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Abstract001

Measuring the relevance between user queries002
and advertisements is a critical task for adver-003
tisement (ad) recommendation systems, such004
as Microsoft Bing Ads and Google Ads. Tra-005
ditionally, this requires expert data labeling,006
which is both costly and time-consuming. Re-007
cent advances have explored using Large Lan-008
guage Models (LLMs) for labeling, but these009
models often lack domain-specific knowledge.010
In-context learning (ICL), which involves pro-011
viding a few demonstrations, is a common prac-012
tice to enhance LLM performance on domain-013
specific tasks. However, retrieving high-quality014
demonstrations in a vast exploration space re-015
mains challenging. In this paper, we intro-016
duce ICL-Bandit, a practical and effective ap-017
proach that leverages ICL to enhance the query-018
ad relevance labeling capabilities of LLMs.019
We develop a novel bandit learning method020
to identify and provide superior demonstra-021
tions for ICL, thereby improving labeling per-022
formance. Experimental results demonstrate023
that ICL-Bandit achieves state-of-the-art per-024
formance compared to existing methods. Addi-025
tionally, ICL-Bandit has been deployed in Com-026
pany X1 that serves billions of users worldwide,027
confirming its robustness and effectiveness.028

1 Introduction029

In advertisement (ad) recommendation systems030

such as Microsoft Bing Ads and Google Ads, high-031

quality labeled data is of critical importance for032

training ad recommendation models, especially la-033

beling the relevance between user query text and ad034

description text, as discussed in (Ling et al., 2017;035

Shuai et al., 2020; Wang et al., 2022a). The tradi-036

tional approach is human labeling which is costly037

and inefficient. This is particularly challenging038

given the huge amount of data to be labelled, and039

labeling such relevance between user query and ad040

1We use Company X for anonymity review.

requires a good knowledge and experience. For 041

example, 042

User Query:
"Innovative treatments for reducing hospital
readmission rates in heart failure patients."

Advertisement:
"Remote Patient Monitoring Systems - Con-
tinuous Care for Heart Failure Patients"

043

This query-ad pair is labeled as relevant since 044

remote patient monitoring systems provide con- 045

tinuous care and real-time health data, enabling 046

proactive management of heart failure, which is es- 047

sential for reducing hospital readmission rates, and 048

such manual labeling requires domain knowledge. 049

Recent advances in Large Language Models 050

(LLMs) have shown that LLMs are highly aligned 051

with human judgments and even surpass human 052

performance in certain tasks (Ouyang et al., 2022), 053

such as topic identification and twitter relevance 054

for political issues (Gilardi et al., 2023), general 055

question-answering data generation (Meng et al., 056

2023), and instruction data generation (Wang et al., 057

2022b). However, the lack of domain knowledge 058

limits the performance of LLM in the query-ad rel- 059

evance labeling task. To address this challenge, 060

many approaches employed in-context learning 061

(ICL) to incorporate domain-specific knowledge as 062

extra context in the LLM’s prompt (Kossen et al., 063

2023; Dong et al., 2022). Besides, it is well known 064

that the effectiveness of ICL heavily depends on the 065

quality of the provided demonstrations, which has 066

motivated many works to explore effective demon- 067

stration retrieval methods for ICL, such as (Rubin 068

et al., 2021; Li et al., 2023; Wu et al.; Zhang et al., 069

2022), all of these methods aim to retrieve better 070

examples from annotated training sets to enhance 071

LLMs’ domain knowledge. 072

Previous work on demonstration retrieval falls 073
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into two categories. One category involves off-the-074

