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Abstract

Pre-trained language models have brought sig-001
nificant improvements in performance in a002
variety of natural language processing tasks.003
Most existing models performing state-of-the-004
art results have shown their approaches in the005
separate perspectives of data processing, pre-006
training tasks, neural network modeling, or007
fine-tuning. In this paper, we demonstrate how008
the approaches affect performance individually,009
and that the language model performs the best010
results on a specific question answering task011
when those approaches are jointly considered012
in pre-training models. In particular, we pro-013
pose an extended pre-training task, and a new014
neighbor-aware mechanism that attends neigh-015
boring tokens more to capture the richness016
of context for pre-training language modeling.017
Our best model achieves new state-of-the-art018
results of 95.7% F1 and 90.6% EM on SQuAD019
1.1 and also outperforms existing pre-trained020
language models such as RoBERTa, ALBERT,021
ELECTRA, and XLNet on the SQuAD 2.0022
benchmark.023

1 Introduction024

Question answering (QA) is the task of answering025

given questions, which demands a high level of lan-026

guage understanding and machine reading compre-027

hension abilities. As pre-trained language models028

based on Transformer (Vaswani et al., 2017) have029

brought a huge improvement in performance on a030

broad range of natural language processing (NLP)031

tasks including QA tasks, methodologies for QA032

tasks are widely used to develop applications such033

as dialog systems (Bansal et al., 2021) and chat-034

bots (Hemant et al., 2022; Duggirala et al., 2021)035

in a variety of domains.036

Pre-trained language models like BERT (Devlin037

et al., 2018) are designed to represent individual038

words for contextualization. However, recent ex-039

tractive QA tasks such as Stanford Question An-040

swering Dataset (SQuAD) benchmarks (Rajpurkar041

Figure 1: Example of a passage with a pair of question
and answer sampled from the SQuAD 1.1 dataset.

et al., 2016, 2018) involve reasoning relationships 042

between spans of texts that include a group of two 043

or more words in the evidence document (Lee et al., 044

2016). In the example, as shown in Figure 1, “a 045

golden statue of the Virgin Mar”, the correct an- 046

swer for the question “What sits on top of the Main 047

Building at Notre Dame?”, is a group of words 048

consisting of nouns and other words and is called 049

as a noun phrase, which performs as a noun in a 050

sentence. Since predicting a span of answer texts 051

including a start and end positions may be chal- 052

lenging for self-supervised training rather than pre- 053

dicting an individual word, we introduce a novel 054

pre-training approach that extends a standard mask- 055

ing scheme to wider spans of texts such as a noun- 056

phrase rather than an entity level and prove that 057

this approach is more effective for an extractive 058

QA task by outperforming existing models. 059

In this paper, we present a new pre-training 060

approach, ANNA (Approach of Noun-phrase 061

based language representation with Neighbor- 062

aware Attention), which is designed to better under- 063
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stand syntactic and contextual information based064

