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Abstract

Measuring the relevance between user queries
and advertisements is a critical task for adver-
tisement (ad) recommendation systems, such
as Microsoft Bing Ads and Google Ads. Tra-
ditionally, this requires expert data labeling,
which is both costly and time-consuming. Re-
cent advances have explored using Large Lan-
guage Models (LLMs) for labeling, but these
models often lack domain-specific knowledge.
In-context learning (ICL), which involves pro-
viding a few demonstrations, is a common prac-
tice to enhance LLLM performance on domain-
specific tasks. However, retrieving high-quality
demonstrations in a vast exploration space re-
mains challenging. In this paper, we intro-
duce ICL-Bandit, a practical and effective ap-
proach that leverages ICL to enhance the query-
ad relevance labeling capabilities of LLMs.
We develop a novel bandit learning method
to identify and provide superior demonstra-
tions for ICL, thereby improving labeling per-
formance. Experimental results demonstrate
that ICL-Bandit achieves state-of-the-art per-
formance compared to existing methods. Addi-
tionally, ICL-Bandit has been deployed in Com-
pany X! that serves billions of users worldwide,
confirming its robustness and effectiveness.

1 Introduction

In advertisement (ad) recommendation systems
such as Microsoft Bing Ads and Google Ads, high-
quality labeled data is of critical importance for
training ad recommendation models, especially la-
beling the relevance between user query text and ad
description text, as discussed in (Ling et al., 2017;
Shuai et al., 2020; Wang et al., 2022a). The tradi-
tional approach is human labeling which is costly
and inefficient. This is particularly challenging
given the huge amount of data to be labelled, and
labeling such relevance between user query and ad
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requires a good knowledge and experience. For
example,

User Query:
"Innovative treatments for reducing hospital
readmission rates in heart failure patients."

Advertisement:
"Remote Patient Monitoring Systems - Con-
tinuous Care for Heart Failure Patients"

This query-ad pair is labeled as relevant since
remote patient monitoring systems provide con-
tinuous care and real-time health data, enabling
proactive management of heart failure, which is es-
sential for reducing hospital readmission rates, and
such manual labeling requires domain knowledge.

Recent advances in Large Language Models
(LLMs) have shown that LLMs are highly aligned
with human judgments and even surpass human
performance in certain tasks (Ouyang et al., 2022),
such as topic identification and twitter relevance
for political issues (Gilardi et al., 2023), general
question-answering data generation (Meng et al.,
2023), and instruction data generation (Wang et al.,
2022b). However, the lack of domain knowledge
limits the performance of LLLM in the query-ad rel-
evance labeling task. To address this challenge,
many approaches employed in-context learning
(ICL) to incorporate domain-specific knowledge as
extra context in the LLM’s prompt (Kossen et al.,
2023; Dong et al., 2022). Besides, it is well known
that the effectiveness of ICL heavily depends on the
quality of the provided demonstrations, which has
motivated many works to explore effective demon-
stration retrieval methods for ICL, such as (Rubin
etal., 2021; Li et al., 2023; Wu et al.; Zhang et al.,
2022), all of these methods aim to retrieve better
examples from annotated training sets to enhance
LLMs’ domain knowledge.

Previous work on demonstration retrieval falls



into two categories. One category involves off-the-
shelf retrievers like BM25 (Robertson et al., 2009)
or KNN (Guo et al., 2003), which can retrieve tex-
tually or semantically similar demonstrations. The
other category focuses on training task-specific re-
trievers with positive and negative demonstrations.
Notable examples include Rubin et al. (Rubin et al.,
2021), Shi et al. (Shi et al., 2022), and Xiaonan et
al. (Li et al., 2023), who leverage LLM feedback
(compare the labels generated by LLM with the
ground-truth labels, using them as the training sig-
nal) to train these retrievers via supervised or con-
trastive learning. However, the vast combination
space of different demonstrations and queries poses
a challenge. Randomly sampling demonstrations
to collect the LLM’s feedback may lead to large
parts of “less useful” examples. Some methods,
like Zhang et al. (Zhang et al., 2022) and Mingkai
et al. (Deng et al., 2022), employ reinforcement
learning to actively sample demonstrations and ob-
tain LLM feedback. But these methods are limited
in considering only a fixed number of candidate
demonstrations, which reduces the action space for
policy training.