shelf retrievers like BM25 (Robertson et al., 2009)075

or KNN (Guo et al., 2003), which can retrieve tex-076

tually or semantically similar demonstrations. The077

other category focuses on training task-specific re-078

trievers with positive and negative demonstrations.079

Notable examples include Rubin et al. (Rubin et al.,080

2021), Shi et al. (Shi et al., 2022), and Xiaonan et081

al. (Li et al., 2023), who leverage LLM feedback082

(compare the labels generated by LLM with the083

ground-truth labels, using them as the training sig-084

nal) to train these retrievers via supervised or con-085

trastive learning. However, the vast combination086

space of different demonstrations and queries poses087

a challenge. Randomly sampling demonstrations088

to collect the LLM’s feedback may lead to large089

parts of “less useful” examples. Some methods,090

like Zhang et al. (Zhang et al., 2022) and Mingkai091

et al. (Deng et al., 2022), employ reinforcement092

learning to actively sample demonstrations and ob-093

tain LLM feedback. But these methods are limited094

in considering only a fixed number of candidate095

demonstrations, which reduces the action space for096

policy training.097

To overcome the challenges addressed above in098

SOTA methods, at first, we frame demonstration099

retrieval problem as a multi-armed bandit (MAB)100

problem (Lai and Robbins, 1985), and bandit al-101

gorithms solving MAB problems (Vermorel and102

Mohri, 2005; Li et al., 2010) have demonstrated103

excellent performance in addressing exploration104

and exploitation dilemma when dealing with large-105

scale search spaces. This allows us to design effec-106

tive exploration techniques for sampling demonstra-107

tions and obtaining LLM feedback during retriever108

training. Then, we propose a novel in-context109

learning (ICL) algorithm, called ICL-Bandit, which110

leverages a stochastic bandit algorithm to empower111

ICL at scale with diverse demonstration pools. The112

objective of ICL-Bandit is to retrieve demonstra-113

tions and maximize cumulative positive LLM feed-114

back over a series of retrievals. Figure 1 shows115

a comparison on the example query-ad pair with116

demonstrations retrieved with KNN and our ICL-117

Bandit, respectively.118

Our contributions can be summarized as follows:119

• We formulate demonstration retrieval as a120

multi-armed bandit problem, focusing on ef-121

fective retrieval during retriever training.122

• We design a stochastic bandit algorithm suit-123

able for ICL with a large and varied demon-124

stration pool. 125

• Our approach achieves SOTA performance 126

comparing to other existing methods and it 127

has been deployed to the labeling process at 128

Company X, resulting in substantial cost sav- 129

ings by automated labeling. 130

2 ICL-Bandit with large and varied 131

demonstration pool 132

In this section, we introduce ICL-Bandit, a stochas- 133

tic bandit algorithm designed to efficiently retrieve 134

demonstrations and collect LLM feedback during 135

retriever training. The task is to precisely label 136

query-ad relevance with ICL, and our goal is to 137

train a demonstration retriever which retrieves good 138

demonstrations for ICL. When training the retriever 139

using LLM feedback (we compare the output la- 140

bels generated by the LLM with the ground-truth 141

labels, employing them as the reward signal), the 142

key lies in how to effectively retrieve demonstra- 143

tions from a large and diverse pool during the train- 144

ing process. Addressing the Exploration (searching 145

for diverse and potentially informative demonstra- 146

tions) versus Exploitation (retrieving high-reward 147

demonstrations) balance is pivotal. To tackle this 148

challenge, we first formulate the demonstration re- 149

trieval task as a bandit problem. 150

2.1 Task Definition 151

The task is to label the relevance of query-ad pairs 152

leveraging LLMs. Compared with zero-shot LLM 153

labeling, providing with demonstrations as context 154

in the ICL manner improves the labeling perfor- 155

mance. The ICL prompt comprises four key com- 156

ponents: 157

• Instruction We employ the following instruction 158

to describe labeling requests: "Given user query 159

and an ad, assign a label based on following 160

definitions: - ’Relevant’: The ad content directly 161

addresses the user’s query, providing information 162

or a solution that aligns with the search intent. - 163

’Irrelevant’: The ad content does not address the 164

user’s query, failing to provide information or 165

a solution that matches the search intent." This 166

instruction guides the relevance labeling process 167

for LLMs. 168

• Input The input component specifies the query 169

and ad requiring labeling. For instance, "User 170
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User Query:
"Innovative treatments for 
reducing hospital readmission 
rates in heart failure patients. "

Advertisement: 
“Remote Patient Monitoring 
Systems - Continuous Care for 
Heart Failure Patients."

User Query: "Heart Disease and Stroke Prevention Programs."
Advertisement: "Heart-Healthy Diet Plans for Stroke Prevention. "
Label: Relevant

User Query: " Cardiac Rehabilitation Programs After Heart 
Surgery. "
Advertisement: " Post-Surgery Recovery Programs for Heart 
Patients. "
Label: Relevant

…

User Query: "Technological Solutions for Monitoring Heart Failure 
Patients to Prevent Readmission."
Advertisement: "AI-Driven Remote Monitoring Systems to 
Reduce Heart Failure Readmissions."
Label: Relevant

…

KNN demonstrations

ICL-Bandit demonstrations

LLM

LLMQuery-ad pair to be labeled

Irrelevant

Relevant

Figure 1: An example illustrating how LLM labeler prompting, when combined with demonstrations retrieved via
KNN and our ICL-Bandit approach, yields distinct labeling outcomes.

User Query
Advertisement

Demonstrations

ICL-Bandit

Demonstration 
Pool

Demonstration 1
…

Demonstration 2

Demonstration N Prompt

LLM

Label

User Query
Advertisement

Label

Ground Truth

Reward

Retrieval

Instruction

Demonstration a

User Query a
Advertisement a
Label a

Demonstration b

User Query b
Advertisement b
Label b

…

User Query
Advertisement

Demonstrations

Estimated Reward Distribution

Mutual Feature

Figure 2: An illustration on training demonstration retrieval process of ICL-Bandit. The demonstration pool consists
of expert labeled demonstrations, and each demonstration includes user query, advertisement, and label. For each
query-ad from the training set, ICL-Bandit retrieves demonstrations from the demonstration pool considering the
estimated reward distribution. With the retrieved demonstrations as the context, LLM labels the query-ad as relevant
or irrelevant. Then the LLM-generated label is compared with the ground truth label from the training set to give
feedback. In the figure, the positive reward (matched label) is used to update ICL-Bandit to refine the retrieval
policy.

