearest foot)?

6. On dividing a certain number by 5, 7 and 8 successively, the remainders obtained are 2, 3
and 4 respectively. When the order of division is reversed and the number is successively
divided by 8, 7 and 5, what will be the respective remainders?

7. A tour group of 25 people paid a total of $670 for entrance to a museum. If this price
included a 5% sales tax, and all the tickets cost the same amount, what was the face value of
each ticket price without the sales tax?
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8. A rectangular floor is covered by a rug except for a strip 4 meters wide along each of the four
edges. If the floor is 25 meters by 20 meters, what is the area of the rug in square meters?

9. In each of the following questions a number series is given with one term missing. Choose
the correct alternative that will continue the same pattern and fill in the blank space.

2, 7, 14, ?, 34, 47

10. In a game of 500 points there are three participants A, B, and C. A gives to B 80 points and
to C 101 points. Then how many points can B give to C?

11. When magnified 1,000 times by an electron microscope, the image of a certain circular piece
of tissue has a diameter of 2 centimeters. The actual diameter of the tissue, in centimeters,
is:

12. From the given equation, find the value of x:

2x2 + 9x− 5 = 0

13. The sum of the non-prime numbers between 50 and 60, non-inclusive, is:
14. Solve the system of equations to find the values of c and d:

I. c3 − 988 = 343 (46)

II. d2 − 72 = 49 (47)

15. How many minutes does Aditya take to cover a distance of 400 meters, if he runs at a speed
of 20 km/hr?

16. An engineer designed a ball so that when it was dropped, it rose with each bounce exactly
one-half as high as it had fallen. The engineer dropped the ball from an 18-meter platform
and caught it after it had traveled 53.4 meters. How many times did the ball bounce?

A.3 Additional baselines

We include additional baselines that assume different settings from ours, such as the learning-to-defer-
to-expert setting, which trains a classifier alongside a deferral function that defers to a fixed expert, as
in [Mozannar and Sontag, 2020]. We also consider simple thresholding methods that only produce
results for deferral, assuming fixed classifiers, including the popular confidence-based thresholding
rule investigated by Jitkrittum et al. [2023]. These methods generally rely on training cross-entropy
models for f1, and obtain the associated predicted probabilities p1. To adapt these baselines to our
setting, we train the second classifier f2 separately using a standard cross-entropy loss, and then
follow the scheme of the baselines to train the first classifier f1 and obtain the decision function r̃(x).
Let âccf denote the empirical accuracy of a model f evaluated on a validation set.

We include the following rules:

CT-c: We pretrain f1 using cross-entropy. For a given cost c, we set the threshold τ using the
empirical accuracy of the second classifier minus the cost τ = âccf2 − c: and define the deferral rule
as:

r̃(x) =

{
0 if maxy∈Y p1

y ≥ τ,

1 otherwise
(48)

Soft deferral: We pretrain f1 using cross-entropy, and sample the deferral decision from a Bernouilli
distribution with 1−maxy∈Y p1

y as a parameter:

r̃(x) ∼ Bernoulli
(
1−max

y∈Y
p1
y

)
. (49)

CT: We pretrain f1 using cross-entropy, and search for the optimal threshold τ that yields the smallest
empirical risk on a validation set.

r̃(x) =

{
0 if maxy∈Y p1

y ≥ τ,

1 otherwise
(50)
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L2D: We use our the pretrained f2 as the expert for the method of Mozannar and Sontag [2020]. We
set the confidence parameter in our expert, α, to be the average accuracy of f2: α = âccf .

Figure 7 shows the empirical risk during training for a setting with a cost of c = 0.3 and number
of classes k = 5. We observe that our proposed approach converges the fastest and achieves the
lowest empirical risk. In Table 1, we report the empirical risk R̂01c along with the standard deviation
computed across 10 trials for varying costs. Our proposed surrogate loss consistently attaining the
lowest empirical risk across all cost settings.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Epoch

0.3675

0.3700

0.3725

0.3750

0.3775

0.3800
R 0

1c
(f)

Hinge (ours)
CT
CT-c
Soft Deferral
L2D

Figure 7: Empirical risk R̂01c of the learned function trained with our proposed surrogate loss and
other baselines for K = 5 and c = 0.3.

Table 1: Empirical risk R̂01c for different baselines and deferral costs c with K = 5. The mean and
standard deviation are computed across 10 trials. The bolded entry denotes the lowest value.

Baseline c = 0.03 c = 0.05 c = 0.07

CT-c 0.3701 ± 0.0013 0.3842 ± 0.0007 0.4031 ± 0.0014
CT 0.3700 ± 0.0008 0.3784 ± 0.0016 0.3853 ± 0.0036
Soft deferral 0.3700 ± 0.0012 0.3789 ± 0.0008 0.3855 ± 0.0014
L2D 0.3712 ± 0.0015 0.3826 ± 0.0022 0.3906 ± 0.0025
Hinge (ours) 0.3695 ± 0.0004 0.3777 ± 0.0004 0.3842 ±0.0005