To overcome the challenges addressed above in
SOTA methods, at first, we frame demonstration
retrieval problem as a multi-armed bandit (MAB)
problem (Lai and Robbins, 1985), and bandit al-
gorithms solving MAB problems (Vermorel and
Mohri, 2005; Li et al., 2010) have demonstrated
excellent performance in addressing exploration
and exploitation dilemma when dealing with large-
scale search spaces. This allows us to design effec-
tive exploration techniques for sampling demonstra-
tions and obtaining LLM feedback during retriever
training. Then, we propose a novel in-context
learning (ICL) algorithm, called /CL-Bandit, which
leverages a stochastic bandit algorithm to empower
ICL at scale with diverse demonstration pools. The
objective of ICL-Bandit is to retrieve demonstra-
tions and maximize cumulative positive LLM feed-
back over a series of retrievals. Figure 1 shows
a comparison on the example query-ad pair with
demonstrations retrieved with KNN and our ICL-
Bandit, respectively.

Our contributions can be summarized as follows:

* We formulate demonstration retrieval as a
multi-armed bandit problem, focusing on ef-
fective retrieval during retriever training.

* We design a stochastic bandit algorithm suit-
able for ICL with a large and varied demon-

stration pool.

* Our approach achieves SOTA performance
comparing to other existing methods and it
has been deployed to the labeling process at
Company X, resulting in substantial cost sav-
ings by automated labeling.

2 ICL-Bandit with large and varied
demonstration pool

In this section, we introduce ICL-Bandit, a stochas-
tic bandit algorithm designed to efficiently retrieve
demonstrations and collect LLM feedback during
retriever training. The task is to precisely label
query-ad relevance with ICL, and our goal is to
train a demonstration retriever which retrieves good
demonstrations for ICL. When training the retriever
using LLM feedback (we compare the output la-
bels generated by the LLM with the ground-truth
labels, employing them as the reward signal), the
key lies in how to effectively retrieve demonstra-
tions from a large and diverse pool during the train-
ing process. Addressing the Exploration (searching
for diverse and potentially informative demonstra-
tions) versus Exploitation (retrieving high-reward
demonstrations) balance is pivotal. To tackle this
challenge, we first formulate the demonstration re-
trieval task as a bandit problem.

2.1 Task Definition

The task is to label the relevance of query-ad pairs
leveraging LLMs. Compared with zero-shot LLM
labeling, providing with demonstrations as context
in the ICL manner improves the labeling perfor-
mance. The ICL prompt comprises four key com-
ponents:

* Instruction We employ the following instruction
to describe labeling requests: "Given user query
and an ad, assign a label based on following
definitions: - 'Relevant’: The ad content directly
addresses the user’s query, providing information
or a solution that aligns with the search intent. -
"Irrelevant’: The ad content does not address the
user’s query, failing to provide information or
a solution that matches the search intent." This
instruction guides the relevance labeling process
for LLMs.

* Input The input component specifies the query
and ad requiring labeling. For instance, "User



User Query:

"Innovative treatments for
reducing hospital readmission
rates in heart failure patients. "

Advertisement:

“Remote Patient Monitoring
Systems - Continuous Care for
Heart Failure Patients."

Query-ad pair to be labeled
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Figure 1: An example illustrating how LLM labeler prompting, when combined with demonstrations retrieved via
KNN and our ICL-Bandit approach, yields distinct labeling outcomes.
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Figure 2: An illustration on training demonstration retrieval process of ICL-Bandit. The demonstration pool consists
of expert labeled demonstrations, and each demonstration includes user query, advertisement, and label. For each
query-ad from the training set, ICL-Bandit retrieves demonstrations from the demonstration pool considering the
estimated reward distribution. With the retrieved demonstrations as the context, LLM labels the query-ad as relevant
or irrelevant. Then the LLM-generated label is compared with the ground truth label from the training set to give
feedback. In the figure, the positive reward (matched label) is used to update ICL-Bandit to refine the retrieval

policy.

Query: ’Student loans suspended until septem-
ber’; Advertisement:’10 Best Student Loan Re-
finance’". This information sets the context for

the query-ad labeling task.

¢ Demonstrations Demonstrations consist of a set

the LLM to generate the labeling answer. For
instance, "Return your decision on the label in
<Label></Label> tags.". This guides the LLM
to generate the final label.

2.2 Problem Formulation

of labeled demonstrations, such as, "User Query:

"School registration’, Advertisement: ’Find Vir-
tual School Programs’, Label: Relevant". Dift-
ferent retrieved demonstrations would highly af-
fect the labeling performance. These examples,
provided by human annotators, serve as train-
ing instances for a policy 7y that leverages LLM
feedback to retrieve appropriate demonstrations

for each unique input.