Query: ’Student loans suspended until septem-171

ber’; Advertisement:’10 Best Student Loan Re-172

finance’". This information sets the context for173

the query-ad labeling task.174

• Demonstrations Demonstrations consist of a set175

of labeled demonstrations, such as, "User Query:176

’School registration’, Advertisement: ’Find Vir-177

tual School Programs’, Label: Relevant". Dif-178

ferent retrieved demonstrations would highly af-179

fect the labeling performance. These examples,180

provided by human annotators, serve as train-181

ing instances for a policy πθ that leverages LLM182

feedback to retrieve appropriate demonstrations183

for each unique input.184

• Output Indicator The output indicator instructs185

the LLM to generate the labeling answer. For 186

instance, "Return your decision on the label in 187

<Label></Label> tags.". This guides the LLM 188

to generate the final label. 189

2.2 Problem Formulation 190

The key of the labeling task lies in retrieving in- 191

formative demonstrations for ICL labeling, then 192

we formulate the demonstration retrieval problem 193

as a multi-armed bandit (MAB) problem, draw- 194

ing an analogy to the scenario of a gambler select- 195

ing from a slot machine with multiple arms in a 196

casino. The player’s objective is to choose the arm 197

that offers the highest expected gain. Each time 198

the player pulls an arm and receives a gain or not, 199

they update their estimation of the arm’s potential 200
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gain. Similar to this scenario, in the query-ad rele-201

vance labeling task, we propose a MAB approach202

to retrieve demonstrations from a pool to achieve203

a good performance. We define key components204

such as states, arms, rewards, and the overall objec-205

tive. Trial: In each trial t, our goal is to retrieve m206

demonstration from the demonstration pool. State:207

State st represents the current contextual environ-208

ment. In the context of ICL, st denotes the em-209

bedding of the query and ads that require labeling.210

Arm/Action: Each arm in the MAB problem cor-211

responds to a potential demonstration, representing212

different choice or action that can be taken during213

the ICL labeling. Reward: The reward r(t,ak) pro-214

vides numerical feedback, indicating whether the215

LLM assigns the correct relevance label based on216

the retrieved demonstration ak. We define two re-217

ward options: a continuous reward r(t,ak) ∈ [0, 1]218

(representing the probability of the LLM’s output219

label) and a discrete reward r(t,ak) ∈ 0, 1. In the220

discrete case, a correct label receives a reward of221

1, while an incorrect label receives 0. Objective:222

The overall goal is to learn a retrieval policy πθ by223

maximizing the cumulative reward over a series of224

trials during training.225

The process of using a MAB algorithm to ef-226

ficiently retrieve demonstrations during training227

consists of the following steps:228

Step 1: Retrieval of Demonstrations At each229

trial t, the retrieval policy πθ retrieves a demonstra-230

tion (arm) ak from a demonstration pool. The opti-231

mal retrieval will be conducted based on a balance232

between the benefits (the mean of ak’s rewards)233

and the chance (the variance of ak’s rewards).234

Step 2: Reward from LLM Feedback After235

retrieving a demonstration ak, the retriever receives236

a reward rt, indicating the correctness of the label237

provided by the LLM with the chosen demonstra-238

tion.239

Step 3: Policy Update The collected reward240

value is used to update the policy parameters πθ to241

maximize cumulative reward during training.242

These steps iteratively occur for a pre-defined243

number of iterations (T = 2000 in our paper). The244

exploration-exploitation trade-off in Step 1 is cru-245

cial, requiring the retrieval policy to balance ex-246

ploring new demonstrations for potential benefits247

(exploration) and exploiting known good demon-248

strations to maximize the mean of rewards (ex-249

ploitation). This exploration-exploitation balance250

ensures the effectiveness of learning the demonstra-251

tion retrieval policy in ICL labeling.252

2.3 ICL-Bandit 253

In this section, we introduce ICL-Bandit as an inno- 254

vative approach to address the challenges encoun- 255

tered by previous bandit algorithms. Traditional 256

bandit algorithms, which assign a parameter θ to 257

each arm or action, facing the limitations when 258

applied to demonstration retrieval due to the expan- 259

sive and varied nature of the available demonstra- 260

tions. 261

We leverage the framework of Stochastic Multi- 262

Armed Bandit (Bubeck et al., 2012), a variant of the 263

classical MAB problem where rewards associated 264

with different actions (referred to as "arms") are 265

influenced by stochastic processes. In our context, 266

we develop a novel stochastic bandit algorithm tai- 267

lored to scenarios with an extensive and diverse set 268

of demonstrations. 269

First, we fine-tune a BERT model in the Com- 270

pany X’s query and ads dataset, resulting in an 271

embedding vector eak unique to each demonstra- 272

tion ak, an embedding vector est for the state st 273

at trial t and a mutual embedding e(s,a)t . Then 274

we have a unified feature embedding xst,ak = 275

[est , eak , e(s,a)t ] to capture contextual information. 276

Next, we adopt a shared parameter θ applicable to 277

all demonstrations. This shared parameterization 278

streamlines the learning process, enhancing effi- 279

ciency and generalization across the diverse pool 280

of demonstrations. 281

2.3.1 Demonstration and State 282

Representation Learning 283

To integrate both the state and demonstration into 284

a unified embedding vector, we employ a self- 285

supervised learning approach to fine-tune a 24- 286

layer BERT model using Company X’s user query- 287

ad dataset. The final embedding is derived by ex- 288

tracting the output of the last hidden layer, serving 289

as a comprehensive representation of both the state 290

and demonstration. 291

2.3.2 Objective Function of ICL-Bandit 292

Throughout the total T trials, the cumulative re- 293

ward is defined as
∑T

t=1 r(t,ak). In this context, we 294

establish the optimal expected T -iteration reward, 295

denoted as E[
∑T

t=1 r(t,a∗k)], where a∗k represents 296

the optimal demonstration yielding the maximum 297

expected reward at trial t. Our objective is to profi- 298

ciently retrieve a sequence of demonstrations dur- 299

ing training, maximizing the expected total payoff. 300

Alternatively, our aim is to minimize the regret of 301

the algorithm concerning the optimal demonstra- 302
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tion retrieval strategy. The T -iteration regret of303