A.4 Proof of the solution f∗

In this section, we provide the proof of Lemma 3.1, which states that the optimal solution

f∗ = argmin
f∈H

R01c(f) (51)

is the following:

f∗ =

{
argmaxy ηy(x) , if maxy ηy(x) ≥ Ep(Z|x)[maxy ζy(x, Z)]− c ,

argmaxy ζy(x, z) , else .
(52)
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Or alternatively:

f∗ =

{
f∗
1 (x), r∗(x) = 0

f∗
2 (x, z), r(x) = 1

, (53)

where f∗
1 (x) = argmax

y∈Y
ηy(x), ∀x s.t. r∗(x) = 0 (54)

f∗
2 (x, z) = argmax

y∈Y
ζy(x, z), ∀x s.t. r∗(x) = 1 (55)

r∗(x) = 1

[
maxyηy(x) ≤ Ep(Z|x)[max

y
ζy(x, Z)]− c

]
. (56)

Proof. We start by evaluating the risk w.r.t to the function:

fs =

{
argmaxy ηy(x) if max η(x) ≥ Ep(z|x) max ζ(x, z)− c

argmaxy ζy(x, z) else,
(57)

R01c(f
s) = Ep(x,z,y)[ℓ01c(f

s(x, z), y)], (58)

and prove the result by showing that any function fo ̸= fs results in a higher risk, therefore showing
that fs is the optimal solution.

The risk is given by:

R01c(f
s) = Ep(x,z,y)[ℓ01c(f

s(x, z), y)] (59)

R01c(f
s) =

∫
x

∫
z

∑
y

[ℓ01c(f
s(x, z), y)]p(y|x, z)p(z|x)p(x)dzdx. (60)

We can partition X in two regions based on the decision function of fs, i.e. : A = {x; max η(x) ≥
Ep(z|x) max ζ(x, z)−c} and B = {x; max η(x) ≤ Ep(z|x) max ζ(x, z)−c} and split the expectation
in two terms:

R01c(f
s) = RA +RB (61)

where RS ≜
∫
x∈S

∫
z

∑
y

[ℓ01c(f
s(x, z), y)]p(y|x, z)p(z|x)p(x)dxdz. (62)

Looking at both terms separately, starting with RA where fs does not use z (or corresponds to f1):

RA =

∫
x∈A

∫
z

∑
y

[ℓ01c(f
s(x, z), y)]p(y|x, z)p(z|x)p(x)dxdz (63)

=

∫
x∈A

∑
y

(∫
z

1[f1(x) ̸= y]p(z|x, y)dz
)
p(x, y)dx by def of fs and ℓ01c (64)

=

∫
x∈A

∑
y

Ez|x,y

[
1[f1(x) ̸= y

]
p(x, y)dx (65)

=

∫
x∈A

∑
y

1[f1(x) ̸= y]p(x, y)dx as nothing depends on z (66)

=

∫
x∈A

∑
y

1[argmax
y′

ηy′(x) ̸= y]ηy(x)p(x)dx by def of fs
1 and p(y|x) (67)

RA =

∫
x∈A

1−max
y

ηy(x)p(x)dx. (68)

We can obtain more straightforwardly RB :

RB =

∫
x∈B

∫
z

(1 + c−max
y

ζy(x, z)p(x, z))dzdx. (69)

Hence, the risk of fs is given by;

R01c(f
s) =

∫
x∈A

1−max
y

ηy(x)p(x)dx+

∫
x∈B

∫
z

1 + c−max
y

ζy(x, z)p(x, z)dzdx. (70)
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Now, we consider a different two-stage classifier fo ∈ H and fs ̸= fo. We show that any fo ∈ H
will lead to a higher risk R01c(f

s) ≤ R01c(f
o), therefore proving that fs = f∗.

We further partition the space X by splitting A and B where fs ̸= fo and fs = fo

As ≜ {x;x ∈ A and fs = fo}, Ad ≜ {x;x ∈ A and fs ̸= fo}, (71)

Bs ≜ {x;x ∈ B and fs = fo}, Bd ≜ {x;x ∈ B and fs ̸= fo}. (72)

We then use those new partitions to further decompose the risks of fs and fo in 4 terms:

R01c(f
s) = RAs

+RAd

+RBs

+RBd

(73)

and R01c(f
o) = RAs

o +RAd

o +RBs

o +RBd

o . (74)

We can then write the difference between the risks as:

R01c(f
s)−R01c(f

o) = RAd

−RAd

o +RBd

−RBd

o (75)

R01c(f
s)−R01c(f

o) = δA
d

+ δB
d

(76)

where δA
d

≜ RAd

−RAd

o (77)

δB
d

≜ RBd

−RBd

o . (78)

In the following, we prove that

δA
d

≤ 0 and δB
d

≤ 0. (79)

which would imply that

R01c(f
s)−R01c(f

o) ≤ 0 ∀f ∈ H ̸= fs (80)
=⇒ R01c(f

o) ≥ R01c(f
s)∀f ∈ H ̸= fs (81)

=⇒ fs = f∗. (82)

Showing that δA
d ≤ 0 and δB

d ≤ 0 We first consider δA
d

:

δA
d

= RAd

−RAd

o (83)

=

∫
x∈Ad

1−max
y

ηy(x)p(x)dx−RAd

o using 68. (84)

We can (once again) further partition the space based on fo. We divide Ad in two based on the
decision function of fo:

Adz ≜ {x;x ∈ Ad and fo = fo
2 (x, z)} (85)

