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Abstract

The hierarchical syntactic structure of natural language is a key feature of hu-
man cognition that enables us to recursively construct arbitrarily long sentences,
supporting communication of complex, relational information. In this work, we
describe a framework in which learning cognitively realistic left-corner parsers
can be formalized as a Reinforcement Learning problem, and introduce a family
of cognitively realistic chart-parsing environments to evaluate potential psycholin-
guistic implications of RL algorithms. We report how several baseline Q-learning
and Actor Critic algorithms, both tabular and neural, perform on subsets of the
Penn Treebank corpus. We observe a sharp increase in difficulty as parse trees get
slightly more complex, indicating that hierarchical reinforcement learning might
be required to solve this family of environments.

1 Introduction

We introduce a framework in which we can start exploring how reinforcement learning (RL; Sutton
and Barto 2018) algorithms scale up against human cognitive performance, as captured by the
syntactic parsing problem. Parsers grounded in contemporary generative linguistic theory involve rich,
hierarchically structured representations and complex rule systems that pose significant challenges
for RL algorithms. We begin with a simple example to illustrate the type of psycholinguistic task we
modeled our environments on, which is non-cumulative moving-window self-paced reading [Just
and Carpenter, 1980, Just et al., 1982]. In such tasks, a sentence is displayed on the screen with
the words hidden (covered by dashes), and only one word is uncovered at a time with a key press
(usually, the spacebar). The human reader decides when to press the spacebar to uncover the next
word, which automatically hides the current word – hence the name of self-paced reading. Self-paced
reading tasks mimic an essential aspect of naturally-occurring language comprehension with auditory
stimuli: the signal is strictly linearly and strictly incrementally presented one word at a time. Just
as in naturally-occurring verbal interactions, and unlike in normal reading situations, the linguistic
signal cannot be ‘rewound’ to previous words – we cannot just look back and reread previous parts of
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the text – or ‘fast-forwarded’ to subsequent words – we cannot jump ahead to parts of the text that do
not immediately follow the word currently being read.

We use a chart parser (Earley 1970, Tomita 1986, Scott 2008) with a cognitively realistic eager
left-corner parsing strategy (Resnik 1992, Hale 2014 a.o.) to provide the reward structure, thereby
guiding the reinforcement learning process. Running this eager left-corner parser on a simple input
sentence will shed light on its inner workings. Assume we have a simple grammar with three phrase
structure rules (PSRs) (i) S → NP VP, (ii) NP → Det N, and (iii) VP → V. Also, assume that we
are reading the sentence A boy sleeps in a self-paced reading task. We start with a screen in which
all words are covered with dashes: - - - - - - - - - -. After the first spacebar press, the first word
is revealed: A - - - - - - - - -. The parser recognizes its syntactic category Det (determiner) and
takes a series of parsing steps that construct the leftmost tree in Figure 1. We see here the eager
left-corner nature of our parser: PSR (ii), which has Det as its left branch/corner, is triggered as soon
as we recognize that the first word A is a determiner. This partial tree is only implicitly constructed
in the chart parser: the chart does not store trees, but instead contains edges, which are left-corner
based hypotheses about the possible syntactic structures we can associate with the linguistic input
received so far. After another spacebar press, the noun is revealed (- boy - - - - - - ), its syntactic
category N is recognized, and the richer partial tree shown in the middle of Figure 1 is constructed
after a series of parsing steps. Finally, the verb is revealed after one more spacebar press (- - - -
sleeps), its syntactic category V is recognized, and the final tree structure in Figure 1 is constructed.
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Figure 1: Partial trees built incrementally when reading the sentence A boy sleeps word by word

This parsing example shows that proper action ordering is crucial to successfully completing the
parsing process, which is like searching for a path through a maze: (i) the position in the maze is the
current parse state (the chart), (ii) the possible moves (up, left etc.) are the possible parsing steps, i.e.,
edges, we can add to the chart, and (iii) a path through the maze is given by the proper sequence of
parsing steps / edges needed to successfully complete the parsing process.