* QOutput Indicator The output indicator instructs

The key of the labeling task lies in retrieving in-
formative demonstrations for ICL labeling, then
we formulate the demonstration retrieval problem
as a multi-armed bandit (MAB) problem, draw-
ing an analogy to the scenario of a gambler select-
ing from a slot machine with multiple arms in a
casino. The player’s objective is to choose the arm
that offers the highest expected gain. Each time
the player pulls an arm and receives a gain or not,
they update their estimation of the arm’s potential



gain. Similar to this scenario, in the query-ad rele-
vance labeling task, we propose a MAB approach
to retrieve demonstrations from a pool to achieve
a good performance. We define key components
such as states, arms, rewards, and the overall objec-
tive. Trial: In each trial ¢, our goal is to retrieve m
demonstration from the demonstration pool. State:
State s; represents the current contextual environ-
ment. In the context of ICL, s; denotes the em-
bedding of the query and ads that require labeling.
Arm/Action: Each arm in the MAB problem cor-
responds to a potential demonstration, representing
different choice or action that can be taken during
the ICL labeling. Reward: The reward r ,, ) pro-
vides numerical feedback, indicating whether the
LLM assigns the correct relevance label based on
the retrieved demonstration a;. We define two re-
ward options: a continuous reward 7, ,,) € [0, 1]
(representing the probability of the LLM’s output
label) and a discrete reward 7(; 5,y € 0,1. In the
discrete case, a correct label receives a reward of
1, while an incorrect label receives 0. Objective:
The overall goal is to learn a retrieval policy mg by
maximizing the camulative reward over a series of
trials during training.

The process of using a MAB algorithm to ef-
ficiently retrieve demonstrations during training
consists of the following steps:

Step 1: Retrieval of Demonstrations At each
trial ¢, the retrieval policy 7y retrieves a demonstra-
tion (arm) aj from a demonstration pool. The opti-
mal retrieval will be conducted based on a balance
between the benefits (the mean of a;’s rewards)
and the chance (the variance of a;’s rewards).

Step 2: Reward from LLM Feedback After
retrieving a demonstration ay, the retriever receives
a reward r;, indicating the correctness of the label
provided by the LLM with the chosen demonstra-
tion.

Step 3: Policy Update The collected reward
value is used to update the policy parameters 7y to
maximize cumulative reward during training.

These steps iteratively occur for a pre-defined
number of iterations (1" = 2000 in our paper). The
exploration-exploitation trade-off in Step 1 is cru-
cial, requiring the retrieval policy to balance ex-
ploring new demonstrations for potential benefits
(exploration) and exploiting known good demon-
strations to maximize the mean of rewards (ex-
ploitation). This exploration-exploitation balance
ensures the effectiveness of learning the demonstra-
tion retrieval policy in ICL labeling.

2.3 ICL-Bandit

In this section, we introduce ICL-Bandit as an inno-
vative approach to address the challenges encoun-
tered by previous bandit algorithms. Traditional
bandit algorithms, which assign a parameter 6 to
each arm or action, facing the limitations when
applied to demonstration retrieval due to the expan-
sive and varied nature of the available demonstra-
tions.

We leverage the framework of Stochastic Multi-
Armed Bandit (Bubeck et al., 2012), a variant of the
classical MAB problem where rewards associated
with different actions (referred to as "arms") are
influenced by stochastic processes. In our context,
we develop a novel stochastic bandit algorithm tai-
lored to scenarios with an extensive and diverse set
of demonstrations.

First, we fine-tune a BERT model in the Com-
pany X’s query and ads dataset, resulting in an
embedding vector ¢4, unique to each demonstra-
tion ag, an embedding vector e,, for the state s;
at trial ¢ and a mutual embedding e, 4),. Then
we have a unified feature embedding z, ., =
[€s¢5 €ay,» €(s,a),] tO capture contextual information.
Next, we adopt a shared parameter 6 applicable to
all demonstrations. This shared parameterization
streamlines the learning process, enhancing effi-
ciency and generalization across the diverse pool
of demonstrations.

2.3.1 Demonstration and State
Representation Learning

To integrate both the state and demonstration into
a unified embedding vector, we employ a self-
supervised learning approach to fine-tune a 24-
layer BERT model using Company X’s user query-
ad dataset. The final embedding is derived by ex-
tracting the output of the last hidden layer, serving
as a comprehensive representation of both the state
and demonstration.