ICL-Bandit can be formally defined as:304

Re(T ) = E[

T∑
t=1

r(t,a∗k)]− E[

T∑
t=1

r(t,ak)] (1)305

2.3.3 Optimization of ICL-Bandit306

To minimize the regret, it is assumed that the ex-307

pected reward of an example a is linear in the d-308

dimensional state-action integrated feature x(t,a),309

with three unknown policy parameters θ∗state, θ∗action,310

and θ∗mut:311

E[r(t,a) | x(t,a)] = xT(t,a)[θ
∗
state, θ

∗
action, θ

∗
mut]312

where θ∗state denotes the policy parameter for the313

context or the state, i.e., for the target sample, θ∗action314

denotes the policy parameter for an action, i.e., for315

an example, and θ∗mut denotes the policy parameter316

for mutual information of the target sample and the317

example. The mutual information may be common318

or similar information between the target sample319

and the example. The policy parameter θ∗state can320

map the target sample to a first vector space. The321

policy parameter θ∗action can map the example to a322

second vector space. The first vector space and the323

second vector space are different and independent,324

but they are dual to each other. The policy param-325

eter θ∗mut can map both the target sample and the326

example to the same vector space. The technical327

effect of using the three policy parameters θ∗state,328

θ∗action, and θ∗mut is to more accurately measure the329

relationship or distance between the target sample330

and the example, so as to calculate a more accurate331

expected reward.332

The embodiments of the present disclosure pro-333

pose that all examples share three policy parame-334

ters θ∗state, θ∗action, and θ∗mut. This parameterization335

remains constant regardless of the number of ex-336

amples. The technical effect of such settings is to337

streamline the learning process, and enhance effi-338

ciency and generalization across the diverse set of339

examples. This framework enables the application340

of the proposed reinforced retrieval operation to341

large-scale and diverse candidate examples, con-342

tributing to its scalability and adaptability.343

For each example, we have three kinds of344

features: state, action, and mut, denoted as345

[est , eak , e(s,a)t ]. These correspond to the data ma-346

trices Dstate, Daction, and Dmut, which represent347

samples on different features. Let Dstate, Daction,348

and Dmut be data matrices of dimension m× d at 349

trial t, where the rows correspond to m training 350

inputs of context, action, and mutual information, 351

and b ∈ Rm is the corresponding reward vector 352

(e.g., the m rewards indicating whether the LLM 353

provided the correct label in the training set). Ap- 354

plying ridge regression to the training data (D, b) 355

yields an estimate of the policy parameters: 356

θstate =
(
DT

stateDstate + λI
)−1

DT
stateb (2) 357

358

θaction =
(
DT

actionDaction + λI
)−1

DT
actionb (3) 359

360

θmut =
(
DT

mutDmut + λI
)−1

DT
mutb (4) 361

where I is the d × d identity matrix, λ ∈ [0, 1] 362

is the regularization term of ridge regression es- 363

timation. Let D = [Dstate, Daction, Dmut], and 364

θ = [θstate, θaction, θmut]. When components in 365

b are independent conditioned on corresponding 366

rows in D, it can be shown that, with probabil- 367

ity at least 1− δ:
∣∣∣xT(t,at)θ̂ − E[r(t,at) | x(t,at)]

∣∣∣ ≤ 368

α′
√

xT(t,at) (D
TD + λI)−1 x(t,at) For any δ > 0 369

and x(t,at) ∈ Rd, where θ̂ is the mean of θ, and 370

at indicates the example selected at t, r(t,a) is the 371

observed reward, σ2 is the variance proxy of the 372

noise and α′ is a constant. Details of the proof is 373

provided in Appendix A. 374

2.4 ICL-Bandit vs. Traditional Bandit 375

ICL-Bandit improves upon traditional bandit meth- 376

ods by introducing shared parameters, θ∗state, θ∗action, 377

and θ∗mut, to jointly model state, actions, and their 378

interactions. This enables better alignment between 379

context and candidate demonstrations, leading to 380

more accurate action selection. 381

Unlike traditional methods that treat actions in- 382

dependently, ICL-Bandit captures complex contex- 383

tual dependencies, enhances generalization, and 384

scales efficiently to high-dimensional data. Its 385

unified framework ensures consistent performance 386

across diverse ICL labeling tasks, mitigating the 387

inconsistency and overfitting often seen in conven- 388

tional approaches. 389

3 Experiment 390

Dataset: We use a high-quality, expert-labeled 391

dataset collected daily over 1.5 years, consisting 392

of user queries and associated advertisement infor- 393

mation (e.g., keywords, titles, descriptions, URLs), 394

each labeled as relevant or irrelevant. The dataset 395
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is temporally split into: Example pool: 1,578,728396