Both humans and RL agents may get ‘lost’ in these parsing mazes, for example, when encountering a
so-called ‘garden path’ example like The horse raced past the barn fell (Bever 1970 among many
others). This sentence might seem ungrammatical, but it is in fact grammatical under the reduced
relative clause interpretation that can be paraphrased as ‘the horse that was raced past the barn fell.’
To access that interpretation, one can compare the previous example with the sentence The children
taught by the Berlitz method passed the test (Crain and Steedman 1985). This second example
does not garden-path the reader because the most likely interpretation of taught in this sentence is
the non-finite past-participle interpretation. This is in contrast to raced in the first example, which
garden-paths the reader because its most likely interpretation is the incorrect, finite simple past one.
This interpretation leads the reader down an incorrect garden path during incremental parsing.

In brief, parsing tasks can be viewed as executing a certain protocol, and RL is a family of methods to
learn protocols. The paper makes two contributions. First, we introduce a new family of cognitively
realistic parsing environments for RL that are ordered by the complexity of the parsing problems
they pose. Second, we study the performance of 15 agents in the two easiest parsing environments
(height-4 and height-5 trees). The 15 agents fall into 3 classes: tabular, Deep Q Network (DQN), and
Actor-Critic (AC) agents; for the latter two, we experiment with LSTM (Hochreiter and Schmidhuber
1997), GRU (Cho et al. 2014), and Self-Attention networks (Vaswani et al. 2017).
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Table 1: A parsing episode perfectly played by a trained agent, parsing the sentence He sighed

action state reward
1. scan [0:1] He -0.25
2. scan [1:2] sighed -0.25
3. predict: [0:1] He | PRP→ He [0:1] PRP→ He • -0.25
4. predict: [0:1] PRP→ He • | NP-SBJ→ PRP [0:1] NP-SBJ→ PRP • -0.25
5. predict: [0:1] NP-SBJ→ PRP • | S→ NP-SBJ VP [0:1] S→ NP-SBJ • VP -0.25
6. predict: [1:2] sighed | VBD→ sighed [1:2] VBD→ sighed • -0.25
7. predict: [1:2] VBD→ sighed • | VP→ VBD [1:2] VP→ VBD • -0.25
8. complete: [0:1] S→ NP-SBJ • VP | [1:2] VP→ VBD • [0:2] S→ NP-SBJ VP • 5.00

2 Family of Parsing Environments

2.1 Parsing Actions

It is perhaps easiest to introduce our formalization of the parsing environment by examining an
example episode perfectly played by a trained parsing agent, shown in Table 1. The sentence to be
parsed is He sighed. The agent can take one of three types of actions. The first type of action is scan,
which ‘reads’ the next word of the sentence. The words are ‘read’ one at a time, and the agent is
not able to access the next word without a scan action. Furthermore, the final word at the end of
the sentence is not explicitly marked as such: the agent learns that the end of the sentence has been
reached only when it takes a scan action that fails, which receives a steep negative reward of −2.
That is, the agent is actively encouraged to predict the end of the sentence.

The first two actions in Table 1 are scan actions, and we see that the trained agent correctly predicts
the end of the sentence after the second word has been scanned and does not attempt to scan again.
The results of these actions are two leaf edges which are added to the chart, and these edges are
returned to the agent by the environment as (part of) the next state. Leaf edges consist of a span,
which indicates what positions/parts of the input sentence are ‘covered’ by the leaf edge. The first
scan adds a leaf edge spanning positions 0 to 1, that is, the first terminal, which is the word He.
The second scan adds a leaf edge spanning positions 1 to 2, i.e., the second terminal, which is the
word sighed. Actions that contribute to the final parse receive a small negative reward of −0.25,
encouraging the agent to finish parsing as soon as possible.

The next five actions in Table 1 are predict actions. These actions target a complete edge in the chart
(leaf edges are by definition complete; we discuss completion for other edges below), and identify
a production in the grammar whose right-hand side starts with the terminal or non-terminal of that
completed edge. That is, we identify productions whose left-corner is the targeted edge. For example,
the first predict action (step 3 in Table 1), targets the leaf edge storing the word He and identifies
‘PRP→ He’ as a production whose left-corner is that word (PRP stands for personal pronoun). As a
result of this action, we add a new edge to the environment chart, the one listed in step 3 under state.
The span of this edge is 0:1, which is the same as the span of the edge targeted by the predict action
(the edge covers only the first word of the sentence). The edge added in step 3 is not a leaf edge, as it
builds syntactic structure on top of a previous edge. That syntactic structure is the unary branching
node PRP, whose only daughter is the word He. This edge is a complete edge, indicated by the final
dot • after He: ‘complete’ means that the entire right-hand side of the production used to construct
the edge has been recognized (has been ‘matched against’ complete edges that are already available).