2.3.2 Objective Function of ICL-Bandit

Throughout the total 7" trials, the cumulative re-
ward is defined as Z,f:l T(t,a)- 1N this context, we
establish the optimal expected T -iteration reward,
denoted as F [Zle T(t,a;;)], where aj, represents
the optimal demonstration yielding the maximum
expected reward at trial ¢. Our objective is to profi-
ciently retrieve a sequence of demonstrations dur-
ing training, maximizing the expected total payoff.
Alternatively, our aim is to minimize the regret of
the algorithm concerning the optimal demonstra-



tion retrieval strategy. The T-iteration regret of
ICL-Bandit can be formally defined as:

T T

Re(T) = E[Z T(t,a};)] - E[Z r(t,ak)] (D

t=1 t=1

2.3.3 Optimization of ICL-Bandit

To minimize the regret, it is assumed that the ex-
pected reward of an example a is linear in the d-
dimensional state-action integrated feature z; ,),
with three unknown policy parameters 6 .

state>
and 67 ;:

action’

]E[T(t,a) | m(t,a)] = xz;,a) [Q:tatm 9:0ti0[17 Hrﬁlut]

where 6, denotes the policy parameter for the

context or the state, i.e., for the target sample, 6, .,
denotes the policy parameter for an action, i.e., for
an example, and 6}, denotes the policy parameter
for mutual information of the target sample and the
example. The mutual information may be common
or similar information between the target sample
and the example. The policy parameter 0, can
map the target sample to a first vector space. The
policy parameter 6, . can map the example to a
second vector space. The first vector space and the
second vector space are different and independent,
but they are dual to each other. The policy param-
eter 67, can map both the target sample and the
example to the same vector space. The technical
effect of using the three policy parameters 65,
0 ion> and 05 is to more accurately measure the
relationship or distance between the target sample
and the example, so as to calculate a more accurate
expected reward.

The embodiments of the present disclosure pro-
pose that all examples share three policy parame-
ters Oes Oretion> and 0. This parameterization
remains constant regardless of the number of ex-
amples. The technical effect of such settings is to
streamline the learning process, and enhance effi-
ciency and generalization across the diverse set of
examples. This framework enables the application
of the proposed reinforced retrieval operation to
large-scale and diverse candidate examples, con-
tributing to its scalability and adaptability.

For each example, we have three kinds of
features: state, action, and mut, denoted as
€55 €ay s €(s,a),]- These correspond to the data ma-
trices Dgtates Daction, and Dy, which represent
samples on different features. Let Dgtate, Dactions

and D, be data matrices of dimension m x d at
trial ¢, where the rows correspond to m training
inputs of context, action, and mutual information,
and b € R™ is the corresponding reward vector
(e.g., the m rewards indicating whether the LLM
provided the correct label in the training set). Ap-
plying ridge regression to the training data (D, b)
yields an estimate of the policy parameters:

estate = (DT Dstate + >\I)71 DT b (2)

state state

-1
Daciion + M) DLgond  (3)

action

Baction = (D :

action

Dt + M) ' DL b (4)

mut

Omut = (DT

mut

where I is the d x d identity matrix, A € [0, 1]
is the regularization term of ridge regression es-
timation. Let D = [Dguate, Daction, Dmut], and
0 = [bstate; Oaction, Omu). When components in
b are independent conditioned on corresponding

rows in D, it can be shown that, with probabil-

T
(tvat)

a’\/x%;at) (DTD + AI)™* T(t,q,) For any § > 0

ity at least 1 — &: [#X .6 — Elr a0 | T(t,a0)]| <

and (; q,) € RY, where 6 is the mean of 6, and
a; indicates the example selected at ¢, 7(; 4) is the
observed reward, o2 is the variance proxy of the
noise and ¢’ is a constant. Details of the proof is
provided in Appendix A.

2.4 ICL-Bandit vs. Traditional Bandit

ICL-Bandit improves upon traditional bandit meth-
ods by introducing shared parameters, 03¢, &, tion>
and 0}, to jointly model state, actions, and their
interactions. This enables better alignment between
context and candidate demonstrations, leading to
more accurate action selection.

Unlike traditional methods that treat actions in-
dependently, ICL-Bandit captures complex contex-
tual dependencies, enhances generalization, and
scales efficiently to high-dimensional data. Its
unified framework ensures consistent performance
across diverse ICL labeling tasks, mitigating the
inconsistency and overfitting often seen in conven-
tional approaches.

3 Experiment

Dataset: We use a high-quality, expert-labeled
dataset collected daily over 1.5 years, consisting
of user queries and associated advertisement infor-
mation (e.g., keywords, titles, descriptions, URLs),
each labeled as relevant or irrelevant. The dataset



is temporally split into: Example pool: 1,578,728
samples used as demonstrations. Training set:
9,999 query-ad pairs. Test set: 1,986 query-ad
pairs. This temporal partitioning simulates real-
world deployment, where models are trained on
historical data and evaluated on recent, unseen ex-
amples.

Evaluation Metrics: We assess binary classi-
fication performance using Accuracy (ACC), F1-
score, Precision, and Recall to capture both correct-
ness and balance in predictions. More details of the
experimental settings are provided in Appendix C.