Adx ≜ {x;x ∈ Ad and fo = fo
1 (x)}. (86)
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Continuing our development of δA
d

:

δA
d

=

∫
x∈Ad

1−max
y

ηy(x)p(x)−RAd

o (87)

=

∫
x∈Adx

1−max
y

ηy(x)p(x)dx−RAdx

o +

∫
x∈Adz

1−max
y

ηy(x)p(x)dx−RAdz

o (88)

=

∫
x∈Adx

(
1−max

y
ηy(x)p(x)−

∫
z

∑
y

[ℓ01c(f
o(x, z), y)]p(y|x, z)p(z|x)p(x)

)
dx (89)

+

∫
x∈Adz

(
1−max

y
ηy(x)p(x)−

∫
z

∑
y

[ℓ01c(f
o(x, z), y)]p(y|x, z)p(z|x)p(x)

)
dx using 74

(90)

=

∫
x∈Adx

(
1−max

y
ηy(x)−

∫
z

∑
y

[ℓ01c(f
o
1 (x), y)]p(y|x, z)p(z|x)

)
p(x)dx (91)

+

∫
x∈Adz

(
1−max

y
ηy(x)−

∫
z

∑
y

[ℓ01c(f
o
2 (x, z), y)]p(y|x, z)p(z|x)

)
p(x)dzdx (92)

by def. of Adx, Adz (93)

=

∫
x∈Adx

(
1−max

y
ηy(x)−

∑
y

(
1[fo

1 (x) ̸= y
)
]
)
ηy(x)

)
p(x)dx [*] (94)

+

∫
x∈Adz

(
1−max

y
ηy(x)−

∫
z

∑
y

1[fo
2 (x, z) ̸= y](ζy(x, z) + c)p(z|x)

)
p(x)dzdx [**].

(95)
(96)

At this stage we can focus on one term at the time, starting with the part of Ad where fo is not using
z which is the integral over Adx:

[*] =
∫
x∈Adx

(
1−max

y
ηy(x)−

∑
y

(
1[fo

1 (x) ̸= y
)
]
)
ηy(x)

)
p(x)dx (97)

=

∫
x∈Adx

(
−max

y
ηy(x) + ηfo

1 (x)
(x)

)
p(x)dx (98)

no matter what value fo
1 (x) takes, max

y
ηy(x) ≥ ηy′ . Therefore: (99)

[*] ≤ 0. (100)

Going to the second term [**], when f0 uses z. We start by restating the definition of the set A:

A = {x; max η(x) ≥ Ep(z|x)[max
y

ζy(x, z)]− c}. (101)

[**] =
∫
x∈Adz

(
1−max

y
ηy(x)−

∫
z

∑
y

1[fo
2 (x, z) ̸= y](ζy(x, z) + c)p(z|x)dz

)
p(x)dx (102)

=

∫
x∈Adz

(
1−max

y
ηy(x)− Ep(z|x)[1− ζfo

2 (x,z)
(x, z)]

)
p(x)dx (103)

≤
∫
x∈Adz

(
−max

y
ηy(x) + Ep(z|x)[max

y
ζy(x, z)]− c

)
p(x)dx (104)

[**] ≤ 0 by def. of A. (105)

Combining both results together, we have that

δA
d

= [*] + [**] ≤0. (106)

Following similar steps, we also have that

δB
d

≤ 0. (107)
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Final step Since we have both that δB
d ≤ 0 and δA

d ≤ 0, we can conclude that

R01c(f
s)−R01c(f

o) = δA
d

+ δB
d

(108)
R01c(f

s) ≤ R01c(f
o)∀fo ̸= fs (109)

=⇒ fs = f∗ (110)

This concludes the proof.

A.5 Proof of consistency for the multi class surrogate hinge loss

We start by restating our surrogate loss:

ℓchinge(t,v, r̃, x, z, y) =(1− r̃(x))
∑
y′ ̸=y

[ty′(x) +
1

K − 1

]
+

(111)

+ r̃(x)

∑
y′ ̸=y

[vy′(x, z) +
1

K − 1
]+ +

Kc

K − 1

 , (112)

where we have t ∈ RK and v ∈ RK as the real-vectored outputs for f1 and f2 respectively with the
constraints that ||v||1 = 0 and ||t||1 = 0, and r̃ ∈ [0, 1] as a soft decision output.

Since our surrogate optimization provides us with the triplet t,v, r̃, we map these to a two-stage
classifier f ∈ H using the following a link function φ : RK × RK × [0, 1] → Y:

f = φ(t,v, r) =

{
argmaxy∈Y ty(x) if r̃ < 0.5

argmaxy∈Y vy(x, z) o.w.
∈ H, (113)

where f1(x) = argmax
y∈Y

ty(x), (114)

f2(x, z) = argmax
y∈Y

vy(x, z), (115)

r(x) = 1[r̃(x) < 0.5]. (116)

We can then define our risk as usual:

Rhinge(t,v, r̃) = Ep(x,z,y)[ℓ
c
hinge(t,v, r̃, x, z, y)] (117)

and consider the triplet of minimizers t∗(x),v∗(x, z), r̃∗(x) of such a risk, which correspond to a
two-stage solution:

t∗,v∗, r̃∗ = argmin
v,t∈RK ,r̃∈[0,1]