The next predict action (in step 4) targets the edge ‘[0:1] PRP→ He •’, which has just been added
to the environment chart / state. This edge is a complete edge, and is also the left-corner of the
production ‘NP-SBJ→ PRP;’ NP-SBJ stands for subject noun phrase (NP). At step 4, we build more
syntactic structure on top of the PRP non-terminal: this syntactic structure is encoded by the new
edge ‘[0:1] NP-SBJ→ PRP •’, which is a complete edge spanning position 0:1. That is, by end of
the predict actions in steps 3 and 4, we have implicitly built the leftmost partial tree in Figure 2.

The predict action in step 5 targets the complete NP-SBJ edge we just added, which is identified as
the left corner of the ‘S→ NP-SBJ VP’ production. The resulting edge ‘[0:1] S→ NP-SBJ • VP ’,
which is part of the environment state after the action in step 5, is the first incomplete edge in this
episode: the dot • precedes the VP, indicating that only the NP-SBJ has been recognized. Note also
that the span of this incomplete edge is still 0:1, as the span always indicates the part of the input
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Figure 2: Partial trees implicitly built by the agent when playing the episode in Table 1

sentence that has been completely recognized by the edge. At the end of step 5, we have implicitly
build the second (partial) tree in Figure 2.

The predict actions in steps 6 and 7 build syntactic structure on top of the word sighed (VBD stands
for verb in past form, and VP for verb phrase). The resulting tree is the third one in Figure 2.

The final action in the episode is a complete action. This is the third and final type of action that an
agent can take. Complete actions target two edges in the current chart, i.e., in the current environment
state. The first edge is incomplete; specifically, this is the edge ‘[0:1] S→ NP-SBJ • VP’ we built in
step 5. The second edge has to be complete, and its left-hand side non-terminal has to be the very
same as the leftmost incomplete non-terminal on the right-hand side of the incomplete edge. This
final action completes the parse, building the complete final tree in Figure 2. The reward in this step
is a substantial positive reward of 5.

In sum, agents can take one of three types of actions: scan, predict and complete. Predict actions
target an edge in the current chart that can be the left corner of a grammar production. Complete
actions target two edges in the current chart, an incomplete edge and a complete edge; the complete
edge can be used to bring the incomplete edge one step closer to completion. States returned by the
environment consist of the current chart (list of edges), which encode the partially built syntactic
structures in a very compact manner. Charts efficiently encode multiple complete parses if the
sentence to be parsed is syntactically ambiguous. Consider, for example, the typical prepositional
phrase (PP) attachment example I saw the astronomer with a telescope, where the PP with a telescope
can be attached to the noun astronomer (the astronomer has a telescope) or to the verb saw (seeing by
means of a telescope). The parts of the syntactic structure that these two readings share are encoded
only once in the chart. In addition, charts can very gracefully support backtracking of the kind we
need when resolving local syntactic ambiguities like garden-path sentences.

2.2 Environment Setup

For every episode, the agent is tasked with parsing a single sentence. In all our experiments, the
sentences come from the parsed Brown Corpus part of the Penn Treebank-3 Corpus [Marcus et al.,
1999]. The specific set of parse trees we load into our parsing environment determine the difficulty
of the parsing tasks an RL agent will face. This enables us to create a wide variety of parsing
environments that can be finely tuned in terms of difficulty. The level of difficulty is determined
by the kind of tree structures we allow in the input set of trees. One way to decrease the level of
difficulty is to restrict the kind of syntactic structures we allow; for example, removing trees that
contain adjuncts decreases the level of difficulty. Another way is to limit the height of the trees, where
tree height is defined as the length of the longest path in the tree starting at the root. For example, our
experiments were run first with height-4 trees only, which is the smallest height with a reasonable
number of trees (more than 150), after which we investigated height-5 trees. We have created a
variety of tree sets along these lines. Height-6 trees, for example, even without adjunct structures,
already raised the level of difficulty to a point that exceeded our computational resources (3 separate
GPUs, the best of which was a Titan RTX, not accessible around the clock).