3.1 Competitors

For a fair comparison, all baselines and ICL-Bandit
(except "No Example" and "Crowdsourcing") were
provided with 3 positive (Relevant) and 3 negative
(Irrelevant) historically labeled samples as demon-
strations. The following methods were selected as
our competitors: No Example (Zero-shot Learn-
ing), Crowdsourcing, EPR (SL-KNN), EPR (SL-
LLM) (Li et al., 2023), Q-learning (Zhang et al.,
2022), Static, BM25 (Robertson et al., 2009), Ran-
dom, KNN (Guo et al., 2003). Details of the base-
line methods are provided in Appendix B.

Table 1: Results of GPT-3.5 as the backbone LLM.

Model ACC (%) Fl-score (%) Precision (%) Recall (%)
No Example 53.95 25.72 41.76 18.58
Crowdsourcing 67.57 73.65 90.09 62.28
EPR (SL-KNN) 55.97 25.68 39.22 19.09
EPR (SL-LLM) 57.18 25.44 41.55 18.33
Q-learning 58.68 34.71 43.78 28.14
Static 56.57 28.56 43.40 21.28
BM25 58.84 28.77 46.35 20.86
Random 50.73 36.49 37.52 35.52
KNN 57.98 27.60 44.04 20.10
ICL-Bandit (Ours) 63.76 61.63 65.38 58.29

Table 2: Results of GPT-4 as the backbone LLM.

Model ACC (%) Fl-score (%) Precision (%) Recall (%)
No Example 65.05 61.45 64.08 59.03
Crowdsourcing 67.57 73.65 90.09 62.28
EPR (SL-KNN) 74.42 80.70 73.49 89.47
EPR (SL-LLM) 74.62 80.70 72.94 90.32
Q-learning 74.26 76.25 78.81 87.80
Static 73.56 79.71 71.35 90.28
BM25 73.62 80.09 72.94 88.80
Random 73.72 79.94 71.97 89.89
KNN 74.47 80.74 73.56 89.48
ICL-Bandit (Ours) 80.03 82.57 76.91 89.14

3.2 Results Analysis

Tables 1 and 2 present the experimental results
comparing nine demonstration retrieval methods,
including our ICL-Bandit, across two versions
of LLMs. The analysis highlights key perfor-
mance trends. The “No Example” baseline per-
forms poorly, while “Crowdsourcing” demonstra-

tions achieve the highest accuracy and precision,
emphasizing the importance of expert-labeled data.
Among automated methods, Q-learning, EPR (SL-
LLM), and ICL-Bandit show strong performance,
benefiting from LLM feedback. Notably, ICL-
Bandit surpasses Q-learning and EPR (SL-LLM)
despite using only 2,000 feedback samples com-
pared to their 5,000, due to its lightweight, linear
design that requires fewer data.

EPR (SL-KNN) and EPR (SL-LLM) improve
over the “No Example” baseline but still lag be-
hind “Crowdsourcing,” indicating that retrieval ef-
fectiveness depends on technique selection. Sim-
ilarly, methods like “Static,” “Random,” “KNN,”
and “BM25” show varied performance, with BM25
performing competitively but still unable to match
expert-labeled demonstrations.

ICL-Bandit consistently delivers superior results,
often outperforming or matching “Crowdsourcing.”
Its ability to balance exploration and exploitation
allows it to retrieve relevant demonstrations effec-
tively, adapt to diverse queries, and enhance recall,
improving overall ICL performance.

3.3 Learning Curve of ICL-Bandit

The learning curve experiment was devised to ex-
amine the evolutionary performance of ICL-Bandit
as training data accumulates. The primary objec-
tive was to discern how the method’s effective-
ness scales with an expanding dataset, providing
insights into its adaptability and scalability. The ex-
periment’s results are depicted in Figure 3, where
the x-axis represents training iterations, and the
y-axis portrays the cumulative mean and variance
of Accuracy, Binary Accuracy, True Negative Rate
(TNR), and True Positive Rate (TPR). The learning
curve analysis of ICL-Bandit highlights its capacity
to dynamically adapt and enhance its performance
over successive training iterations. Notably, it illus-
trates that ICL-Bandit achieves a rapid and stable
convergence to a commendable performance level.

Furthermore, the outcomes suggest that ICL-
Bandit exhibits promise for demonstration retrieval
in ICL, even when trained on a limited LLM feed-
back dataset. Remarkably, in comparison to EPR
(SL-LLM), which utilized a larger dataset of 5000
feedback instances, ICL-Bandit demonstrates su-
perior performance. The learning curve analysis
underscores the efficacy of ICL-Bandit in itera-
tively improving its performance with an increas-
ing volume of training data. This positions it as a
robust and scalable solution for the nuanced task
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Figure 3: The learning curve of ICL-Bandit during 2000 trails training. TNR and TPR indicates the true negative

rate and true positive rate respectively.

of demonstration retrieval in complex informatioi
retrieval scenarios.