on comprehensive experimental evaluation of data065

processing, pre-training tasks, attention mecha-066

nisms. First, we extend the conventional pre-067

training tasks. Our models are trained to predict068

not only individual tokens but also an entire span069

of noun phrases during the pre-training procedure.070

This noun-phrase span masking scheme lets models071

learn contextualized representations in the whole072

span level, which benefits predicting answer texts073

for the specific extractive QA tasks. Second, we en-074

hance the self-attention approach by incorporating075

a novel neighbor-aware mechanism in Transformer076

architecture (Vaswani et al., 2017). We find that077

more consideration of relationships between neigh-078

boring tokens by masking diagonality in attention079

matrix is helpful for contextualized representations.080

Additionally, we use a larger volume of corpora for081

pre-training language models and find that using a082

lot of of additional datasets does not guarantee the083

best performance.084

We evaluate our proposed models on the SQuAD085

datasets which is a major extractive QA bench-086

marks for pre-trained language models. For087

SQuAD 1.1 task, ANNA achieves new state-of-the-088

art results of 90.6% Exact Match (EM) and 95.7%089

F1-score (F1). When evaluated on the SQuAD 2.0090

development dataset, the results show that our pro-091

posed approaches obtain competitive performance092

outperforming self-supervised pre-training models093

such as BERT, ALBERT, RoBERTa, and XLNet094

models.095

We summarize our main contributions as fol-096

lows:097

• We propose a new pre-trained language model,098

ANNA that is designed to address extractive099

QA tasks. ANNA is trained to predict the100

masked group of words that is an entire noun101

phrase, in order to better learn syntactic and102

contextual information by taking advantage of103

span-level representations.104

• We introduce a novel transformer encoding105

mechanism stacking new neighbor-aware self-106

attention on an original self-attention in the107

transformer encoder block. The proposed108

method takes into account neighbor tokens109

more importantly than identical tokens during110

the computation of attention scores.111

• ANNA establishes new state-of-the-art results112

on the SQuAD 1.1 leaderboard and outper-113

forms existing pre-trained language models 114

for the SQuAD 2.0 dataset. 115

2 Related works 116

Pre-trained contextualized word representations 117

There have been many recent efforts on pre-training 118

language representation models aiming for captur- 119

ing linguistic and contextual information, and the 120

models have brought a significant improvement of 121

performance in a variety of NLP tasks. ELMo (Pe- 122

ters et al., 2018) is a deep contextualized word 123

representation to learn complex characteristics of 124

word use across linguistic contexts, and pre-trained 125

models with these representations have shown no- 126

ticeable improvements in many NLP challenges. 127

BERT (Devlin et al., 2018) is a pre-trained lan- 128

guage model with a deep bidirectional long short- 129

term memory, which learns context in text using 130

the masked language modeling (MLM) and the 131

next sentence prediction (NSP) objectives for self- 132

supervised pre-training. The latest language mod- 133

els (Liu et al., 2019; Lan et al., 2019; Yang et al., 134

2019b; Radford et al., 2018; Raffel et al., 2019a; 135

Lewis et al., 2019) influenced by BERT mainly em- 136

ploy the transformer architecture (Vaswani et al., 137

2017) for pre-training but are trained with similar 138

or extended to the pre-training objectives used in 139

BERT implementation for enhancement of perfor- 140

mance. There also exist many attempts to improve 141

the capabilities of the standard transformer mecha- 142

nism in contextualized word representations. 143

Extension of MLM Many recent studies have 144

attempted to use different pre-training objectives 145

by extending the MLM task in language modeling 146

including BART (Lewis et al., 2019) and T5 (Raf- 147

fel et al., 2019b). ELECTRA (Clark et al., 2020) 148

introduces a new pre-training method of replaced 149

token detection that replaces input tokens with al- 150

ternative samples and detects whether the tokens 151

are replaced or not. MASS (Song et al., 2019) is 152

pre-trained on the sequence to sequence framework 153

where fragments of input sentences are masked, 154

and the masked fragment is predicted in its decoder 155

part. XLNet (Yang et al., 2019b) adopts a span- 156

based masking approach that predicts a masked 157

subsequent span of tokens in a context of tokens au- 158

toregressively. SpanBERT (Joshi et al., 2020) and 159

REALM (Guu et al., 2020) employ a span masking 160

scheme that masks spans of tokens rather than ran- 161

dom individual tokens, and the model is designed to 162

learn span representations during pre-training. Sim- 163
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ilarly, LUKE (Yamada et al., 2020), ERNIE (Zhang164