Once a subset of trees is identified (by calibrating it for tree height, types of syntactic structures, and
sometimes maximum sentence length) and loaded into the parsing environment, it is split into train,
validation and test sets according to percentages provided by the user. The train-validation-test split
is determined by a random seed that can be set by the user for reproducibility. Given our limited
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computational resources and the pilot benchmarking nature of this work, we couldn’t do a systematic
hyperparameter search, so we report results based only on train-test 90%-10% splits, without a
separate validation set for hyperparameter tuning. We set the hyperparameters to values that seemed
reasonable (often defaults), provided in the next section.

After the set of trees is loaded, and before the train-test split is determined, the environment creates
a context-free grammar (CFG) based on the productions implicit in all the loaded trees. The
environment uses this CFG to generate the reward structure for any given episode. Every training
episode consists of the agent learning to parse one sentence from the train set.3 What we essentially
do is create a ‘maze’ based on each individual sentence, and train agents on these ‘mazes.’

For every train sentence, the environment uses the CFG to left-corner chart-parse the sentence and
identify all its possible parses, as well as all the complete and incomplete parse edges that contribute
to these parses. These parse edges enable us to generate the reward structure for every episode:
if the agent takes an action resulting in an edge that contributes to one of the possible parses, the
agent receives a small negative penalty, which was −0.25 in our experiments (but this, and all other
rewards, can be set by the user). If the agent selects a parsing action that is licensed by the current
state (consisting of the current chart and whether there still are unscanned words), but does not
contribute to one of the possible parses, the agent receives a larger negative penalty of−0.75. Actions
are licensed if they create a valid edge that can be added to the current chart (‘valid’ based on the
current chart and the background CFG). If the agent selects a parsing action that is not licensed by
the current state, for example, it tries to add an edge that was already added to the chart, or tries to
scan a word when there are no more words to be scanned, the agent receives a steep negative penalty
of −2. Finally, when the agent selects an action that adds the final edge needed to complete a full
parse of the sentence, it receives a positive reward of 5 and the episode terminates. An optimal policy
takes the minimum number of actions necessary to construct a complete parse of the input sentence.

Thus, when agents build syntactic structures that are not validated by the PTB-based CFG (basically,
when they go down ‘dead-ends’ in the ‘maze’), they are negatively penalized by the environment.
Since charts are able to compactly represent multiple parse trees and to gracefully support back-
tracking, it’s always possible for an agent to eventually arrive at the correct parse by exhaustively
executing all parse actions offered by the environment (basically, by exhaustively exploring the
‘maze’). However, this results in a significantly lower total reward than taking the shortest, most
cognitively realistic path to the simplest correct parse (as seen in Sec. 4 Results).

Agents are trained to take the minimum steps possible because this heuristic is part of what the human
parser does (Hale 2011 a.o. and references therein). It is precisely this minimum-cost feature of the
human parser that leads it down garden paths (recall the example The horse raced past the barn fell).
Hale [2011] provides suggestive evidence that a distance metric (i.e. an estimate of steps necessary to
complete a parse) inferred based on PTB counts can be used to guide parsing in a way that captures a
variety of garden-path phenomena. The present work is a first step towards using RL methods to learn
this metric from experience (building on Hale 2014), and in the process, hopefully provide evidence
for the cognitive realism of this minimal-effort / minimal-cost hypothesis about the human parser.

In our experiments, we decreased the difficulty of learning and provided the agent with the list of all
possible predict and complete actions licensed by the environment in any given state. This simplifies
the learning problem by reducing action generation to action selection from a provided set of choices.
The simplification can be easily removed, which would force the agent to generate actions.

3 Experiments

3.1 Agent Architectures

We study the performance of 15 RL algorithms / agents in the height-4 and height-5 parsing environ-
ments: (i) a tabular Q learning agent (Watkins 1989, Watkins and Dayan 1992), (ii) 7 DQN agents
(Mnih and al 2015, Sutton and Barto 2018, Ch. 11 and references therein), and (iii) 7 Actor-Critic
(AC) agents (Sutton and Barto 2018, Ch. 13 and references therein). The 7 DQN agents differ with
respect to their architecture, and so do the AC agents. Six of them are recurrent: Elman/standard RNN
(Elman 1990), GRU (Cho et al. 2014), LSTM (Hochreiter and Schmidhuber 1997), and bidirectional

3Sentences are presented in random order. Once the entire train set is exhausted, the train sentences are
randomly permuted again, and sentences for the following episodes are drawn according to this new order.
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Figure 3: The basic architecture of the DQN agents

versions of these three (Schuster and Paliwal 1997, Graves and Schmidhuber 2005). We also study a
self-attention (Vaswani et al. 2017) agent. In all our experiments, the learning rate α for all the agents
was set to 10−3, and the discount factor γ to 0.9.