3.4 Ablation Study

3.4.1 Number of retrivaled samples
Example number | ACC | Binary AUC | TNR TPR
1 07826 | 08127 | 0.8326 | 0.6978
3 0.8003  0.8029 | 0.8215 | 0.7077
6 0.8001 0.8127 | 0.8178 | 0.7129
9 07697 | 07616 | 0.7716 | 0.7516

Table 3: Performance metrics on different number of

selected demonstrations. .
In this experiment, we evaluate the impact of

varying the number of positive and negative demon-
strations on model performance. The results, pre-
sented in Table 3, indicate that the performance
metrics (ACC, Binary AUC, TNR, and TPR) gen-
erally improve as the number of positive/negative
demonstrations increases from 1 to 3. Specifically,
the best overall performance is observed when 3
demonstrations are used. Thus we choose 3 as the
final number.

When 9 demonstrations are used, the perfor-
mance metrics begin to decline, indicating that
adding too many demonstrations may lead to di-
minishing returns or even reduced performance.

3.4.2 Training Epochs and Reward Types

The experiment evaluates the performance of the
ICL-bandit approach under two reward settings:
continuous and discrete. An epoch is defined as
a complete pass through the training data. Dur-
ing each epoch, the ICL-bandit retrieves informa-
tive demonstrations, selects the best actions, and
updates its retrieval policy based on the rewards
received. The results in Figure 4 illustrate how
the number of epochs affects performance across
various metrics.

We observe that ICL-bandit’s performance
varies with the number of epochs, with different
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Figure 4: Performance on different epochs and reward
types.

metrics reaching their optimal levels at different
stages. The continuous reward setting, which pro-
vides more detailed feedback, achieves peak per-
formance in fewer epochs compared to the discrete
reward setting. This suggests that using continuous
rewards in practice can reduce training complexity
while still delivering strong performance. Finally,
we choose continous reward with 1 epoch for re-
ducing the complexity and promising results.

3.5 Application in Practice

We deployed the ICL-Bandit approach in Company
X’s ad relevance pipeline to reduce manual label-
ing costs and enhance ad recommendation quality.
Each day, the system collects fresh user queries and
ads, cleans them using Bing’s distributed platform,
and applies ICL-Bandit for automated labeling. For
each query-ad pair, we retrieve 3 relevant and 3 ir-
relevant historical examples to construct prompts,
which are then labeled using GPT-4. This process
generates high-quality labeled data daily for down-
stream CTR prediction (Lee et al., 2023).

As shown in Tables 4and 5, ICL-Bandit con-
sistently outperforms baselines in both English
and non-English settings, demonstrating robust im-



Table 4: A/B testing on English datasets with GPT-4 as
the backbone LLM.

Model ACC (%) Fl-score (%) Precision (%) Recall (%)
No Example 66.82 62.18 63.74 60.75
KNN 76.52 75.12 78.72 71.81
ICL-Bandit (Ours) 87.12 82.28 86.95 78.17

Table 5: A/B testing on non-English dataset with GPT-4
as the backbone LLM.

Model ACC (%) Fl-score (%) Precision (%) Recall (%)
No Example 63.26 59.48 60.17 58.79
KNN 70.67 75.44 70.86 80.81
ICL-Bandit (Ours) 80.67 85.68 82.57 89.14

provements in accuracy, F1-score, precision, and
recall.

3.6 Impact on Ad Recommendation

Integrating ICL-Bandit-labeled data into Bing’s
CTR prediction model led to significant business
gains. Offline evaluation on 500K historical query-
ad pairs showed a 2.5% AUC increase and 1.8%
reduction in Log Loss. In two weeks of online A/B
testing with 2 million users, CTR rose by 3.2% and
conversion rates improved by 2.7%. Beyond per-
formance, the automated labeling process reduced
manual annotation costs by 61%, enabling scalable
and cost-effective data processing across millions
of queries daily. The results of the A/B testing on
English and Non-English datasets are summarized
in Table 4 and Table 5.

4 Related Work

4.1 LLM Labeling

Latest studies in LLM have shown that LLM is
highly consistent with human judgments and even
outperforms humans in many tasks, for example,
topic identification and twitter relevance for politi-
cal issues (Gilardi et al., 2023), general question-
answering data generation (Meng et al., 2023), in-
struction data generation (Wang et al., 2022b) and
RL from Al feedback (RLAIF) (Lee et al., 2023).
A set of work using LLLM for labeling instead of
human (Tan et al., 2024; Alaofi et al., 2024; Arte-
mova et al., 2024). In this work, we focus on a
domain-specific labeling problem, i.e., query-ad
relevance labeling, which requires domain knowl-
edge to guide LLM for labeling.