Rhinge(t,v, r̃). (118)

f∗
hinge = φ(t∗,v∗, r̃∗) ∈ H. (119)

We prove that our surrogate loss is Bayes-consistent w.r.t to the ℓ01c loss by showing that 1)

f∗ = f∗
hinge, (120)

and 2)

R01c(φ(t,v, r̃))−R∗
01c ≤ Ψ

(
Rhinge(t,v, r̃)−R∗

hinge

)
. (121)

Taken together, those results guarantee that for any distribution p(x, z, y), we have that:

Rhinge(t,v, r̃) → R∗
hinge =⇒ R01c(φ(t,v, r̃)) → R∗

01c. (122)

which defines Bayes-consistency [Steinwart, 2007].
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A.5.1 The solutions f∗ of R01c(f) and f∗
hinge coincide

Restating the definitions of the solution of the target and surrogate problems;

f∗ = argmin
f∈H

R01c(f) (123)

f∗
hinge = φ(t∗,v∗, r̃∗) (124)

t∗,v∗, r̃∗ = argmin
t,v∈RK ,r̃∈[0,1]

Rhinge(t,v, r̃). (125)

In this section, we show that the two solutions f∗, f∗
hinge coincide.

Lemma A.1. For any distribution p(X,Z, Y );

f∗ = f∗
hinge. (126)

Proof. We have previously shown in Appendix A.4 that the solution of our targeted problem

f∗ = argmin
f∈H

R01c(f) (127)

is given by:

f∗ =

{
f∗
1 (x), r∗(x) = 0

f∗
2 (x, z), r(x) = 1

, (128)

where f∗
1 (x) = argmax

y∈Y
ηy(x), ∀x s.t. r∗(x) = 0 (129)

f∗
2 (x, z) = argmax

y∈Y
ζy(x, z), ∀x s.t. r∗(x) = 1 (130)

r∗(x) = 1

[
maxyηy(x) ≤ Ep(Z|x)[max

y
ζy(x, Z)]− c

]
. (131)

Next, we show that the two-stage classifier obtained from the triplet minimizer of our surrogate loss
f∗
hinge = φ(t∗,v∗, r̃∗) corresponds to this solution.

t∗,v∗, r̃∗ = argmin
t,v∈RK ,r̃∈[0,1]

Rhinge(t,v, r̃) (132)

= argmin
t,v∈RK ,r̃∈[0,1]

Ep(x,z,y)[ℓ
c
hinge(t,v, r̃, x, z, y)] (133)

t∗,v∗, r̃∗ = argmin
t,v∈RK ,r̃∈[0,1]

Ep(x,z,y)[(1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+

(134)

+ r̃(x)

∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1

]. (135)

We can push the optimization problem inside the expectation w.r.t p(x) as t(x),v(x, z), r̃(x) are all
functions of x (and the inner expectation term is guaranteed to be bounded):

t∗,v∗, r̃∗ = argmin
t,v∈RK ,r̃∈[0,1]

Ep(z,y|x)[(1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+

(136)

+ r̃(x)

∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1

]. (137)

Since the loss is a linear combination of two terms that respectively depend on t and v, we can see
that for any r̃, the minimizers for t and v will always be equal to the minimizer of the individual
terms:

t∗(x) = argmin
t∈RK

Ep(y|x)[
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+
] (for any v, r̃(x) < 1) (138)

v∗(x, z) = argmin
v∈RK

Ep(y|x,z)[
∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1
] (for any t, r̃(x) ≥ 0). (139)
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For the multi class hinge loss that we are considering, it is known that the minimizing functions are
given by the following [Tarigan and van de Geer, 2008]:

t∗y(x) =

{
1 if y = argmaxy∈Y ηy(x)
−1

K−1 o.w.
(140)

v∗
y(x, z) =

{
1 if y = argmaxy∈Y ζy(x, z)
−1

K−1 o.w.
(141)

which gets converted into f∗
1 and f∗

2 by the link function φ (see Eqn 10):

fhinge,1(x) = argmax
y∈Y

t∗y(x) ∀x s.t. r̃(x) < 1 (142)

= argmax
y∈Y

ηy(x) ∀x s.t. r̃(x) < 1 by Eqn. 140, (143)

fhinge,1(x) = f∗
1 (x) ∀x s.t. r̃(x) < 1 by Eqn. 54, (144)

fhinge,2(x) = f∗
2 (x) ∀x s.t. r̃(x) ≥ 0 by Eqn. 55. (145)

Next, we turn to the decision function r̃(x). Using r̃ as shorthands for r̃(x):

r̃∗ =argmin
r̃∈[0,1]

Ep(z,y|x)[ℓ
c
hinge(x, z, y, t

∗,v∗, r̃)] (146)

=argmin
r̃∈[0,1]

(1− r̃(x))Ep(y|x)[
∑
y′ ̸=y

[t∗y′ +
1

K − 1

]
+
] (147)

+ r̃(x)Ep(y,z|x)[

∑
y′ ̸=y

[v∗
y′ +

1

K − 1
]+ +

Kc

K − 1

]. (148)

Since it is a linear combination of 1− r̃(x) and r̃(x) , it is clear that the minimizer r̃∗(x) will either
be at 0 or 1. We can therefore rewrite the optimization problem as the following:

A(x, r̃) = (1− r̃(x))Ep(y|x)[
∑
y′ ̸=y

[t∗y′ +
1

K − 1

]
+
] (149)

+ r̃(x)Ep(y,z|x)[
Kc

K − 1
+

∑
y′ ̸=y

+[v∗
y′ +

1

K − 1
]+

] (150)

= (1− r̃(x))
∑
y∈Y

ηy(x, z)
∑
y′ ̸=y

[t∗y′ +
1

K − 1

]
+

(151)

+ r̃(x)

 Kc

K − 1
+ Ep(z|x)

∑
y∈Y

ζy(x, z)
∑
y′ ̸=y

[v∗
y′ +

1

K − 1
]+

 (152)

r̃∗(x) = argmin
r̃∈{0,1}

A(x, r̃). (153)
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We consider the two cases for A(x, r̃).

A(x, 0) =
∑
y∈Y

ηy(x)
∑
y′ ̸=y

[t∗y′ +
1

K − 1

]
+

(154)

=
∑

y ̸=argmaxy ηy(x)

ηy(x)
∑
y′ ̸=y

[t∗y′ +
1

K − 1

]
+

(155)

+ ηargmaxy ηy(x)(x)
∑

y′ ̸=argmaxy ηy(x)

[t∗y′ +
1

K − 1

]
+

(156)

=
∑

y ̸=argmaxy ηy(x)

ηy(x)

(
(K − 2)[

−1

K − 1
+

1

K − 1

]
+
+ [1 +

1

K − 1

]
+

)
(157)

+ ηargmaxy ηy(x)(x)
∑

y′ ̸=argmaxy ηy(x)

[
−1

K − 1
+

1

K − 1

]
+

by def of t∗ Eqn.140

(158)

A(x, 0) =
K

K − 1

(
1−max

y∈Y
ηy(x)

)
. (159)

For the second case, using similar steps:

A(x, 1) =
Kc

K − 1
+ Ep(z|x)

∑
y∈Y

ζy(x, z)
∑
y′ ̸=y

[v∗
y′ +

1

K − 1
]+

 (160)

=
K

K − 1
(Ep(z|x)[

(
1−max

y∈Y
ζy(x)

)
] + c). (161)

This allows us to write the solution as

r̃∗(x) =

{
0 if A(r = 0, x) < A(r = 1, x)

1 o.w.
(162)

=

{
0 if K

K−1 (1−maxy∈Y ηy(x)) ≤ K
K−1 (Ep(z|x)[(1−maxy∈Y ζy(x))] + c)

1 o.w.
(163)

r̃∗(x) =

{
0 if maxy ηy(x) ≥ Ep(z|x)

[
max ζy(x, z)

]
− c

1 o.w.
(164)

We have therefore shown that
r̃∗(x) = r∗(x). (165)

Since we now have that r̃∗(x) is restricted to the binary values r̃∗(x) = {0, 1}, we can rewrite the
optimal classifiers that we previously obtained:

f∗
hinge,1(x) = f∗

1 (x) ∀x s.t. r̃(x) < 1 (166)

f∗
hinge,2(x) = f∗

2 (x) ∀x s.t. r̃(x) ≥ 0 (167)
as

f∗
hinge,1(x) = f∗

1 (x) ∀x s.t. r∗(x) = 0, (168)

f∗
hinge,2(x) = f∗

2 (x) ∀x s.t. r∗(x) = 1. (169)

f∗
hinge,1(x) = f∗

1 (x), (170)

f∗
hinge,2(x) = f∗

2 (x). (171)
Therefore, we can see that the optimal t∗ and v∗ leads to the same solution for the internal classifiers
of f∗. We have therefore shown that:

f∗
hinge,1(x) = f∗

1 (x), (172)

f∗
hinge,2(x) = f∗

2 (x), (173)

and r̃∗(x) = r∗(x), (174)
=⇒ f∗ = f∗

hinge. (175)
This concludes the proof.
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A.5.2 Gap of the hinge loss

Next, we aim to show that for some increasing function Ψ with Ψ(0) = 0, we can upper bound the
risk gap of our loss of interest R01c(φ(t,v, r̃))−R∗

01c with the risk gap of our surrogate hinge loss
Rhinge(t,v, r̃)−R∗

hinge.

Lemma A.2. For any distribution p(X,Z, Y ):

R01c(φ(t,v, r̃))−R∗
01c ≤ Ψ

(
Rhinge(t,v, r̃)−R∗

hinge

)
. (176)

Proof. We start by developing the hinge risk Rhinge(t,v, r̃):

Rhinge(t,v, r̃) = Ep(x,z,y)[ℓ
c
hinge(t,v, r̃, x, z, y)] (177)

= Ep(x,z)[
∑
y∈Y

ζy(x, z)(1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+

(178)

+
∑
y∈Y

ζy(x, z)r̃(x)

∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1

]. (179)

Next we develop the term associated to the optimal hinge risk R∗
hinge:

R∗
hinge = Ep(x,z)[

∑
y∈Y

ζy(x, z)(1− r̃∗(x))
∑
y′ ̸=y

[t∗y′ +
1

K − 1

]
+

(180)

+
∑
y∈Y

ζy(x, z)r̃
∗(x)