et al., 2019), and KnowBERT (Peters et al., 2019)165

learn joint representations of words and entities by166

incorporating knowledge of entity embeddings.167

Improvement of Attention Mechanism Since the168

standard transformer architecture has flexibility,169

many studies have shown the implementation of170

Transformer-based variants for improving further171

performance on language modeling and NLP tasks172

such as machine translation. Shaw et al. ex-173

tends self-attention mechanism by incorporating174

embeddings of relative positions or distances be-175

tween sequence elements, which is beneficial for176

performance improvement in machine translation177

tasks. Yang et al. introduces a context-aware self-178

attention approach that improves the self-attention179

with additional contextual information. Sukhbaatar180

et al. presents a novel attention method extend-181

ing the self-attention layer with persistent vectors182

storing information which plays a similar role as183

the feed-forward layer. Fan et al. proposes a mask184

attention network that is a sequential layered struc-185

ture incorporated a new dynamic mask attention186

layer with the self-attention and feed-forward net-187

works.188

3 Methodology189

We introduce a novel transformer encoder architec-190

ture integrating a new neighbor-aware mechanism191

for pre-training a language model. Figure 2 demon-192

strates the architecture of ANNA model. ANNA193

extends the original transformer encoder blocks194

by including a neighbor-aware self-attention layer195

stacked on a multi-head self-attention layer.196

3.1 Neighbor-aware Self-Attention197

In this study, we propose a neighbor-aware atten-198

tion mechanism. We assume that a single self-199

attention layer in Transformer encoder may be in-200

sufficient to learn context and the pre-trained mod-201

els based on the transformer are hard to predict202

correct answers in downstream tasks due to lin-203

guistic noises brought in unrelated areas to a po-204

tential answer in the transformer encoder blocks.205

In an attention matrix, there is a pattern of diag-206

onal line that illustrates a token more attends to207

itself, but less influences to other tokens. To give208

more attention to related tokens, we implement a209

new neighbor-aware attention mechanism that is210

designed to mitigate influences of identical tokens211

by ignoring the diagonality in an attention matrix212

Figure 2: Architecture of ANNA.

when attention scores are computed. Instead, other 213

tokens are more attended, so that the neighbor- 214

aware mechanism enhances better understanding 215

for relationships between tokens in inputs. Here, 216

we integrate a neighbor-aware self-attention layer 217

between the self-attention and the feed-forward net- 218

work. The original attention information of a token, 219

passed through the self-attention and the residual 220

connection, is passed through the neighbor-aware 221

self-attention again, so the token can more reflects 222

a context to understand the sentence. 223

As the Self-Attention layer shown in Figure 2 is 224

adopted from the standard transformer architecture 225

(Vaswani et al., 2017), we denote the self-attention 226

as AS that is calculated using query (Q), key (K) 227

and value (V) projections as follows: 228

AS(Q,K, V ) = SS(Q,K)V 229

230

SS(Q,K) =

[
exp(QiK

T
j /

√
dk)∑

k exp(QiKT
k /

√
dk)

]
231

where Q, K and V represent HWq, HWk and 232

HWv, respectively. H ∈ RL×d denoted as the 233

input hidden vectors, L is the length of the input 234

sequence, and d is the hidden size. Wq,Wk,Wv ∈ 235
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Figure 3: Example of the input sequence “Animal Farm is a satirical allegorical novella by George Orwell, first
published on 1945” for pre-training ANNA. Different types of masking schemes are illustrated with such colors:
masking a noun or noun phrase span (Orange), a whole word masking (Blue), and a wordpiece token masking
(Green).

Rd×d are the projection matrices, and dk is the236

query/key dimension. AS , AN ∈ RL×L represents237

the attention matrices.238

We define the Neighbor-aware Attention layer239

presented with AN as follows:240

AN (Q,K, V ) = SN (Q,K)V241

242

SN (Q,K) =
M(i, j)exp(QiK

T
j /

√
dk)∑

k M(i, j)exp(QiKT
k /

√
dk)