4.2 Demonstration Retrieval for In-Context
Learning

LLMs have emerged as a pivotal strategy for ad-
dressing tasks specific to particular domains. How-
ever, the effectiveness of ICL is intrinsically tied to
the quality of the provided demonstrations (Li et al.,

2023; Wu et al.; Zhang et al., 2022). Works such
as (Rubin et al., 2021; Li et al., 2023; Wu et al.;
Zhang et al., 2022) collectively aim to optimize
the retrieval of exemplary instances from annotated
training sets, thereby enhancing the domain knowl-
edge encapsulated by LLMs.

Existing demonstration retrieval methods are typ-
ically categorized into utilization of off-the-shelf
retrievers such as BM25 (Robertson et al., 2009) or
KNN (Guo et al., 2003), or training task-specific
retrievers using positive and negative demonstra-
tions (Rubin et al., 2021; Shi et al., 2022; Li et al.,
2023). These researchers leverage LLM feedback
to guide the training of these retrievers through
supervised or contrastive learning. Despite these
advancements, the vast combinatorial space en-
compassing different demonstrations and queries
presents a significant challenge. Randomly sam-
pling demonstrations to collect LLM feedback risks
incorporating a substantial portion of less useful
examples. Reinforcement learning-based meth-
ods (Zhang et al., 2022; Deng et al., 2022) actively
sample demonstrations and elicit valuable LLM
feedback. However, they are constrained by a fixed
number of demonstrations, thereby limiting the ac-
tion space available for policy training.

5 Conclusion

In this paper, we leverage LLMs to automate query-
ad relevance labeling for improved ad recommenda-
tion. To address the lack of domain-specific knowl-
edge in LLMs, we adopt in-context learning (ICL)
and propose ICL-Bandit, a stochastic bandit algo-
rithm for retrieving high-quality demonstrations
and collecting LLM feedback to train a retriever.
Our approach outperforms existing retrieval meth-
ods and has been successfully deployed in Com-
pany X’s ad recommendation system, delivering
significant cost savings and strong real-world effec-
tiveness.

6 Limitations

ICL-Bandit’s performance heavily relies on the
quality and coverage of the labeled demonstration
pool. If the pool lacks diverse or representative
examples for certain query-ad pairs, the retrieved
demonstrations may be suboptimal, limiting the ef-
fectiveness of in-context learning. This constraint
can affect generalization, especially in long-tail or
evolving domains where labeled data is sparse or
outdated.
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A Proof
A.1 Step 1: Decompose the Estimation Error

The estimation error can be expressed as:

~ -1
0—6" = DTD+/\I) DTh— 6"

(
(DTD + )\1)71 DT (DO +¢)— 0"
(

—1 —1
DD+ )\I) DTDO* + (DTD n )\I) DTe—0¢*

{(DTD + AI) “pTp- I} 0 + (DTD + )\I) “pTe

Simplifying:

h— 0" =)\ (DTD + AI>_1 0 + (DTD + )\I) DT

A.2 Step 2: Express the Estimation Error

Components
Let: Bias Term: Bias = —\ (D" D + )\I)_l 0*.
Variance Term: Variance =

(DTD+ )" D7
Then: § — 6* = Bias + Variance.
A.3 Step 3: Bound the Bias Term

We aim to bound ‘aza a)BiaS‘.
Using the Cauchy-Schwarz inequality:

Tl (D7D + ) ARG

’a:(Tt7a)Bias‘ =A

<A Hx(t,a)”(DTD_"_)\I)*l HG*H , (6)

where ||z|, = VazTAz denotes the Maha-
lanobis norm with respect to the matrix A.

Assuming ||6*|| < S, where S is a known bound
on the norm of 6*, we have:

T .
s yBins| < AS 20| e papyr D
A.4 Step 4: Bound the Variance Term

We aim to bound ’ma a)Variance‘ with high proba-
bility.

Since € has independent components with zero
mean and variance proxy o2, the variance of
x(TM)Variance is:

—1
Var (J:(Ttya)Variance) = Var (x(Tt,a) (DTD + )\I) DTe)

— %l (DTD+AT) “'p'p (D™D + 1) " -



Therefore:

Var (z& G)Variance)

((DTD + )\I>_l (1 -A(DTD+ )\I)_l)> (.0

< o? e

2T
T L(ta)

1.