The tabular Q agent represents the Q function as a look-up table that stores the estimated values of
all possible state-action pairs. The state st at time step t consist of all the edges in the current chart,
plus a Boolean indicating whether all the words have been scanned, i.e., whether we reached the end
of the sentence. The action at selected by the agent in state st can be a scan, predict or complete
action, as discussed in the previous section. Before learning begins, all the entries in the Q table are
set to an arbitrary value (0), and they are updated in an entry-wise fashion at each time step t: the
value of the pair (st, at) is updated based on the reward signal rt+1 and the new state st+1 that the
agent receives from the environment after taking action at. The new state st+1 contains the chart
from the previous state st plus the new edge (if any) added by action at.

DQN agents approximate the Q function with an artificial neural network (ANN). Their basic
architecture is provided in Fig. 3. The edges in the current chart are numericalized (we return to this
in a moment) and the resulting tensors are the input to a recurrent or self-attention ANN, the output
of which is a chart tensor that ‘summarizes’ the current chart. We have a variety of choices for how
to compute the chart tensor, but we only explore the simplest choices here: for RNNs, we take the
chart tensor to be the final hidden state (or the two final hidden states for bidirectional RNNs); for
self-attention, we mean-pool the attention outputs. This chart tensor is then concatenated with the
numericalized action we’re evaluating, and the resulting tensor is the input to a multilayer perceptron
(MLP) with a single hidden layer and a ReLU nonlinearity. The output of the MLP is the predicted
Q value for the current state (chart) and action. We use an ε-greedy policy, with ε annealed from
a starting value of 1 to a minimum value of 0.01. All DQN agents were trained using one-step
semi-gradient TD (a.k.a. semi-gradient TD(0); Sutton and Barto 2018, Chapters 9-11), with a squared
TD-error loss function and the Adam optimizer (Kingma and Ba 2015).

The AC agents use the same architecture as the DQN agents for their policy-approximation component:
the single-value output is now the estimated logit for the action we’re evaluating. These logits are
soft-maxed together to yield a probability distribution over these actions. To this main policy-
approximating branch, we add a separate state-value estimation MLP head with a single hidden layer
that takes the chart tensor as input and outputs the estimated value for the current state (chart). The
state-value head is trained using a squared TD-error loss (we backpropagate these gradients only
through the state-value MLP head). The main policy-network branch is updated using a one-step
version of REINFORCE (Williams 1992; see also Sutton and Barto 2018, Ch. 13 and references
therein). All the recurrent and self-attention networks had a state/query/key/value size of 256, which
was also the hidden-layer size of all MLPs.

There are many possible choices for edge-to-tensor numericalization, including trainable embeddings.
In our experiments, we used a simple, deterministic algorithm. As discussed in the previous section,
an edge is basically a CFG production with three associated integers: two integers are used to indicate
the span of the edge (the part of the sentential input that is ‘covered’ by the edge), and the third
one is used to indicate the dot position, i.e., how much of the right-hand side of the production has
been completed. To numericalize an edge, we need to decide how to numericalize the non-terminals
and terminals in the production part, and these three integers. For the integers, we used a one-hot
encoding with a dimensionality equal to the maximum length of the right-hand side of a production
in our CFG. For the non-terminals, we also used a one-hot encoding with the dimensionality provided
by the number of non-terminals in our CFG. For terminals, i.e. words, we used GloVe embeddings
(Pennington et al. 2014) and reduced their dimensionality to the dimensionality of the non-terminal
one-hot encodings via a principal component analysis (PCA) model. For out-of-vocabulary (UNK)
words without GloVe embeddings, we used the mean GloVE embedding. Actions were numericalized
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using the same algorithm. For complete actions, we concatenated the numericalizations of the two
edges in the complete pair. For predict actions, we numericalized the edge and then numericalized
the production as if it was an edge, with null tensors for the three spurious integers. For scan actions,
we concatenated two null edge tensors of the appropriate dimensionality.