∑
y′ ̸=y

[v∗
y′ +

1

K − 1
]+ +

Kc

K − 1

]. (181)

= Ep(x)[1[r̃
∗(x) = 0]A(x, 0)] + Ep(x,z)[1[r̃

∗(x) = 1]A(x, 1)] reusing Eqn 161, 159.
(182)

R∗
hinge =

K

K − 1
Ep(x)[1[r̃

∗(x) = 0]1−max
y∈Y

ηy(x)] (183)

+
K

K − 1
Ep(x,z)[1[r̃

∗(x) = 1](1−max
y∈Y

ζy(x) + c)]. (184)

Bringing both R∗
hinge and Rhinge(f) to evaluate the gap G ≜ Rhinge(f)−R∗

hinge, we can decompose
the gap by a sum of 4 terms that are driven by the ground truth decision cases, i.e. r∗ = 0 or ∗ = 1
and the decision of the model r̃(x):

G ≜ Rhinge(t,v, r̃)−R∗
hinge (185)

G = Ep(x,z)[
∑
y∈Y

ζy(x, z)(1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+

(186)

+
∑
y∈Y

ζy(x, z)r̃(x)

∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1

] (187)

− K

K − 1
Ep(x)[1[r̃

∗(x) = 0](1−max
y∈Y

ηy(x))] + Ep(x,z)[1[r̃
∗(x) = 1](c+ 1−max

y∈Y
ζy(x, z))].

(188)
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We can define the corresponding gap to each case as follows:

G1 ≜ 1[r̃∗(x) = 0]1[r̃(x) ≤ 0.5]
∑
y∈Y

ηy(x, z)(1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+

(189)

+
∑
y∈Y

ζy(x, z)r̃(x)

∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1

− K

K − 1
(1−max

y∈Y
ηy(x)) (190)

G2 ≜ 1[r̃∗(x) = 0]1[r̃(x) ≥ 0.5]
∑
y∈Y

ηy(x, z)(1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+

(191)

+
∑
y∈Y

ζy(x, z)r̃(x)

∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1

− K

K − 1
(1−max

y∈Y
ηy(x))

(192)

G3 ≜ 1[r̃∗(x) = 1]1[r̃(x) ≤ 0.5]
∑
y∈Y

ηy(x, z)(1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+

(193)

+
∑
y∈Y

ζy(x, z)r̃(x)

∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1

− K

K − 1
(c+ 1−max

y∈Y
ζy(x, z)),

(194)

G4 ≜ 1[r̃∗(x) = 1]1[r̃(x) ≥ 0.5]
∑
y∈Y

ηy(x, z)(1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+

(195)

+
∑
y∈Y

ζy(x, z)r̃(x)

∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1

− K

K − 1
(c+ 1−max

y∈Y
ζy(x, z)),

(196)

and rewrite the total gap as:

G = Ep(x,z)

[
G1 +G2 +G3 +G4]. (197)

We can obtain a similar decomposition for the risk gap of our target risk R01c(f). We recall the
definition:

R01c(f) = Ep(x,z,y)

[
ℓ01c(f(x, z), y)] (198)

= Ep(x,z,y)

[
1[r(x) = 0]1[f1(x) ̸= y] + 1[r(x) = 1][1[f2(x, z) ̸= y)] + c]

]
(199)

= Ep(x)

[
1[r(x) = 0]Ep(y|x)1[f1(x) ̸= y] + 1[r(x) = 1]Ep(y,z|x)[1[f2(x, z) ̸= y)] + c]

]
(200)

R01c(f) = Ep(x)

[
1[r(x) = 0](1− ηf1(x)) + 1[r(x) = 1]Ep(z|x)[1− ζf2(x,z) + c]

]
(201)

and decompose the gap risk with terms based on similar cases:

F1 ≜ 1[r(x) = 0, r∗(x) = 0](ηf∗1(x) − ηf1(x)) (202)

F2 ≜ 1[r(x) = 0, r∗(x) = 1](Ep(z|x)[ζf∗
2 (x,z)

]− ηf1(x) − c) (203)

F3 ≜ 1[r(x) = 1, r∗(x) = 0](ηf∗1(x) − Ep(z|x)[ζf2(x,z)] + c) (204)

F4 ≜ 1[r(x) = 1, r∗(x) = 1](Ep(z|x)[ζf∗
2 (x,z)

− ζf2(x,z)]) (205)

R01c(f)−R∗
01c = Ep(x,z)

[
F1 + F2 + F3 + F4

]
. (206)

This makes sense: if the optimal decision is defer and we don’t, the risk is diminished by the saved
computation c (the second case). If the optimal decision is not to defer and do, the risk is increased
by the computation cost c (the third case).
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To prove the result, we show that :

Ep(x,z)

[
F1

]
≤Ψ(Ep(x,z)[G1]) (207)

Ep(x,z)

[
F2

]
≤Ψ(Ep(x,z)[G2]) (208)

Ep(x,z)

[
F3

]
≤Ψ(Ep(x,z)[G3]) (209)

Ep(x,z)

[
F4

]
≤Ψ(Ep(x,z)[G4]). (210)

G1 inequality Starting with G1 and F1:

G1 = 1[r̃∗(x) = 0]1[r̃(x) ≤ 0.5]
∑
y∈Y

ηy(x, z)(1− r̃(x))
∑
y′ ̸=y

[ty′ +
1

K − 1

]
+

(211)