243

244

M(i, j) =

{
0, if i = j
1, others

245

where M denotes a mask that functions to omit246

capturing interactions of identical tokens. The in-247

teractions between each pair of input tokens xi and248

xj at positions i and j for 0 ≤ i, j ≤ L are calculated249

except for i = j.250

3.2 Pre-training Task251

We present a new pre-training task for training252

ANNA model. We follow the conventional MLM253

pre-training objective similar to BERT (Devlin254

et al., 2018). BERT is more sensible and effective255

to deeply represent context fusing the left and the256

right text with the MLM objective rather than uni-257

directional language models (Radford et al., 2018,258

2019; Brown et al., 2020) or shallow Bi-LSTM259

models (Clark et al., 2018; Huang et al., 2015).260

In addition, a new masking scheme is applied for261

focusing on noun phrases in order to train our lan-262

guage model for better understanding syntactic and263

lexical information considering the specific down-264

stream tasks. Here, we define three different mask-265

ing schemes as illustrated in Figure 3. First, we266

use a span masking scheme that masks a group of 267

texts in a span-level adopted by SpanBERT (Joshi 268

et al., 2020). In this study, nouns or noun phrases 269

identified by spaCy’s parser (Honnibal and Mon- 270

tani, 2017) are randomly masked for span masking 271

selection. Then we apply a whole word masking 272

approach that masks all of the sub-tokens corre- 273

spondings to a word at once, while we randomly 274

mask tokens not included in the above two cases. 275

Following BERT, we randomly select 15% of the 276

tokens in input sequences, and 80% of the selected 277

tokens are replaced with the special token [MASK]. 278

We keep 10% of the tokens in the rest of them un- 279

changed, and the other 10% are replaced with ran- 280

domly selected tokens. Our language model is also 281

designed to train for the prediction of each token in 282

the masked span by computing the cross-entropy 283

loss function. However, the next sentence predic- 284

tion (NSP) objective used in the BERT implemen- 285

tation is not used in this study, as RoBERTa (Liu 286

et al., 2019) removes the NSP task due to perfor- 287

mance decreases on downstream tasks. 288

3.3 Vocabulary and Tokenizer 289

In this study, we build a new vocabulary of 127,490 290

wordpieces that are extracted from the English 291

Common Crawl corpus (Raffel et al., 2019a) and 292

English Wikipedia dump datasets. The vocabu- 293

lary consists of sub-words (30%) tokenized by the 294

WordPiece algorithm (Wu et al., 2016), and 70% of 295

the rest include noun-phrase words in their original 296

form. We aim to prevent words from being out 297

of vocabulary words and also keep noun phrases 298

as the original forms so that our model is able to 299

take many words in order to better learn human 300

linguistic understanding during training. 301

In addition, we propose a new approach of word 302

tokenization to suit our vocabulary used to pre- 303
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Words BERT tokens ANNA tokens
Sant’Egidio Sant , ’ , E , ##gi , ##dio Sant’Egidio
COVID-19 CO , ##VI , ##D , - , ’19’ COVID-19
U.S. U , . , S , . U.S.
Ph.D. Ph , . , D , . Ph.D.
l’amour l , ’ , am , ##our l’amour
non-profit non , - , profit non-profit
X-Files X , - , Files X-Files
UTF-16 U , ##TF , - , 16 UTF-16
C++ C , + , + C++

Table 1: Comparison of tokenization results between BERT and ANNA.