samples used as demonstrations. Training set:397

9,999 query-ad pairs. Test set: 1,986 query-ad398

pairs. This temporal partitioning simulates real-399

world deployment, where models are trained on400

historical data and evaluated on recent, unseen ex-401

amples.402

Evaluation Metrics: We assess binary classi-403

fication performance using Accuracy (ACC), F1-404

score, Precision, and Recall to capture both correct-405

ness and balance in predictions. More details of the406

experimental settings are provided in Appendix C.407

3.1 Competitors408

For a fair comparison, all baselines and ICL-Bandit409

(except "No Example" and "Crowdsourcing") were410

provided with 3 positive (Relevant) and 3 negative411

(Irrelevant) historically labeled samples as demon-412

strations. The following methods were selected as413

our competitors: No Example (Zero-shot Learn-414

ing), Crowdsourcing, EPR (SL-KNN), EPR (SL-415

LLM) (Li et al., 2023), Q-learning (Zhang et al.,416

2022), Static, BM25 (Robertson et al., 2009), Ran-417

dom, KNN (Guo et al., 2003). Details of the base-418

line methods are provided in Appendix B.419

Table 1: Results of GPT-3.5 as the backbone LLM.

Model ACC (%) F1-score (%) Precision (%) Recall (%)
No Example 53.95 25.72 41.76 18.58
Crowdsourcing 67.57 73.65 90.09 62.28
EPR (SL-KNN) 55.97 25.68 39.22 19.09
EPR (SL-LLM) 57.18 25.44 41.55 18.33
Q-learning 58.68 34.71 43.78 28.14
Static 56.57 28.56 43.40 21.28
BM25 58.84 28.77 46.35 20.86
Random 50.73 36.49 37.52 35.52
KNN 57.98 27.60 44.04 20.10
ICL-Bandit (Ours) 63.76 61.63 65.38 58.29

Table 2: Results of GPT-4 as the backbone LLM.

Model ACC (%) F1-score (%) Precision (%) Recall (%)
No Example 65.05 61.45 64.08 59.03
Crowdsourcing 67.57 73.65 90.09 62.28
EPR (SL-KNN) 74.42 80.70 73.49 89.47
EPR (SL-LLM) 74.62 80.70 72.94 90.32
Q-learning 74.26 76.25 78.81 87.80
Static 73.56 79.71 71.35 90.28
BM25 73.62 80.09 72.94 88.80
Random 73.72 79.94 71.97 89.89
KNN 74.47 80.74 73.56 89.48
ICL-Bandit (Ours) 80.03 82.57 76.91 89.14

3.2 Results Analysis420

Tables 1 and 2 present the experimental results421

comparing nine demonstration retrieval methods,422

including our ICL-Bandit, across two versions423

of LLMs. The analysis highlights key perfor-424

mance trends. The “No Example” baseline per-425

forms poorly, while “Crowdsourcing” demonstra-426

tions achieve the highest accuracy and precision, 427

emphasizing the importance of expert-labeled data. 428

Among automated methods, Q-learning, EPR (SL- 429

LLM), and ICL-Bandit show strong performance, 430

benefiting from LLM feedback. Notably, ICL- 431

Bandit surpasses Q-learning and EPR (SL-LLM) 432

despite using only 2,000 feedback samples com- 433

pared to their 5,000, due to its lightweight, linear 434

design that requires fewer data. 435

EPR (SL-KNN) and EPR (SL-LLM) improve 436

over the “No Example” baseline but still lag be- 437

hind “Crowdsourcing,” indicating that retrieval ef- 438

fectiveness depends on technique selection. Sim- 439

ilarly, methods like “Static,” “Random,” “KNN,” 440

and “BM25” show varied performance, with BM25 441

performing competitively but still unable to match 442

expert-labeled demonstrations. 443

ICL-Bandit consistently delivers superior results, 444

often outperforming or matching “Crowdsourcing.” 445

Its ability to balance exploration and exploitation 446

allows it to retrieve relevant demonstrations effec- 447

tively, adapt to diverse queries, and enhance recall, 448

improving overall ICL performance. 449

3.3 Learning Curve of ICL-Bandit 450

The learning curve experiment was devised to ex- 451

amine the evolutionary performance of ICL-Bandit 452

as training data accumulates. The primary objec- 453

tive was to discern how the method’s effective- 454

ness scales with an expanding dataset, providing 455

insights into its adaptability and scalability. The ex- 456

periment’s results are depicted in Figure 3, where 457

the x-axis represents training iterations, and the 458

y-axis portrays the cumulative mean and variance 459

of Accuracy, Binary Accuracy, True Negative Rate 460

(TNR), and True Positive Rate (TPR). The learning 461

curve analysis of ICL-Bandit highlights its capacity 462

to dynamically adapt and enhance its performance 463

over successive training iterations. Notably, it illus- 464

trates that ICL-Bandit achieves a rapid and stable 465

convergence to a commendable performance level. 466

Furthermore, the outcomes suggest that ICL- 467

Bandit exhibits promise for demonstration retrieval 468

in ICL, even when trained on a limited LLM feed- 469

back dataset. Remarkably, in comparison to EPR 470

(SL-LLM), which utilized a larger dataset of 5000 471

feedback instances, ICL-Bandit demonstrates su- 472

perior performance. The learning curve analysis 473

underscores the efficacy of ICL-Bandit in itera- 474

tively improving its performance with an increas- 475

ing volume of training data. This positions it as a 476

robust and scalable solution for the nuanced task 477
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Figure 3: The learning curve of ICL-Bandit during 2000 trails training. TNR and TPR indicates the true negative
rate and true positive rate respectively.

of demonstration retrieval in complex information478

retrieval scenarios.479

3.4 Ablation Study480

3.4.1 Number of retrivaled samples481

Example number ACC Binary AUC TNR TPR
1 0.7826 0.8127 0.8326 0.6978
3 0.8003 0.8029 0.8215 0.7077
6 0.8001 0.8127 0.8178 0.7129
9 0.7697 0.7616 0.7716 0.7516

Table 3: Performance metrics on different number of
selected demonstrations.