3.2 Environment Specifics

We select the two simplest parsing environments we can create based on the Brown part of the Penn
Treebank corpus: an environment based on a subset of the trees of height 4, and an environment
based on a subset of the trees of height 5. To make the difficulty as low as possible for the RL agents,
the trees are selected so that they always begin with a subject NP. The height-4 environment had 178
trees, with a random 90%− 10% train-test split that varied across 4 experimental runs; all the results
reported in this section average across these runs, hence, across multiple random train-test splits. All
splits had 160 train sentences and 18 test sentences. We did not have a separate validation set: given
our limited computational resources, we didn’t do any hyperparameter tuning (except for a handful of
very limited comparisons). The height-5 environment had 776 trees, and the 90%− 10% split had
698 train sentences and 78 test sentences.

Although these two environments are the simplest in terms of difficulty, the jump in difficulty from
height 4 to height 5 is significant (and it only gets more substantial when moving to height-6 trees
etc.). The maximum sentence length was 7 for height-4 trees, and 12 for height-5 trees. The CFG
induced by the height-4 trees had only 269 productions with a maximum right-hand side length of 4,
while the CFG induced by the height-5 trees had 1761 productions with a maximum right-hand side
length of 7. Because of this, the average number of parses for a sentence from the height-4 corpus
(according to the induced CFG) was 1.09, while the average number of parses for a sentence from the
height-5 corpus was 18.14. The number of parses increases very quickly as tree height goes up. For
example, height-6 based CFGs associate more than 35 million parses with relatively short sentences
like The pale blob of the woman disappeared. Yet another way to see the jump in difficulty from
height 4 to height 5 is to compare the average number of valid predict and complete actions per step:
for height 4, there are on average 4.5 predict actions and 1.11 complete actions per step, while for
height 5, there are on average 97.39 predict actions and 1.82 complete actions per step.

The performance of the agents in the height-4 and height-5 parsing environments are provided in
Tables 2 and 3. The results in these tables (both means and standard errors) are averaged over 4
independent runs. The height-5 results for some of the AC agents were computed on less than 4
runs because of their substantially higher computational-resource demands. The number of steps
was also limited for some of the AC agents on height 5. Based on a very small set of comparisons,
step-limiting did not hurt, and sometimes even slightly helped, the AC agents’ training. On height 4,
the agents were trained for 15,000 episodes, while on height 5, they were trained for 5,000 episodes.
There are fewer episodes for height-5 because the episodes are much longer than the height-4 ones;
5,000 height-5 episodes are roughly equivalent to 15,000 height-4 episodes in that the ε-annealing
schedule has a similar profile relative to a full training run.

3.3 Evaluation

To better evaluate the agents, we estimated a floor and a ceiling for their performance in these
environments. The floor is provided by agents randomly choosing an action in any state from the set
of actions that are valid in that state. For height 4, the random agent achieves an average total reward
per episode of −4.87, obtained in 18.14 steps per episode (on average). For height 5, the random
agent achieves an average total reward of −96 in 156.21 steps per episode.

We estimate the performance ceiling for any given sentence by looking at all the possible parses of the
sentence based on the environment CFG, and all the complete and incomplete edges that contribute to
any of these parses. With the edges and parses in hand, we can compute the average reward per parse
by multiplying the number of edges by −0.25 (which is the cost of any parsing action that contributes
to a successful parse), adding 5 for all final edges (this is the final reward for completing the parse),
and dividing by the total number of possible parses. We can compute the average minimum number
of steps in the same way (we divide the number of edges by the number of parses). These estimates
are fairly accurate for low-ambiguity sentences like the ones in the height-4 environment, but they
tend to be overly optimistic for higher-ambiguity sentences like the ones in the height-5 environment.
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To see this, take the typical PP-attachment ambiguity example I saw the astronomer with a telescope.
The average number of minimum steps to a successful parse when there are 2 possible parses is likely
higher than taking the number of edges in a chart encoding both parses and dividing by 2: most of
the edges are shared by the two parses, so they always have to be added even if we go for only one
parse. This being said, the estimated average maximum reward for the height-4 environment is 2.99,
and the average minimum number of steps is 10.05, which are very likely close to the true values
because of the low ambiguity of height-4 sentences. For height 5, the estimated average maximum
reward is 4.13, and the estimated minimum number of steps is 5.47. These height-5 estimates are
likely pretty far from the true values, for which the average number of minimum steps seems closer
to 25 or 30, which would put the average max reward for height 5 closer to −2.