+
∑
y∈Y

ζy(x, z)r̃(x)

∑
y′ ̸=y

[vy′ +
1

K − 1
]+ +

Kc

K − 1

− K

K − 1
(1−max

y∈Y
ηy(x)) (212)

≥ K

K − 1
(1− r̃(x))(1− ηf1) + r̃(x)(1− ζf2 + c)]− (1− η∗) by def. of the hinge loss

(213)

=
K

K − 1
(1− ηf1 − r̃(x) + r̃(x)ηf1 + r̃(x)− r̃(x)ζf2 + r̃(x)c− 1 + η∗) (214)

G1 ≥ 1[r̃(x) ≤ 0.5]
K

K − 1
(η∗ − ηf1 + r̃(x)(ηf1 − ζf2 + c)) . (215)

We need to find a mapping Ψ such that the following holds:

Ep(x,z)

[
F1

]
≤Ψ(Ep(x,z)[G1]) (216)

Ep(x,z)

[
(ηf∗1 − ηf1)

]
≤Ψ(Ep(x,z)[G1]). (217)

Using the simple scaling function Ψ(x) = 2(K−1)
K x, we can see that the previous inequality holds:

Ep(x,z)[
2(K − 1)G1

K
] ≥ 2Ep(x,z)

[
1[r̃(x) ≤ 0.5](η∗ − ηf1 + r̃(x)(ηf1 − ζf2 + c))

]
(218)

≥ 2Ep(x,z)

[
1[r̃(x) ≤ 0.5](η∗ − ηf1 + r̃(x)(ηf1 − ζ∗ + c))

]
(219)

≥ 2Ep(x,z)

[
1[r̃(x) ≤ 0.5](η∗ − ηf1 + r̃(x)(ηf1 − (c+ η∗) + c))

]
(220)

as r∗ = 0 (221)

≥ 2Ep(x,z)

[
1[r̃(x) ≤ 0.5](η∗ − ηf1 − r̃(x)(η∗ − ηf1))

]
(222)

≥ 2Ep(x,z)

[
1[r̃(x) ≤ 0.5](1− r̃(x))(η∗ − ηf1)

]
(223)

≥ 2Ep(x,z)

[
0.5(η∗ − ηf1)

]
(224)

Ψ(Ep(x,z)[G1]) ≥ Ep(x,z)

[
(η∗ − ηf1)

]
with Ψ(x) =

2(K − 1)

K
x. (225)
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G2 inequality For the next inequality with G2 and F2, again using the same function Ψ(x) =
2(K−1)

K x, the inequality holds:

Ep(x,z)[
2(K − 1)G2

K
] ≥ 2Ep(x,z)

[
1[r̃(x) ≥ 0.5](η∗ + ηf1(r̃(x)− 1)− r̃(x)ζf2 + r̃(x)c)

]
(226)

≥ 2Ep(x,z)

[
1[r̃(x) ≥ 0.5](η∗ + η∗(r̃(x)− 1)− r̃(x)ζf2 + r̃(x)c)

]
(227)

= 2Ep(x,z)

[
1[r̃(x) ≥ 0.5](r̃(x)(η∗ − ζf2 + c)

]
(228)

≥ 2Ep(x,z)

[
0.5(η∗ − ζf2 + c)

]
(229)

Ψ(Ep(x,z)[G2]) ≥ Ep(x,z)

[
F2

]
. (230)

(231)

Following similar steps, we obtain

Ψ(Ep(x,z)[G3]) ≥ Ep(x,z)

[
F3

]
(232)

Ψ(Ep(x,z)[G4]) ≥ Ep(x,z)

[
F4

]
. (233)

Putting all results together, we obtain

R01c(φ(t,v, r̃))−R∗
01c ≤

2(K − 1)

K

(
Rhinge(t,v, r̃)−R∗

hinge

)
(234)

R01c(φ(t,v, r̃))−R∗
01c ≤ Ψ

(
Rhinge(t,v, r̃)−R∗

hinge

)
. (235)

with Ψ(0) = 0 and is increasing. This concludes the proof.

A.6 Proof of the failure of the cross entropy version

In this section, we prove that the cross entropy version of the surrogate loss we presented cannot be
Bayes-consistent.

We recall the entropy version, with p1 ∈ ∆K for f1 and p2 ∈ ∆K for f2, with the same link function
φ. The cross entropy version of the loss that we consider is given by:

ℓg(c)ce (p1,p2, r̃, x, z, y) = −
(
(1− r̃(x)) log(p1

y) + r̃(x)(log(p2
y) + g(c))

)
, (236)

where g(c) is an arbitrary function. We again consider its associated risk:

Rce(p
1,p2, r̃) = Ep(x,z,y)[ℓ

g(c)
ce (p1,p2, r̃, x, z, y)] (237)

and minimizing function:

f∗
ce = argmin

p1,p2,r̃∈[0,1]

Rce(p
1,p2, r̃). (238)

Lemma 4.2. Cross-entropy surrogate loss is not Bayes Consistent.
There is no g(c) for which:

f∗ = f∗
ce. (239)