In this experiment, we evaluate the impact of482

varying the number of positive and negative demon-483

strations on model performance. The results, pre-484

sented in Table 3, indicate that the performance485

metrics (ACC, Binary AUC, TNR, and TPR) gen-486

erally improve as the number of positive/negative487

demonstrations increases from 1 to 3. Specifically,488

the best overall performance is observed when 3489

demonstrations are used. Thus we choose 3 as the490

final number.491

When 9 demonstrations are used, the perfor-492

mance metrics begin to decline, indicating that493

adding too many demonstrations may lead to di-494

minishing returns or even reduced performance.495

3.4.2 Training Epochs and Reward Types496

The experiment evaluates the performance of the497

ICL-bandit approach under two reward settings:498

continuous and discrete. An epoch is defined as499

a complete pass through the training data. Dur-500

ing each epoch, the ICL-bandit retrieves informa-501

tive demonstrations, selects the best actions, and502

updates its retrieval policy based on the rewards503

received. The results in Figure 4 illustrate how504

the number of epochs affects performance across505

various metrics.506

We observe that ICL-bandit’s performance507

varies with the number of epochs, with different508
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Figure 4: Performance on different epochs and reward
types.

metrics reaching their optimal levels at different 509

stages. The continuous reward setting, which pro- 510

vides more detailed feedback, achieves peak per- 511

formance in fewer epochs compared to the discrete 512

reward setting. This suggests that using continuous 513

rewards in practice can reduce training complexity 514

while still delivering strong performance. Finally, 515

we choose continous reward with 1 epoch for re- 516

ducing the complexity and promising results. 517

3.5 Application in Practice 518

We deployed the ICL-Bandit approach in Company 519

X’s ad relevance pipeline to reduce manual label- 520

ing costs and enhance ad recommendation quality. 521

Each day, the system collects fresh user queries and 522

ads, cleans them using Bing’s distributed platform, 523

and applies ICL-Bandit for automated labeling. For 524

each query-ad pair, we retrieve 3 relevant and 3 ir- 525

relevant historical examples to construct prompts, 526

which are then labeled using GPT-4. This process 527

generates high-quality labeled data daily for down- 528

stream CTR prediction (Lee et al., 2023). 529

As shown in Tables 4and 5, ICL-Bandit con- 530

sistently outperforms baselines in both English 531

and non-English settings, demonstrating robust im- 532
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Table 4: A/B testing on English datasets with GPT-4 as
the backbone LLM.

Model ACC (%) F1-score (%) Precision (%) Recall (%)
No Example 66.82 62.18 63.74 60.75
KNN 76.52 75.12 78.72 71.81
ICL-Bandit (Ours) 87.12 82.28 86.95 78.17

Table 5: A/B testing on non-English dataset with GPT-4
as the backbone LLM.

Model ACC (%) F1-score (%) Precision (%) Recall (%)
No Example 63.26 59.48 60.17 58.79
KNN 70.67 75.44 70.86 80.81
ICL-Bandit (Ours) 80.67 85.68 82.57 89.14