4 Results

With these performance ranges in mind, we can turn to a discussion of the results in Tables 2 and 3.
We see that, overall, DQN agents outperform AC agents, with the performance of tabular agents being
the poorest. Tabular agents perform at random baseline level in both the height-4 and the height-5
environments: they effectively memorize the training data, so they only very slightly generalize from
train to test in height 4 (many trees have similar subparts, so some generalization is possible), but
completely fail to generalize in the more difficult height-5 environment.

Table 2: Q-learning agents: mean total rewards / steps (and standard errors) on train / test

Agent Height 4 Height 5
Reward Steps Reward Steps

Train Test Train Test Train Test Train Test

Tabular Q -4.73 (0.05) -4.18 (1.06) 19.15 (0.08) 18.17 (1.69) -124.57 (1.1) -127.59 (8.98) 200.25 (1.62) 204.75 (13.27)
DQN RNN 0.13 (0.04) 2.56 (0.32) 13.51 (0.06) 10.26 (0.57) -28.84 (0.63) -22.71 (4.24) 63.48 (0.92) 55.08 (6.27)
DQN GRU 0.93 (0.03) 2.33 (0.38) 12.59 (0.05) 10.86 (0.73) -24.48 (0.56) -16.36 (2.87) 56.37 (0.83) 43.84 (4.44)
DQN LSTM 0.96 (0.03) 1.65 (0.78) 12.53 (0.05) 11.93 (1.3) -27.07 (0.6) -19.75 (3.62) 60.81 (0.88) 50.55 (5.48)
DQN Bi-RNN 0.11 (0.04) 1.87 (0.53) 13.55 (0.06) 11.46 (0.92) -29.95 (0.64) -22.84 (4.83) 64.88 (0.94) 53.98 (6.97)
DQN Bi-GRU 0.96 (0.03) 1.84 (0.65) 12.52 (0.05) 11.67 (1.1) -20.48 (0.3) -15.09 (2.91) 48.62 (0.42) 41.86 (4.37)
DQN Bi-LSTM 0.91 (0.03) 2.17 (0.57) 12.62 (0.05) 11.08 (1.02) -22.78 (0.3) -21.52 (4.52) 52.8 (0.41) 53.02 (6.75)
DQN Self-Att 0.75 (0.03) 1.94 (0.45) 12.83 (0.05) 11.71 (0.87) -25.44 (0.58) -20.43 (3.98) 58.92 (0.86) 51.44 (5.92)

On height 4, the DQN agent with an Elman (simple) RNN is the best on the test sentences; see
the two boldfaced numbers in the left half of Table 2. This is likely because the other agents end
up overfitting the training data. The performance of the DQN RNN agent is very close to ceiling
performance, i.e., to the estimated max reward and min steps per episode for height 4, indicating that,
for all intents and purposes, we have solved the height-4 environment. The DQN GRU agent is also a
solid performer in height 4, trailing behind DQN RNN only slightly.

However, the extra capacity in the more complex agents is helpful in the height-5 environment, where
the bi-directional GRU performs the best; see the two boldfaced numbers in the right half of Table 2.
Once again, the DQN GRU is a solid performer, trailing only slightly behind its bidirectional cousin
on height 5. However, even the performance of the best agent (DQN Bi-GRU) is not at ceiling on
height 5. As mentioned before, we have not done a hyperparameter search because of our limited
computational resources, but the sub-ceiling performance of the best agent does not seem to be
due to model capacity (only): we compared a DQN RNN agent with double the hidden state in the
recurrent component (512) and double the hidden-layer size in the MLP component (512 again), and
its performance on height 5 was not distinguishable from the DQN RNN agent in Table 2.

We see that these cognitively realistic parsing environments provide a substantial challenge for current
RL algorithms—recall that the height-4 and height-5 environments provide the simplest levels of
difficulty, which very abruptly escalates for height 6 and above. A minimal increase in difficulty
would be to use all the height-4 and height-5 trees, not only the trees that start with an NP subject.