Proof. Following a similar reasoning as the proof of Lemma A.1 , we can readily find that the optimal
predicted probability vectors p1 and p2 in f∗

ce should match the posteriors:

f∗
ce = {η(x), ζ(x, z), r̃∗ce}. (240)

Now, to find the optimal decision function of the cross entropy risk r̃∗ce, we can again obtain the
solution as

r̃∗ce(x) = argmin
r̃∈{0,1}

B(r̃, x) where (241)

B(r̃, x) = Ep(x,z)[−(1− r̃(x)) log(η∗(x))− r̃(x)(log(ζ∗(x, z)) + g(c))]. (242)
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by following the same steps that were taking to obtain Eqn. 153. We again consider the two cases:

B(0, x) = − log(η∗(x)) , (243)
B(1, x) = −Ep(z|x)[log(ζ∗(x, z))]− g(c). (244)

The solution for the cross-entropy decision function is hence given by:

r̃∗ce(x) =

{
0 if B(0, x) < B(1, x) ,

1 o.w.
(245)

r̃∗ce(x) =

{
0 if log(η∗(x)) ,≥ Ep(z|x)[log(ζ∗(x, z))] + g(c)

1 o.w.
(246)

If we recall the solution decision of our target problem;

r∗(x) = η∗(x) < Ep(z|x)[ζ∗(x, z)] + c, (247)

we are searching for a function g(c) for which

1[log(η∗(x)) < Ep(z|x)[log(ζ∗(x, z))] + g(c)] = r∗(x) ∀x, η, ζ. (248)

If we define the decision sets of x:

D1 := {x | r∗(x) = 1}, (249)
D0 := {x | r∗(x) = 0}, (250)

we can rewrite the condition Eqn. 248 as:

log(η∗(x))− Ep(z|x)
[
log(ζ∗(x, z))

]
< g(c) for all x ∈ D1, (251)

log(η∗(x))− Ep(z|x)
[
log(ζ∗(x, z))

]
≥ g(c) for all x ∈ D0. (252)

This implies that the function g(c) should satisfy:

sup
x∈D1

log(η∗(x))− Ep(z|x)
[
log(ζ∗(x, z))

]
< g(c) ≤ inf

x∈D0

log(η∗(x))− Ep(z|x)
[
log(ζ∗(x, z))

]
∀η, ζ.

(253)

However, our condition for r∗(x) is on the absolute scale, not on the log scale r∗(x) = η∗(x) <
Ep(z|x)[ζ∗(x, z)] + c. We will therefore have that for some η, ζ

sup
x∈D1

log(η∗(x))− Ep(z|x)
[
log(ζ∗(x, z))

]
> inf

x∈D0

log(η∗(x))− Ep(z|x)
[
log(ζ∗(x, z))

]
. (254)

This implies that there is no g(c) that can satisfy

1[log(η∗(x)) < Ep(z|x)[log(ζ∗(x, z))] + g(c)] = r∗(x) . (255)

This concludes the proof.

A.7 Extension to the multi-classifier setting

In this section, we provide a high-level view of how we could extend our results to the more general
case of L + 1 classifiers. In this setting, there are still two stages, but there are L classifiers to
choose from at the second stage (with associated costs c1, . . . cL). We would need to introduce
additional random variables Z1, . . . , ZL, and the loss in Eqn 2 would need to be generalized to
multiple classifiers and costs:

ℓ01c(f(x, z1:L), y) =


1[f1(x) ̸= y] r(x) = 0

1[f2(x, z1) ̸= y] + c1 r(x) = 1

. . . ,

1[fL(x, zL) ̸= y] + cL r(x) = L.

(256)
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The corresponding solution for the decision boundaries (Eqn. 9) would become more complex.
Instead of comparing the maximum posterior probability η(x) to a single expected future gain minus
cost, the comparison would now need to be made against the best potential expected future gain for
each classifier:

r∗(x) =


0 if 1

[
maxy ηy(x) > maxl∈1,L

(
Ep(Zl|x)[maxy p(y|x, Zl)]− cl

)]
1 if 1 = maxl∈1,L

(
Ep(Zl|x)[maxy p(y|x, Zl)]− cl

)
. . .

L if L = maxl∈1,L

(
Ep(Zl|x)[maxy p(y|x, Zl)]− cl

)
.

(257)

The term maxl∈1,L

(
Ep(Zl|x)[maxy p(y|x, Zl)]− cl

)
returns the index of the best model that can be

used at the second stage.

Then, we could propose a multi-classifier surrogate loss (replacing Eqn. 11) by using a soft decision
function that is now a multiclass probability vector r̃(x) ∈ [0, 1]L+1 with

∑L
l=0 r̃l(x) = 1. We would

also need to introduce L new learnable vectors t(0), . . . , t(L), and an index-dependent cost term
K

K−1g(l, c1, . . . , cL,K), where g(l, c1, . . . , cL,K) is some linear function of the costs that would
need to be derived and obtained from the proof. The hinge surrogate loss could (potentially) have the
following form:

ℓchinge(t
(0), . . . , t(L), r̃, x, z1:L, y) =

L∑
l=0

r̃l(x)(
∑
y′ ̸=y

[t
(l)
y′ +

1

K−1
]+ + g(l, c1, . . . , cL,K)). (258)

It remains to be seen whether we can verify the consistency of a loss of this form.
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