train ANNA model. This approach avoids sepa-304

rating words by special symbols since our vocab-305

ulary contains words including special characters306

by tokenizing noun-phrase words with white space307

only. Many studies use a subword-based word rep-308

resentation method for efficiency in vocabulary. A309

word is represented with several subword units tok-310

enized by BERT tokenizer as exampled in Table 1.311

However, we do not follow this conventional tok-312

enization method (Wu et al., 2016), since we use313

a span masking scheme that masks an entire noun314

phrase randomly selected during a pre-training pro-315

cedure. It is not suitable to train models as the316

length of masking tokens gets longer if subword317

units are used for the span masking scheme. We318

also aim to represent a whole-word token rather319

than subword units when attention scores are calcu-320

lated. We implement an ANNA tokenizer in order321

to enhance a better understanding of contexts by322

not separating words as much as possible. Table 1323

compares word tokenization results between BERT324

and ANNA tokenizers.325

3.4 Pre-training Datasets326

We use an English Wikipedia dataset like BERT327

(Devlin et al., 2018), and add publicly avail-328

able English-language corpora such as a Colossal-329

Cleaned version of Common Crawl (C4) corpus330

(Raffel et al., 2019a), Books3 (Gao et al., 2020),331

and OpenWebText2 (OWT2) extended from Web-332

Text (Radford et al., 2019) and OpenWebTextCor-333

pus (Gokaslan and Cohen) for pre-training our334

models. Details of datasets and pre-processing335

techniques are described in Appendix B.336

With the extensive data pre-processing proce-337

dure, we gain the size of 12GB, 580GB, 51GB,338

and 22GB for Wikipedia, C4, Books3, and OWT2,339

respectively. The pre-processed texts are tok-340

enized into 410B word-piece tokens in total for 341

pre-training our models. 342

In this study, we conduct an experiment in order 343

to investigate whether the use of different sources 344

of data for pre-training language models affects 345

model performance on downstream tasks. We 346

compare the performance of models pre-trained 347

with different datasets in Table 2. We observe 348

that C4 improves performance on the SQuAD 1.1 349

task when it is added to the Wikipedia dataset, but 350

that models pre-trained over Books3 and OWT2 351

datasets are not beneficial for performance in- 352

creases. We also find that the use of the larger 353

volume of data including all of these four corpora 354

is not helpful to improve performance. Thus we 355

use both the C4 data and the Wikipedia corpus for 356

pre-training ANNA models. Pre-training details 357

for ANNA models can be found in Appendix A. 358

Corpora EM F1
Wikipedia 85.51 90.99
Wikipedia + C4 85.90 91.02
Wikipedia + Books3 85.40 90.79
Wikipedia + OWT2 84.79 90.27
ALL 85.14 90.22

Table 2: Comparison of model performance pre-trained
with the different data sources. Models pre-trained
with different pre-training corpora are evaluated on the
SQuAD1.1 dataset. ALL includes the four datasets of
Wikipedia, C4, Books3, and OWT2. Due to the limita-
tion of computing resources, ANNABase model is used
for this experiment.

4 Experiments 359

In this section, we present the fine-tuning results of 360

ANNA transferred to specific extractive question 361

answering tasks. 362
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We evaluate ANNA on SQuAD 1.1 and 2.0 tasks363