provements in accuracy, F1-score, precision, and533

recall.534

3.6 Impact on Ad Recommendation535

Integrating ICL-Bandit-labeled data into Bing’s536

CTR prediction model led to significant business537

gains. Offline evaluation on 500K historical query-538

ad pairs showed a 2.5% AUC increase and 1.8%539

reduction in Log Loss. In two weeks of online A/B540

testing with 2 million users, CTR rose by 3.2% and541

conversion rates improved by 2.7%. Beyond per-542

formance, the automated labeling process reduced543

manual annotation costs by 61%, enabling scalable544

and cost-effective data processing across millions545

of queries daily. The results of the A/B testing on546

English and Non-English datasets are summarized547

in Table 4 and Table 5.548

4 Related Work549

4.1 LLM Labeling550

Latest studies in LLM have shown that LLM is551

highly consistent with human judgments and even552

outperforms humans in many tasks, for example,553

topic identification and twitter relevance for politi-554

cal issues (Gilardi et al., 2023), general question-555

answering data generation (Meng et al., 2023), in-556

struction data generation (Wang et al., 2022b) and557

RL from AI feedback (RLAIF) (Lee et al., 2023).558

A set of work using LLM for labeling instead of559

human (Tan et al., 2024; Alaofi et al., 2024; Arte-560

mova et al., 2024). In this work, we focus on a561

domain-specific labeling problem, i.e., query-ad562

relevance labeling, which requires domain knowl-563

edge to guide LLM for labeling.564

4.2 Demonstration Retrieval for In-Context565

Learning566

LLMs have emerged as a pivotal strategy for ad-567

dressing tasks specific to particular domains. How-568

ever, the effectiveness of ICL is intrinsically tied to569

the quality of the provided demonstrations (Li et al.,570

2023; Wu et al.; Zhang et al., 2022). Works such 571

as (Rubin et al., 2021; Li et al., 2023; Wu et al.; 572

Zhang et al., 2022) collectively aim to optimize 573

the retrieval of exemplary instances from annotated 574

training sets, thereby enhancing the domain knowl- 575

edge encapsulated by LLMs. 576

Existing demonstration retrieval methods are typ- 577

ically categorized into utilization of off-the-shelf 578

retrievers such as BM25 (Robertson et al., 2009) or 579

KNN (Guo et al., 2003), or training task-specific 580

retrievers using positive and negative demonstra- 581

tions (Rubin et al., 2021; Shi et al., 2022; Li et al., 582

2023). These researchers leverage LLM feedback 583

to guide the training of these retrievers through 584

supervised or contrastive learning. Despite these 585

advancements, the vast combinatorial space en- 586

compassing different demonstrations and queries 587

presents a significant challenge. Randomly sam- 588

pling demonstrations to collect LLM feedback risks 589

incorporating a substantial portion of less useful 590

examples. Reinforcement learning-based meth- 591

ods (Zhang et al., 2022; Deng et al., 2022) actively 592

sample demonstrations and elicit valuable LLM 593

feedback. However, they are constrained by a fixed 594

number of demonstrations, thereby limiting the ac- 595

tion space available for policy training. 596

5 Conclusion 597

In this paper, we leverage LLMs to automate query- 598

ad relevance labeling for improved ad recommenda- 599

tion. To address the lack of domain-specific knowl- 600

edge in LLMs, we adopt in-context learning (ICL) 601

and propose ICL-Bandit, a stochastic bandit algo- 602

rithm for retrieving high-quality demonstrations 603

and collecting LLM feedback to train a retriever. 604

Our approach outperforms existing retrieval meth- 605

ods and has been successfully deployed in Com- 606

pany X’s ad recommendation system, delivering 607

significant cost savings and strong real-world effec- 608

tiveness. 609

6 Limitations 610

ICL-Bandit’s performance heavily relies on the 611

quality and coverage of the labeled demonstration 612

pool. If the pool lacks diverse or representative 613

examples for certain query-ad pairs, the retrieved 614

demonstrations may be suboptimal, limiting the ef- 615

fectiveness of in-context learning. This constraint 616

can affect generalization, especially in long-tail or 617

evolving domains where labeled data is sparse or 618

outdated. 619
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A Proof 739

A.1 Step 1: Decompose the Estimation Error 740

The estimation error can be expressed as: 741

θ̂ − θ∗ =
(
D⊤D + λI

)−1
D⊤b− θ∗

=
(
D⊤D + λI

)−1
D⊤ (Dθ∗ + ϵ)− θ∗

=
(
D⊤D + λI

)−1
D⊤Dθ∗ +

(
D⊤D + λI

)−1
D⊤ϵ− θ∗

=

[(
D⊤D + λI

)−1
D⊤D − I

]
θ∗ +

(
D⊤D + λI

)−1
D⊤ϵ.

742

Simplifying: 743

θ̂ − θ∗ = −λ
(
D⊤D + λI

)−1
θ∗ +

(
D⊤D + λI

)−1
D⊤ϵ. 744

A.2 Step 2: Express the Estimation Error 745

Components 746

Let: Bias Term: Bias = −λ
(
D⊤D + λI

)−1
θ∗. 747

Variance Term: Variance = 748(
D⊤D + λI

)−1
D⊤ϵ. 749

Then: θ̂ − θ∗ = Bias + Variance. 750

A.3 Step 3: Bound the Bias Term 751

We aim to bound
∣∣∣x⊤(t,a)Bias

∣∣∣. 752

Using the Cauchy-Schwarz inequality: 753

∣∣∣x⊤(t,a)Bias
∣∣∣ = λ

∣∣∣∣x⊤(t,a) (D⊤D + λI
)−1

θ∗
∣∣∣∣ (5) 754

≤ λ
∥∥x(t,a)∥∥(D⊤D+λI)

−1 ∥θ∗∥ , (6) 755

where ∥x∥A =
√
x⊤Ax denotes the Maha- 756

lanobis norm with respect to the matrix A. 757

Assuming ∥θ∗∥ ≤ S, where S is a known bound 758

on the norm of θ∗, we have: 759

∣∣∣x⊤(t,a)Bias
∣∣∣ ≤ λS

∥∥x(t,a)∥∥(D⊤D+λI)
−1 . (7) 760

A.4 Step 4: Bound the Variance Term 761

We aim to bound
∣∣∣x⊤(t,a)Variance

∣∣∣ with high proba- 762

bility. 763

Since ϵ has independent components with zero 764

mean and variance proxy σ2, the variance of 765

x⊤(t,a)Variance is: 766

Var
(
x⊤(t,a)Variance

)
= Var

(
x⊤(t,a)

(
D⊤D + λI

)−1
D⊤ϵ

)
= σ2x⊤(t,a)

(
D⊤D + λI

)−1
D⊤D

(
D⊤D + λI

)−1
x(t,a).

767
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Therefore:768

Var
(
x⊤(t,a)Variance

)
=

σ2x⊤(t,a)

((
D⊤D + λI

)−1
(
I − λ

(
D⊤D + λI

)−1
))

x(t,a)

≤ σ2
∥∥x(t,a)∥∥2(D⊤D+λI)

−1 .