The AC agents performed more poorly than the DQN agents, which might be due to the fact that DQN
is probably more sample efficient than AC. This is particularly interesting given that AC architectures
have been argued to be cognitively realistic (Botvinick et al. 2009). The self-attention AC agent in
particular performed surprisingly poorly. Self-attention DQN is a pretty solid, middle-of-the-pack
performer on both height 4 and height 5. The training of the self-attention AC agent, however, was
unstable, which resulted in poor performance on height 4 and a complete lack of convergence in the
more difficult height-5 environment. We are still diagnosing this issue.
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Table 3: Actor-Critic agents: mean total rewards / steps (and standard errors) on train / test

Agent Height 4 Height 5
Reward Steps Reward Steps

Train Test Train Test Train Test Train Test

AC RNN -0.61 (0.04) 0.59 (1.22) 14.38 (0.06) 12.78 (1.81) -44.1 (0.26) -60.64 (5.33) 79.24 (0.34) 109 (7.77)
AC GRU 1.81 (0.03) 1.39 (0.73) 11.63 (0.04) 12.19 (1.14) -47.38 (0.74) -38.92 (4.1) 90.39 (1.07) 78.45 (6.13)
AC LSTM 1.74 (0.03) 0.61 (1.15) 11.67 (0.04) 13.44 (1.78) -36.72 (0.28) -45.4 (4.75) 71.12 (0.38) 86.44 (7.01)
AC Bi-RNN -0.59 (0.04) 0.3 (0.86) 14.44 (0.07) 13.46 (1.32) -70.29 (0.79) -70.96 (6.51) 121.69 (1.16) 123.22 (9.68)
AC Bi-GRU 1.83 (0.03) 1.37 (0.89) 11.63 (0.04) 11.9 (1.4) -31.19 (0.28) -34.66 (5.02) 64.54 (0.39) 71.37 (7.3)
AC Bi-LSTM 1.34 (0.03) 1.3 (0.73) 12.15 (0.05) 12.26 (1.17) -35.73 (0.27) -47.69 (6.14) 70.59 (0.37) 91.44 (8.96)
AC Self-Att -2.08 (0.04) -0.64 (0.72) 15.87 (0.07) 13.64 (1.2) N/A N/A N/A N/A

Figure 4: Steps per episode for tabular and three DQN agents training on height-4 (left) and height-5 (right)

The plots in Fig. 4 show the number of steps per episode (lower is better) for four agents, the tabular
one and the three simplest recurrent DQNs. We see that the tabular agents seem to learn, but very
slowly, while the DQN agents learn much faster. However, the DQN agents top out at a sub-ceiling
level of performance on height 5, indicating that this environment remains unsolved. We leave an
extensive hyperparameter search for a future occasion, as well as the explorations of alternative
architectures, both for ANNs and for RL agents. Hierarchical reinforcement learning agents in
particular might bring significant improvements, given that parsing is an ideal task for learning
and deploying ‘macro’ actions (options; Sutton et al. 1998 among many others), and given that
hierarchical (AC) agents have been argued to be cognitively realistic in Botvinick et al. [2009].

5 Conclusion and Future Work

This research program has two overarching goals. On the cognitive side, the goal is to investigate
whether experience is sufficient for control in parsing, as hypothesized in Hale [2014, Ch. 6]. For
example, we want to investigate whether RL agents trained on natural language corpora like the Penn
Treebank exhibit the same profile in parsing local syntactic ambiguities (e.g. garden path sentences
like The horse raced past the barn fell) as human participants in psycholinguistic experiments. A
wealth of other phenomena investigated in the psycholinguistic literature could also be investigated
through this lens. On the (Deep) RL side, parsing is an ideal task to study hierarchical option induction
(Bacon et al. 2017) among others. For example, seeing a proper name or a pronoun or a determiner
at the start of a sentence could trigger an option that builds in one step an entire subtree with an S
root and an NP-SBJ and VP daughters (e.g. the second tree in Fig. 2). Such options might be crucial
to solve more complex environments (height 6 and above). Investigating curriculum learning (from
height 4 to height 5, for example) is another promising direction to explore.

In summary, we have seen how deep RL agents can learn from experience to left-corner parse in an
environment that maintains a chart and context-free grammar. While parsing difficulty increases very
quickly with respect to syntactic tree height, we note the clear performance benefits of certain neural
architectures, which opens up the possibility of testing the cognitive realism of various learning
algorithms in this family of environments. The application of deep RL to a cognitive faculty as
fundamental as syntactic parsing could enable future work that draws inspiration from empirical
psycholinguistic phenomena to craft learning algorithms that better match human performance on a
variety of tasks, linguistic and potentially non-linguistic.
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