that are well-known machine reading comprehen-364

sion benchmarks in the NLP area, and some NLU365

tasks. The dataset of SQuAD 1.1 consists of around366

100k pairs of a question and an answer along with367

Wikipedia passages where the answers are included.368

This task is to predict a correct span of an answer369

text for a given question from the corresponding370

Wikipedia passage (Rajpurkar et al., 2016). For371

SQuAD 2.0, the dataset is extended to the SQuAD372

1.1 dataset by combining over 50,000 unanswerable373

questions, so that systems are required to predict374

answers to both answerable and unanswerable ques-375

tions (Rajpurkar et al., 2018). We follow the fine-376

tuning procedure of BERT (Devlin et al., 2018), but377

the provided SQuAD training dataset only is used378

for fine-tuning, while BERT augments its training379

dataset with other QA datasets available in public.380

SQuAD 1.1 Table 3 indicates the results of our381

best performing system compared with top results382

on the SQuAD 1.1 leaderboard. We also compare383

ours with BERT baselines. ANNA establishes a384

new state-of-the-art result on this task outperform-385

ing LUKE (Yamada et al., 2020) by EM 0.4 points386

and F1 0.3 points on the test dataset. LUKE is the387

latest best performing system in the leaderboard,388

and it is designed for contextualized representa-389

tions of words and entities. As for a comparison390

with SpanBERT (Joshi et al., 2020) that masks391

contiguous sequences of token for span representa-392

tions, ANNA also achieves better performance by393

both EM 1.8 points and F1 1.1 points.394

SQuAD 2.0 ANNA is evaluated on SQuAD 2.0395

development dataset, and the results are compared396

with the published pre-trained language models397

(Devlin et al., 2018; Liu et al., 2019; Lan et al.,398

2019; Yang et al., 2019b; Clark et al., 2020) in Ta-399

ble 4, which demonstrates that ANNA outperforms400

all of those language models and in particular, pro-401

duces performance increases than ELECTRA by402

0.4 points of EM and 0.2 points of F1.403

GLUE The General Language Understanding404

Evaluation (GLUE) benchmark is a collection of405

datasets used for training and evaluation diverse406

natural language understanding tasks (Wang et al.,407

2018). Since fine-tuning on GLUE is currently in408

progress, we show the results of the tasks that we409

complete in Appendix A.410

5 Model Analysis 411

We conduct additional experiments in terms of per- 412

spectives such as data processing, pre-training task, 413

and attention mechanisms. We report a detailed 414

analysis of how those approaches affect the per- 415

formance of ANNA on a specific downstream task 416

individually. In this study, ANNABase model is 417

used for these additional experiments due to the 418

limitation of computing resources. 419

5.1 Effect of ANNA Tokenization 420

As mentioned in Section 3.3, we build a new vocab- 421

ulary containing noun-phrase words in their orig- 422

inal format. For this, we introduce a new word 423

tokenization strategy that keeps words in the origi- 424

nal formats for noun phrases, which suits for our 425

vocabulary. We compare our tokenization approach 426

with the standard word-piece split approach, and 427

find that ANNA tokenization performs better as 428

shown in table 5. 429

5.2 Effect of Data Processing 430

We describe several data pre-processing techniques 431

we conduct to build a high-quality dataset for pre- 432

training ANNA in Section 3.4. Here we demon- 433

strate how the use of the data processing techniques 434

affects the performance on the extractive question 435

answering task. There exist documents with a va- 436

riety of ranges of word length in the pre-training 437

corpora. For a generation of an input sequence, doc- 438

uments containing less than 100 words are filtered 439

out, while the others are split into multiple sentence 440

chunks. Due to the maximum sequence length of 441

512, we limit the size of the chunks to not exceed- 442

ing approximately 300 words. We observe that the 443

data processing procedure making a suitable word 444

length for the max sequence length is helpful to 445

improve performance slightly as shown in Table 6. 446

However, the input sequences overlapped with 128 447

tokens at the back and front between successive 448

sentence chunks rather hurt system performance. 449

5.3 Effect of Pre-training Mechanism 450

We investigate how different MLM objectives af- 451

fect the performance of models on a specific down- 452

stream task. During a pre-training procedure, a 453

model is trained with a deep bidirectional represen- 454

tation of input sequences. First, we concatenate 455

part-of-speech (POS) tags to each word, then we 456

apply a whole word masking approach to explore 457

whether a masking method employing syntactic in- 458
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System
Dev Test

EM F1 EM F1
BERTLarge (Devlin et al., 2018) 84.2 91.1 85.1 91.8
BERTLarge (ensemble) - - 87.4 93.1
SpanBERT (Joshi et al., 2020) - - 88.8 94.6
XLNetLarge (Yang et al., 2019b) 89.0 94.5 89.9 95.1
LUKE (Yamada et al., 2020) 89.8 95.0 90.2 95.4
ANNABase 87.0 92.8 - -
ANNALarge 90.0 95.4 90.6 95.7

Table 3: Performance of systems evaluated on the SQuAD 1.1 datasets.

System
SQuAD 2.0 SQuAD 2.0

Dev EM Dev F1
BERTLarge (Devlin et al., 2018) 79.0 81.8
ALBERTLarge (Lan et al., 2019) 85.1 88.1
RoBERTa (Liu et al., 2019) 86.5 89.4
XLNetLarge (Yang et al., 2019b) 87.9 90.6
ELECTRALarge (Clark et al., 2020) 88.0 90.6
ANNALarge 88.4 90.8

Table 4: Performance of systems evaluated on the SQuAD 2.0 development dataset.