769

A.5 Step 5: Apply Concentration Inequality770

Since x⊤(t,a)Variance is a linear combina-771

tion of independent sub-Gaussian vari-772

ables, it is sub-Gaussian with parameter773

σ′ = σ
∥∥x(t,a)∥∥(D⊤D+λI)

−1 .774

Using a sub-Gaussian tail bound, for any δ > 0:775

P

(∣∣∣x⊤(t,a)Variance
∣∣∣ ≥ α

∥∥x(t,a)∥∥(D⊤D+λI)
−1

)
≤ δ,

(8)776

where α = σ
√

2 ln
(
1
δ

)
.777

Step 6: Combine Bias and Variance Terms778

The total estimation error is:779

∣∣∣x⊤(t,a) (θ̂ − θ∗
)∣∣∣ ≤ ∣∣∣x⊤(t,a)Bias

∣∣∣+∣∣∣x⊤(t,a)Variance
∣∣∣ .

(9)780

A.6 Step 7: Final Inequality781

Combine the bounds:782

∣∣∣x⊤(t,a) (θ̂ − θ∗
)∣∣∣ ≤ (λS + α)

∥∥x(t,a)∥∥(D⊤D+λI)
−1 .

(10)783

For sufficiently small λ and bounded θ∗, the784

bias term can be controlled, and the dominant term785

becomes the variance term.786

Therefore, we can simplify the inequality to:787

∣∣∣x⊤(t,a) (θ̂ − θ∗
)∣∣∣ ≤ α′ ∥∥x(t,a)∥∥(D⊤D+λI)

−1 ,

(11)788

where α′ = λS + α.789

B Competitors790

For a fair comparison, all baselines and ICL-Bandit791

(except "No Example" and "Crowdsourcing") were792

provided with 3 positive (Relevant) and 3 negative793

(Irrelevant) historically labeled samples as demon-794

strations. The following methods were selected as795

our competitors:796

• No Example (Zero-shot Learning): Zero-shot 797

learning without any demonstrations. 798

• Crowdsourcing: Demonstrations annotated by 799

human evaluators through crowdsourcing to as- 800

sess query-ad relevance. It is different from the 801

human (expert) labeled data for demonstraion 802

pool, train and test data. 803

• EPR (SL-KNN): Demonstrations are retrieved 804

using the K-nearest neighbor (KNN) algorithm 805

based on the training datasets as ground truth. 806

EPR (SL-KNN) is then trained to input query- 807

ads and output the retrieved demonstrations to 808

assist the LLM in labeling. 809

• EPR (SL-LLM) (Li et al., 2023): Demonstra- 810

tions are retrieved using GPT-3.5 based on the 811

training datasets as ground truth. EPR (SL-LLM) 812

is then trained to input query-ads and output the 813

retrieved demonstrations to assist the LLM in 814

labeling. 815

• Q-learning (Zhang et al., 2022): A demonstra- 816

tion candidate is predefined, and Q-learning is 817

utilized to learn the retrieval policy. Demonstra- 818

tions are clustered into 50 clusters to implement 819

this algorithm. 820

• Static: Demonstrations are pre-defined and kept 821

static. 822

• BM25 (Robertson et al., 2009): Demonstrations 823

retrieved using the BM25 algorithm. 824

• Random: Demonstrations randomly sampled for 825

each user query. 826

• KNN (Guo et al., 2003): Demonstrations are re- 827

trieved using the K-nearest neighbor (KNN) algo- 828

rithm based on the user query. We use the same 829

feature embedding as our method to retrieve the 830

demonstrations with cosine similarity in KNN. 831

C Experimental Setup 832

Dataset: In the experiments, we leveraged a metic- 833

ulously curated dataset tailored specifically for as- 834

sessing the efficacy of demonstration retrieval sys- 835

tems. This dataset is derived from high-quality hu- 836

man (expert)-labeled data collected daily over the 837

recent 1.5-year period. Each sample in the dataset 838

consists of a user query along with associated infor- 839

mation about recommended advertisements. This 840

information includes query keywords, ad titles, ad 841

descriptions, ad URLs, and other pertinent content, 842

each labeled as either relevant or irrelevant. 843

To facilitate a robust evaluation, we partitioned 844

the dataset temporally into three distinct subsets: 845

an example pool, a training set, and a test set. The 846
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example pool contains all 1,578,728 samples as847

demonstrations, ensuring a comprehensive range848

of instances. For the purpose of training the model,849

we selected a subset of 9,999 samples specifically850

for query-ads pair labeling. The evaluation phase851

was carried out on a test set, which included 1,986852

samples also designated for query-ads pair label-853

ing. This temporal division helps in mimicking854

real-world scenarios where models are trained on855

historical data and tested on recent, unseen data,856

thereby providing insights into the practical appli-857

cability and performance of the retrieval methods858

under study.859

Evaluation Metric: Our in-context learning860

method aims to enhance the labeling performance861

of large language models (LLMs). Given that the862

labeling task at hand is a binary classification prob-863

lem, we evaluate the effectiveness of our approach864

using several key metrics. Specifically, we mea-865

sure Accuracy (ACC), F1-Score, Precision, and866

Recall. These metrics collectively provide a com-867

prehensive assessment of the model’s performance868

in terms of both its ability to correctly label data869

and its balance between precision and recall.870

Computational Resource All experiments are871

performed on single Ubuntu 20.04 LTS system with872

Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz873

CPU, 112 Gigabyte memory and single NVIDIA874

Tesla P100 accelerator.875
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