DTD+A)™

A.5 Step 5: Apply Concentration Inequality

Since x(Tt a)Variance is a linear combina-
tion of independent sub-Gaussian vari-
ables, it is sub-Gaussian with parameter

o' =0 Hx(tya)H(DTDJrM)_l‘
Using a sub-Gaussian tail bound, for any § > 0:

0,

T .
P <’x(t,a)Var1ance‘ Za Hx(tva)H(DTD—i-)\I)l> =
)
where a = 074 /21n (3).
Step 6: Combine Bias and Variance Terms
The total estimation error is:
‘mg;a) (é — 0*) < ‘xz;a)Bias‘—l—‘x&a)Variance .
)
A.6 Step 7: Final Inequality
Combine the bounds:
T 0 *
’x(t,a) (9 —0 ) <(AS+a) Hw(tva)H(DTDHI)*l :
(10)

For sufficiently small A and bounded 6*, the
bias term can be controlled, and the dominant term
becomes the variance term.

Therefore, we can simplify the inequality to:

‘mz;a) (é — 9*)

where o/ = \S + a.

<a Hx(tva)H(DTD_F)\[)_I J

(11

B Competitors

For a fair comparison, all baselines and ICL-Bandit
(except "No Example" and "Crowdsourcing") were
provided with 3 positive (Relevant) and 3 negative
(Irrelevant) historically labeled samples as demon-
strations. The following methods were selected as
our competitors:
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* No Example (Zero-shot Learning): Zero-shot
learning without any demonstrations.
* Crowdsourcing: Demonstrations annotated by
human evaluators through crowdsourcing to as-
sess query-ad relevance. It is different from the
human (expert) labeled data for demonstraion
pool, train and test data.
EPR (SL-KNN): Demonstrations are retrieved
using the K-nearest neighbor (KNN) algorithm
based on the training datasets as ground truth.
EPR (SL-KNN) is then trained to input query-
ads and output the retrieved demonstrations to
assist the LLM in labeling.
¢ EPR (SL-LLM) (Li et al., 2023): Demonstra-
tions are retrieved using GPT-3.5 based on the
training datasets as ground truth. EPR (SL-LLM)
is then trained to input query-ads and output the
retrieved demonstrations to assist the LLM in
labeling.
Q-learning (Zhang et al., 2022): A demonstra-
tion candidate is predefined, and Q-learning is
utilized to learn the retrieval policy. Demonstra-
tions are clustered into 50 clusters to implement
this algorithm.
Static: Demonstrations are pre-defined and kept
static.
BM25 (Robertson et al., 2009): Demonstrations
retrieved using the BM25 algorithm.
Random: Demonstrations randomly sampled for
each user query.
KNN (Guo et al., 2003): Demonstrations are re-
trieved using the K-nearest neighbor (KNN) algo-
rithm based on the user query. We use the same
feature embedding as our method to retrieve the
demonstrations with cosine similarity in KNN.

C Experimental Setup

Dataset: In the experiments, we leveraged a metic-
ulously curated dataset tailored specifically for as-
sessing the efficacy of demonstration retrieval sys-
tems. This dataset is derived from high-quality hu-
man (expert)-labeled data collected daily over the
recent 1.5-year period. Each sample in the dataset
consists of a user query along with associated infor-
mation about recommended advertisements. This
information includes query keywords, ad titles, ad
descriptions, ad URLs, and other pertinent content,
each labeled as either relevant or irrelevant.

To facilitate a robust evaluation, we partitioned
the dataset temporally into three distinct subsets:
an example pool, a training set, and a test set. The



example pool contains all 1,578,728 samples as
demonstrations, ensuring a comprehensive range
of instances. For the purpose of training the model,
we selected a subset of 9,999 samples specifically
for query-ads pair labeling. The evaluation phase
was carried out on a test set, which included 1,986
samples also designated for query-ads pair label-
ing. This temporal division helps in mimicking
real-world scenarios where models are trained on
historical data and tested on recent, unseen data,
thereby providing insights into the practical appli-
cability and performance of the retrieval methods
under study.

Evaluation Metric: Our in-context learning
method aims to enhance the labeling performance
of large language models (LLMs). Given that the
labeling task at hand is a binary classification prob-
lem, we evaluate the effectiveness of our approach
using several key metrics. Specifically, we mea-
sure Accuracy (ACC), F1-Score, Precision, and
Recall. These metrics collectively provide a com-
prehensive assessment of the model’s performance
in terms of both its ability to correctly label data
and its balance between precision and recall.

Computational Resource All experiments are
performed on single Ubuntu 20.04 LTS system with
Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz
CPU, 112 Gigabyte memory and single NVIDIA
Tesla P100 accelerator.
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