SQuAD1.1 SQuAD1.1
Dev EM Dev F1

WordPiece tokenizer 85.3 90.8
ANNA tokenizer 86.3 91.2

Table 5: Ablation study of our tokenizer comparing to
BERT tokenizer

formation is helpful to understand the context. We459

also mask tokens identified as named entities and460

noun phrases instead of masking single tokens ran-461

domly. In all of the experiments, we use the same462

percentage of 15% for the masking tasks. Table 7463

compares results on the SQuAD 1.1 task for mod-464

els using those MLM schemes. Comparing with465

the standard MLM approach that simply masks466

15% of tokens, the pre-trained models using Entity467

and Noun-phrase MLM schemes improve perfor-468

mance, but the approach masking words including469

POS tags decreases performance than the standard470

MLM. Thus we use the Noun-phrase MLM ap-471

proach to pre-train ANNA models for final results.472

5.4 Effect of Neighbor-aware Self-Attention473

We attempt to implement a new transformer en-474

coder focusing on relatives, entities, or neighbors475

in input tokens in order to enhance capturing syn-476

tactic and contextual information. First, we extend477

the original self-attention based on the transformer478

in order to consider relationships between input to- 479

kens. The relation matrix of input tokens is simply 480

added when attention scores are computed. For an 481

entity-self-attention that focuses on named entities, 482

we identify named entities in text and then com- 483

pute additional attention scores to those entities for 484

learning effective representations. We describe the 485

mechanism of a neighbor-aware self-attention in 486

detail in Section 3.1. We report that the neighbor- 487

aware self-attention approach performs better than 488

the original self-attention and other transformer 489

modifications on the extractive question-answering 490

task in Table 8. We consider that the neighbor- 491

aware mechanism is effective to capture relation 492

information of neighboring tokens in an input se- 493

quence. 494

5.5 Effect of Layer-stacking Approach 495

We examine how approaches to stack sub-layers in 496

a transformer encoder architecture impact perfor- 497

mance. We compose a transformer encoder block 498

by collaborating three sub-layers such as a self- 499

attention, a neighbor-aware self-attention, and a 500

feed-forward network in different combinations. 501

We evaluate the models using different combination 502

methods of stacking layers and report the results 503

on the SQuAD 1.1 dataset in Table 9. 504

We observe that a self-attention substituted with 505

a neighbor-aware attention in an original trans- 506
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Data Processing
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Wiki+C4

85.9 91.0
(Without sentence chunking)
Wiki+C4

85.0 90.5
(Sentence chunking with 128 token-overlap)
Wiki+C4 86.3 91.2
(Sentence chunking)

Table 6: Comparison of model performance pre-trained with the use of different data processing techniques.

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Standard MLM 83.7 89.1
w/POS 80.7 87.1
Entity 85.3 90.8
Noun phrase 86.3 91.2

Table 7: Results of different masking schemes during
the pre-training task.

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Self-Att. 85.9 91.1
Relative-QK-Att. 86.0 91.1
Relative-QV-Att. 85.2 90.7
Entity-Self-Att. 85.7 90.9
Neighbor-Aware-Att. 86.4 91.4

Table 8: Comparison of model performance pre-trained
with different transformer variants. Att is an abbrevia-
tion for Attention. The Self-Att. scores are the mean of
multiple runs.

former architecture decreases performance by F1507

0.5 points. When a neighbor-aware attention is508

stacked between a self-attention and a feed-forward509

network, the model slightly performs better than510

the original transformer. The sequential layered511

structure of a self-attention, a neighbor-aware at-512

tention, and a feed-forward network achieve the513

best performance on the exact matching criteria,514

which demonstrates that our proposed approach515

has an effect on the extractive question answering516

task. We consider that attention scores computed517

in a self-attention layer are re-weighted to actually518

related tokens by ignoring identical tokens during519

the computation of attention scores in the neighbor-520

aware attention so that the neighbor-aware mech-521

anism is helpful to capture relationships between522

input tokens.523

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
SA → FFN 85.9 91.1
NAA → FFN 85.5 90.6
SA → SA → FFN 85.5 91.0
NAA → NAA → FFN 86.1 91.5
NAA → SA → FFN 86.1 91.4
SA → NAA → FFN 86.4 91.4

Table 9: Performance of different stacking approaches
of Self-attention (SA), Neighbor-aware-attention (NAA)
and Feed-forward-network (FNN) layers in transformer
encoder blocks. The SA-FNN scores are the mean of
multiple runs.

6 Conclusion 524

In this paper, we present a novel pre-trained lan- 525

guage representation model, ANNA which im- 526

proves the original transformer encoder architec- 527

ture by collaborating a neighbor-aware mechanism, 528

and is pre-trained for contextualized representa- 529

tions of words and noun phrases in a span level. 530

The experimental results show that ANNA achieves 531

a new state-of-the-art on the specific extractive 532

question answering task by outperforming pub- 533

lished language model systems including BERT 534

baselines, as well as the latest top system on the 535

corresponding leaderboard. There are two main di- 536

rections for future research: (1) validating the com- 537

petitiveness of ANNA to a variety of NLP tasks; 538

and (2) enhancing the robustness of ANNA in order 539

to apply for real-world question answering tasks in 540

business. 541
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Appendix 706

A Performance on GLUE 707

At this stage, we have not submitted our results to 708

the official GLUE leaderboard 1, since we currently 709

work on fine-tuning for the GLUE benchmark. In- 710

stead, we report our results on the tasks that we 711

have completed the evaluation so far as shown in 712

Table 10. We compare performance with two base- 713

line models, BERT and SpanBERT, as the former 714

is a pre-trained language model using a standard 715

encoder architecture, and the later is pre-trained 716

to predicts spans of texts, and motivated our noun- 717

phrase masking approach. Comparing to the base- 718

lines, ANNA outperforms those baselines on every 719

task, and gains the improvement of 1.7% accuracy 720

over SpanBERT in average. For further improve- 721

ment of performance on GLUE, we continue to 722

work on fine-tuning. 723

B Pre-training Datases and Pre-processing 724

In this study, we use several large corpora for pre- 725

training language models. As shown in Table 11, 726

the total size of data is about 900GB for the four 727

corpora. 728

For pre-training language models with a large 729

volume of corpora, it is crucial to generate high- 730

quality data for inputs. We use heuristic pre- 731

processing techniques to improve the data quality 732

for the generation of input sequences as follows: 733

• Each document is split into sentences, and 734

we filter the sentences including less than 10 735

words out due to their incompleteness. Also, 736

documents with less than 100 words are ig- 737

nored for input sequences. 738

• Text noises such as paragraph separators, spe- 739

cial characters, URL addresses, and directory 740

paths are heuristically filtered by regular ex- 741

pressions. 742

• For Books3 data, non-English documents 743

are deleted by a language-detection module 744

(Shuyo, 2010) which is utilized for the dele- 745

tion of documents written in non-English 746

words in the Common Crawl dataset. 747

• Since the maximum sequence length is 512 748

tokens, we split the pre-processed documents 749

into multiple sentence chunks that do not ex- 750

ceed the predefined maximum length for the 751

input of pre-training. 752
1https://gluebenchmark.com/leaderboard
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CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.
BERTLarge 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.7/85.9 92.7 70.1 82.5
SpanBERT 64.3 94.8 90.9/87.9 89.9/89.1 71.9/89.5 88.1/87.7 94.3 79.0 85.0
RoBERTa 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8/90.2 95.4 88.2 87.6
ANNA 65.8 96.4 91.4/88.4 91.5/90.9 73.5/89.5 90.1/89.7 95.0 83.7 86.7

Table 10: Comparison results on the GLUE development set. The “Avg.” column is slightly different than the
official GLUE scores, since the scores of WNLI and AX tasks are excluded in the average.

Wikipedia C4 Books3 OWT2
Size of text 16GB 730GB 100GB 62GB
Token counts for text 3.3B 160B 22B 13B
Size of pre-processed text 12GB 580GB 51GB 22GB
Token counts for pre-processed text 2.6B 126B 12B 5B

Table 11: Statistics of four corpora for pre-training including before and after the pre-processing procedure.

C Pre-training Details753

Table 12 summarizes hyperparameters that we754

use for pre-training our two models: ANNABase755

(L=12, H=768, A=12, Total Parameters=160M)756

and ANNALarge (L=24, H=1024, A=16, Total Pa-757

rameters=550M). We use the maximum sequence758

length of 512, the Adam optimization (Kingma759

and Ba, 2014) with learning rates of 2e-4 and 1e-4760

is used for the large and base models, respectively.761

Our large model ANNALarge is trained on 256 TPU762

v3 for 1M steps with the batch size of 2048, and it763

takes about 10 days.764

Hyper-parameter ANNALarge ANNABase

Number of layers 24 12
Hidden size 1024 768
FFN inner hidden size 4096 3072
Attention heads 16 12
Attention head size 64 64
Dropout 0.1 0.1
Warmup steps 10k 10k
Learning rates 2e-4 1e-4
Batch size 2048 1024
Weight decay 0.01 0.01
Max steps 1M 1M
Learning rate decay Linear Linear
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Number of TPU 266 64
Training time 10 days 5 days

Table 12: Hyperparameters for pre-training ANNA
models.
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